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Abstract

This paper presents a new method for branch prediction. The
key idea is to use one of the simplest possible neural net-
works, theperceptroras an alternative to the commonly used
two-bit counters. Our predictor achieves increased accyra
by making use of long branch histories, which are possible
because the hardware resources for our method scale lipearl
with the history length. By contrast, other purely dynamic
schemes require exponential resources.

We describe our design and evaluate it with respect to
two well known predictors. We show that for a 4K byte hard-
ware budget our method improves misprediction rates for the
SPEC 2000 benchmarks by 10.1% over tjsharepredic-
tor. Our experiments also provide a better understanding of
the situations in which traditional predictors do and do not
perform well. Finally, we describe techniques that allow ou
complex predictor to operate in one cycle.

1 Introduction

Modern computer architectures increasingly rely on sgecul
tion to boost instruction-level parallelism. For exampmlata

that is likely to be read in the near future is speculatively
prefetched, and predicted values are speculatively used be
fore actual values are available [10, 24]. Accurate préafict
mechanisms have been the driving force behind these tech-
nigues, so increasing the accuracy of predictors increhses
performance benefit of speculation. Machine learning tech-
niques offer the possibility of further improving perfornce

by increasing prediction accuracy. In this paper, we show
that one machine learning technique can be implemented in
hardware to improve branch prediction.

Branch prediction is an essential part of modern microar-
chitectures. Rather than stall when a branch is encoun-
tered, a pipelined processor uses branch prediction to spec
ulatively fetch and execute instructions along the predict
path. As pipelines deepen and the number of instructions
issued per cycle increases, the penalty for a misprediction
increases. Recent efforts to improve branch prediction fo-
cus primarily on eliminatingaliasing in two-level adaptive
predictors [17, 16, 22, 4], which occurs when two unrelated
branches destructively interfere by using the same piiedict
resources. We take a different approach—one that is largely
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orthogonal to previous work—by improving the accuracy of
the prediction mechanism itself.

Our work builds on the observation that all existing two-
level techniques use tables of saturating counters. Itisrah
to ask whether we can improve accuracy by replacing these
counters with neural networks, which provide good predic-
tive capabilities. Since most neural networks would be pro-
hibitively expensive to implement as branch predictors, we
explore the use of perceptrons, one of the simplest possible
neural networks. Perceptrons are easy to understand, sim-
ple to implement, and have several attractive propertias th
differentiate them from more complex neural networks.

We propose a two-level scheme that uses fast perceptrons
instead of two-bit counters. Ideally, each static brancilis
located its own perceptron to predict its outcome. Trad#lo
two-level adaptive schemes use a pattern history table YPHT
of two-bit saturating counters, indexed by a global history
shift register that stores the outcomes of previous branche
This structure limits the length of the history registerhe t
logarithm of the number of counters. Our scheme not only
uses a more sophisticated prediction mechanism, but it can
consider much longer histories than saturating counters.

This paper explains why and when our predictor performs
well. We show that the neural network we have chosen works
well for the class ofinearly separable branches term we
introduce. We also show that programs tend to have many
linearly separable branches.

This paper makes the following contributions:

¢ We introduce the perceptron predictor, the first dynamic
predictor to successfully use neural networks, and we
show that it is more accurate than existing dynamic
global branch predictors. For a 4K byte hardware bud-
get, our predictor improves misprediction rates on the
SPEC 2000 integer benchmarks by 10.1%.

e We explore the design space for two-level branch pre-
dictors based on perceptrons, empirically identifying

good values for key parameters.

e We provide new insights into the behavior of branches,
classifying them as either linearly separable or insepa-
rable. We show that our predictor performs better on
linearly separable branches, but worse on linearly in-
separable branches. Thus, our predictor is complemen-
tary to existing predictors and works well as part of a

hybrid predictor.



e We explain why perceptron-based predictors introduce the path to the branch. It uses a complex multi-pass profiling

interesting new ideas for future research. and compiler-feedback mechanism that is impractical for a
real architecture, but it achieves good performance becaus
of its ability to consider longer histories.

2 Related Work

2.1 Neural networks 3 Branch Prediction with Perceptrons

Artificial neural networks learn to compute a function using  This section provides the background needed to understand
example inputs and outputs. Neural networks have been used, - hredictor. We describe perceptrons, explain how they ca
for a variety of applications, including pattern recogoti be used in branch prediction, and discuss their strengtths an
classification [8], and image understanding [15, 12]. weaknesses. Our method is essentially a two-level predicto
replacing the pattern history table with a table of percapr
Static branch prediction with neural networks. Neu-
ral networks have been used to perfagtaticbranch predic-
tion [3], where the likely direction of a branch is predictd
compile-time by supplying program features, such as cbntro  Perceptrons are a natural choice for branch prediction be-
flow and opcode information, as input to a trained neural net- cause they can be efficiently implemented in hardware. Other
work. This approach achieves an 80% correct prediction rate forms of neural networks, such as those trained by back-
compared to 75% for static heuristics [1, 3]. Static branch propagation, and other forms of machine learning, such as
prediction performs worse than existing dynamic techréque  decision trees, are less attractive because of excessive im

3.1 Why perceptrons?

but is useful for performing static compiler optimizations plementation costs. For this work, we also considered other
simple neural architectures, such asM INE [25] and Hebb
Branch prediction and genetic algorithms. Neural net-  learning [8], but we found that these were less effectiva tha

works are part of the field of machine learning, which also Perceptrons (lower hardware efficiency foDALINE, less
includes genetic algorithms. Emer and Gloy use geneticalgo accuracy for Hebb).

rithms to “evolve” branch predictors [5], but it is importdn One benefit of perceptrons is that by examining their
note the difference between their work and ours. Their work Weightsi.e., the correlations that they learn, it is easy to un-
uses evolution to design more accurate predictors, buritie e derstand the decisions that they make. By contrast, a criti-
result is something similar to a highly tuned traditionaépr ~ ¢ism of many neural networks is that it is difficult or impos-
dictor. We propose putting intelligence in the microarebit sible to determine exactly how the neural network is making
ture, so the branch predictor can learn and adapt on-line. In its decision. Techniques have been proposed to extract rule

fact, their approach cannot describe our new predictor. from neural networks [21], but these rules are not always ac-
curate. Perceptrons do not suffer from this opaqueness; the

perceptron’s decision-making process is easy to undetstan
as the result of a simple mathematical formula. We discuss
Dynamic branch prediction has a rich history in the literatu  this property in more detail in Section 5.7.
Recent research focuses on refining the two-level scheme of
Yeh and Patt [26]. In this scheme, a pattern history table 3.2 How Perceptrons Work
(PHT) of two-bit saturating counters is indexed by a com-
bination of branch address and global or per-branch history The perceptron was introduced in 1962 [19] as a way to study
The high bit of the counter is taken as the prediction. Once bPrain function. We consider the simplest of many types of
the branch outcome is known, the counter is incremented Perceptrons [2], aingle-layer perceptroronsisting of one
if the branch is taken, and decremented otherwise. An im- artificial neuronconnecting severahput unitsby weighted
portant problem in two-level predictors is aliasing [20jda  €dges to oneutput unit A perceptron learns atarget Boolean
many of the recently proposed branch predictors seek to re- functiont(z1, ..., z») of n inputs. In our case, the; are the
duce the aliasing problem [17, 16, 22, 4] but do not change bits of a global branch history shift register, and the targe
the basic prediction mechanism. Given a generous hardwarefunction predicts whether a particular branch will be taken
budget, many of these two-level schemes perform about the Intuitively, a perceptron keeps track of positive and ngat
same as one another [4]. correlations between branch outcomes in the global history

Most two-level predictors cannot consider long history and the branch being predicted.
lengths, which becomes a problem when the distance be- ~ Figure 1 shows a graphical model of a perceptron. A per-
tween correlated branches is longer than the length of ajlob ~ Ceptron is represented by a vector whose elements are the
history shift register [7]. Even if a PHT scheme could some- Weights. For our purposes, the weights are signed integers.
how implement longer history lengths, it would not help be- The output is the dot product of the weights vector, ..,
cause longer history lengths require longer training tifoes ~ @nd the input vectotz ., (zo is always set to 1, providing a
these methods [18]. “bias” input). The outpuy of a perceptron is computed as

Variable length path branch prediction [23] is one scheme n
for considering longer paths. It avoids the PHT capacity y = wo + szwl

i=1

2.2 Dynamic Branch Prediction

problem by computing a hash function of the addresses along



The inputs to our perceptrons dripolar, i.e., eache; is
either -1, meaningot takenor 1, meaningaken.A negative
output is interpreted apredict not taken. A non-negative
output is interpreted gwredict taken.

NV

Figure 1: Perceptron Model. The input valugs, ..., z,,, are prop-
agated through the weighted connections by taking thepective
products with the weights, ..., w,. These products are summed,
along with the bias weighig, to produce the output valug

3.3 Training Perceptrons

Once the perceptron outpythas been computed, the follow-
ing algorithm is used to train the perceptron. Ldie -1 if
the branch was not taken, or 1 if it was taken, and|&ie
the threshold a parameter to the training algorithm used to
decide when enough training has been done.

i f sign(yout) # tOr|yout| < 8t hen
fori:=0tondo
w; = w; + tx;
end for
end if

Sincet andz; are always either -1 or 1, this algorithm in-
crements the" weight when the branch outcome agrees with
zi, and decrements the weight when it disagrees. Intuitively,
when there is mostly agreement, i.e., positive correlatios
weight becomes large. When there is mostly disagreement,
i.e., negative correlation, the weight becomes negatith wi
large magnitude. In both cases, the weight has a large influ-
ence on the prediction. When there is weak correlation, the
weight remains close to 0 and contributes little to the outpu
of the perceptron.

3.4 Linear Separability

A limitation of perceptrons is that they are only capable of
learninglinearly separablefunctions [8]. Imagine the set of
all possible inputs to a perceptron asradimensional space.
The solution to the equation

n
wo + E z;w; =0
i=1

is a hyperplane (e.g. a line,sf = 2) dividing the space into
the set of inputs for which the perceptron will respdatse
and the set for which the perceptron will respdnge [8]. A

Boolean function over variables .., is linearly separablef

and only if there exist values fas,..,, such that all of thérue
instances can be separated from all of fddeeinstances by
that hyperplane. Since the output of a perceptron is decided
by the above equation, only linearly separable functioms ca
be learned perfectly by perceptrons. For instance, a percep
tron can learn the logical AND of two inputs, but not the
exclusive-OR, since there is no line separating instances

of the exclusive-OR function frorfalseones on the Boolean
plane.

As we will show later, many of the functions describing
the behavior of branches in programs are linearly separable
Also, since we allow the perceptron to learn over time, it
can adapt to the non-linearity introduced by phase tramsiti
in program behavior. A perceptron can still give good pre-
dictions when learning a linearly inseparable functiort,ibu
will not achieve 100% accuracy. By contrast, two-level PHT
schemes likgsharecan learn any Boolean function if given
enough training time.

3.5 Putting it All Together

We can use a perceptron to learn correlations between partic
ular branch outcomes in the global history and the behavior
of the current branch. These correlations are represented b
the weights. The larger the weight, the stronger the correla
tion, and the more that particular branch in the global Inysto
contributes to the prediction of the current branch. Theiinp
to the bias weight is always 1, so instead of learning a corre-
lation with a previous branch outcome, the bias weight,
learns the bias of the branch, independent of the history.
Figure 2 shows a block diagram for the perceptron pre-
dictor. The processor keeps a table Nf perceptrons in
fast SRAM, similar to the table of two-bit counters in other
branch prediction schemes. The number of percepths,
is dictated by the hardware budget and number of weights,
which itself is determined by the amount of branch history
we keep. Special circuitry computes the valuey@nd per-
forms the training. We discuss this circuitry in Section 6.
When the processor encounters a branch in the fetch stage,
the following steps are conceptually taken:

1. The branch address is hashed to produce an ihdex
0..N — 1 into the table of perceptrons.

. Thei™ perceptron is fetched from the table into a vector
register,P,. ., of weights.

. The value ofy is computed as the dot product Bfand
the global history register.

4. The branch is predicted not taken whgis negative, or
taken otherwise.

. Once the actual outcome of the branch becomes known,
the training algorithm uses this outcome and the value
of y to update the weights iR.

. P is written back to theé" entry in the table.



It may appear that prediction is slow because many

thresholdd, no weight can exceed the value &bf Thus, the

computations and SRAM transactions take place in steps 1 number of bits needed to represent a weight is one (for the

through 5. However, Section 6 shows that a number of arith-
metic and microarchitectural tricks enable a predictiom in
single cycle, even for long history lengths.

Branch Address‘ ‘ History Register‘ ‘ Branch Outcome‘

Prediction

| Selected Perceptron]

i
Table
Se@ of
Entry Perceptrons
Figure 2: Perceptron Predictor Block Diagram. The branch ad-

dress is hashed to select a perceptron that is read from lhe ta
Together with the global history register, the output offtkeeceptron
is computed, giving the prediction. The perceptron is updatith
the training algorithm, then written back to the table.

4 Design Space

This section explores the design space for perceptrongredi

sign bit) plus|log, 8.

5 Experimental Results

We use simulations of the SPEC 2000 integer benchmarks to
compare the perceptron predictor against two highly resghrd
technigques from the literature.

5.1 Methodology

Predictors simulated. We compare our new predictor
againstgshare[17] and bi-mode [16], two of the best purely
dynamic global predictors from the branch prediction &ter
ture. We also evaluate a hybrigsharéperceptron predictor
that uses a 2K byte choice table and the same choice mecha-
nism as that of the Alpha 21264 [14]. The goal of our hybrid
predictor is to show that because the perceptron has comple-
mentary strengths tgshare a hybrid of the two performs
well.

All of the simulated predictors use only global pattern
information, i.e., neither per-branch nor path informatie
used. Thus, we have not yet compared our hybrid against
existing global/per-branch hybrid schemes. Per-branch an
path information can yield greater accuracy [6, 14], but our
restriction to global information is typical of recent wairk
branch prediction [16, 4].

Gathering traces. Our simulations use the instrumented
assembly output of the gcc 2.95.1 compiler with optimiza-
tion flags- @3 -fomi t-frame-poi nt er running on an
AMD K6-IIl under Linux. Each conditional branch instruc-
tion is instrumented to make a call to a trace-generating pro
cedure. Branches in libraries or system calls are not pdofile
The traces, consisting of branch addresses and outcorees, ar
fed to a program that simulates the different branch predic-

tors. Given a fixed hardware budget, three parameters need totion techniques.

be tuned to achieve the best performance: the history length

the number of bits used to represent the weights, and the ganchmarks simulated. We use the 12 SPEC 2000 in-

threshold.

History length. Long history lengths can yield more ac-
curate predictions [7] but also reduce the number of table en
tries, thereby increasing aliasing. In our experiments st
history lengths ranged from 12 to 62, depending on the hard-
ware budget.

Representation of weights. The weights for the percep-
tron predictor are signed integers. Although many neural ne
works have floating-point weights, we found that integees ar
sufficient for our perceptrons, and they simplify the design

Threshold. The threshold is a parameter to the perceptron
training algorithm that is used to decide whether the ptedic
needs more training. Because the training algorithm wilfon
change a weight when the magnitudeygf: is less than the

teger benchmarks. All benchmarks are simulated using the
SPECt est inputs. For253. per | bk, thet est run ex-
ecutesper | on many small inputs, so the concatenation of
the resulting traces is used. We feed up to 100 million branch
traces from each benchmark to our simulation program; this
is roughly equivalent to simulating half a billion instrias.

Tuning the predictors. We use a composite trace of the
first 10 million branches of each SPEC 2000 benchmark to
tune the parameters of each predictor for a variety of hard-
ware budgets. Fogshareand bi-mode, we tune the history
lengths by exhaustively trying every possible history tbng
for each hardware budget, keeping the value that gives the
best prediction accuracy. For the perceptron predictor, we
find, for each history length, the best value of the threshold
by using an intelligent search of the space of values, prun-
ing areas of the space that give poor performance. For each



hardware budget, we tune the history length by exhaustive | Hardware budget History Length
search. in kilobytes gshare | bi-mode | perceptron
Table 1 shows the results of the history length tuning. We 1 6 7 12
find an interesting relationship between history length and 2 8 9 22
threshold: the best threshdldor a given history lengtft is 4 8 11 28
alwaysexactlyd = |1.93h + 14]. This is because adding 8 11 13 34
another weight to a perceptron increases its average output 16 14 14 36
by some constant, so the threshold must be increased by a 32 15 15 59
constant, yielding a linear relationship between histength 64 15 16 59
and threshold. Since the number of bits needed to represent a 128 16 17 62
perceptron weight is one (for the sign bit) plUsg, 6], the 256 17 17 62
number of bits per weight range from 7 (for a history length 512 18 19 62

of 12) to 9 (for a history length of 62).

Our hybridgshardperceptron predictor consistsgghare
and perceptron predictor components, along with a mecha- Table 1: Best History Lengths. This table shows the best amount
nism, similar to the one in the Alpha 21264 [14], that dynam- of global history to keep for each of the branch predictionesces.
ically chooses between the two using a 2K byte table of two-
bit saturating counters. Our graphs reflect this added hard- .
ware expense. For each hardware budget, we tune the hy- I
brid predictor by examining every combination of table size
for the gshareand perceptron components and choosing the
combination yielding the best performance. In almost every
case, the best configuration has resources distributedequa
among the two prediction components.

104

Estimating area costs. Our hardware budgets do not in-
clude the cost of the logic required to do the computation. By
examining die photos, we estimate that at the longest istor
lengths, this cost is approximately the same as that of 1K of
SRAM. Using the parameters tuned for the 4K hardware bud-
get, we estimate that the extra hardware will consume about

—-o—-- Gshare

- -= - Bi-Mode

—— Perceptron

---a--- Hybrid Perceptron + Gshare

Percent Mispredicted

the same logic as 256 bytes of SRAM. Thus, the cost for the °7 > 4 5 1e 52 64
computation hardware is small compared to the size of the Hardware Budget, Kilobytes
table Perceptron vs. other techniges, Harmonic Mean

Figure 3: Hardware Budget vs. Prediction Rate on SPEC 2000.

5.2 Impact of History Length on Accuracy The perceptron predictor is more accurate than the two PHffiade
) o _ atall hardware budgets over one kilobyte.
One of the strengths of the perceptron predictor is its abil-

ity to consider much longer history lengths than traditiona
two-level schemes, which helps because highly correlated
branches can occur at a large distance from each other [7].bimode. For comparison, the bi-mode predictor improves
Any global branch prediction technique that uses a fixed only 2.1% overgshareat the 4K budget. Interestingly, the
amount of history information will have an optimal history ~SPEC 2000 integer benchmarks are, as a whole, easier for
length For a given set of benchmarks. As we can see from Ta- branch predictors than the SPEC95 benchmarks, explaining
ble 1, the perceptron predictor works best with much longer the smaller separation betwegshareand bi-mode than ob-
histories than the other two predictors. For example, with a served previously [16].
64K byte hardware budgegshareworks best with a history Figures 4 and 5 show the misprediction rates on the SPEC
length of 15, even though the maximum possible length for 2000 benchmarks for hardware budgets of 4K and 16K bytes,
gshareat 64K is 18. At the same hardware budget, the per- respectively. The hybrid predictor has no advantage at the
ceptron predictor works best with a history length of 62. 4K budget, since three tables must be squeezed into a small
space. At the 16K budget, the hybrid predictor has a slight
53 Performance advantage over the perceptron predictor by itself.
Figure 3 shows the harmonic mean of prediction rates
achieved with increasing hardware budgets on the SPEC
2000 benchmarks. The perceptron predictor’'s advantage ove To compare the training speeds of the three methods, we ex-
the PHT methods is largest at a 4K byte hardware budget, amine the first 40 times each branch in ff#5. gcc bench-
where the perceptron predictor has a misprediction rate of mark is executed (for those branches executing at least 40
6.89%, an improvement of 10.1% owgshareand 8.2% over times). Figure 6 shows the average accuracy of each of the

5.4 Training Times
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Figure 4: Misprediction Rates at a 4K budget. The perceptron pre-
dictor has a lower misprediction rate thgsharefor all benchmarks
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Figure 5: Misprediction Rates at a 16K budget. Gshare outper-
forms the perceptron predictor only d86. cr af t y. The hybrid

predictor is consistently better than the PHT schemes.
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Figure 6: Average Training Times for gcc. Theaxis is the num-
ber of times a branch has been executed. JHagis is the average,
over all branches in the program, of 1 if the branch was mdipted,
0 otherwise. Over time, this statistic tracks how quicklgrepredic-
tor learns. The perceptron predictor achieves greateracgearlier
than the other two methods.

40 predictions for each of the static branches. The average
is weighted by the relative frequencies of each branch. We
choosel76. gcc because it has the most static branches of
all the SPEC benchmarks.

The perceptron method learns more quickly the other two.
For the perceptron predictor, training time is indepenagnt
history length. For techniques suchgsharethat index a ta-

ble of counters, training time depends on the amount of his-
tory considered; a longer history may lead to a larger warkin
set of two-hit counters that must be initialized when the pre
dictor is first learning the branch. This effect has a negativ
impact on prediction rates, and at a certain point, longer hi
tories begin to hurt performance for these schemes [18]. As
we will see in the next section, the perceptron predictioesdo
not have this weakness, as it always does better with a longer
history length.

5.5 Why Does it Do Well?

We hypothesize that the main advantage of the perceptron
predictor is its ability to make use of longer history lergyth
Schemes likggsharethat use the history register as an index
into a table require space exponential in the history length
while the perceptron predictor requires space linear in the
history length.

To provide experimental support for our hypothesis, we
simulategshareand the perceptron predictor at a 512K hard-
ware budget, where the perceptron predictor normally out-
performsgshare However, by only allowing the perceptron
predictor to use as many history bitsgshare(18 bits), we
find that gshareperforms better, with a misprediction rate
of 4.83% compared with 5.35% for the perceptron predictor.
The inferior performance of this crippled predictor has two



likely causes: there is more destructive aliasing with gprc
trons because they are larger, and thus fewer, ¢jsfiarés

this discussion.)
Figure 8 shows the misprediction rates for each bench-

two-bit counters, and perceptrons are capable of learning mark for a 512K budget, as well as the percentage of dy-

only linearly separable functions of their input, whijshare
can potentially learn any Boolean function.

Figure 7 shows the result of simulatigghareand the per-
ceptron predictor with varying history lengths on the SPEC

namically executed branches that is linearly inseparablke.
choose a large hardware budget to minimize the effects of
aliasing and to isolate the effects of linear separabilitye

see that the perceptron predictor performs better tjséuare

2000 benchmarks. Here, an 8M byte hardware budget is usedfor the benchmarks to the left, which have more linearly sep-

to allow gshareto consider longer history lengths than usual.
As we allow each predictor to consider longer historiesheac
becomes more accurate urgharebecomes worse and then
runs out of bits (sincgsharerequires resources exponential
in the number of history bits), while the perceptron preatict
continues to improve. With this unrealistically huge hard-
ware budgetgshareperforms best with a history length of
18, where it achieves a misprediction rate of 5.20%. The per-
ceptron predictor is best at a history length of 62, the lshge
history considered, where it achieves a misprediction afte
4.64%.
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Figure 7: History Length vs. Performance. The accuracy of

the perceptron predictor improves with history length, legshares
accuracy bottoms out at 18.

5.6 When Does It Do Well?

The perceptron predictor does well when the branch being
predicted exhibitéinearly separable behaviofo define this
term, leth,, be the most recent bits of global branch history.
For a static branclB, there exists a Boolean functigia (h,,)

that best predict®’s behavior. Itis this functionfs, that all
branch predictors strive to learn. fi is not linearly sepa-
rable, thergsharemay predictB better than the perceptron
predictor, and we say that such branchediaearly insepa-
rable. We computefs (hio) for each static branci in the
first 100 million branches of each benchmark and test for lin-
ear separability of the function. (Our algorithm for thistte
takes time superexponential ) so we are unable to go be-
yond 10 bits of history or 100 million dynamic branches. We

arable branches than inseparable branches. Conversely, fo
all but one of the benchmarks for which there are more lin-
early inseparable branchegshareperforms better. Note that
although the perceptron predictor performs best on ligearl
separable branches, it still has good performance overall.

100+ o % linearly inseparable branches
= misprediction rate, Gshare

= misprediction rate, Perceptron

80—
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Figure 8: Linear Separability vs. Performance at a 512K bud-
get. The perceptron predictor is better tlggharewhen the dynamic
branches are mostly linearly separable, and it tends todsedecu-
rate thargshareotherwise.

Some branches require longer histories than others for ac-
curate prediction, and the perceptron predictor often nas a
advantage for these branches. Figure 9 shows the relation-
ship between this advantage and the required history length
with one curve for linearly separable branches and one for
inseparable branches. Theaxis represents the advantage
of our predictor, computed by subtracting the mispredictio
rate of the perceptron predictor from that géhare We
sorted all static branches according to their “best” histor
length, which is represented on theaxis. Each data point
represents the average misprediction rate of static besnch
(without regard to execution frequency) that have a given
best history length. We use the perceptron predictor in our
methodology for finding these best lengths: Using a percep-
tron trained for each branch, we find the most distant of the
three weights with the greatest magnitude. This methodol-
ogy is motivated by the work of Eveet al, who show that
most branches can be predicted by looking at three previ-
ous branches [7]. As the best history length increases, the
advantage of the perceptron predictor generally increases
well. We also see that our predictor is more accurate for lin-

believe these numbers are good estimates for the purpose ofearly separable branches. For linearly inseparable besnch



our predictor performs generally better when the brancies r
quire long histories, whilgsharesometimes performs better
when branches require short histories.
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Figure 9: Classifying the Advantage of our Predictor. Above the
T axis, the perceptron predictor is better on average. Befmnt
axis, gshareis better on average. For linearly separable branches,
our predictor is on average more accurate thsimare For insepara-

ble branches, our predictor is sometimes less accuraterdoches
that require short histories, and it is more accurate onageefor
branches that require long histories.

5.7 Additional Advantages of Our Predictor

Assigning confidence to decisions.Our predictor can
provide a confidence-level in its predictions that can béulise
in guiding hardware speculation. The output,of the per-
ceptron predictor is not a Boolean value, but a number that
we interpret agakenif y > 0. The value ofy provides im-
portant information about the branch since the distanag of
from 0 is proportional to theertaintythat the branch will be
taken [12]. This confidence can be used, for example, to al-
low a microarchitecture to speculatively execute both tihan
paths when confidence is low, and to execute only the pre-
dicted path when confidence is high. Some branch predic-
tion schemes explicitly compute a confidence in their predic
tions [11], but in our predictor this information comes for
free. We have observed experimentally that the probability

that a branch will be taken can be accurately estimated as a

linear function of the output of the perceptron predictor.

Analyzing branch behavior with perceptrons. Percep-

trons can be used to analyze correlations among branches
The perceptron predictor assigns each bit in the branch his-

tory a weight. When a particular bit is strongly corre-
lated with a particular branch outcome, the magnitude of the
weight is higher than when there is less or no correlation.
Thus, the perceptron predictor learns to recognize thérbits
the history of a particular branch that are important for-pre
diction, and it learns to ignore the unimportant bits. This

property of the perceptron predictor can be used with profil-
ing to provide feedback for other branch prediction schemes
For example, our methodology in Section 5.6 could be used
with a profiler to provide path length information to the vari
able length path predictor [23].

5.8 Effects of Context Switching

Branch predictors can suffer a loss in performance after a
context switch, having to warm up while relearning pat-
terns [6]. We simulate the effects of context switching by
interleaving branch traces from each of the SPEC 2000 inte-
ger benchmarks, switching to the next program after 60,000
branches. This workload represents an unrealisticallyyhea
amount of context switching, but it serves as a good indi-
cator of performance in extreme conditions, and it uses the
same methodology as other recent work [4]. Note that pre-
vious studies have used the 8 SPEC 95 integer benchmarks,
so our use of the 12 SPEC 2000 benchmarks will likely lead
to higher misprediction rates. For each predictor, we con-
sider the effect of re-initializing the table of counterseaf
each context switch (which would be done with a privileged
instruction in a real operating system) and use this teciniq
when it gives better performance.

Figure 10 shows that context switching affects the percep-
tron predictor more significantly than the other two predic-
tors. Nevertheless, the perceptron predictor still maistan
advantage over the other two predictors at hardware budgets
of 4K bytes or more. The hybrigsharéperceptron predic-
tor performs better in the presence of context switchinig; th
benefit of hybrid predictors has been noticed by others [6].

—-e—-- Gshare

- - - Bi-Mode

—e— Perceptron

---a--- Hybrid Perceptron + Gshare

Percent Mispredicted

o

T T T T
2 4 8 16

Hardware Budget, Kilobytes
Perceptron vs. other techniges, Context Switching

T

T
32 64

Figure 10: Budget vs. Misprediction Rate for Simulated Con-

text Switching. The perceptron predictor is more affectgchéavy

context switching thagshareor bi-mode.

6 Implementation

We now suggest ways to implement our predictor efficiently.



Computing the Perceptron Output. Since -1 and 1 are  exponential resources. A potential weakness of perceptron
the only possible input values to the perceptron, multiplic  is their increased computational complexity when compared
tion is not needed to compute the dot product. Instead, we with two-bit counters, but we have shown how a perceptron
simply add when the input bitis 1 and subtract (add the two’s- predictor can be implemented efficiently with respect tdbot
complement) when the input bit is -1. This computation is area and delay. Another weakness of perceptrons is their
similar to that performed by multiplication circuits, whic inability to learn linearly inseparable functions, but piés
must find the sum of partial products that are each a function this weakness the perceptron predictor performs well gaehi
of an integer and a single bit. Furthermore, only the sign bit ing a lower misprediction rate, at all hardware budgetsy tha
of the result is needed to make a prediction, so the other bits two well-known global predictors on the SPEC 2000 integer
of the output can be computed more slowly without having benchmarks.
to wait for a prediction. We have shown that there is benefit to considering his-
tory lengths longer than those previously considered. -Vari
able length path prediction considers history lengths afup
23 [23], and a study of the effects of long branch histories
on branch prediction only considers lengths up to 32 [7]. We
have found that additional performance gains can be found
for branch history lengths of up to 62.

We have also shown why the perceptron predictor is ac-
curate. PHT techniques provide a general mechanism that
does not scale well with history length. Our predictor iaste
performs particularly well on two classes of branches—¢hos

Training. The training algorithm of Section 3.3 can be
implemented efficiently in hardware. Since there are no de-
pendences between loop iterations, all iterations canuésec
in parallel. Since in our case bath andt can only be -1 or 1,
the loop body can be restated as “incremenby 1 ift = z;,
and decrement otherwise,” a quick arithmetic operationesin
thew; are at most 9-bit numbers:

for each bit in parallel

ift=az;then that are linearly separable and those that require longryist
w; =w; + 1 lengths—that represent a large number of dynamic branches.
el se Because our approach is largely orthogonal to many of
du')if: wi —1 the recent ideas in branch prediction, there is considerabl
end |

room for future work. We can decrease aliasing by tuning
our predictor to use the bias bits that were introduced by
the Agree predictor [22]. We can also employ perceptrons
in a hybrid predictor that uses both global and local histo-
ries, since hybrid predictors have proven to work bettentha
an implementation of our predictor resembles a&84 mul- purely global schemes [6]. We have preliminary experimen-
tiply, but the data corresponding to the partial products. (i tal evidence that such hybrid schemes can be improved by
the weights) are narrower, at most 9 bits. Thus, any carry- using perceptrons, and we intend to continue this study in
propagate adders, of which there must be at least one in amore detail.

multiplier circuit, will not need to be as deep. We believe More significantly, perceptrons have interesting charac-
that a good implementation of our predictor at a large hard- teristics that open up new avenues for future work. Because
ware budget will take no more than two clock cycles to make the perceptron predictor has different strengths and weak-
a prediction. For smaller hardware budgets, one cycle epera nesses from counter-based predictors, new hybrid schemes
tion is feasible. Two cycles is also the amount of time clalme  can be developed. We also plan to develop compiler-based

Delay. A 54 x 54 multiplier in a 0.2%m process can oper-
ate in 2.7 nanoseconds [9], which is approximately two clock
cycles with a 700 MHz clock. At the longer history lengths,

for the variable length path branch predictor [23]. Thatkvor
proposes pipelining the predictor to reduce delay.

Jiménezet al study a number of techniques for reducing
the impact of delay on branch predictors [13]. For example, a
cascadingperceptron predictor would use a simple predictor
to anticipate the address of the next branch to be fetched, an
it would use a perceptron to begin predicting the anticippate

branch classification techniques to make such hybrid predic
tors even more effective. We already have a starting point
for this work, which is to focus on the distinction between
linearly separable and inseparable branches, and between
branches that require short history lengths and long histor
lengths. As noted in Section 5.7, perceptrons can also lik use
to guide speculation based on branch prediction confidence

address. If the branch were to arrive before the perceptron levels, and perceptron predictors can be used in recognizin

predictor were finished, or if the anticipated branch addres
were found to be incorrect, a smatharetable would be
consulted for a quick prediction. The study shows that a sim-
ilar predictor, using twgsharetables, is able to use the larger
table 47% of the time.

7 Conclusions

In this paper we have introduced a new branch predictor that ments on earlier drafts of this paper.

important bits in the history of a particular branch.
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