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ABSTRACT
Laptops are vulnerable to theft, greatly increasing the likeli-
hood of exposing sensitive files. Unfortunately, storing data
in a cryptographic file system does not fully address this
problem. Such systems ask the user to imbue them with
long-term authority for decryption, but that authority can
be used by anyone who physically possesses the machine.
Forcing the user to frequently reestablish his identity is in-
trusive, encouraging him to disable encryption.

Our solution to this problem is Zero-Interaction Authen-

tication, or ZIA. In ZIA, a user wears a small authentication

token that communicates with a laptop over a short-range,
wireless link. Whenever the laptop needs decryption author-
ity, it acquires it from the token; authority is retained only
as long as necessary. With careful key management, ZIA im-
poses an overhead of only 9.3% for representative workloads.
The largest file cache on our hardware can be re-encrypted
within five seconds of the user’s departure, and restored in
just over six seconds after detecting the user’s return. This
secures the machine before an attacker can gain physical ac-
cess, but recovers full performance before a returning user
resumes work.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
authentication; D.4.3 [Operating Systems]: File Systems
Management

General Terms
Human Factors, Performance, Security

Keywords
Transient Authentication, Cryptographic File Systems, Mo-
bile Computing, Stackable File Systems
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1. INTRODUCTION
Mobile devices are susceptible to loss and theft because

they are small, light, and easy to carry. Unfortunately, they
often contain sensitive data that their owners would prefer to
keep private. The consequences of exposing such data range
from the inconvenience of canceling credit cards to the public
loss of state secrets. If a user were confident that data on
a missing laptop could not be viewed by unprivileged eyes,
he could simply replace the laptop and restore from backup.
Without that confidence, one must assume the worst.

In many ways, losing a laptop is similar to losing your
wallet. It is likely that your wallet is merely misplaced,
not stolen; if someone finds it, they are not likely to use
your credit cards. However, if several days pass, you will
begin canceling those cards, just in case. The same is true
for sensitive information—passwords, account numbers, and
the like—on your laptop. If a laptop is lost, a user assumes
that all information on it has been exposed and must be
invalidated.

The common defense against data exposure is encryption.
Unfortunately, cryptographic file systems do not adequately
protect the data on a laptop’s disk. These systems require an
initial decryption key, usually supplied at login time, which
is retained by the laptop for later use. As long as that key is
retained, anyone holding the laptop has access to the data.

The only way to limit this vulnerability is to force the user
to resupply the decryption key frequently. Unfortunately,
users find such reauthentication burdensome; it encourages
users to disable security systems that depend on it. For ex-
ample, Windows 2000 requires users to reauthenticate each
time their laptop awakens from suspension. Most people
who are aware that this feature can be disabled do so.

Security requires frequent reauthentication, but this limits
usability. Zero-Interaction Authentication, or ZIA, resolves
this tension with a small authentication token worn by the
user. The user authenticates to the token infrequently. In
turn, the token continuously authenticates to the laptop by
means of a short-range, wireless link. Whenever the laptop
reads file system data, it first obtains a decryption key from
the token. If the token (and hence the user) is not present,
the read cannot complete. With ZIA, stolen laptops are
protected from malicious use; an attacker cannot reproduce
the decryption key. The effectiveness of this scheme depends
on a token small enough to be worn unobtrusively, such
as an IBM Linux watch [20]. This makes the token much
less vulnerable to loss or theft than a device that is carried
and often set down. The core idea of ZIA is simple, but
it requires careful design and implementation. ZIA must
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This figure illustrates the process of file key acquisition.
Encrypted file keys are read from disk and shipped to the
token. The token decrypts it and returns the file key. Traf-
fic between the laptop and token is encrypted, preventing
eavesdroppers from obtaining file keys.

Figure 1: Decrypting File Encrypting Keys

not impose undue usability burdens or noticeably reduce
file system performance.

The main contribution of this paper is not the construc-
tion of a cryptographic file system. Blaze’s CFS [1], Zadok’s
Cryptfs [32], and Microsoft’s EFS [19] all address the archi-
tecture, administration, and cryptographic methods for a
file system. However, none of these combine user authenti-
cation and encryption properly. Some systems, such as EFS,
require the user to reauthenticate after certain events, such
as suspension, hibernation, or long idle periods, in an at-
tempt to bound the window of vulnerability. The user must
explicitly produce a password when any of these events oc-
cur. This burden, though small, will encourage some users
to disable or work around the mechanism.

2. DESIGN
ZIA’s goal is to provide effective file encryption without

reducing performance or usability. All on-disk files are en-
crypted for safety, but all cached files are decrypted for per-
formance. With its limited hardware and networking per-
formance, the token is not able to encrypt and decrypt file
data without a significant performance penalty. Instead,
file keys are stored on the laptop’s disk, encrypted by a key-
encrypting key. Only an authorized token holds the key-
encrypting key, thus the token is required to read files. This
process is illustrated in Figure 1.

There are two requirements for system security. First, a
user’s token cannot provide key decryption services to other
users’ laptops. Second, the token cannot send decrypted
file keys over the wireless link in cleartext form. Therefore,
the token and laptop use an authenticated, encrypted link.
Before the first use of a token, the user must unlock it using
a PIN. Then he must bind the token and laptop, ensuring
that his token only answers key requests from his laptop.
Next, ZIA mutually authenticates the identity of the token
and laptop over the wireless link and exchanges a session
encryption key. After authentication, polling ensures that
the token, and thus the user, is still present. When the token
is out of range, ZIA encrypts cached objects for safety. The
cache retains these encrypted pages to minimize recovery
time when the user returns, preserving usability. The overall
process is illustrated in Figure 2. The remainder of this
section presents the detailed design of ZIA, starting with
the trust and threat model.
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This figure shows the process for authenticating and inter-
acting with the token. Once an unlocked token is bound
to a laptop, ZIA negotiates session keys and can detect the
departure of the token.

Figure 2: Token Authentication System

2.1 Trust and Threat Model
Our focus is to defend against attacks involving physical

possession of a laptop or proximity to it. Possession enables
a wide range of exploits. If the user leaves his login session
open, attacks are not even necessary; the attacker has all
of the legitimate user’s rights. Even without a current lo-
gin session, console access admits a variety of well-known
attacks, some resulting in root access. An attacker can also
bypass the operating system entirely. For example, one can
remove and inspect the disk using another machine. A de-
termined attacker might even probe the physical memory of
a running machine.

ZIA must also defend against exploitation of the wireless
link between the laptop and token: observation, modifica-
tion, or insertion of messages. Simple attacks include eaves-
dropping in the hopes of obtaining decrypted file keys. A
more sophisticated attacker might record a session between
the token and laptop, and later steal the laptop in the hopes
of decrypting prior traffic. ZIA defeats these attacks through
the use of well-known, secure mechanisms.

We assume that some collection of users and laptops be-
long to a single administrative domain, within which data
can be shared. The domain includes at least one trusted au-
thority to simplify key management and rights revocation.
However, the system must be usable even when the laptop
is disconnected from the rest of the network. The token
and the laptop operating system form the trusted comput-
ing base.

ZIA does not defend against a trusted but malicious user,
who can easily leak sensitive data and potentially extract key
material. ZIA does not provide protection for remote users;
they must be physically present. Attackers that jam the



spectrum used by the laptop-token channel will effectively
deny users access to their files. Our work is orthogonal to the
prevention of network-based exploits such as buffer overflow
attacks.

ZIA’s security depends on the limited range of the radio
link between the token and the laptop. Repeaters could
be used to extend this range, though time-based techniques
to defeat such wormhole attacks exist [4, 13]. Similarly,
an attacker with an arbitrarily powerful and sensitive radio
could extend the range, though such attacks are difficult
given the attenuation of high frequency radios.

2.2 Key-Encrypting Keys
In ZIA, each on-disk object is encrypted by some sym-

metric key, Ke. The link connecting the laptop and token is
slow, and the token is much less powerful than the laptop.
Consequently, file decryption must take place on the laptop,
not the token. The file system stores each Ke, encrypted
by some key-encrypting key, Kk; we write this as Kk(Ke).
Only tokens know key-encrypting keys; they are never di-
vulged. A token with the appropriate Kk can decrypt Ke,
and hence enable reading any file encrypted by Ke.

In our model, the local administrative authority is respon-
sible for assigning key-encrypting keys. For reliability in the
face of lost or destroyed tokens, the administrative author-
ity must also hold these keys in escrow. Otherwise, losing a
token is the equivalent of losing all of one’s files. Escrowed
keys need not be highly available, eliminating the need for
oblivious escrow [3] or similar approaches.

Laptops are typically “owned” by a particular user; in
many settings, one could provide only a single, unique Kk

to each user. However, ZIA must support shared access
as well, because most installations within a single adminis-
trative domain share notions of identity and privilege. For
example, two colleagues in a department may borrow each
others’ machines, and ZIA cannot preclude such uses. To
support sharing, each file key, Ke, can be encrypted by both
a user key, Ku, and some number of group keys, Kg.

The specific semantics of group access and authorization
are left to the file system. For example, one can assign key-
encrypting keys to approximate standard UNIX file protec-
tions. Access to a file in the UNIX model is determined by
dividing the universe of users into three disjoint sets: the
file’s owner, members of the file’s group, and anyone else
empowered to log in to that machine. We refer to this last
set as the world. Each user has a particular identity, and is
a member of one or more groups. One could assign a user

key, Ku, to each user; a group key, Kg, to each group; and
a world key, Kw, to each machine. A user’s token holds her
specific Ku, each applicable Kg, and one Kw per machine on
which she has an account. Each file’s encryption key, Ke, is
stored on disk, sealed with its owner’s key, Ku. If a file was
readable, writable, or executable by members of its own-
ing group, Kg(Ke) would also be stored. Finally, Kw(Ke)
would be stored for files that are world-accessible. Note that
the latter is not equivalent to leaving world-accessible files
unencrypted; only those with login authority on a machine
would hold the appropriate Kw.

Group keys have important implications for sharing and
revocation in ZIA. Members of a group have the implicit
ability to share files belonging to that group, since each
member has the corresponding Kg. However, if a user leaves
a group, that group’s Kg must be changed to a new K

′

g . Fur-

thermore, the departing user—who is no longer authorized
to view these files—may have access to previously-unsealed
file keys. As a result, re-keying a group requires that the
contents of each file accessible to that group be re-encrypted
with a new K

′

e, and that new key be re-sealed with the ap-
propriate key-encrypting keys.

Re-keying can be done incrementally. To distribute a new
group key, the administrative authority must supply a cer-
tified K

′

g to the token of each still-authorized user. This
must be done in a secure environment to prevent exposure
of K

′

g. Thereafter, a token encountering a laptop with “old”
keys can continue to use it until it is re-keyed. However,
this policy must be pursued judiciously, since it increases
the amount of data potentially visible to an ejected group
member.

2.3 Token Vulnerabilities
Tokens provide higher physical security than laptops, since

they are worn rather than carried. Unfortunately, it is still
possible for a user to lose a token. Token loss is a very seri-
ous threat since tokens hold key-encrypting keys. How can
we limit the damage of such an occurrence?

The most serious vulnerability surrounding token loss is
the extraction of key-encrypting keys. PIN-protected, tam-
per-resistant hardware [31] makes this more difficult, as does
storing all Kk encrypted with some password. In either
case, the PIN/password must be known only to the token’s
rightful owner. At first glance, this seems to merely shift
the problem of authentication from the laptop to the token.
However, since the token is worn, it is more physically secure
than a laptop—it is reasonable to allow long-lived authenti-
cation between the token and the user, perhaps on the order
of once a day.

Bounding the authentication session between the user and
token also prevents an attacker from profitably stealing a
token, and then later a laptop. After the authentication
period expires, the token will no longer be able to supply
any requested Ke. Such schemes can be further improved
through the use of server-assisted protocols to prevent offline
dictionary attacks [17], with the laptop playing the role of
the server to the token’s device.

Even tokens that have not been stolen can act as liabili-
ties. Supposed an attacker has a stolen laptop but no token,
and is sitting near a legitimate user from the same domain.
This tailgating attacker can force the stolen laptop to gen-
erate key decryption requests that could use one of the le-
gitimate user’s key-encrypting keys. If the legitimate token
were to respond, the system would be compromised.

To prevent this, we provide a mechanism that establishes
bindings between tokens and laptops. Before a token will
respond to a particular laptop’s request, the user must ac-
knowledge that he intends to use this token with that laptop.
There are several ways one can accomplish this. For exam-
ple, a token with a rudimentary user interface would alert
the user when some new laptop first asks it to decrypt a file
key. The user then chooses to allow or deny that laptop’s
current and future requests. As with token authentication,
bindings have relatively long but bounded duration; after
a binding expires, the token/laptop pair must be rebound.
Since a user can use more than one machine, a token may
be bound to more than one laptop. Likewise, a laptop may
have more than one token bound to it.



User-token authentication and token-laptop binding are
necessarily visible to the user, and thus add to the burden
of using the system. However, since they are both long-
lived, they require infrequent user action. In practice, they
are no more intrusive than having to unlock your office door
once daily, without the accompanying threat of forgetting
to re-lock it. The right balance between usability and se-
curity depends on the physical nature of the token, its user
interface capabilities, and the user population.

2.4 Token-Laptop Interaction
The binding process must accomplish two things: mu-

tual authentication and session key establishment. Mutual
authentication can be provided with public-key cryptogra-
phy [22]. In public-key systems, each principal has a pair
of keys, one public and one secret. To be secure, each prin-
cipal’s public key must be certified, so that it is known to
belong to that principal. Because laptops and tokens fall
under the same administrative domain, that domain is also
responsible for certifying public keys.

ZIA uses the Station-to-Station protocol [9], which com-
bines public-key authentication and Diffie-Hellman key ex-
change. Diffie-Hellman key exchange provides perfect for-

ward security ; session keys cannot be reconstructed, even if
the private keys of both endpoints are known. Once a ses-
sion key is established, it is used to encrypt all messages be-
tween the laptop and token. Each message includes a nonce,
a number that uniquely identifies a packet within each ses-
sion to prevent replay attacks [5]. In addition, the session
key is used to compute a message authentication code, ver-
ifying that a received packet was neither sent nor modified
by some malicious third party [21].

2.5 Assigning File Keys
What is the right granularity at which to assign file en-

cryption keys? A small grain size reduces the data exposed
if a file key is revealed, but a larger grain size provides more
opportunity for key caching and re-use.

ZIA hides the latency of key acquisition by overlapping it
with physical disk I/O. Further, it must amortize acquisition
costs by re-using keys when locality suggests that doing so
is beneficial. In light of this, we have chosen to assign file
keys on a per-directory basis.

People tend to put related files together, so files in the
same directory tend to be used at the same time. Therefore,
many file systems place all files in a directory in the same
cylinder group to reduce seek time between them [18]. This
makes it difficult to hide key acquisition costs for per-file
keys. Instead, since each file in a directory shares the same
file key, key acquisition costs are amortized across intra-
directory accesses. Alternatively, one could imagine keeping
per-file keys in one file, and reading them in bulk; however,
maintaining this structure requires an extra seek on each file
creation or deletion.

In our prototype, we store the file key for a directory in
a keyfile within that directory. The keyfile contains two en-
crypted copies of the file key; Ku(Ke) and Kg(Ke), where
Ku and Kg correspond to the directory’s owner and group.
We have chosen not to implement world keys, but adding
them is straightforward. This borrows from the UNIX pro-
tection model, though it does not replicate it exactly. AFS,
the Andrew File System, makes a similar tradeoff in manag-
ing access control lists on a per-directory basis rather than a

per-file one [28]. However, AFS is motivated by conceptual
simplicity and storage overhead, not efficiency in retrieving
access control list entries.

2.6 Handling Keys Efficiently
Key acquisition time can be a significant expense, so we

overlap key acquisition with disk operations whenever possi-
ble. Since disk layout policies and other optimizations often
reduce the opportunity to hide latency, we cache decrypted
keys obtained from the token.

Disk reads provide opportunities for overlap. When a read
requiring an uncached key commences, ZIA asks the token
to decrypt the key in parallel. Unfortunately, writes do not
offer the same opportunity; the key must be in hand to
encrypt the data before the write commences. However, it
is likely that the decryption key is already in the key cache
for writes. To write a file, one must first open it. This open
requires a lookup in the enclosing directory. If this lookup
is cached, the file key is also likely to be cached. If not,
then key acquisition can be overlapped with any disk I/O
required for lookup.

Neither overlapping nor caching applies to directory cre-
ation, which requires a fresh key. Since this directory is new,
it cannot have a cached key already in place. Since this is
a write, the key must be acquired before the disk operation
initiates. However, ZIA does not need a particular key to as-
sociate with this directory; any key will do. Therefore, ZIA
can prefetch keys from the authentication token, encrypted
with the current user’s Ku and Kg, to be used for directo-
ries created later. The initial set of fresh keys is prefetched
when the user binds a token to a laptop. Thereafter, if the
number of fresh keys drops below a threshold, a background
daemon obtains more.

Key caching and prefetching greatly reduce the need for
laptop/token interactions. However, frequent assurance that
the token is present is our only defense against intruders. To
provide this assurance, we add a periodic challenge/response
between the laptop and the token. The period must be short
enough that the time to discover an absence plus the time to
secure the machine is less than that required for a physical
attack. It also must be long enough to impose only a light
load on the system. We currently set the interval to be
one second; this is long enough to produce no measurable
load, but shorter than the time to protect the laptop in the
worst case. Thus, it does not contribute substantially to the
window in which an attacker can work.

2.7 Departure and Return
When the token does not respond to key requests or chal-

lenges, the user is declared absent. All file system state must
be protected and all cached file keys flushed. When the user
returns, ZIA must re-fetch file keys and restore the file cache
to its pre-departure state. This process should be transpar-
ent to the user: it should complete before he resumes work.

There are two reasons why a laptop might not receive a
response from the token. The user could truly be away, or
the link may have dropped a packet. ZIA must recover from
the latter to avoid imposing a performance penalty on a still-
present user. To accomplish this, we use the expected round
trip time between the laptop and the token. Because this
is a single, uncongested network hop, this time is relatively
stable. ZIA retries key requests if responses are not received
within twice the expected round trip time, with a total of



three attempts. Retries do not employ exponential backoff,
since we expect losses to be due to link noise, not congestion;
congestion from nearby users is unlikely because of the short
radio range.

If there is still no response, the user is declared absent and
the file system must be secured. ZIA first removes all name
mappings from the name cache, forcing any new operations
to block during lookup. ZIA then walks the list of its cached
pages, removing the clear text versions of the pages. There
are two ways to accomplish this: writing dirty pages to disk
and zeroing the cache, or encrypting all cached pages in
place.

Zeroing the cache has the attractive property that little
work is required to secure the machine. Most pages will be
clean, and do not need to be written to disk. However, when
the user returns, ZIA must recover and decrypt pages that
were in the cache. They are likely to be scattered across the
disk, so this will be expensive.

Instead, ZIA encrypts all of the cached pages in place.
Each page belongs to a file on disk, with a matching file
key. The page descriptor holds a reference to the cached,
decrypted key. Referenced keys may not be evicted—they
are wired in the cache. Without a corresponding key, there
would be no way to encrypt a cached page, and such keys
cannot be obtained from the now-departed token.

The expense of encryption is tolerable given our goal of
foiling a physical attack. For example, the largest file cache
we can observe on our hardware can be encrypted within five
seconds. To be successful, an attacker would have to gain
possession of the machine and extract information within
that time—an unlikely occurance.

While the user is absent, most disk operations block un-
til the token is once again within range; ZIA then resumes
pending operations. This means that background processes
cannot continue while the user is away. In a physically se-
cure location, such as an office building, fixed beacons can
provide authentication in lieu of the user. Unfortunately,
such beacons would not prevent intra-office theft and must
be used judiciously. At insecure locations, such as an air-
port, the user must not leave unencrypted data exposed and
background computation should not be enabled. This would
defeat the purpose of the system.

2.8 Laptop Vulnerabilities
What happens when a laptop is stolen or lost? Since ZIA

automatically secures the file system, no data can be ex-
tracted from the disk. Likewise, all file keys and session
keys have been zeroed in memory. However, the laptop’s
private key, sd, must remain on the laptop to allow trans-
parent re-authentication. If the attacker recovers sd, he can
impersonate a valid laptop. To defend against this, the user
must remove the binding between the token and the stolen
device. This capability can be provided through a simple
interface on the token. Use of tamper-resistant hardware in
the laptop would make extracting sd more difficult.

Instead of offline inspection, suppose an attacker modifies
the device and returns it to a user. Now the system may
contain trojans, nullifying all protections afforded by ZIA.
Any device that is stolen, and later recovered, should be
regarded as suspect and not used. Secure booting [6, 14]
can be used to guard against this attack.
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This figure shows ZIA’s design. The kernel module handles
cryptographic file I/O. The authentication client and server
manage key decryption and detect token proximity. A key
cache is included to improve performance.

Figure 3: An overall view of ZIA

3. IMPLEMENTATION
Our implementation of ZIA consists of two parts: an in-

kernel encryption module and a user-level authentication
system. The kernel portion provides cryptographic I/O,
manages file keys, and polls for the token’s presence. The
authentication system consists of a client on the user’s lap-
top and a server on the token, communicating via a secured
channel.

Figure 3 is a block diagram of the ZIA prototype. The
kernel module handles all operations intended for our file
system and forwards key requests to the authentication sys-
tem. We used FiST [33], a tool for constructing stackable
file systems [11, 27], to build our kernel-resident code. This
code is integrated with the Linux 2.4.10 kernel.

The authentication system consists of two components.
The client, keyiod, runs on the laptop, and the server, keyd,
runs on the token; both are written in C. The client han-
dles session establishment and request retransmission. The
server must respond to key decryption and polling requests.
The processing requirements of keyd are small enough that
it can be implemented in a simple, low-power device.

3.1 Kernel Module
In Linux, all file system calls pass through the Virtual File

System (VFS) layer [15]. VFS provides an abstract view of
the file systems supported by the OS. A stackable file system
inserts services between the concrete implementations of an
upper and lower file system. FiST implements a general
mechanism for manipulating page data and file names; this
makes it ideal for constructing cryptographic file services.
The FiST distribution also includes a proof-of-concept cryp-
tographic file system, Cryptfs.

3.1.1 File and Name Encryption
The kernel module encrypts both file pages and file names

with the Rijndael cipher [8]. We selected Rijndael for two
reasons. First, it has been chosen as NIST’s Advanced En-
cryption Standard, AES. Second, it has excellent perfor-



mance, particularly for key setup—a serious concern in the
face of per-directory keys.

ZIA preserves file sizes under encryption. File pages are
encrypted in cipher block chaining (CBC) mode with a 16
byte block. We use the inode and page offsets to compute
a different initialization vector for each page of a file. Tail
portions that are not an even 16 bytes are encrypted in
cipher feedback mode (CFB). We chose CFB rather than ci-
phertext stealing [7], since we are concerned with preventing
exposure, not providing integrity.

ZIA does not preserve the size of file names under encryp-
tion; they are further encoded in Base-64, ensuring that en-
crypted filenames use only printable characters. Otherwise,
the underlying file system might reject encrypted file names
as invalid. In exchange, limits on file and path name sizes
are reduced by 25%. Cryptfs made the same decision for the
same reasons [32].

The kernel module performs two additional tasks. First,
the module prefetches fresh file keys to be used during direc-
tory creation. Second, the module manages the storage of
encrypted keys. The underlying file system stores keys in a
keyfile, but keyfiles are not visible within ZIA. This is done
for transparency, not security; on-disk file keys are always
encrypted.

3.1.2 Polling, Disconnection, and Reconnection
ZIA periodically polls the token to ensure that the user

is still present. The polling period must be longer than a
small multiple of network round-trip time, but shorter than
the time required for an adversary to obtain and inspect the
laptop. This window is between hundreds of milliseconds
and tens of seconds. We chose a period of one second; this
generates unnoticeable traffic, but provides tight control.
Demonstrated knowledge of the session key is sufficient to
prove the token’s presence. Therefore, a poll message need
only be an exchange of nonces [5]: the device sends a num-
ber, n, encrypted with the key and the token returns n + 1
encrypted by the same key. The kernel is responsible for
polling; it cannot depend on a user-level process to declare
the token absent, since it must be fail-stop. Similarly, if
the user suspends the laptop, or it suspends itself due to
inactivity, the kernel treats this as equivalent to loss of com-
munication.

If the kernel declares the user absent, it secures the file
system. Cached data is encrypted, decrypted file keys are
flushed, and both are marked invalid. We added a flag to
the page structure to distinguish encrypted pages from those
that were invalidated through other means. Most I/O in ZIA
blocks during the user’s absence; non-blocking operations
return the appropriate error code.

When keyiod reestablishes a secure connection with the
token, two things happen. First, decrypted file keys are re-
fetched from the token. Second, file pages are decrypted
and made valid. As pages are made valid, any operations
blocked on them resume. We considered overlapping key
validation with page decryption to improve restore latency.
However, the simpler scheme is sufficiently fast.

3.2 Authentication System
The authentication system is implemented in user space

for convenience. All laptop-token communication is encryp-
ted and authenticated by session keys plus nonces. Commu-
nication between the laptop and the token uses UDP rather

than TCP, so that we can provide our own retransmission
mechanism. This enables a more aggressive schedule, since
congestion is not a concern. We declare the user absent after
three dropped messages; this parameter is tunable. The to-
ken, in the form of keyd, holds all of a user’s key-encrypting
keys. Since session establishment is the most taxing oper-
ation required of keyd, and it is infrequent, keyd is easily
implemented on low-power hardware.

4. EVALUATION
In evaluating ZIA, we set out to answer the following ques-
tions:

• What is the cost of key acquisition?

• What overhead does ZIA impose? What contributes
to this overhead?

• Can ZIA secure the machine quickly enough to prevent
attacks when the user departs?

• Can ZIA recover system state before a returning user
resumes work?

To answer these questions, we subjected our prototype to
a variety of benchmarks. For these experiments, the client
machine was an IBM ThinkPad 570, with 128 MB of phys-
ical memory, a 366 MHz Pentium II CPU, and a 6.4 GB
IDE disk drive with a 13 ms average seek time. The token
was a Compaq iPAQ 3650 with 32MB of RAM. They were
connected by an 802.11 wireless network running in ad hoc
mode at 1 Mb/s. All keys were 128 bits long. The token
is somewhat more powerful than current wearable devices.
However, the rapid advancements in embedded, low-power
devices makes this a realistic token in the near future.

4.1 Key Acquisition
Our first task is to compare the cost of key acquisition

with typical file access times. To do so, we measured the
elapsed time between the kernel’s request for key decryp-
tion and the delivery of the key to the kernel. The average
acquisition cost is 13.9 milliseconds, with a standard devi-
ation of 0.0015. This is similar to the average seek time of
the disk in our laptops, though layout policy and other disk
optimizations will tend to reduce seek costs in the common
case.

4.2 ZIA Overhead
Our second goal is to understand the overhead imposed by

ZIA on typical system operation. Our benchmark is similar
to the Andrew Benchmark [12] in structure. The Andrew
Benchmark consists of copying a source tree, traversing the
tree and its contents, and compiling it. We use the Apache
1.3.19 source tree. It is 7.4 MB in size; when compiled, the
total tree occupies 9.7 MB. We pre-configure the source tree
for each trial of the benchmark, since the configuration step
does not involve appreciable I/O in the test file system.

While the Andrew Benchmark is well known, it does have
several shortcomings; the primary one is a marked depen-
dence on compiler performance. In light of this, we also
subject ZIA to three I/O-intensive workloads: directory cre-
ation, directory traversal, and tree copying. The first two
highlight the cost of key creation and acquisition. The third
measures the cost of data encryption and decryption.



File System Time, sec Over Ext2fs
Ext2fs 52.63 (0.30) -
Base+ 52.76 (0.22) 0.24%
Cryptfs 57.52 (0.18) 9.28%
ZIA 57.54 (0.20) 9.32%
ZIA-NPC 232.04 (3.40) 340.86%

This shows the performance of Ext2fs against five stacked
file systems using a Modified Andrew Benchmark. Stan-
dard deviations are shown in parentheses. ZIA has an over-
head of less than 10% in comparison to an Ext2fs system
and performs similarly to a simple single key encryption
system, Cryptfs.

Figure 4: Modified Andrew Benchmark

4.2.1 Modified Andrew Benchmark
We compare the performance of Linux’s ext2fs against

four stacking file systems: Base+, Cryptfs, ZIA, and ZIA-
NPC. Base+ is a null stacked file system. It transfers file
pages but provides no name translation. Cryptfs adds file
and name encryption; it uses a single, static key for the
entire file system. Both Base+ and Cryptfs are samples from
the FiST distribution [33]. To provide a fair comparison, we
replaced Blowfish [29] with Rijndael in Cryptfs, improving
its performance. ZIA is as described in this paper. ZIA-
NPC obtains a key on every disk access; it provides neither
caching nor prefetching of keys.

Each experiment consists of 20 runs. Before each set,
we compile the same source in a separate location. This
ensures that the test does not include the effects of loading
the compiler and linker from a separate file system. Each
run uses separate source and destination directories to avoid
caching files and name translations. The results are shown
in Figure 4; standard deviations are shown in parenthesis.

The results for ext2fs give baseline performance. The re-
sult for Base+ quantifies the penalty for using a stacking
file system. Cryptfs adds overhead for encrypting and de-
crypting file pages and names. ZIA encompasses both of
these penalties, plus any costs due to key retrieval, token
communication and key storage.

For this benchmark, ZIA imposes less than a 10% penalty
over ext2fs. Its performance is statistically indistinguish-
able from that of Cryptfs, which uses a single key for all
cryptographic operations. Key caching is critical; without
it, ZIA-NPC is more than four times slower than the base
file system.

To examine the root causes of ZIA’s overhead, we instru-
mented the 28 major file and inode operations in both ZIA
and Base+. The difference between the two, normalized by
the number of operations, gives the average time ZIA adds
to each. Most operations incur little or no penalty, but five
operations incur measurable overhead. The result is shown
in Figure 5.

Overhead in each operation stems from ZIA’s encryption
and key management functions. In Base+, the readpage

and writepage functions merely transfer pages between the
upper and lower file system. Since writepage is asynchro-
nous, this operation is relatively inexpensive. In ZIA we
must encrypt the page synchronously before writing to the
lower file system. During readpage, we must decrypt the
pages synchronously; this leads to the overheads shown.
ZIA’s mkdir must write the keyfile to the disk. This adds
an extra file creation to every mkdir. Finally, filldir and
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This shows the per-operation overhead for ZIA compared
to the Base+ file system. Writing and reading directory
keys from disk is an expensive operation, as is encrypting
and decrypting file pages.

Figure 5: Per-Operation Overhead

File System Time, sec Over Ext2fs
Ext2fs 9.67 (0.23) -
Base+ 9.66 (0.13) -0.15%
Cryptfs 9.88 (0.14) 2.17%
ZIA 10.25 (0.09) 5.9%

This table shows the performance for the creation of 1000
directories, each containing one zero-length file. Standard
deviations are shown in parentheses. Although ZIA has
a cache of fresh keys for directory creation, it must write
those keyfiles to disk.

Figure 6: Creating Directories

lookup must encrypt and decrypt file names, and must some-
times acquire a decrypted file key.

4.2.2 I/O Intensive Benchmarks
Although the Modified Andrew Benchmark shows only

a small overhead, I/O intensive workloads will incur larger
penalties. We conducted three benchmarks to quantify them.
The first two stress directory operations, and the third mea-
sures the cost of copying data in bulk.

The first experiment measures the time to create 1000
directories, each containing a zero length file. The results
are shown in Figure 6. Each new directory requires ZIA to
write a new keyfile to the disk, adding an extra disk write to
each operation; the write-behind policy of ext2fs keeps these
overheads manageable. In addition, the filenames must be
encrypted, accounting for the rest of the overhead.

The next benchmark examines ZIA’s overhead for reading
1000 directories and a zero length file in each directory. This
stresses keyfile reads and key acquisition. Note that without
the empty file ZIA does not need the decrypted key and the
token would never be used. We ran a find across the 1000
directories and files created during the previous experiment.
We rebooted the machine between the previous test and
this one to make sure the name cache was not a factor. The
results are shown in Figure 7.

The results show a large overhead for ZIA. This is not
surprising since we have created a file layout with the small-
est degree of directory locality possible. ZIA is forced to
fetch 1000 keys, one for each directory; there is no locality



File System Time, sec Over Ext2fs
Ext2fs 15.56 (1.25) -
Base+ 15.72 (1.16) 1.04%
Cryptfs 15.41 (1.07) -0.94%
ZIA 29.76 (3.33) 91.24%

This table shows the performance for reading 1000 direc-
tories, each containing one zero-length file. Standard de-
viations are shown in parentheses. In this case, ZIA must
synchronously acquire each file key.

Figure 7: Scanning Directories

File System Time, sec Over Ext2fs
Ext2fs 19.68 (0.28) -
Base+ 31.05 (0.68) 57.78%
Cryptfs 42.81 (1.34) 117.57%
ZIA 43.56 (1.13) 121.38%

This table shows the performance for copying a 40MB
source tree from one directory in the file system to an-
other. Standard deviations are shown in parentheses. Syn-
chronously decrypting and encrypting each file page adds
overhead to each page copy. This is true for ZIA as well as
Cryptfs.

Figure 8: Copying Within the File System

for key caching to exploit. This inserts a network round
trip into reading the contents of each directory, accounting
for an extra 14 milliseconds per directory read. Note that
the differences between Base+, Cryptfs and Ext2fs are not
statistically significant.

Each directory read in ZIA requires a keyfile read and a
key acquisition in addition to the work done by the under-
lying ext2fs. Interestingly, the amount of unmasked acqui-
sition time plus the time to read the keyfile was similar to
the measured acquisition costs. To better understand this
phenomenon, we instrumented the internals of the direc-
tory operations. Surprisingly, the directory read completed
in a few tens of microseconds, while the keyfile read was a
typical disk access. We believe that this is because, in our
benchmark, keyfiles and directory pages are always placed
on the same disk track. In this situation, the track buffer
will contain the directory page before it is requested.

It is likely that an aged file system would not show such
consistent behavior [30]. Nevertheless, we are considering
moving keyfiles out of directories and into a separate lo-
cation in the lower file system. Since keys are small, one
could read them in batches, in the hopes of prefetching use-
ful encrypted file keys. When encrypted keys are already in
hand, the directory read would no longer be found in the
track buffer, and would have to go to disk. However, this
time would be overlapped with key acquisition, reducing to-
tal overheads.

The final I/O intensive experiment is to copy the Pine 4.21
source tree from one part of the file system to another. The
initial files are copied in and then the machine is rebooted to
avoid hitting the page cache. This measures data intensive
operations. The Pine source is 40.4 MB spread across 47
directories. The results are shown in Figure 8. In light of
the previous experiments, it is clear why Crypt and ZIA are
slow in comparison to Base+ and Ext2fs. Each file page is
synchronously decrypted after a read and encrypted before
a write.
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This plot shows the disconnection encryption time and re-
connection decryption time. The line shows the time re-
quired to encrypt all the file pages when the token moves
out of range. The blocks show the time required to refetch
all the cached keys and decrypt the cached file pages.

Figure 9: Disconnection and Reconnection

4.3 Departure and Return
In addition to good performance, ZIA must have two addi-

tional properties. For security, all file page data must be en-
crypted soon after a user departs. To be usable, ZIA should
restore the machine to the pre-departure state before the
user resumes work. Recall that when the user leaves, the
system encrypts the file pages in place. When the user re-
turns, ZIA requests decryption of all keys in the key cache
and then decrypts the data in the page cache. To measure
both disconnection and reconnection time, we copied sev-
eral source directories of various sizes into ZIA, removed the
token, and then brought it back into range. Figure 9 shows
these results. The line shows the time required to secure
the file system and the points represent the time required
to restore it. The right-most points on the graph represent
the largest file cache we could produce in our test system.

The encryption time depends solely on the amount of data
in the page cache. Unsurprisingly, encryption time is lin-
ear with page cache size. Decryption is also linear, though
key fetching requires a variable amount of time due to the
unknown number of keys in the cache. We believe that a
window of five seconds is too short for a thief to obtain the
laptop and examine the contents of the page cache. Further-
more, the user should come back to a system with a warm
cache. Once the user is within radio range, he must walk to
the laptop, sit down, and resume work; this is likely to be
more than six seconds.

5. RELATED WORK
To the best of our knowledge, ZIA is the first system to

provide encrypted filing services that defend against physical
attack while imposing negligible usability and performance
burdens on a trusted user. ZIA accomplishes this by sep-
arating the long-term authority to act on the user’s behalf
from the entity performing the actions. The actor holds
this authority only over the short term, and refreshes it as
necessary.

There are a number of file systems that provide transpar-
ent encryption; the best known is CFS [1]. CFS is built



as an indirection layer between applications and an arbi-
trary underlying file system. This layer is implemented as
a “thin” NFS server that composes encryption atop some
other, locally-available file system. Keys are assigned on a
directory tree basis. These trees are exposed to the user; the
secure file system consists of a set of one or more top-level
subtrees, each protected by a single key.

When mounting a secure directory tree in CFS, the user
must supply the decryption keys via a pass-phrase. These
keys remain in force until the user consciously revokes them.
This is an explicit design decision, intended to reduce the
burden on users of the system. In exchange, the security of
the system is weakened by vesting long-term authority with
the laptop. CFS also provides for the use of smart cards
to provide keys [2], but they too are fetched at mount time
rather than periodically. Even if fetched periodically, a user
would be tempted to leave the smart card in the machine
most of the time.

CFS’ overhead can be substantial. One way to imple-
ment a cryptographic file system more efficiently is to place
it in the kernel, avoiding cross-domain copies. This task is
simplified by a stackable file system infrastructure [11, 27].
Stackable file systems provide the ability to interpose lay-
ers below, within, or above existing file systems, enabling
incremental construction of services.

FiST [33] is a language and associated compiler for con-
structing portable, stackable file system layers. We use FiST
in our own implementation of ZIA, though our use of the vir-
tual memory and buffer cache mechanisms native to Linux
would require effort to port to other operating systems. We
have found FiST to be a very useful tool in constructing file
system services.

Cryptfs is the most complete prior example of a stacking
implementation of encryption. It was first implemented as
a custom-built, stacked layer [32], and later built as an ex-
ample use of FiST. Cryptfs—in both forms—shares many
of the goals and shortcomings of CFS. A user supplies his
keys only once; thereafter, the file system is empowered to
decrypt files on the user’s behalf. Cryptfs significantly out-
performs CFS, and our benchmarks show Cryptfs in an even
better light. This is primarily due to the replacement of
Blowfish [29] with Rijndael [8].

Microsoft Windows 2000 provides the Encrypting File Sys-
tem (EFS) [19]. While EFS solves many administrative is-
sues, it is essentially no different from CFS or Cryptfs. A
single password serves as the key-encrypting key for on-disk,
per-file keys. EFS still depends on screen saver or suspen-
sion locks to revoke this key-encrypting key, rather than
departure of the authorized user. The user may disable the
screen saver or suspension locks after finding them intru-
sive. Anecdotally, we have found that many Windows 2000
laptop users have done exactly that.

In addition to file system state, applications often hold
sensitive data in their address spaces. If any of this state is
paged out to disk, it will be available to an attacker much as
an unencrypted file system would be. Provos provides a sys-
tem for protecting paging space using per-page encryption
keys with short lifetimes [26]. ZIA is complimentary to this
system; ZIA protects file system state, while Provos’ system
protects persistent copies of application address spaces.

Several efforts have used proximity-based hardware tokens
to detect the presence of an authorized user. Landwehr [16]
proposes disabling hardware access to the keyboard and

mouse when the trusted user is away. This system does not
fully defend against physical possession attacks, since the
contents of disk and possibly memory may be inspected at
the attackers leisure. Similar systems have reached the com-
mercial world. For example, the XyLoc system [10] could
serve as the hardware platform for ZIA’s authentication to-
ken.

Rather than use passwords or hardware tokens, one could
instead use biometrics. Biometric authentication schemes
intrude on users in two ways. The first is the false-negative
rate: the chance of rejecting of a valid user [25]. For face
recognition, this ranges between 10% and 40%, depending
on the amount of time between training and using the recog-
nition system. For fingerprints, the false-negative rate can
be as high as 44%, depending on the subject. The second in-
trusion stems from physical constraints. For example, a user
must touch a special reader to validate his fingerprint. Such
burdens encourage users to disable or work around biomet-
ric protection. A notable exception is iris recognition. It can
have a low false-negative rate, and can be performed unob-
trusively [23]. However, doing so requires three cameras—an
expensive and bulky proposition for a laptop.

6. CONCLUSION
Because laptops are vulnerable to theft, they require ad-

ditional protection against physical attacks. Without such
protection, anyone in possession of a laptop is also in pos-
session of all of its data. Current cryptographic file sys-
tems do not offer this protection, because the user grants
the file system long-term authority to decrypt on his be-
half. Closing this vulnerability with available mechanisms—
passwords, secure hardware, or biometrics—would place un-
pleasant burdens on the user, encouraging him to forfeit se-
curity entirely.

This paper presents our solution to this problem: Zero-

Interaction Authentication, or ZIA. In ZIA, a user wears an
authentication token that retains the long-term authority to
act on his behalf. The laptop, connected to the token by a
short-range wireless link, obtains this authority only when it
is needed. Despite the additional communication required,
this scheme imposes an overhead of only 9.3% above the
local file system for representative workloads; this is indis-
tinguishable from the costs of simple encryption.

If the user leaves, the laptop encrypts any cached file sys-
tem data. For the largest buffer cache on our hardware, this
process takes less than five seconds—less time than would be
required for a nearby thief to examine data. Once the user
is back in range, the file system is restored to pre-departure
state within six seconds. The user never notices a perfor-
mance loss on return. ZIA thus prevents physical possession
attacks without imposing any performance or usability bur-
den.

We are currently extending ZIA’s model to system ser-
vices and applications [24]. By protecting application state
and access to sensitive services, ZIA can protect the entire
machine—not just the file system—from attack.
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