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Abstract

Tessellation is a manycore OS targeted at the resource
management challenges of emerging client devices, in-
cluding the need for real-time and QoS guarantees. It is
predicated on two central ideas: Space-Time Partition-
ing (STP) and Two-Level Scheduling. STP provides per-
formance isolation and strong partitioning of resources
among interacting software components, called Cells.
Two-Level Scheduling separates global decisions about
the allocation of resources to Cells from application-
specific scheduling of resources within Cells. We de-
scribe Tessellation’s Cell model and its resource alloca-
tion architecture. We present results from an early pro-
totype running on two different platforms including one
with memory-bandwidth partitioning hardware.

1 Introduction

The trend toward manycore systems (with 64 or more
cores) presents serious challenges for client devices.
Users will expect better performance from applications
as the number of cores increase; this expectation will be
challenging to meet since it requires parallelizing client
applications (which are often not very scalable) and ex-
ploiting parallelism that is likely to be fragile and eas-
ily disturbed by interference. Further, tomorrow’s appli-
cations will consist of variety of components — each of
which presents complex and differing resource require-
ments. In addition to best-effort computation, users have
an increasing appetite for responsive user interfaces and
high-quality multimedia (e.g., multi-party videoconfer-
encing, multi-player gaming, and music composition)
with stringent real-time requirements; such needs are not
well supported by today’s commodity operating systems.
We believe that the advent of manycore is an oppor-
tunity to fundamentally restructure operating systems to
support a simultaneous mix of interactive, real-time, and
high-throughput parallel applications. Our hypothesis is
that a much wider variety of performance goals can be
met by structuring the operating system around resource
distribution, performance isolation, and QoS guarantees;
such structuring is natural in a manycore environment.
This paper investigates the combination of two com-
plementary ideas embodied in our new OS, called Tessel-
lation: Space-Time Partitioning and Two-Level Schedul-
ing. Space-Time Partitioning (STP) [21], exploits novel
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Figure 1: Decomposing an application into a set of commu-
nicating components and services running with QoS guaran-
tees within Cells. Tessellation provides Cells that host device
drivers and OS services.

software layering and hardware mechanisms (when
available) to support a model of computation in which
applications are divided into performance-isolated, gang-
scheduled Cells communicating through secure chan-
nels; see Figure 1.

Two-Level Scheduling separates global decisions
about the allocation of resources fo Cells from
application-specific scheduling of resources within Cells.
The resource distribution process (first level) is one of the
novel elements of our approach and is discussed in de-
tail in Section 3. Once resources have been assigned to
Cells, STP guarantees that user-level schedulers within
Cells (second level) may utilize resources as they wish
— without interference from other Cells or from the OS.
It is the separation of resource distribution from usage
that we believe makes Two-Level Scheduling more scal-
able than other approaches and better able to meet the
demands of parallel client applications.

2 Overview of Tessellation

Tessellation is a manycore OS focused on resource guar-
antees. Here we summarize key aspects of Tessellation.

2.1 Space-Time Partitioning

A spatial partition (or partition) is a performance-
isolated unit of resources maintained through a com-
bination of software and hardware mechanisms. Man-
aged resources include gang-scheduled hardware thread
contexts, guaranteed fractions of shared resources (e.g.,
cache or memory bandwidth), access to OS services, and
fractions of the energy budget. Tessellation divides the
hardware into a set of simultaneously-resident partitions
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Figure 2: Space-Time Partitioning in Tessellation: a snapshot
in time with four spatial partitions.
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as shown in Figure 2. Partitioning varies with the needs
of the OS and applications — hence the “time”” component
of the term Space-Time Partitioning (STP).

Support for STP consists of a combination of hardware
and software mechanisms. The “Partition Mechanism
Layer” of Tessellation, which enforces partition bound-
aries, has some similarities to a hypervisor [1, 4, 16]
but with a crucial difference: its sole task is to provide
performance-isolated, QoS-guaranteed containers for ap-
plications and OS services. Although Tessellation runs
on existing multicore systems, it can also exploit hard-
ware enhancements when available.

2.2 The Cell Model

Tessellation exports STP to applications and OS services
through an abstraction called a Cell. A Cell is a con-
tainer for parallel software components providing guar-
anteed access to resources, i.e., the performance and be-
havior of an isolated machine. Resources are guaranteed
as space-time quantities, such as “4 processors for 10%
of the time” or 2 GB/sec of bandwidth”. Although Cells
may be time-multiplexed, hardware thread contexts and
resources are gang-scheduled such that Cells are unaware
of this multiplexing. In other words, unexpected virtual-
ization of physical resources does not occur.

Resources allocated to a Cell are owned by that Cell
until explicitly revoked!. Once the Cell is mapped, a
user-level scheduler is responsible for scheduling hard-
ware contexts and other resources. There is no paging
of physical memory unless a paging library is linked into
the user-level runtime. Further, each Cell’s runtime has
control over the delivery of events such as inter-cell mes-
sages, timer interrupts, exceptions, and faults.

Inter-Cell Communication: Inter-cell communica-
tion occurs through channels. A channel provides per-
formance and security isolation between Cells. The setup
and tear-down of a channel is privileged and strictly con-
trolled by the OS. Once constructed, a channel provides
fast asynchronous communication at user-level.

I Tessellation notifies the user-level scheduler of revocations, giving
it a chance to adjust accordingly.

Utilizing Cells for OS Services: Cells provide a con-
venient abstraction for building OS services such as de-
vice drivers, network interfaces, and file systems. Tes-
sellation adopts a philosophy similar to that of microker-
nels [8]. Unlike traditional microkernels, however, mul-
tiple components can be mapped to the hardware simul-
taneously — allowing rapid inter-domain communication.
Further, each interacting component is explicitly parallel
and performance-isolated from other components.
Partitioning OS functionality into a set of interacting
Cells provides predictable and reliable behavior due to
limited interaction with the rest of the system. QoS guar-
antees on shared services can be enforced by restricting
channel communication. Alternatively, the capacity of
overloaded services can be increased by resizing Cells.

2.3 Two-level Scheduling in Tessellation

Tessellation separates global decisions about resource al-
location from local decisions about resource usage. The
result is a good match to the abundant resources present
in a manycore system: The resource allocation process
can focus on the impact of resource quantities on Cell
execution — leaving the fine details about how to utilize
these resources to application-specific schedulers.

Distributing Resources to Cells: The resource alloca-
tor, described in Section 3, distributes partitionable re-
sources among Cells and exercises the option to reserve
or deactivate resources to guarantee future responsive-
ness or to optimize energy consumption. Tessellation
changes resource distribution infrequently to amortize
the cost of the decision-making process and to minimize
interference with application-level scheduling.

Scheduling Within a Cell: The Cell-level scheduler
runs at user-level and manages all resources within the
Cell. Performance isolation between Cells guarantees
that applications can get predictable and repeatable be-
havior, simplifying performance optimization and real-
time scheduling. Central to Tessellation’s approach are
runtime frameworks, such as Lithe [23], that produce
composable, application-specific schedulers. Via Lithe,
Tessellation supports a variety of parallel programming
models in a uniform and composable way.

3 Resource-Allocation Architecture

Tesselation strikes a balance between maximizing re-
source utilization to achieve performance and selectively
idling resources to provide QoS guarantees. Decision-
making logic is packaged into a Policy Service that dis-
tributes resources to Cells by combining system-wide
goals, resource constraints, and performance targets with
current performance measurements (see Figure 3). The
results are passed as a Space-Time Resource Graph
(STRG) to the Tessellation kernel for QoS enforcement.



3.1 Space-Time Resource Graph

The Space-Time Resource Graph (STRG) is central to
our approach. It contains the current distribution of sys-
tem resources to Cells and is updated by the Policy Ser-
vice to reflect the changing needs of the system. As it
changes, copies of the STRG are passed to the Tessella-
tion kernel for validation and implementation.

Each leaf of the STRG represents an admitted Cell and
contains the current resource assignments for that Cell,
including guaranteed fractions of caches and memory
bandwidth, the Cell activation policy (see Section 3.3),
and a list of QoS guarantees for system services. It also
indicates the Cell’s desire to receive excess resources.

Interior nodes of the STRG group Cells into resource
groups, providing a mechanism for assigning resources
to related Cells. For instance, resource groups provide an
obvious mechanism for distributing resources to multiple
Cells that are part of a single application or service do-
main?. As another example, Tessellation’s pre-allocation
mechanism allows resources to be reserved for future use
by a particular Cell while exported to other Cells in a re-
source group as temporary (revocable) excess resources.

3.2 Policy Service

The Policy Service admits new Cells into the system,
monitors existing Cells, and adapts resources in response
to changing conditions. In this section, we describe the
main components of the Policy Service.

Admission Control: Without admission control it
would be impossible to provide QoS guarantees. As a
replacement for traditional fork () or spawn () opera-
tions, Tessellation supports Cell creation and destruction
through an interface with the Admission Control module.
Admission Control refuses to admit new Cells whose re-
source requirements are incompatible with existing obli-
gations to other Cells. It also rejects resizing requests
that are incompatible with such obligations.

As shown in Figure 3, the Admission Control mod-
ule can handle simple requests by directly modifying
the STRG. Simple requests include ones that merely
consume excess resources and do not involve revoca-
tion of resources. More complex admission requests are
forwarded to the Resource Allocation and Adaptation
(RAAM) module (described below). In principle, the
RAAM module can consider a wide variety of rearrange-
ments of resources to satisfy requests — constrained only
by policies, QoS requirements, and user preferences.
Should the RAAM module decide that a request can-
not be satisfied, however, the Admission Control module
will forward the rejection back to the original requester,
at which point the user may need to become involved.

2Resource groups can be used to provide several of the same bene-
fits as Resource Containers [3].
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Figure 3: The Policy Service updates a system-wide Space-
Time Resource Graph (STRG) based on QoS requirements,
policies, and performance measurements. STRGs passed to the
kernel are validated and used to distribute resources to Cells.

Resource Allocation and Adaptation: The heart of
the Policy Service is the Resource Allocation and Adap-
tation Mechanism (RAAM). As seen by the large arrows
in Figure 3, the RAAM is part of a system-wide adap-
tive loop. It enables software components within Cells
to achieve their performance goals while optimizing re-
source distribution across the system according to global
policies. RAAM allows each Cell to register one or more
resource-allocation policies, thereby injecting applica-
tion requirements and user preferences into the decision-
making process.> RAAM updates the STRG to reflect
changes in resource allocation.

RAAM consults a variety of situational information
about the state of the system, including performance
measurements and models of system performance as a
function of resources. The simplest of this information
involves updates from performance counters to reflect
message volume across channels or energy usage. An-
other source of information is periodic performance re-
ports from the application [12, 14]. A performance re-
port contains Cell-specific performance metrics (e.g., the
amount of progress made on application-specific dead-
lines). These reports can be combined with application-
supplied information about what a meaningful unit of
work would be and how often it must be completed (i.e.,
frames/second) to adjust allocations.

We are investigating a variety of techniques for re-
source adaptation. Although one could blindly increase
the resources given to a Cell until performance goals are
met, such a strategy is unlikely to work for complex con-

3We intend to investigate use of a new declarative language for de-
scribing resource-allocation policies.



figurations of Cells nor is it capable of incorporating sub-
tleties in the level of importance of some Cells over oth-
ers. Instead, we believe that two components are neces-
sary: first, accurate models of the performance of Cells
(or the change in performance) as a function of resources
and second, a framework in which to drive the juggling
of resources among Cells. One framework that we are
investigating is a form of convex optimization over re-
sources that attempts to minimize an “urgency” derived
from the degree to which Cells miss their deadlines [26].

Modeling Application Behavior: The process of de-
termining how client application performance varies
with low-level resources is often labor-intensive and
error-prone. Except in very special circumstances, pro-
grammers are unlikely to know “‘exactly” how low-level
resources affect their performance goals. For example,
the programmer may want a given frame rate but have
no idea how much memory bandwidth is required to meet
that rate This conundrum is a form of “impedance mis-
match” between the units of hardware resources and the
programmer-specified QoS requirements [17].

It is therefore desirable to figure out how to automat-
ically construct predictive models of application perfor-
mance. Tessellation’s performance isolation should per-
mit us to build highly accurate models. However, we
must decide when and how these models will be built.

One solution is to profile the applications in advance.
This solution could be viable for application distribution
models like the iTunes Application Store or the Android
Market. The application distributor can profile the appli-
cations for the limited platforms it supports and provide
predictive models when the application is downloaded.

Another option leverages the Cloud by requesting ev-
ery user to record performance, resource, and platform
statistics. This approach is currently being used by Mi-
crosoft Research to generate performance models of Mi-
crosoft applications for developers [13].

A more general solution is to have the operating sys-
tem profile the applications online and use the locally
collected information to make resource decisions. While
the operating system could potentially run the applica-
tions over a set of configurations when the application is
first installed to build the models, it may be more practi-
cal to simply start with a generic model which is refined
over time with on-line training methods.

The source of the data used to create the models is
somewhat orthogonal to the type of models used. Adopt-
ing a particular model type in turn influences the specific
method used for searching over all models to find the
best resource distribution across all Cells. We are cur-
rently interested in two types of models. Models of the
first type are based on a discrete, sparse set of prede-
termined operational points (e.g., [12]). Models of the

second type use continuous functions to capture perfor-
mance trade-offs across a large number of allocations
(e.g., [5,9]). The effectiveness of linear and quadratic
models has been shown in [7].

3.3 Partition Mapping and Multiplexing

The Partition Mapping and Multiplexing Layer (or Map-
ping Layer), translates the resource specifications of the
Policy Service (expressed in the STRG) into an ordered
sequence of spatial partitions for the underlying Partition
Mechanism Layer (mentioned in Section 2). The Map-
ping Layer makes no policy decisions, but rather imple-
ments the policy decisions given by the Policy Service.

The Mapping Layer comprises two main components:
the Planner and the Plan Executor. When the Planner
receives a new STRG from the Policy Service, it first
validates that this STRG does not violate basic security
or QoS requirements*, then generates a future plan for
distributing resources to Cells. The Planner invokes an
operation similar to bin-packing to assign Cells and re-
sources to future partition time-slices.

The Plan Executor implements the resulting resource
plan. It can modify the plan being executed in predefined
ways to accommodate more dynamic resource-allocation
and time-multiplexing actions (e.g., activation of a Cell
upon the arrival of an event or redistribution of excess
resources among Cells).

In implementing the STRG, the Mapping Layer im-
plements a variety of Cell activation policies. Examples
include the Pinned Policy (Cell given dedicated access to
cores), the Time-Triggered Policy (Cell active during pre-
determined time-windows for real-time predictability),
and the Time-fraction Policy (Cell active for a specified
fraction of the time). Most Cell activation policies are
non-preemptive: once a Cell is activated it is not sus-
pended until its time-slice expires. The one exception is
that Cells can be given best-effort resources that may be
preempted by Cells with higher priority.

4 Experimental Evaluation

In this section, we examine the potential for perfor-
mance isolation in the Tessellation prototype. The pro-
totype was derived from an early version of the ROS
kernel [19], supplemented with support for cell time-
multiplexing and second-level preemptive scheduling.
This prototype contains 22,000+ lines of code and runs
on both Intel x86 platforms and RAMP Gold [27, 28].
RAMP Gold is an FPGA-based simulator that models up
to 64 in-order 1-GHz SPARC VS cores, a shared memory
hierarchy, and hardware partitioning mechanisms. The
Intel system used in our experiments is equipped with
dual 2.67-GHz Xeon X5550 quad-core processors.

4We are exploring how to remove as much of the Policy Service
from the trusted computing base as possible.



[ [ 2 Cores | 15 Cores | 63 Cores |
Intel activate 1.57 ps 8.26 us N/A
RAMP activate 0.69 ps 1.88 ps 5.37 ps
Intel suspend 1.58 ps 17.59 ps N/A
RAMP suspend 1.19 ps 5.91 ps 34.10 ps

Table 1: Mean activation and suspension latencies for cells of
varying size. Here, core 0 was dedicated to Cell management.

Cell Activation and Suspension: Table 1 summarizes
the overhead of activating and suspending a Cell with
varying core counts on both RAMP Gold and our Intel
system. These numbers are preliminary. The overhead is
small relative to the time scale of Cell time-multiplexing
(e.g., 100 ms), but is still larger than we would like.

Performance Isolation: Our 64-core RAMP Gold
platform simulates a mechanism that can dedicate frac-
tions of off-chip memory bandwidth to Cells [20]. We
illustrate Tessellation’s use of this mechanism by creat-
ing three Cells as follows: Clell; is given 32 cores and
50% of memory bandwidth (i.e., 6.4GB/s); Celly 16 and
25%; and Cells 15 and 25%. Cell; contains the PAR-
SEC streamcluster [6], selected for its significant mem-
ory capacity and bandwidth requirements. Other PAR-
SEC benchmarks run in the remaining Cells.

We first activate Cell; by itself. Next, we activate
all Cells and run the benchmarks concurrently both with
and without memory bandwidth partitioning. Cell; takes
5.70M, 6.12M and 11.59M core-cycles on average to
complete, for the three experiments. The respective stan-
dard deviations are 0.30M, 0.95M and 1.17M. These re-
sults show that Tessellation can provide significant per-
formance isolation.

Spatial Partitioning: Here we evaluate the potential
of spatial partitioning using Tessellation on the RAMP
Gold 64-core machine. We take pairs of PARSEC ap-
plications, placing each application in a Cell. Cores are
assigned in groups of 8, page colors in sets of 16, and
memory bandwidth in units of 3.4GB/s (a combinatorial
total of 54 valid allocations). We then evaluate all possi-
ble spatial allocations for the two Cells. We also evaluate
the case in which one Cell is assigned the entire machine
and run to completion followed by the other Cell; this
is a favorable time-multiplexing scenario as there is no
overhead from repeated context switches.

For some pairs, time-multiplexing is better than any
possible spatial-partitioning. However, for many pairs,
the optimal spatial partition is substantially better thanks
to disjoint resource requirements, reduced interference
between pairs, or imperfect application scaling. Figure 4
illustrates the performance of several pairs. It shows that
spatial partitioning can provide significant performance
benefits. However, naive spatial divisions are likely to be
detrimental to performance, meaning that the Policy Ser-
vice must be judicious in assigning resources to Cells.
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Figure 4: Performance of spatial partitioning compared with a
favorable time-multiplexing. Performance is in cycles (lower is
better) and results are normalized to the best spatial partition.

We also found that a simple linear approximation model,
derived from only 10 sample points, allowed us to make
resource-allocation decisions within 10% of optimal ev-
ery time. These results encourage further research on
approaches to resource allocation for Cells and tradeoffs
between complexity, overhead and performance.

5 Related Work

Tessellation is influenced by virtual machines, exoker-
nels, and multiprocessor runtime systems [1, 2, 4, 10,
15, 16, 18, 24]. Other recent manycore operating sys-
tems projects, such as Corey [11], Barrelfish [25], and
fos [29], share some structural aspects such as distributed
OS services. This body of work mainly focus on improv-
ing OS scalability and, contrary to Tessellation, does not
attempt to also provide QoS guarantees.

Nesbit et al. [22] introduce Virtual Private Machines
(VPM), another framework for resource allocation and
management in multicore systems. The concepts of
VPM and Cell are similar, but the VPM framework does
not include an equivalent communication mechanism to
our inter-cell channel.

6 Conclusion

We presented Tessellation, a new manycore OS for
client devices that provides real-time and QoS guaran-
tees. Tessellation is predicated on two central ideas,
namely Space-Time Partitioning (STP) and Two-Level
Scheduling. In this paper, we discussed Tessellation’s
Cell model, explored its resource-allocation architecture,
and examined results from an early prototype.
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