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tIn an in
omplete market, it is generally impossible to repli
ate an option exa
tly. Inthis 
ase, total risk minimization 
hooses an optimal self-�nan
ing strategy that bestapproximates the option payo� by its �nal value. Total risk minimization is a dynami
sto
hasti
 programming problem, whi
h is generally very 
hallenging to solve; a dire
tapproa
h may lead to very expensive 
omputations.We investigate total risk minimization using a pie
ewise linear 
riterion. We des
ribe amethod for 
omputing the optimal hedging strategies for this sto
hasti
 programmingproblem using Monte Carlo simulation and spline approximations. We illustrate thismethod in the Bla
k-S
holes and the sto
hasti
 volatility frameworks. We also 
omparethe hedging performan
e of the strategies based on pie
ewise linear risk minimization,the traditional, quadrati
 risk minimizing strategies and the shortfall risk minimizingstrategies. The numeri
al results show that pie
ewise linear risk minimization may leadto smaller hedging 
ost and signi�
antly di�erent, possibly better, hedging strategies.The values of the shortfall risk for the pie
ewise linear total risk minimizing strategiessuggest that these strategies typi
ally underhedge the options.1. Introdu
tionHedging is a method for redu
ing the sensitivity of a portfolio to market 
u
tuations. Inparti
ular, when hedging an option, one tries to 
onstru
t a trading strategy that repli
atesthe option payo� with no in
ow or out
ow of 
apital besides the initial 
osts. In theBla
k-S
holes framework, an option 
an be hedged by using only the underlying asset anda bond. However, the investor's position must be adjusted 
ontinuously, sin
e it is onlyinstantaneously risk-free. In pra
ti
e, however, it is impossible to hedge 
ontinuously intime. In addition, one may want to hedge as little as possible due to transa
tion 
osts. If1



only dis
rete hedging times are allowed, a
hieving a risk-free position at ea
h time is nolonger possible sin
e this instantaneous hedging will not last till the next rebalan
ing time.Moreover, presen
e of additional risks, e.g., jump risks, leads to an in
omplete market.Under these 
onditions, it is not possible to totally hedge the intrinsi
 risk of an option that
annot be exa
tly repli
ated. There is mu
h un
ertainty regarding the 
hoi
e of an optimalhedging strategy and in de�ning the fair pri
e of an option.El Karoui and Quenez ([10℄) use the super-repli
ation method for pri
ing and hedgingin in
omplete markets. The method 
onsists in �nding a self-�nan
ing strategy of minimuminitial 
ost su
h that its �nal value is always larger than the option payo�. This minimuminitial 
ost represents the ask pri
e, or the seller's pri
e of the option. Correspondingly,the method 
omputes a bid pri
e, or a buyer's pri
e. However, only an interval of no-arbitrage pri
es is determined in this manner. Moreover, there are 
ases when using asuper-repli
ating strategy for hedging an option is not interesting from a �nan
ial point ofview. For example, in the Hull-White ([9℄) sto
hasti
 volatility model, the super-repli
atingstrategy for a 
all option is to hold the underlying asset (Frey [5℄). In addition, the minimuminitial 
ost of a super-repli
ating strategy may be undesirably large.Another approa
h to pri
ing and hedging in in
omplete markets is to 
ompute an optimalstrategy by minimizing a parti
ular measure of the intrinsi
 risk of the option. F�ollmer andS
hweizer ([4℄), S
h�al ([14℄), S
hweizer ([15, 16℄), Mer
urio and Vorst ([12℄), Heath, Platenand S
hweizer ([6℄, [7℄), Bertsimas et al. ([1℄) study quadrati
 
riteria for risk minimization.We only brie
y des
ribe them here, but they are presented in more detail in Se
tion 2.Suppose we want to hedge an option whose payo� is denoted by H and we only have a�nite number of hedging times: t0; t1; : : : ; tM . Suppose also that the �nan
ial market ismodeled by a probability spa
e (
;F ; P ), with �ltration (Fk)k=0;1;:::;M and the dis
ountedunderlying asset pri
e follows a square integrable pro
ess. Denote by Vk the value of thehedging strategy at time tk and by Ck the 
umulative 
ost of the hedging strategy up totime tk (this in
ludes the initial 
ost for setting up the hedging portfolio and the 
ost forrebalan
ing it at the hedging times t0; : : : ; tk).Currently, there are two main quadrati
 hedging approa
hes for 
hoosing an optimalstrategy. One possibility is to 
ontrol the total risk by minimizing the L2-norm E((H �VM)2), where E(�) denotes the expe
ted value with respe
t to the probability measure P .This is the total risk minimization 
riterion. An optimal strategy for this 
riterion is self-�nan
ing, that is, its 
umulative 
ost pro
ess is 
onstant. A total risk minimizing strategyexists under the additional assumption that the dis
ounted underlying asset pri
e has abounded mean-varian
e tradeo�. In this 
ase, the strategy is given by an analyti
 formula.The existen
e and the uniqueness of a total risk minimizing strategy have been extensivelystudied by S
hweizer ([15℄).Another possibility is to 
ontrol the lo
al in
remental risk, by minimizing E((Ck+1 �Ck)2jFk) for all 0 � k � M � 1. This is the lo
al quadrati
 risk minimizing 
riterion.The same assumption that the dis
ounted underlying asset pri
e has a bounded mean-varian
e tradeo� is suÆ
ient for the existen
e of an expli
it lo
al risk minimizing strategy(see S
h�al [14℄). This strategy is no longer self-�nan
ing, but it is mean-self-�nan
ing, i.e.,the 
umulative 
ost pro
ess is a martingale. In general, the initial 
osts for the lo
al riskminimizing and total risk minimizing strategies are di�erent. As S
h�al noti
ed, the initial
osts agree in the 
ase when the dis
ounted underlying asset pri
e has a deterministi
mean-varian
e tradeo�. He then suggests the interpretation of this initial 
ost as a fair2



hedging pri
e for the option. However, as mentioned by S
hweizer ([15℄), this is not alwaysappropriate.The quadrati
 total and lo
al risk minimizing hedging strategies have many theoreti
alproperties, their existen
e and uniqueness have been extensively studied and, in the 
aseof existen
e, they are given by analyti
 formula. However, the optimal hedging strategieshinge on the 
riteria for measuring the risk. Therefore, it is important to answer the naturalquestion of how di�erent hedging strategies are under di�erent risk measures. Moreover,how should one 
hoose a risk measure?In the Bla
k-S
holes framework, an option 
an be hedged 
ompletely, with no risk, i.e.,zero in or out 
ash
ows, besides the initial 
ost. When rebalan
ing 
an only be done atdis
rete times, a natural optimal hedging strategy is the one whi
h minimizes the expe
tedmagnitude of the 
ash
ows; this leads to the optimization problems, minimize E(jH�VM j),or minimize E(jCk+1 � Ckj jFk), respe
tively.Coleman, Li and Patron ([2℄) investigate the pie
ewise linear 
riterion for lo
al risk min-imization. They illustrate the fa
t that pie
ewise linear lo
al risk minimization may lead tovery di�erent, possibly better, hedging strategies. These strategies have a larger probabilityof small hedging 
ost and risk, although a very small probability of larger 
ost and risk thanthe traditional quadrati
 risk minimizing strategies. Although there is no analyti
 solutionto the pie
ewise linear lo
al risk minimization problem, the optimal hedging strategies 
anbe 
omputed very easily.In this paper, we investigate hedging strategies based on pie
ewise linear total riskminimization. Minimizing the pie
ewise linear risk, E(jH � VM j), and minimizing thequadrati
 risk, E((H�VM)2) are also likely to yield signi�
antly di�erent solutions. Assumethat p(S) is the 
onditional density fun
tion of the underlying pri
e at time T . MinimizingE((H�VM )) puts more emphasis on redu
ing the largest value ofpp(S)jH�VM j, whereasminimizing E(jH � VM j) attempts to redu
e the density weighted in
remental 
ash
ow,p(S)jH � VM j for ea
h underlying value S equally.To illustrate the above dis
ussion in more detail, 
onsider the following 
omparisonbetween the pie
ewise linear risk minimization with respe
t to the total risk measure E(jH�VM j), and the quadrati
 risk minimization with respe
t to E((H�VM )2). Suppose the pri
eof the underlying asset satis�es the sto
hasti
 di�erential equation:dStSt = �dt+ �dZtwhere Zt is a Wiener pro
ess. Let the initial value of the asset S0 = 100, the instantaneousexpe
ted return � = :2, the volatility � = :2 and the riskless rate of return r = :1. Supposewe want to stati
ally hedge a deep in-the-money and a deep out-of-money put option withmaturity T = 1; we only have one hedging opportunity, at time 0. At the maturity Twe 
ompare the payo� of the options with the hedging portfolio values of the strategiesobtained by the pie
ewise linear and quadrati
 lo
al risk minimization. The payo� and thehedging portfolio values at time T are multiplied by the density fun
tion of the asset pri
eand are dis
ounted to time 0. The �rst plot in Figure 1 shows the density weighted payo�and the density weighted values of the hedging portfolios at the maturity T for the in-the-money put option. The se
ond plot presents the 
orresponding data for the out-of-moneyput option. 3
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Figure 1: Best �tting of the option payo�In the 
ase of the in-the-money put option, the weighted payo�, 
loser to lognormal,is mu
h easier to �t. We remark that in this 
ase both 
riteria generate similar plots ofthe hedging strategy values and they �t the option payo� relatively well. However, theweighted payo� for the out-of-money put option seems more diÆ
ult to mat
h. Despite thesmall values (of order 10�3), it is important to note that the relative di�eren
es betweenthe weighted payo� and the weighted values of the hedging portfolios are large. (The 
ostof an out-of-money put is mu
h smaller than the 
ost of the in-the-money put.) We haveillustrated the hedging of only one out-of-money put option; if we want to hedge 100 putoptions identi
al to the one 
onsidered, the absolute di�eren
es between the weighted payo�and the weighted hedging portfolio values will also be signi�
ant. The hedging styles of thetwo strategies are very di�erent. The L2-norm (i.e., quadrati
) attempts to penalize largeresiduals ex
essively and this a
tually leads to a worse �t under most s
enarios. Indeed,the probability that the put option expires out of money is very large, around :97, but theL2-hedging strategy either over or under repli
ates the option payo�. On the other hand,the L1-strategy hedges exa
tly the option payo� when it expires out of money. Suppose weshort the out-of-money put option. At the maturity of the option, our possible losses arenever greater than the strike pri
e. Assume now that we want to hedge our position bybuying the L2-hedging strategy. We 
an see from the �gure that, by ex
essively trying toredu
e the risk in the unlikely event that the option expires in the money, the L2-strategya
tually introdu
es the very small probability of unlimited losses. This is not the 
ase if wetry to hedge the short position using the L1-strategy.The main diÆ
ulty in 
omputing the optimal strategies under the pie
ewise linear totalrisk minimization 
riterion is that, be
ause these strategies are self-�nan
ing, the total risk,H�VM , depends on the entire path of the sto
k pri
e. Total risk minimization is a dynami
sto
hasti
 programming problem whi
h is 
omputationally 
hallenging to solve. Using atree method to model the future un
ertainties may lead to very expensive 
omputationsfor solving this sto
hasti
 programming problem, sin
e the number of tree nodes in
reasesexponentially as the number of trading opportunities in
reases. We propose a method for
omputing the pie
ewise linear total risk minimizing hedging strategies using Monte Carlosimulation and approximating the holdings in the hedging portfolios by unknown 
ubi
splines whi
h are determined as the solution to an optimization problem.4



The key insight underlying our method is similar to the idea behind the Longsta�-S
hwartz method for valuing Ameri
an options ([11℄). Essentially, the optimal exer
isestrategy for an Ameri
an option is determined by the 
onditional expe
ted value of thepayo� from 
ontinuing to keep the option alive. Longsta� and S
hwartz 
ompute the opti-mal exer
ise strategy for Ameri
an options using Monte Carlo methods and approximatingthe 
onditional expe
ted values of the payo� from 
ontinuation by fun
tions of the statevariables.The method we propose for 
omputing the optimal pie
ewise linear total risk minimizingstrategies may also be useful in 
omputing the quadrati
 total risk minimizing strategies,for example, in the 
ase of the sto
hasti
 volatility models. S
hweizer ([15℄) establishes ananalyti
al formula for the 
omputation of the quadrati
 risk minimizing strategies whenthe sto
k pri
e has a bounded mean-varian
e tradeo� and Bertsimas et al. ([1℄) present aformula based on dynami
 programming under the additional assumption of ve
tor-Markovpri
e pro
esses. However, the numeri
al implementation of these formula may be quiteinvolved in the sto
hasti
 volatility framework.We illustrate our method in the Bla
k-S
holes and sto
hasti
 volatility framework. Wealso investigate the di�eren
es between the hedging styles of the trading strategies basedon pie
ewise linear and quadrati
 risk minimization. The behavior of the di�erent hedgingstrategies for total risk minimization is similar to the one observed in the 
ase of the lo
alrisk minimization (see Coleman et al. [2℄). Pie
ewise linear total risk minimization generallyleads to smaller hedging 
ost and risk than the 
orresponding quadrati
 
riterion, althoughthere is a very small probability of larger 
ost and risk.Both quadrati
 and pie
ewise linear risk minimization are symmetri
 risk measures,sin
e they penalize losses as well as gains. However, when hedging an option, one maybe more interested in penalizing only the losses of his position. This leads to minimizingthe shortfall risk, E((H � VM)+). We remark that, while total risk minimization 
an beused for both hedging and pri
ing an option, shortfall risk minimization 
an only be usedfor hedging purposes. We investigate 
riteria for shortfall risk minimization and 
omparethe optimal hedging strategies for these 
riteria with the quadrati
 and pie
ewise lineartotal risk minimizing strategies. The optimal hedging strategy performan
es depend on themoneyness of the options and the number of rebalan
ing opportunities. Analyzing the valuesof the shortfall risk for the optimal total risk minimizing strategies, suggests that, whilequadrati
 total risk minimization shows no trend for either overhedging, or underhedging,the 
orresponding pie
ewise linear 
riterion typi
ally underhedges the options.To summarize the main 
ontributions of this paper, we �rstly propose a 
omputationalmethod to approximate optimal hedging strategies for total risk minimization under theL1-risk measure. Se
ondly, we 
ompare the total risk minimizing hedging strategies for theL1, L2 and shortfall risk measures.Se
tion 2 of the paper des
ribes the di�erent risk minimization 
riteria for dis
retehedging. In Se
tion 3 we present our method for 
omputing the pie
ewise linear totalrisk minimizing strategies. We illustrate this method in the Bla
k-S
holes framework and
ompare the di�erent 
riteria for total risk minimization in this framework. Se
tion 4 hasa similar analysis for a sto
hasti
 volatility framework. In Se
tion 5 we investigate 
riteriafor shortfall risk minimization and 
ompare the performan
e of the hedging strategies forshortfall, pie
ewise linear and quadrati
 total risk minimization. We 
on
lude in Se
tion 6.5



2. Dis
rete hedging 
riteriaConsider a �nan
ial market where a risky asset (
alled sto
k) and a risk-free asset (
alledbond) are traded. Let T > 0 and assume we only have a �nite number of hedging datesover the time horizon [0; T ℄. Let 0 = t0 < t1 < : : : < tM = T denote these dis
rete hedgingtimes. Suppose the �nan
ial market is modeled as a �ltered probability spa
e (
;F ; P ),with �ltration (Fk)k=0;1;:::;M , where Fk 
orresponds to the hedging time tk and w.l.o.g.F0 = f;;
g is trivial. Suppose, moreover, that the sto
k pri
e follows a sto
hasti
 pro
essS = (Sk)k=0;1;:::;M , with Sk being Fk-measurable for all 0 � k � M . We 
an set the bondpri
e B � 1 by assuming the dis
ounted sto
k pri
e pro
ess X = (Xk)k=0;1;:::;M , whereXk = SkBk ; 80 � k �M .Assume that we want to hedge a European option with maturity T and payo� given bya FM -measurable random variable H . For example, H = (K �XM)+ for a European putwith maturity T and dis
ounted strike pri
e K.A trading strategy is given by two sto
hasti
 pro
esses (�k)k=0;1;:::;M and (�k)k=0;1;:::;M ,where �k is the number of shares held at time tk and �k is the amount invested in the bond attime tk . We assume �k; �k are Fk-measurable, for all 0 � k �M and �M = 0. Consider theportfolio 
onsisting of the 
ombination of the sto
k and bond given by the trading strategy.The 
ondition �M = 0 
orresponds to the fa
t that at time M we liquidate the portfolio inorder to 
over for the option payo�.The value of the portfolio at any time tk , 0 � k �M , is given by:Vk = �kXk + �k:For all 0 � j � M � 1, denote by �Xj = Xj+1 � Xj . With this notation, �j�Xjrepresents the 
hange in value due to the 
hange in the sto
k pri
e at time tj+1 before any
hanges in the portfolio. Therefore, the a

umulated gain Gk is given by:Gk(�) = k�1Xj=0 �j�Xj ; 1 � k �Mand G0 = 0.The 
umulative 
ost at time tk, Ck, is de�ned by:Ck = Vk � Gk; 0 � k �M:A strategy is 
alled self-�nan
ing if its 
umulative 
ost pro
ess (Ck)k=0;1;:::;M is 
onstantover time, i.e. C0 = C1 = : : := CM . This is equivalent to (�k+1 � �k)Xk+1 + �k+1 � �k = 0(a.s.), for all 0 � k � M � 1. In other words, any 
u
tuations in the sto
k pri
e 
an beneutralized by rebalan
ing � and � with no in
ow or out
ow of 
apital. The value of theportfolio for a self-�nan
ing strategy is then given by Vk = V0+Gk at any time 0 � k �M .A market is 
omplete if any 
laim H is attainable, that is, there exists a self-�nan
ingstrategy with VM = H (a.s.). If the market is in
omplete, for instan
e in the 
ase of dis
retehedging, a 
laim is, in general, non-attainable and a hedging strategy has to be 
hosen basedon some optimality 
riterion.One approa
h to hedging in an in
omplete market is to �rst impose VM = H . Sin
e su
ha strategy 
annot be self-�nan
ing, we should then 
hoose the optimal trading strategy to6



minimize the in
remental 
ost in
urred from adjusting the portfolio at ea
h hedging time.This is the lo
al risk minimization. The traditional 
riterion for lo
al risk minimization isthe quadrati
 
riterion, given by minimizing:E((Ck+1 � Ck)2jFk) ; 0 � k �M � 1: (1)This 
riterion is dis
ussed in detail in F�ollmer and S
hweizer ([4℄), S
h�al ([14℄), S
hweizer([15, 16℄).A quadrati
 lo
al risk minimizing strategy is guaranteed to exist under the assumptionsthatH is a square integrable random variable, X is a square integrable pro
ess with boundedmean-varian
e tradeo�, that is:(E(�XkjFk))2Var(�XkjFk) is P-a.s. uniformly bounded:Moreover, this hedging strategy is given expli
itly by:8>>>>>>><>>>>>>>:�(l)M = 0; �(l)M = H�(l)k = Cov(�(l)k+1Xk+1+�(l)k+1;Xk+1j Fk)Var(Xk+1jFk) ; 0 � k �M � 1�(l)k = E((�(l)k+1 � �(l)k )Xk+1 + �(l)k+1jFk); 0 � k �M � 1: (2)The 
hoi
e of the quadrati
 
riterion for risk minimization is, however, subje
tive. Al-ternatively, one 
an 
hoose to minimize:E(jCk+1 � Ck)j jFk) ; 0 � k �M � 1: (3)As illustrated by Coleman et al. ([2℄), even if there is no analyti
 solution to theabove pie
ewise linear risk minimization problem, an optimal hedging strategy 
an be easily
omputed. Criterion (3) for pie
ewise linear lo
al risk minimization leads to signi�
antlydi�erent hedging strategies and possibly better hedging results.Another approa
h to hedging in an in
omplete market is to 
onsider only self-�nan
ingstrategies. An optimal self-�nan
ing strategy is then 
hosen whi
h best approximates H byits terminal value VM . The quadrati
 
riterion for this total risk minimization is given byminimizing the L2-norm:E((H � VM)2) = E((H � V0 � M�1Xj=0 �j�Xj)2): (4)By solving the total risk minimization problem (4), we obtain the initial value of theportfolio, V0, and the number of shares, (�0; : : : ; �M�1). The amount invested in the bond,(�0; : : : ; �M), is then uniquely determined sin
e the strategy is self-�nan
ing. If the dis-
ounted sto
k pri
e is given by a square integrable pro
ess with bounded mean-varian
etradeo� and if the payo� is given by a square integrable random variable, then problem(4) has a unique solution. The existen
e and uniqueness of a total risk minimizing strategyunder the quadrati
 
riterion have been extensively studied by S
hweizer ([15℄).7



S
hweizer gives an analyti
 formula whi
h relates the holdings and the hedging portfoliovalues for the quadrati
 total risk minimizing strategy to the holdings and the portfoliovalues for the quadrati
 lo
al risk minimizing strategy:8>>><>>>:V (t)0 = E(HQM�1j=0 (1��j�Xj))E(QM�1j=0 (1��j�Xj))�(t)M = 0�(t)k = �(l)k + �k(V (l)k � V (t)0 � Gk(�(t))) + 
k; 0 � k �M � 1: (5)where the pro
esses (�k)k=0;:::;M�1 and (
k)k=0;:::;M�1 are given by the formula:�k = E(�XkQM�1j=k+1(1��j�Xj)jFk)E(�X2k QM�1j=k+1(1��j�Xj)2jFk)
k = E((V (l)T �GT (�(l))�V (l)k +Gk(�(l)))�XkQM�1j=k+1(1��j�Xj)jFk)E(�X2kQM�1j=k+1(1��j�Xj)2jFk)Bertsimas et al. ([1℄) also obtains a formula for the quadrati
 total risk minimizingstrategy, using dynami
 programming, in the 
ase of ve
tor-Markov pri
e pro
esses.The 
orresponding pie
ewise linear total risk minimization 
riterion is given by theL1-norm: E(jH � VM j) = E(jH � V0 � M�1Xj=0 �j�Xj j): (6)We are interested in 
omputing optimal hedging strategies given by the pie
ewise lineartotal risk minimization problem (6). This is a dynami
 sto
hasti
 programming problemthat is, in general, very diÆ
ult to solve. Sin
e H � V0 �PM�1j=0 �j�Xj depends on theentire path of the sto
k pri
e, a dire
t approa
h to problem (6) 
an be very expensive
omputationally. In order to see this, assume that we use Monte Carlo simulation and wegenerate L independent s
enarios for the sto
k pri
e. The total risk minimization problem(6) 
orresponds, in this 
ase, to minimizing the expe
ted total risk over all the s
enarios:minV0 ;�0 ;�(k)j�j:Fj�measurable LXk=1 ������H(k) � V0 � �0�X(k)1 �M�1Xj=1 �(k)j �X(k)j ������ (7)The notation (k) means that the option payo�, the sto
k pri
e and the holdings 
orre-spond to the kth s
enario. We remark that at time 0, the sto
k pri
e is deterministi
 and,therefore, the holdings in the hedging portfolio at time 0 have to be the same for all thes
enarios.The number of unknowns in problem (7) is of order L �M , where L is the number ofs
enarios andM is the number of rebalan
ing times. Therefore, trying to solve this problemdire
tly is 
omputationally very 
hallenging when the number of s
enarios is large and therebalan
ing is frequent.In order to redu
e the 
omplexity of problem (7) we try to approximate the holdings�j . Spline fun
tions have been extensively used for fun
tion approximations, sin
e they are8



very attra
tive from a 
omputational point of view. We 
hoose to approximate the holdings�j by unknown 
ubi
 splines.The number of unknowns at ea
h hedging time in the problem formulation (7) is equalto the number of s
enarios; after approximating the holdings by 
ubi
 splines, the numberof unknowns at ea
h hedging time is redu
ed to the number of parameters in the 
ubi
splines, whi
h is typi
ally very small.An important issue to be 
onsidered when approximating the holdings in a hedgingstrategy by 
ubi
 splines is that the optimal hedging strategy has to be path dependent.Indeed, the total risk, H � VM = H � V0 �M�1Xj=0 �j�Xj;minimized by the optimal hedging strategy, depends on the entire path of the sto
k pri
e. Al-though the holdings (�j)j=0;:::;M�1 are 
omputed at time 0 and any measurable (�j)j=0;:::;M�1is an admissible hedging strategy, intuitively, at any time tj , 0 � j � M � 1, the optimalholdings �j will have an intrinsi
 information about the past history of the sto
k pri
e andthe optimal holdings up to time tj .In this paper, we des
ribe a method for solving the total risk minimization problem (6)by approximating the holdings in the optimal hedging strategy with unknown 
ubi
 splinesand trying to 
apture the path dependen
y of the strategy by a simple spline formulation.The unknown 
ubi
 splines are determined as solutions of an optimization problem that
onsists in minimizing the total risk over a set of s
enarios for the sto
k pri
e. Sin
e thestrategy 
omputed in this way is suboptimal we have to analyze its degree of optimality. Wealso 
ompare the hedging strategies based on the pie
ewise linear total risk minimization
riterion, to the traditional strategies based on quadrati
 total risk minimization.3. Total risk minimization in the Bla
k-S
holes frameworkWe will �rst des
ribe our method in the Bla
k-S
holes framework. We suppose that thesto
k pri
e is given by the sto
hasti
 di�erential equation:dStSt = �dt+ �dZt; (8)where Zt is a Brownian motion. We also assume that the writer of a European option withmaturity T has only M hedging opportunities at 0 = t0 < t1 < : : : < tM�1 < tM := T tohedge his position using the underlying sto
k and a bond.Using Monte Carlo simulation, we generate L independent samples for the sto
k pri
e,based on equation (8). We want to determine the holdings in the hedging strategy su
hthat the expe
ted total risk over all the s
enarios is minimized.The total risk minimization problem for the pie
ewise linear 
riteria be
omes:minV0 ;�0 ;�(k)j�j:Fj�measurable LXk=1 ������H(k) � V0 � �0�X(k)1 �M�1Xj=1 �(k)j �X(k)j ������ : (9)9



As before, the notation (k) refers to the kth s
enario.3.1. First formulationWe want to redu
e the 
omplexity of the above problem by approximating the holdings �k.We �rst 
hoose to ignore the fa
t that the hedging strategy is path dependent and assumethat the amount �jXj invested in the sto
k at any time tj depends only on the sto
k pri
eat time tj . We will investigate the degree of optimality that 
an be a
hieved under thisassumption and we will pursue subsequent re�nement of this assumption. This is a naturalassumption, sin
e one should take into a

ount the 
urrent value of the sto
k pri
e, Xj ,when rebalan
ing the portfolio at time tj . Thus, we 
an assume:�j = Dj(Xj); 8j = 1; : : : ;M � 1; (10)with Dj unknown fun
tions. Let us suppose that the holdings depend 
ontinuously on thesto
k pri
e, that is, Dj is a 
ontinuous fun
tion, 8j = 1; : : : ;M � 1. We denote by D0 the
onstant fun
tion identi
ally equal to �0. The total risk minimization problem under thepie
ewise linear 
riterion be
omes:minV0;D0;:::;DM�1 LXk=1 ������H(k) � V0 �M�1Xj=0 Dj(X(k)j )�X(k)j ������ : (11)In order to make the above problem 
omputationally attra
tive, we assume that ea
hfun
tion Dj is a 
ubi
 spline with �xed end 
onditions and spline knots pla
ed with respe
tto the sto
k pri
e. The fun
tion Dj is then uniquely determined by its values at the splineknots. Note that Dj is a linear fun
tion of its knot values. In this way, problem (11)be
omes an L1-optimization problem with unknowns V0, D0 and the values of the 
ubi
splines Dj ; j � 1 at their knots.The number of knots for ea
h spline in our implementation is typi
ally very small (around8) and independent of the number of s
enarios. Therefore, the number of unknowns in theL1-optimization problem (11) is of order M , where M is the number of rebalan
ing times.We 
an now solve this problem and 
ompute the pie
ewise linear risk minimizing strategythat satis�es assumption (10) on the spe
ial form of the holdings �j .The question that arises is how good assumption (10) is. In order to answer this question,we will investigate the quadrati
 total risk minimization problem (4). We 
an 
ompute thequadrati
 risk minimizing strategy either by solving an optimization problem similar to(11), or by using the theoreti
al formula (5). By 
omparing the hedging strategies obtainedby these two methods, we will try to assert the quality of assumption (10).We 
an modify the quadrati
 risk minimization problem (4), using an approa
h similarto the one des
ribed above for pie
ewise linear risk minimization. Under the assumption,�j = Dj(Xj); 8j = 1; : : : ;M � 1 and with the notation D0 � �0, the problem be
omes:minV0;D0;:::;DM�1 LXk=1(H(k) � V0 � M�1Xj=0 Dj(X(k)j )�X(k)j )2 (12)We obtain, therefore, the optimal quadrati
 risk minimizing hedging strategy whi
hsatis�es assumption (10). 10



Another method for solving problem (4) is to use S
hweizer's analyti
 solution (5) and
ompute the optimal quadrati
 risk minimizing strategy, in the general 
ase, with no as-sumption on the form of the holdings. In the Bla
k-S
holes model, the mean-varian
e ofthe sto
k pri
e is not only bounded, but also deterministi
. As mentioned in S
hweizer'spaper ([15℄), formula (5) redu
es in this 
ase to:8><>: V (t)0 = V (l)0�(t)M = 0�(t)k = �(l)k + �k(V (l)k � V (l)0 �Gk(�(t))); 0 � k �M � 1: (13)where the pro
ess (�k)k=0;:::;M�1 is given by:�k = E(�XkjFk)E(�X2k jFk)We �rst 
ompute the quadrati
 lo
al risk minimizing strategy, as given by formula (2).The details of this 
omputation are given in Coleman et al. ([2℄). We then use formula (13)to obtain the holdings in the total risk minimizing hedging portfolio for ea
h s
enario.The total risk minimizing hedging strategy 
omputed from the analyti
al formula (13) inthe above manner, is used as a ben
hmark for the solution of the quadrati
 risk minimizationproblem (12), in order to evaluate the validity of the assumption (10).We also want to 
ompare the e�e
tiveness of the hedging strategies based on pie
ewiselinear risk minimization and, respe
tively, quadrati
 risk minimization.The numeri
al results presented below refer to hedging put options with maturity T = 1and di�erent strike pri
es. The initial sto
k pri
e is S0 = 100. The instantaneous expe
tedreturn of the sto
k pri
e is � = :15, the volatility, � = :2 and the riskless rate of return,r = :04. The number of s
enarios in the Monte Carlo simulation of the sto
k pri
e isL = 40000 and the number of time steps in this simulation is 600.We have 
omputed three risk minimizing hedging strategies:� Strategy 1: Pie
ewise linear risk minimizing strategy satisfying (10)� Strategy 2: Quadrati
 risk minimizing strategy satisfying (10)� Strategy 3: Quadrati
 risk minimizing strategy given by the analyti
al formula (13)For ea
h of these strategies and ea
h s
enario, we 
ompute the following:� Total 
ost: H �M�1Xk=0 �k�Xk (14)This is the total amount of money ne
essary for the writer to implement the self-�nan
ing hedging strategy and honor the option payo� at expiry. Sin
e the hedgingstrategy is self-�nan
ing, there are no intermediate 
osts for rebalan
ing the hedgingportfolio.� Total risk: jH � VM j (15)11



This measures the di�eren
e between the �nal value of the hedging portfolio and theoption payo�. The strategy being self-�nan
ing, it is the only unplanned 
ost orin
ome.Tables 1 and 2 show the average 
umulative 
ost and average total risk over 40000simulated s
enarios, for di�erent number of time steps per rebalan
ing time. The last
olumn in these tables 
orrespond to the 
ase of the stati
 hedge, when we only have onehedging opportunity at time 0.Table 1: Average value of the total 
ost over 40000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 25 50 100 300 6001 2.2194 1.9764 1.0876 0.9398 0.939890 2 2.4540 2.4033 2.3155 2.0400 1.74213 2.4838 2.4387 2.3474 2.0429 1.74541 3.7878 3.6356 3.2435 1.6648 1.664895 2 3.9512 3.8830 3.7647 3.4006 2.97353 3.9770 3.9188 3.8022 3.4018 2.97451 5.8421 5.7082 5.5074 4.0392 2.7269100 2 5.9183 5.8396 5.6983 5.2566 4.69483 5.9413 5.8773 5.7399 5.2565 4.69281 8.3549 8.2549 8.1113 7.2494 5.5301105 2 8.3613 8.2809 8.1280 7.6307 6.94493 8.3866 8.3221 8.1724 7.6303 6.93921 11.2609 11.1988 11.0950 10.6364 9.2160110 2 11.2566 11.1789 11.0264 10.4994 9.71483 11.2858 11.2221 11.0713 10.5007 9.7072Average total 
ost for put options with T = 1, di�erent strike pri
es andnumber of timesteps per rebalan
ing time, for strategies: 1 - pie
ewise linearwith (10), 2 - quadrati
 with (10) and 3 - quadrati
 given by analyti
alformula; S0 = 100, � = :15, � = :2, r = :04.We remark that, in the 
ase of Strategy 1, the average values of the 
umulative 
ost inTable 1 and total risk in Table 2 are equal for some of the put options 
onsidered, as forexample, the out-of-money put options with 1 or 2 hedging opportunities. This happensbe
ause the holdings in the optimal hedging portfolio of Strategy 1 are zero. Therefore, if theput option is not in-the-money and the number of rebalan
ing opportunities is suÆ
ientlysmall, the optimal hedging Strategy 1 is not to hedge at all. This is intuitively quitereasonable sin
e the likelihood of the option expiring out-of-money is large and one has noopportunity of further adjusting the hedging portfolio. The optimal hedging strategies 2and 3, on the other hand, still 
hoose to hedge these parti
ular put options. We remarkthat out-of-money put options with more hedging opportunities are hedged by Strategy 1.Experiments show that out-of-money put options whi
h are 
loser to expiry will be hedgedby Strategy 1.When the rebalan
ing is infrequent, the average values of the total risk for the quadrati
risk minimizing strategies 2 and 3 are very 
lose. The same 
an be observed for the 
umula-12



Table 2: Average value of the total risk over 40000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 25 50 100 300 6001 0.6031 0.7822 0.9276 0.9398 0.939890 2 0.6312 0.8410 1.1212 1.5727 1.77073 0.5336 0.7450 1.0377 1.5799 1.77591 0.7761 1.0419 1.3829 1.6648 1.664895 2 0.7918 1.0771 1.4687 2.1945 2.62223 0.6885 0.9641 1.3592 2.1993 2.62511 0.9790 1.2921 1.7293 2.5544 2.7269100 2 0.9877 1.3144 1.7784 2.7944 3.51173 0.8295 1.1636 1.6479 2.7914 3.51191 1.1000 1.4535 1.9668 3.1622 3.9566105 2 1.1068 1.4677 2.0051 3.2892 4.31843 0.9465 1.3180 1.8694 3.2774 4.31701 1.1240 1.5192 2.0798 3.4688 4.7912110 2 1.1308 1.5344 2.1240 3.6189 4.93663 1.0147 1.4171 2.0036 3.6027 4.9355Average total risk for the hedging of put options with di�erent strike pri
esand di�erent number of time steps per rebalan
ing time, for the three strate-gies and in the setup des
ribed in Table 1.tive 
ost. However, as the rebalan
ing be
omes frequent enough, the total risk for Strategy2 be
omes larger than the total risk for Strategy 3. The results maintain the same trendeven if we in
rease the number of spline knots or 
hange their position. This suggests thatthe 
onstraint (10), on the form of the holdings leads to supplementary risk and a betterassumption has to be found.The numeri
al results in Tables 1 and 2 illustrate that the hedging strategies based on thepie
ewise linear and, respe
tively, quadrati
 risk minimization perform di�erently in termsof average 
umulative 
ost and risk. In the 
ase of the in-the-money put options, the valuesof the average 
umulative 
ost are very 
lose for all the three strategies. However, as theoption be
omes out-of-money and the rebalan
ing is less frequent, the average 
umulative
ost for Strategy 1 is almost half the average 
umulative 
ost of the quadrati
 strategies. Theaverage total risk has the same trend. Nevertheless, sin
e it may be possible to eliminatepart of the total risk for Strategies 1 and 2, by using a less restri
tive 
onstraint than(10), the above results do not show very 
learly the di�eren
e between the pie
ewise linearand the quadrati
 risk minimizing strategies. The numeri
al results obtained with a betterassumption on the form of the holdings will allow further dis
ussion on this subje
t.3.2. Se
ond formulationAs illustrated above, the 
onstraint that the holdings at any time tj depend only on the
urrent sto
k pri
e, �j = Cj(Xj), may be too restri
tive. In order to obtain a betterformulation, let us analyze in more detail the holdings satisfying assumption (10). Consider13



the parti
ular 
ase of the at-the-money put options with 6 hedging opportunities. Figure2 shows the number of shares in the optimal hedging portfolio after the third rebalan
ingopportunity, for the quadrati
 risk minimizing Strategies 2 and 3.
60 80 100 120 140 160 180

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Stock price

N
um

be
r o

f s
ha

re
s

Strategy 2
Strategy 3Figure 2. Number of shares in the hedging portfolio after the thirdrebalan
ing time for the at-the-money put option with 6 rebalan
ingopportunitiesWe 
an see that in the 
ase of Strategy 3, for the same value of the 
urrent sto
k pri
e,we may have di�erent number of shares in the hedging portfolio for the di�erent s
enarios.This is be
ause this hedging strategy depends not only on the 
urrent value of the sto
kpri
e, but also on the path of the sto
k pri
e up to the 
urrent time. However, sin
e theholdings for Strategy 2 satisfy assumption (10), they only depend on the 
urrent sto
k pri
eand this assumption 
an be
ome too restri
tive. Note, however, that the holdings obtainedunder (10) 
apture quite well the trend of the optional holdings. To further redu
e the risk,we have to in
orporate the dependen
e on the path of the sto
k pri
e in the assumption onthe form of the holdings.Strategy 2 
onsiders only the hedging strategies for whi
h the amount invested in thesto
k at any time tj depends only on the sto
k pri
e Xj at time tj . It may be morenatural to assume, however, that the investment in the sto
k at time tj also depends on the
umulative gain up to time tj . We assume that the holdings depend linearly on the pastgain, spe
i�
ally: �j = Dj(Xj) + 1Xj j�1Xi=0 �i�Xi; 8j = 1; : : : ;M � 1with Dj unknown 
ubi
 splines. As before, we make the 
onvention D0 � �0. After somealgebrai
 manipulation and ignoring the higher order terms 
ontaining produ
ts �Xi1�Xi2 ,we obtain: �j = Dj(Xj) + 1Xj j�1Xi=0 Di(Xi)�Xi; 8j = 0; : : : ;M � 1:14



We introdu
e more degrees of freedom in the above formulation by allowing the e�e
tof the 
urrent sto
k pri
e, Xj , on the holdings at time tj to be di�erent from the e�e
t ofthe past sto
k pri
es, X0; : : : ; Xj�1.The assumption on the form of the holdings �j be
omes:�j = Dj(Xj) + 1Xj j�1Xi=0 ~Di(Xi)�Xi; 8j = 0; : : : ;M � 1; (16)where for j � 1, Dj and ~Dj are unknown 
ubi
 splines with �xed end 
onditions and splineknots, while D0; ~D0 are 
onstant fun
tions. With this formulation, the pie
ewise linearoptimization problem (6) be
omes:minV0;Dj; ~Dj LXk=1 ������H(k) � V0 �M�1Xj=0  Dj(X(k)j ) + j�1Xi=0 ~Dj(X(k)j )�X(k)iX(k)j !�X(k)j ������ (17)Problem (17) 
an be interpreted, similarly to problem (11), as a L1-optimization problemwith unknowns V0, D0, ~D0 and the values of the 
ubi
 splines Dj , ~Dj , j � 1 at their knots.The 
orresponding formulation for the quadrati
 risk minimization 
riterion is:minV0;Dj ; ~Dj LXk=10�H(k) � V0 � M�1Xj=0  Dj(X(k)j ) + j�1Xi=0 ~Dj(X(k)j )�X(k)iX(k)j !�X(k)j 1A2(18)We note that the number of knots for ea
h spline is usually small (around 8). Thenumber of unknowns in the above problems is approximately double to the number ofunknowns in the previous formulation.The optimization problems (17) and (18) allow us to 
ompute the optimal pie
ewiselinear and, respe
tively, quadrati
 risk minimizing strategies satisfying assumption (16) onthe form of the holdings in the hedging portfolio. We 
an now investigate the quality ofthis assumption using the three strategies:� Strategy 1: Pie
ewise linear risk minimizing strategy satisfying (16)� Strategy 2: Quadrati
 risk minimizing strategy satisfying (16)� Strategy 3: Quadrati
 risk minimizing strategy given by the analyti
al formula (13)We �rst re-examine the 
ase 
onsidered in Figure 3 of the at-the-money put optionwith 6 hedging opportunities. The number of shares in the optimal hedging portfolio forStrategies 2 and 3, after the third rebalan
ing time is shown in Figure 3. We remark thatthe values of the holdings for the optimal quadrati
 Strategy 2 satisfying 
onstraint (16)follow 
losely the values of the holdings for the theoreti
al quadrati
 Strategy 3.Tables 3 and 4 show the average values over 40000 s
enarios of the 
umulative 
ostand total risk, as de�ned before, for the above hedging strategies and di�erent numbers ofhedging opportunities. 15
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Strategy 2 Strategy 3Figure 3. Number of shares in the hedging portfolio after the thirdrebalan
ing time for the at-the-money put option with 6 rebalan
ingopportunitiesWe remark that in the 
ase of one hedging opportunity, the assumptions (10) and (16)on the form of the holdings 
oin
ide and, therefore, the last 
olumn in Tables 3 and 4 hasthe same results as the last 
olumn in Tables 1 and, respe
tively 2.As noti
ed before, the optimal hedging Strategy 1 for some of the put options whi
h arenot in-the-money and have very few rebalan
ing opportunities, is not to hedge at all. Thisis shown by the fa
t that the holdings in the hedging portfolios for these options are zero,whi
h implies that the average 
umulative 
ost and the average total risk are equal.In 
ontrast with the numeri
al results presented earlier, the quadrati
 strategies 2 and3 now yield very 
lose values for the average 
umulative 
ost in Table 3 and, respe
tively,the average total risk in Table 4. We 
on
lude that imposing the 
onstraint (16) on theform of the holdings in the hedging portfolio does not a�e
t signi�
antly the optimal valueof the average total hedging risk over the 40000 simulated s
enarios.
16



Table 3: Average value of the total 
ost over 40000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 25 50 100 300 6001 2.2728 2.1093 1.5031 0.9398 0.939890 2 2.4504 2.4086 2.3224 2.0388 1.74213 2.4838 2.4387 2.3474 2.0429 1.74541 3.7964 3.6640 3.4080 1.6648 1.664895 2 3.9443 3.8885 3.7741 3.3983 2.97353 3.9770 3.9188 3.8022 3.4018 2.97451 5.8223 5.6896 5.5067 4.0644 2.7269100 2 5.9118 5.8455 5.7119 5.2530 4.69483 5.9413 5.8773 5.7399 5.2565 4.69281 8.2982 8.1835 8.0393 7.2893 5.5301105 2 8.3584 8.2882 8.1412 7.6261 6.94493 8.3866 8.3221 8.1724 7.6303 6.93921 11.2072 11.1146 10.9945 10.6934 9.2160110 2 11.2569 11.1881 11.0413 10.4945 9.71483 11.2858 11.2221 11.0713 10.5007 9.7072Average total 
ost for put options with di�erent strike pri
es and numberof time steps per rebalan
ing time, for the three strategies: 1 - pie
ewiselinear with (16), 2 - quadrati
 with (16) and 3 - quadrati
 given by analyti
alformula; same setup as in Table 1.
17



Table 4: Average value of the total risk over 40000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 25 50 100 300 6001 0.5033 0.6819 0.8874 0.9398 0.939890 2 0.5450 0.7497 1.0325 1.5722 1.77073 0.5336 0.7450 1.0377 1.5799 1.77591 0.6575 0.9062 1.2512 1.6648 1.664895 2 0.6952 0.9662 1.3551 2.1908 2.62223 0.6885 0.9641 1.3592 2.1993 2.62511 0.8246 1.1269 1.5635 2.5524 2.7269100 2 0.8563 1.1789 1.6518 2.7843 3.51173 0.8295 1.1636 1.6479 2.7914 3.51191 0.9380 1.2800 1.7897 3.1551 3.9566105 2 0.9722 1.3319 1.8802 3.2738 4.31843 0.9465 1.3180 1.8694 3.2774 4.31701 1.0140 1.3806 1.9099 3.4619 4.7912110 2 1.0460 1.4279 2.0079 3.6025 4.93663 1.0147 1.4171 2.0036 3.6027 4.9355Average total risk for put options with di�erent strike pri
es and numberof time steps per rebalan
ing time, for the three strategies and in the setupdes
ribed in Table 3.The numeri
al results suggest that assumption (16) leads to smaller average total hedg-ing risk than assumption (10). In the 
ase of the quadrati
 risk minimization, the averagetotal hedging risk is very 
lose to optimal. Therefore, we use the optimization problems(17) and (18) to 
ompute the optimal hedging strategies under the pie
ewise linear and thequadrati
 risk minimizing 
riteria.Tables 3 and 4 allow a 
learer 
omparison of the hedging strategies based on the two
riteria for risk minimization. We remark that the performan
e of these strategies dependson the moneyness of the options and on the number of rebalan
ing opportunities. Thepie
ewise linear risk minimizing strategy yields a smaller average 
umulative 
ost and riskfor almost all the options 
onsidered. However, for in-the-money put options the values forthe average 
umulative 
ost and, respe
tively, total risk are 
lose for all three strategies.The di�eren
es tend to in
rease as the put options are out-of-money and the rebalan
ingis less frequent. For the out-of-money put options with only 1 or 2 hedging opportunitiesthe average 
umulative 
ost for Strategy 1 is almost half the average 
umulative 
ost forStrategies 2 and 3. The same happens for the average total risk.Even if the market is in
omplete due to the dis
rete hedging, many pra
titioners arestill using delta hedging in order to hedge an option in the 
urrent framework. They 
hoosea self-�nan
ing strategy su
h that the initial value of the hedging portfolio, V0, is given bythe value of the option at t0, as 
omputed by the Bla
k-S
holes formula and the number ofshares, �k, at any hedging time tk is equal to the delta of the option at tk ,�k = ��V�S�tk ;18



where V denotes the value of the option as given by the Bla
k-S
holes formula. However,delta hedging insures a risk-free repli
ation of the option only if the hedging is 
ontinuous. Inthe 
ase of dis
rete rebalan
ing, delta hedging is no longer optimal sin
e the 
orrespondingportfolio is only instantaneously risk-free and the risk-free position does not last till thenext rebalan
ing time. Tables 5 and 6 show the average values of the 
umulative 
ost andrisk over the 40000 generated s
enarios for the delta hedging strategy in 
omparison tothe pie
ewise linear and quadrati
 risk minimizing strategies satisfying assumption (16) -Strategies 1 and 2, respe
tively.Table 5: Average value of the total 
ost over 40000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 25 50 100 300 6001 2.2728 2.1093 1.5031 0.9398 0.939890 2 2.4504 2.4086 2.3224 2.0388 1.7421Delta 2.5583 2.5859 2.6454 2.8838 3.28191 3.7964 3.6640 3.4080 1.6648 1.664895 2 3.9443 3.8885 3.7741 3.3983 2.9735Delta 4.0702 4.1028 4.1763 4.4830 4.97931 5.8223 5.6896 5.5067 4.0644 2.7269100 2 5.9118 5.8455 5.7119 5.2530 4.6948Delta 6.0483 6.0897 6.1734 6.5382 7.10981 8.2982 8.1835 8.0393 7.2893 5.5301105 2 8.3584 8.2882 8.1412 7.6261 6.9449Delta 8.5011 8.5505 8.6407 9.0457 9.66071 11.2072 11.1146 10.9945 10.6934 9.2160110 2 11.2569 11.1881 11.0413 10.4945 9.7148Delta 11.4019 11.4537 11.5484 11.9712 12.5952Average total 
ost for put options with di�erent strike pri
es and numberof time steps per rebalan
ing time, for the three strategies: 1 - pie
ewiselinear with (16), 2 - quadrati
 with (16) and 3 - delta hedging; same setupas in Table 3.
19



Table 6: Average value of the total risk over 40000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 25 50 100 300 6001 0.5033 0.6819 0.8874 0.9398 0.939890 2 0.5450 0.7497 1.0325 1.5722 1.7707Delta 0.6366 0.8935 1.2681 2.2099 3.28361 0.6575 0.9062 1.2512 1.6648 1.664895 2 0.6952 0.9662 1.3551 2.1908 2.6222Delta 0.8042 1.1325 1.6160 2.8786 4.28461 0.8246 1.1269 1.5635 2.5524 2.7269100 2 0.8563 1.1789 1.6518 2.7843 3.5117Delta 0.9481 1.3385 1.9128 3.4582 5.13591 0.9380 1.2800 1.7897 3.1551 3.9566105 2 0.9722 1.3319 1.8802 3.2738 4.3184Delta 1.0576 1.4881 2.1282 3.8736 5.72161 1.0140 1.3806 1.9099 3.4619 4.7912110 2 1.0460 1.4279 2.0079 3.6025 4.9366Delta 1.1144 1.5725 2.2450 4.0892 5.9833Average total risk for put options with di�erent strike pri
es and numberof time steps per rebalan
ing time, for the three strategies and in the setupdes
ribed in Table 5.We remark that when the rebalan
ing is frequent, the values of the total hedging 
ostand risk for the delta hedging strategy are very 
lose, though slightly larger than the 
or-responding values for the pie
ewise linear and quadrati
 total risk minimizing strategies.However, as the number of rebalan
ing opportunities de
reases, delta hedging an optionleads to mu
h larger hedging 
ost and risk than hedging the option by any of the twooptimal hedging strategies for total risk minimization.Next we analyze the distributions of the 
umulative 
ost and total risk for the at-the-money put option with 6 hedging opportunities. The average 
umulative 
ost from Table3 is 5:5067 for Strategy 1, 5:7119 for Strategy 2 and 5:7399 for Strategy 3. The histogramsfor ea
h strategy of the 
umulative 
ost over the 40000 simulated s
enarios are presentedin Figure 4. We mention that all three strategies have very few values of the 
umulative
ost larger than the range of values illustrated in Figure 4, however, we 
hose this range inorder to make the �gure 
learer.
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Mean: 5.5067Figure 4. Histograms of the total hedging 
ost over 40000 s
enariosThe distribution of the 
umulative 
ost for Strategy 1 is more asymmetri
 about itsmean 
ompared to the distributions for Strategies 2 and 3. About 60% of the 
umulative
osts for Strategy 1 are less than the mean, while in the 
ase of the quadrati
 strategies 2and 3 the median is almost equal to the mean. The skewness of the distributions, whi
h isanother indi
ation of the asymmetry of the data, is equal to 1:9012 for Strategy 1, 0:8017for Strategy 2 and 0:8394 for Strategy 3.We remark, however, that while Strategy 1 has a larger probability of smaller hedging
ost, it also has a small probability of larger hedging 
osts than Strategies 2 and 3.The next �gure, Figure 5, shows the histograms of the total risk over the simulateds
enarios, for ea
h hedging strategy. As in the 
ase of Figure 4, the range of values inFigure 5 was 
hosen for 
larity, though all the strategies lead to very few values of the totalrisk larger than the values in the 
hosen interval.
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enariosThe distributions of the total hedging risk for the three strategies have similar shapes.However, the mean for Strategy 1 is smaller than the mean for the quadrati
 strategies.The mean values of the total risk, as given in Table 4, are 1:5635, 1:6518 and, respe
tively,21



1:6479. 65% of the total risk for Strategy 1 is less than the mean, while this happens 62%of the time for Strategies 2 and 3. The skewness in the 
ase of Strategy 1 is 3:4414, largerthan the skewness for Strategy 2, 2:0153, and Strategy 2, 2:1058. We note, however, that,as in the 
ase of the total hedging 
ost, Strategy 1 has also a small probability of largerrisk than Strategies 2 and 3. We remark that the distributions of Strategies 2 and 3, forboth 
umulative 
ost and risk, are very similar, another indi
ation that (16) is suÆ
iently
exible to 
apture the optimal risk performan
e.A similar behavior of the strategies based on the pie
ewise linear and quadrati
 
riteriahas been observed in the 
ase of the lo
al risk minimization, as shown by Coleman et al.([2℄). Table 7 presents, for 
omparison, the average 
umulative 
ost over the same 40000s
enarios for the optimal pie
ewise linear (Strategy 1) and quadrati
 (Strategy 2) lo
al riskminimizing hedging strategies. We do not in
lude the results for the average risk, sin
e therisk measure has di�erent meanings in the 
ase of the lo
al risk minimization and the totalrisk minimization.Table 7: Average value of the total 
ost over 40000 s
enarios for lo
al risk minimization# of time steps per rebalan
ing timeStrike Strategy 25 50 100 300 60090 1 2.1933 2.1043 1.8592 1.1690 0.93982 2.4846 2.4377 2.3487 2.0424 1.745495 1 3.7284 3.6485 3.3907 2.1243 1.66482 3.9785 3.9178 3.8036 3.4008 2.9745100 1 5.7803 5.7698 5.5225 4.2964 2.72692 5.9433 5.8765 5.7414 5.2550 4.6928105 1 8.3483 8.4152 8.1908 7.4178 5.53012 8.3889 8.3220 8.1738 7.6285 6.9392110 1 11.3760 11.5276 11.3383 11.0652 9.21602 11.2883 11.2226 11.0723 10.4989 9.7072Average total for the hedging of put options with di�erent strike pri
es andnumber of rebalan
ing opportunities, for the two strategies: 1 - pie
ewiselinear lo
al risk minimization, 2 - quadrati
 lo
al risk minimization; samesetup as in Table 3.As mentioned by S
h�al ([14℄), when the sto
k pri
e has a deterministi
 mean-varian
etrade-o�, the expe
ted total hedging 
ost for the optimal quadrati
 lo
al risk minimizingstrategy is equal to the expe
ted total hedging 
ost for the optimal quadrati
 total riskminimizing strategy. We remark that the average 
umulative 
ost for the quadrati
 lo
alrisk minimizing Strategy 2 in Table 7 is very 
lose to the average 
umulative 
ost forthe quadrati
 total risk minimizing strategies 2 and 3 in Table 3 for all the put options
onsidered. S
h�al ([14℄) suggests the interpretation of the total hedging 
ost as a fairhedging pri
e for the option. However, an example given by Mer
urio and Vorst ([12℄),shows that this is not always appropriate.We note that, in the 
ase of stati
 hedging, that is only one hedging opportunity, thelo
al risk minimization and the total risk minimization 
riteria 
oin
ide. This is why the22



numeri
al results for the pie
ewise linear and the theoreti
al quadrati
 risk minimizingstrategies in the last 
olumn of Table 3 are the same as the 
orresponding results in Table7. In the 
ase of the lo
al risk minimization the hedging performan
e of the strategies alsodepends on the moneyness of the options and on the number of rebalan
ing opportunities,with the average 
umulative 
ost for the pie
ewise linear lo
al risk minimizing strategybeing the smaller for the out-of-money and at-the-money put options. However, for in-the-money put options, the quadrati
 lo
al risk minimizing strategy is slightly better, eventhough the values are 
lose. The total risk minimization shows an improvement in terms oftotal hedging 
ost for the pie
ewise linear 
riterion, espe
ially in the 
ase of in-the-moneyput option. As a result, the average 
umulative 
ost for the pie
ewise linear total riskminimizing strategy is the smallest for almost all the put options 
onsidered.As shown by Coleman et al. ([2℄), the values of the optimal hedging portfolios for lo
alrisk minimization satisfy dis
rete hedging put-
all parity. This is also true in the 
ase ofthe total risk minimization, the proof being very similar.Suppose that we have 
omputed the optimal holdings �p; �p in the portfolio for hedginga put option with maturity T , dis
ounted strike pri
e K and M hedging opportunities at0 = t0 < t1 < : : : < tM�1 < tM := T . We 
an derive a relation between these holdings andthe 
orresponding optimal holdings �
; �
 for the 
all option on the same underlying assetand with the same maturity, strike pri
e and hedging opportunities. We have the followingproperty: (�
k = �pk + 1�
k = �pk �Kfor all 0 � k �M � 1.Moreover, the dis
ounted values of the portfolios for hedging the put and the 
all options,V pk and V 
k , satisfy the following put-
all parity relation for all 0 � k �M :V 
k � V pk = Xk �K:Similarly, the relation between the 
umulative 
osts for the 
all and put options is givenby: C
k = Cpk +X0 �K;for all 0 � k �M .Therefore, if we know the optimal strategy for hedging the put option, we 
an 
omputethe optimal strategy for the 
all, dire
tly, without solving any optimization problems.4. Total risk minimization in a sto
hasti
 volatility frameworkIn this se
tion we assume that the sto
k pri
e follows a Heston type sto
hasti
 volatilitymodel ([8℄). The dis
ounted sto
k pri
e X and its volatility Y satisfy a sto
hasti
 di�erential23



equation of the form: dXtXt = �Ytdt+ YtdZt (19)dYt = �4�� � Æ28Yt � �2Yt� dt+ Æ2dZ0twhere Zt and Z0t are Brownian motions with instantaneous 
orrelation �.In the Heston type model, the square of the volatility, F := Y 2 is a Cox-Ingersoll-Rosstype pro
ess satisfying the sto
hasti
 di�erential equation:dFt = �(� � Ft)dt+ ÆpFtdZ0t (20)As in the previous se
tion, we assume the writer of a European option wants to hedgehis position using only the underlying sto
k and a bond, but he only has a �nite number ofhedging opportunities.Formula (5) given by S
hweizer ([15℄), or the formula presented by Bertsimas et al.([1℄), 
an be used to 
ompute the optimal quadrati
 total risk minimizing strategy. We
ompute both the pie
ewise linear and quadrati
 risk minimizing strategies as given by theoptimization problems (17) and (18) using Monte Carlo implementation.Sin
e the formulation of problems (17) and (18) depends on the entire sto
k pri
e path,we are interested in generating strongly 
onvergent dis
rete path approximations to thesto
hasti
 di�erential equations (19) and (20). We use Euler's method for equations (19)and (20) to generate s
enarios for the sto
k pri
e and volatility.The parameters for our numeri
al experiments are 
hosen as in Heath et al. ([6℄,[7℄),in whi
h the authors investigate 
ontinuous hedging under the total and lo
al quadrati
risk minimizing 
riteria and provide 
omparative numeri
al results for a 
lass of sto
hasti
volatility models. The values of the parameters are � = 0:5; � = 5; � = 0:04; Æ = 0:6 and� = 0. As emphasized by Heath et al. ([6℄,[7℄), these parameters satisfy Feller's test forexplosions: �� � 12Æ, whi
h insures a positive solution for Ft in the sto
hasti
 di�erentialequation (20). We generate 10000 s
enarios using 1024 time steps in Euler's method. Wehave also performed numeri
al experiments for 20000 simulated s
enarios, the results beingvery 
lose in value to the results presented below. The initial sto
k pri
e and volatility areX0 = 100 and Y0 = 0:2. The riskless rate of return is r = 0:04. As before, we want to hedgeput options with maturity T = 1 and di�erent strike pri
es.We �rst assume that the holdings in the hedging portfolio depend on the 
urrent sto
kpri
e and the past gains, their form being given by the 
onstraint (16):�j = Dj(Xj) + 1Xj j�1Xi=0 ~Di(Xi)�Xi; 8j = 0; : : : ;M � 1:We remark that this 
onstraint assumes the holdings are independent of the 
urrentvolatility. This is attra
tive, sin
e the volatility is not observable in the market. On theother hand, sin
e the volatility is no longer 
onstant in the 
urrent framework, it may bereasonable to assume that it also a�e
ts the form of the holdings. We will investigate latera di�erent 
onstraint on the form of the holdings whi
h takes into a

ount the volatility.However, the new formulation, while being 
omputationally more expensive to implement,does not improve signi�
antly the average total hedging 
ost and risk.We 
ompute the total risk minimizing strategies satisfying assumption (16):24



� Strategy 1: Pie
ewise linear risk minimizing strategy� Strategy 2: Quadrati
 risk minimizing strategyTables 8 and 9 present the average values of the total hedging 
ost and risk over the10000 simulated s
enarios. We remark that the last 
olumn in these tables 
orresponds tothe stati
 hedging, when we only have one rebalan
ing opportunity, at time 0.Table 8: Average value of the total 
ost over 10000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 16 64 128 512 102490 1 1.9433 1.5446 1.1637 1.0199 1.01992 2.3366 2.2365 2.2137 1.9469 1.734095 1 3.4682 3.2307 3.0079 1.7710 1.77382 3.7234 3.6141 3.5726 3.2049 2.9003100 1 5.4967 5.2277 5.1111 3.8699 2.89022 5.5977 5.4786 5.4225 4.9567 4.5512105 1 7.9197 7.7034 7.6502 7.0733 5.86292 8.0112 7.8777 7.8106 7.2709 6.7681110 1 10.8262 10.7099 10.6651 10.5153 9.54712 10.9231 10.7769 10.7051 10.1219 9.5382Average total 
ost for the hedging of put options with T = 1, di�erentstrike pri
es and number of rebalan
ing opportunities, for the two strategiessatisfying (16): 1 - pie
ewise linear, 2 - quadrati
; X0 = 100, Y0 = 0:2,r = 0:04, � = 0:5, � = 5, � = 0:04, Æ = 0:6 and � = 0.The above numeri
al results follow the trend observed in the Bla
k-S
holes framework.For out-of-money and at-the-money put options the average 
umulative 
ost and risk for thepie
ewise linear risk minimizing strategy are mu
h smaller than the 
orresponding valuesfor the quadrati
 risk minimizing strategy. The di�eren
es in
rease as the rebalan
ing isless frequent. For the deep out-of-money put options with very few hedging opportunitiesthe values for the pie
ewise linear risk minimizing strategy are almost half the values forthe quadrati
 risk minimizing strategy.
25



Table 9: Average value of the total risk over 10000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 16 64 128 512 102490 1 0.8395 0.9099 0.9901 1.0199 1.01992 0.9727 1.0942 1.2546 1.7399 1.898595 1 1.1469 1.2728 1.4854 1.7737 1.77382 1.2599 1.4251 1.6598 2.4190 2.7518100 1 1.4342 1.5745 1.8701 2.7670 2.89022 1.5274 1.7164 2.0283 3.1000 3.6495105 1 1.6076 1.7925 2.1315 3.4513 4.10892 1.7032 1.9303 2.3000 3.6521 4.4442110 1 1.7004 1.9156 2.2754 3.7799 4.85972 1.7915 2.0499 2.4533 4.0204 5.0373Average total risk for the hedging of put options with di�erent strike pri
esand number of rebalan
ing opportunities, for the two strategies and in thesetup des
ribed in Table 8.In the 
ase of the in-the-money put options, the two strategies yield 
lose values for theaverage 
umulative 
ost and risk, with the pie
ewise linear risk minimizing strategy beingbetter in most of the 
ases.We 
an also analyze the distributions of the total hedging 
ost and risk for the twohedging strategies. Figure 6 shows the histograms of the total hedging 
ost over the 10000simulated s
enarios for ea
h strategy, in the 
ase of the at-the-money put option with 8hedging opportunities.
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ost over 10000 s
enariosThe average 
umlative 
osts, given in Table 8, are 5:1111 for Strategy 1 , and 5:4225for Strategy 2. As in the Bla
k-S
holes framework, the distribution of the 
umulative 
ostfor the pie
ewise linear risk minimizing strategy is more asymmetri
 about its mean than26



the distribution of the quadrati
 risk minimizing strategy. In the 
ase of Strategy 1, 65%of the 
umulative 
osts for Strategy 1 are less than the mean, while this happens only 55%of the time for Strategy 2. The skewness is 2:7526 for Strategy 1 and 1:3711 for strategy2. However, we remark again that pie
ewise linear risk minimization may lead, with a verysmall probability, to larger total hedging 
ost than the quadrati
 risk minimization.Figure 7 presents the histograms of the total hedging risk for the same at-the-moneyput option with 8 hedging opportunities. As shown in Table 9, the average total hedgingrisk is 1:8701 in the 
ase of Strategy 1 and 2:0283 in the 
ase of Strategy 2.
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Mean: 2.0283Figure 7. Histograms of the total hedging risk over 10000 s
enariosThe distributions of the total risk for both strategies are asymmetri
 about their mean.However, the mean for Strategy 1 is smaller than the mean for Strategy 2. Strategy 1 yieldssmaller than the mean total risk 67% of the time, while this happens for 62% of the totalrisk for Strategy 2. The skewness is 4:0549 for Strategy 1 and 2:5346 for Strategy 2. Thetotal risk for the pie
ewise linear risk minimizing strategy has a very small probability oflarger values than the 
umulative 
ost for the quadrati
 risk minimizing strategy.We mention that the range of values illustrated in Figures 6 and 7 was 
hosen for 
larity,but both strategies 
an lead to values of the 
umulative 
ost and risk larger than the valuesin the sele
ted interval.It is interesting to analyze the quadrati
 risk minimizing Strategy 2 as the number ofhedging opportunities in
reases and 
ompare it to the quadrati
 risk minimizing strategy for
ontinuous trading. Su
h an analysis requires, however, a very thorough investigation andthe simulation of a larger number of s
enarios. For a very brief 
omparison, we illustrate the
ase of the in-the-money put option with maturity T = 1 and strike pri
e 100 � exp(r � T ),where r is the riskless rate of return. Heath et al. ([6℄, [7℄) 
ompute the expe
ted 
umulativehedging 
ost and the expe
ted squared net loss E((H�VM)2) for the 
ontinuous hedging ofthis option under the quadrati
 risk measure. They obtain an expe
ted hedging 
ost of 7:691and an expe
ted squared net loss of 3:685. Table 10 shows the average over 10000 of the
umulative hedging 
ost and squared net loss for the quadrati
 risk minimizing Strategy 2as the number of time steps per rebalan
ing time de
reases. We remark that, as the numberof hedging opportunities in
reases, the average values of the 
umulative hedging 
ost andsquared net loss in Table 10, approa
h the values given by Heath et al. ([6℄, [7℄).27



Table 10: Average total hedging 
ost and squared net loss for Strat-egy 2 over 10000 s
enariosTime steps Cost Net loss1024 6.3182 32.9453512 6.8041 22.5713128 7.2715 9.515764 7.3155 6.488316 7.3260 3.7875Average total 
ost and squared net loss for the hedging of the put optionwith T = 1 and strike pri
e 100�exp(r�T ), for the quadrati
 risk minimizingstrategy; same setup as des
ribed in Table 8.We have remarked earlier in this se
tion that the 
onstraint (16) on the form of theholdings does not take into a

ount the volatility Yt. It may be reasonable to in
ludethe e�e
t of the volatility on the holdings in the hedging portfolio and use the following
onstraint: �j = Dj(Xj; Yj) + 1Xj j�1Xi=0 ~Di(Xi; Yi)�Xi; 8j = 0; : : : ;M � 1: (21)The unknown fun
tions Dj , ~Dj , j = 1; : : : ;M � 1, are now bi
ubi
 splines with �xedend 
onditions and knots pla
ed with respe
t to the sto
k pri
e and volatility. For ea
hj = 1; : : : ;M � 1, Dj and ~Dj depend on the sto
k pri
e and the volatility at time tj . Weassume, as before, that D0 and ~D0 are 
onstant fun
tions.Solving an L1-optimization problem similar to (17) and, respe
tively, an L2-optimizationproblem similar to (18), we 
ompute the total risk minimizing strategies satisfying assump-tion (21):� Strategy 1: Pie
ewise linear risk minimizing strategy� Strategy 2: Quadrati
 risk minimizing strategySin
e the assumption (21) involves bi
ubi
 splines, 
omputing the above optimal strate-gies is mu
h more expensive than 
omputing the optimal strategies satisfying (16).The average values of the 
umulative hedging 
ost and risk for these two strategiesover the 10000 simulated s
enarios are presented below, in Tables 11 and 12, respe
tively.In order to make the 
omparison easier, we also reprodu
e the 
orresponding results fromTables 8 and 9. We remark that in the 
ase of the stati
 hedging, assumptions (16) and (21)
oin
ide. This is why, in Tables 11 and 12, the 
olumns for 1024 time steps per rebalan
ingtime, whi
h 
orrespond to stati
 hedging in our implementaton, 
oin
ide.28



Table 11: Average value of the total 
ost over 10000 s
enarios# of time steps per rebalan
ing timeWith assumption (18) With assumption (13)Strike Strategy 128 512 1024 128 512 102490 1 1.2055 1.0186 1.0199 1.1637 1.0199 1.01992 2.1913 1.9507 1.7340 2.2137 1.9469 1.734095 1 2.9708 1.7715 1.7738 3.0079 1.7710 1.77382 3.5455 3.2149 2.9003 3.5726 3.2049 2.9003100 1 5.0478 3.9188 2.8902 5.1111 3.8699 2.89022 5.3959 4.9729 4.5512 5.4225 4.9567 4.5512105 1 7.6027 7.0814 5.8629 7.6502 7.0733 5.86292 7.7734 7.2961 6.7681 7.8106 7.2709 6.7681110 1 10.6063 10.5019 9.5471 10.6651 10.5153 9.54712 10.6836 10.1544 9.5382 10.7051 10.1219 9.5382Average total 
ost for the hedging of put options with di�erent strike pri
esand number of rebalan
ing opportunities, for the two strategies satisfying(21): 1 - pie
ewise linear, 2 - quadrati
; same setup as des
ribed in Table8. Table 12: Average value of the total risk over 10000 s
enarios# of time steps per rebalan
ing timeWith assumption (21) With assumption (16)Strike Strategy 128 512 1024 128 512 102490 1 0.9464 1.0193 1.0199 0.9901 1.0199 1.01992 1.2028 1.7407 1.8985 1.2546 1.7399 1.898595 1 1.4197 1.7726 1.7738 1.4854 1.7737 1.77382 1.6107 2.4152 2.7518 1.6598 2.4190 2.7518100 1 1.8175 2.7492 2.8902 1.8701 2.7670 2.89022 1.9414 3.0880 3.6495 2.0283 3.1000 3.6495105 1 2.1104 3.4145 4.1089 2.1315 3.4513 4.10892 2.2950 3.6276 4.4442 2.3000 3.6521 4.4442110 1 2.2754 3.7335 4.8597 2.2754 3.7799 4.85972 2.4102 3.9797 5.0373 2.4533 4.0204 5.0373Average total risk for the hedging of put options with di�erent strike pri
esand number of rebalan
ing opportunities, for the two strategies and in thesetup des
ribed in Table 11. 29



Computing the optimal strategies satisfying the 
onstraint (21) on the form of theholdings is expensive, however, these strategies do not lead to signi�
antly better 
umulativehedging 
ost or risk, as 
an be seen by 
omparing the values of the 
umulative 
ost and riskfor these strategies to the 
orresponding values for the optimal hedging strategies satisfyingthe 
onstraint (16). Moreover, assumption (21) relies on the values of the volatility, whi
hare not dire
tly observable in the market. In 
on
lusion, it seems reasonable to 
omputethe optimal hedging strategies in this framework by solving the optimization problems (17)and (18), even if their formulation takes into a

ount only the dependen
e of the holdingsin the hedging portfolio on the sto
k pri
e path.The numeri
al results presented in this se
tion refer to hedging put options. However,as mentioned at the end of Se
tion 3, hedging 
all options is 
losely related to hedgingput options on the same underlying asset and with the same maturity and strike pri
e.The optimal hedging portfolio values satisfy dis
rete hedging put-
all parity. Moreover, ifthe holdings in the optimal portfolio for hedging the put options are known, the optimalholdings for the 
all options 
an be 
omputed dire
tly, without solving any optimizationproblems.5. Shortfall risk minimizationAn important 
riti
ism of the quadrati
 risk minimizing 
riterion, whi
h is also valid forthe pie
ewise linear risk measure, is the fa
t that it penalizes symmetri
ally losses, as wellas gains.It has been argued (see Bertsimas et al. [1℄) that, in the 
ase of pri
ing an option, asymmetri
 risk measure is the natural 
hoi
e, sin
e we do not know a priori if the option isbeing sold or pur
hased. However, when hedging an option, one tries to repli
ate the optionpayo� by 
onstru
ting a hedging portfolio and he may be interested in penalizing only the
osts and not also the pro�ts from his position.We will investigate here only the perspe
tive of the writer of an option. When using aself-�nan
ing strategy to hedge an option with payo� H and maturity T , the total risk forthe writer of the option is given by the di�eren
e between the payo� H and the �nal valueof the hedging strategy, VM . Even if VM does not mat
h exa
tly H , if VM � H the writeris still on the safe side, that is, he 
an 
over the option payo� with no suplementary in
owof 
apital. Therefore, the writer of the option may prefer to 
hoose a hedging strategy thatminimizes only the shortfall risk, E((H � VM )+):minE((H � VM)+); (22)and not the total risk, E(jH � VM j) or E((H � VM)2).A self-�nan
ing hedging strategy su
h that VM � H , a.s., is 
alled a super-repli
atingstrategy. Unfortunately, the minimum initial 
ost of a super-repli
ating strategy is oftentoo high. Moreover, in pra
ti
e, one may be in
lined not to use a super-repli
ating hedgingstrategy if he 
an make higher pro�ts by a

epting the risk of a loss.In order to see that it 
an be quite expensive to super-repli
ate an option, we 
ompare theminimum initial 
ost of a super-repli
ating strategy - obtained by minimizing E((H�VM)+)- with the initial 
ost of the total risk minimizing strategies des
ribed in Se
tion 3:1 -
omputed by minimizing E(jH � VM j) and E((H � VM)2), respe
tively. The numeri
al30



results refer to the hedging put options with maturity T = 1 and di�erent strike pri
es whenwe only have a �nite number of hedging opportunities at 0 = t0 < t1 < : : : < tM := T . Thesto
k pri
e follows a Bla
k-S
holes model with instantaneous expe
ted return � = :15 andvolatility � = :2. The initial sto
k pri
e is S0 = 100. We generate 40000 s
enarios for thesto
k pri
e using Monte Carlo simulation. The riskless rate of return is r = :04.An optimal super-repli
ating strategy for (22) 
an be obtained in a similar way to the
omputation of a total risk minimizing strategy des
ribed in Se
tion 3:1, by assuming thatthe optimal holdings have the spe
ial form given by (16). Moreover, sin
e,(H � VM)+ = 12(H � VM + jH � VM j) (23)problem (22) 
an be implemented as a linear programming problem.Table 13 shows the minimum initial 
ost for a super-repli
ating strategy satisfying as-sumption (16), in 
omparison with the initial 
ost of the pie
ewise linear total risk mini-mizing strategy - Strategy 1 - and the quadrati
 total risk minimizing strategy - Strategy 2- satisfying the same assumption.Table 13: Initial portfolio 
ost# of time steps per rebalan
ing timeStrike Strategy 50 100 300 600Super-repli
ate 7.4806 10.3742 19.5669 28.137890 1 1.9022 1.0070 0.0000 0.00002 2.4086 2.3224 2.0388 1.7421Super-repli
ate 9.7100 12.7437 22.2787 32.286195 1 3.5152 3.0875 0.0000 0.00002 3.8885 3.7741 3.3983 2.9735Super-repli
ate 12.3146 15.3754 24.9454 35.7017100 1 5.5279 5.2248 2.7110 0.00002 5.8455 5.7119 5.2530 4.6948Super-repli
ate 15.3226 18.1656 27.7273 39.3592105 1 8.0693 7.8209 6.5076 3.25952 8.2882 8.1412 7.6261 6.9449Super-repli
ate 18.9710 21.4535 30.8217 43.1454110 1 11.0098 10.9945 10.1126 7.63822 11.1881 11.0413 10.4945 9.7148Initial portfolio 
ost for put options with di�erent strike pri
es and num-ber of time steps per rebalan
ing time, for the three strategies: super-repli
ating, 1 - pie
ewise linear and 2 - quadrati
; same setup as in Table1.We 
an see from Table 13 that buying the initial portfolio for super-hedging is mu
hmore expensive than buying the initial portfolio for total risk minimization. Therefore,
omputing a hedging strategy by simply minimizing the shortfall risk E((H�VM )+) is notvery attra
tive from a pra
ti
al point of view, even if a super-repli
ating strategy preventsthe risk of any loss at the maturity of the option. In these 
onditions, an investor who31



still wants to penalize only the shortfall risk, but has a given initial 
apital and is willingto a

ept some risk of loss, may 
hoose an optimal self-�nan
ing hedging strategy in thefollowing way: min E((H � VM)+) (24)s.t. V0 givenThe above 
riteria for minimizing the shortfall risk has been studied by F�ollmer andLeukert ([3℄), and Runggaldier ([13℄).Alternative to penalizing the positive values of H � VM , by minimizing E((H �VM)+),one may try to penalize those values whi
h are above the mean. This 
orresponds tominimizing: E �(H � VM � E(H � VM))+� : (25)However, note that, sin
e for a self-�nan
ing strategy, VM = V0 +PM�1k=0 �k�Xk, wehave: H � VM � E(H � VM) = H � E(H)�M�1Xk=0 �k�Xk +E(M�1Xk=0 �k�Xk)Therefore, the initial value of the hedging portfolio, V0 
annot be determined by mini-mizing (25). In these 
onditions, a natural idea is to impose the 
onstraint:E(H � VM) = 0, V0 = E(H �M�1Xk=0 �k�Xk); (26)that is, the initial value of the hedging portfolio is equal to the expe
ted value of thedi�eren
e between the option payo� and the 
umulative gain of the portfolio. With this
onstraint, 
riterion (25) be
omes: min E((H � VM)+) (27)s.t. E(H � VM) = 0By (23), this 
riterion is equivalent to:min E(jH � VM j) (28)s.t. E(H � VM) = 0Assuming that the holdings have the spe
ial form given by (16):�j = Dj(Xj) + 1Xj j�1Xi=0 ~Di(Xi)�Xi; 8j = 0; : : : ;M � 1;an optimal strategy for the above problem 
an be 
omputed is a similar way to the pie
ewiselinear total risk minimization problem (6).We remark that the shortfall risk minimization problem (27) is not equivalent to problem(24), sin
e (27) imposes a relation between the optimal holdings �k and the initial value ofthe hedging portfolio, V0. 32



In order to investigate the two shortfall risk minimization 
riteria (24) and (27), we �rst
ompute the optimal hedging strategy for the se
ond 
riterion, (27), then using the initialvalue of this hedging strategy as given value for V0, we 
al
ulate the optimal holdings forthe strategy based on the �rst 
riterion, (24).We denote by Strategy 3, the optimal strategy solving the �rst shortfall risk minimizationproblem, (24), and by Strategy 4, the optimal strategy for the se
ond problem, (27). Weremark the the initial portfolio values, V0, are the same for both strategies, however, theholdings, �k , are di�erent. For 
omparison with the minimum initial 
ost super-repli
atingstrategy, Table 14 illustrates the values of V0 for Strategy 4, for the same put options as inTable 13. Table 14: Initial portfolio 
ost# of time steps per rebalan
ing timeStrike 50 100 300 60090 2.2065 2.0562 1.4911 1.248695 3.7236 3.5833 2.8130 2.3168100 5.7089 5.5760 4.8485 3.9832105 8.1940 8.0620 7.5616 6.3626110 11.1355 11.0106 10.7330 9.5202Initial portfolio 
ost for hedging put options with di�erent strike pri
es andnumber of time steps per rebalan
ing time, for the optimal shortfall riskminimizing strategy solving (27); same setup as in Table 1.We remark that the initial portfolio values for strategies 3 and 4 are mu
h smaller thanthe initial values for the minimal 
ost super-repli
ating strategy and they are 
omparableto the initial portfolio values for the total risk minimizing strategies.Strategies 3 and 4 have a reasonable initial 
ost 
ompared to the super - repli
atingstrategy. However, this redu
tion in the initial 
ost has been a
hieved by allowing a nonzeroprobability of a loss. While a super - repli
ating strategy prevents any loss, Strategies 3and 4 have a nonzero shortfall risk. Table 15 illustrates the average values of the shortfallrisk, (H � VM)+, over 40000 s
enarios for the hedging strategies 3 and 4. We note thatthe shortfall risk in
reases as the options be
ome more in-the-money and we rebalan
eless frequently. Moreover, sin
e Strategy 3 minimizes the shortfall risk for a given initialportfolio, this strategy yields smaller values of the shortfall risk than Strategy 4, whi
h hasthe same initial investment.
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Table 15: Average value of the shortfall risk over 40000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 50 100 300 60090 3 0.2826 0.4280 0.6768 0.75784 0.3437 0.4735 0.6904 0.763295 3 0.3638 0.5571 0.9822 1.17614 0.4570 0.6391 1.0279 1.1957100 3 0.4349 0.6782 1.2353 1.61824 0.5597 0.7847 1.3547 1.6781105 3 0.4944 0.7534 1.3846 1.98444 0.6498 0.9008 1.6037 2.1252110 3 0.5288 0.8007 1.4518 2.19054 0.7035 0.9693 1.7426 2.4653Average value of the shortfall risk for hedging put options with di�erentstrike pri
es and number of time steps per rebalan
ing time, for the optimalshortfall risk minimizing strategies solving (24) and (27); same setup as inTable 1.We 
an also 
ompute the average values of the shortfall risk, (H � VM)+, over thesame 40000 paths, for the pie
ewise linear and quadrati
 total risk minimizing Strategies1 and 2, respe
tively. These values will 
ertainly be larger than the 
orresponding valuesfor Strategies 3 and 4, whi
h are shortfall risk minimizing strategies. However, the resultsprovide interesting information about the behavior of the total risk minimizing strategies.The average shortfall risk for Strategies 1 and 2 is illustrated in Table 16.We remark from Table 16 that the quadrati
 total risk minimizing Strategy 2 alwaysyields smaller average shortfall risk than the pie
ewise linear risk minimizing Strategy 1.Using the relation: jH � VM j = (H � VM)+ + (VM �H)+; (29)we 
an analyze the average values of the shortfall risk, (H � VM)+, from Table 16, in
omparison with the average values of the total hedging risk, jH � VM j, from Table 4.While in the 
ase of Strategy 2, the average shortfall risk is approximately half the averagetotal risk, in the 
ase of Strategy 1, these values are mu
h 
loser, espe
ially for out-of-moneyput options. By (29), it follows that Strategy 1 typi
ally underhedges the options, whileStrategy 2 shows no trend for either underhedging, or overhedging.
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Table 16: Average value of the shortfall risk over 40000 s
enarios for the pie
ewise linearand quadrati
 total risk minimizing strategies# of time steps per rebalan
ing timeStrike Strategy 50 100 300 60090 1 0.4446 0.7533 0.9398 0.93982 0.3920 0.5299 0.7868 0.885495 1 0.5306 0.8057 1.6648 1.66482 0.4905 0.6850 1.0966 1.3111100 1 0.6222 0.9088 1.9555 2.72692 0.5868 0.8259 1.3938 1.7558105 1 0.7043 0.9979 1.9898 3.11362 0.6690 0.9420 1.6385 2.1592110 1 0.7650 1.0773 2.0424 3.18452 0.7214 1.0160 1.8026 2.4683Average value of the shortfall risk for hedging put options with di�erentstrike pri
es and number of time steps per rebalan
ing time, for the optimaltotal risk minimizing strategies 1 and 2; same setup as in Table 1.We will now investigate the 
umulative hedging 
ost. Table 17 illustrates the averagevalues of the 
umulative hedging 
ost over 40000 s
enarios for the shortfall risk minimizingStrategies 3 and 4. For 
omparison we in
lude the 
orresponding values from Table 3 forthe pie
ewise linear and quadrati
 total risk minimizing strategies satisfying (16).As illustrated in Table 17, even if the two shortfall risk minimizing strategies start withthe same investment in the hedging portfolio, Strategy 4, whi
h has to satisfy the 
onstraintE(H � VM) = 0, yields larger values of the average 
umulative hedging 
ost than Strategy3. We also note that using a quadrati
 
riterion for minimizing the risk leads to the largesthedging 
ost, as 
an be seen by 
omparing the 
ost for Strategy 2 to the 
ost of the otherthree strategies. The performan
e of the hedging strategies also depends on the moneynessof the options and the number of rebalan
ing opportunities: the pie
ewise linear total riskminimization has the smallest average 
ost when the put options are out-of-the-money andthe rebalan
ing in infrequent, however, as the options be
ome in-the-money or the numberof hedging opportunities in
reases, the shortfall risk minimization 
riterion (24) is the leastexpensive on average.
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Table 17: Average value of the total 
ost over 40000 s
enarios# of time steps per rebalan
ing timeStrike Strategy 50 100 300 6001 3.6640 3.4080 1.6648 1.664895 2 3.8885 3.7741 3.3983 2.97353 3.2156 3.1629 2.5151 2.15554 3.7236 3.5833 2.8130 2.31681 5.6896 5.5067 4.0644 2.7269100 2 5.8455 5.7119 5.2530 4.69483 5.0506 5.0474 4.2289 3.61244 5.7089 5.5760 4.8485 3.98321 8.1835 8.0393 7.2893 5.5301105 2 8.2882 8.1412 7.6261 6.94493 7.3748 7.3405 6.5371 5.63654 8.1940 8.0620 7.5616 6.3626Average total hedging 
ost for put options with di�erent strike pri
es andnumber of time steps per rebalan
ing time, for the total risk minimizingstrategies: 1 - pie
ewise linear and 2 - quadrati
 and the shortfall riskminimizing strategies: 3 - strategy solving (24), 4 - strategy solving (27);same setup as in Table 1.As in Se
tion 3:1, we investigate the distributions of the shortfall risk and 
umulative
ost for the shortfall risk minimizing Strategies 3 and 4, in the parti
ular 
ase of the at-the-money put options with 6 hedging opportunities. The histograms of the shortfall risk,(H � VM)+, over the 40000 simulated s
enarios are presented in Figure 8. We mentionthat the strategies have a few values of the shortfall risk outside the represented interval,however, we 
hose this range to make the �gure 
learer.From Table 15 the average values of the shortfall risk are 0:6782 for Strategy 3 and0:7847 for Strategy 4. The distributions of the shortfall risk for the two strategies are verysimilar in the 
hosen interval. However, Strategy 3 has a longer right tail, outside theinterval. This 
an be seen from the values of the skewness: 6:6456 for Strategy 3, 
omparedto 4:2451 for Strategy 4.
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umulative 
ost for the shortfall risk minimizing Strategies 3 and4 are illustrated in Figure 9. As before, the range of the �gure has been 
hosen for 
larity.
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umulative 
ost over 40000 s
enariosThe average values of the 
umulative 
ost for Strategies 3 and 4 are 5:0474 and 5:5760,respe
tively, as 
an be seen from Table 17. We remark that Strategy 3 is more asymmetri
than Strategy 4. The values of the skewness, 3:2878 for Strategy 3 and 1:7171 for Strategy4, show that Strategy 3 has also a longer right tail.As illustrated in this se
tion, the shortfall risk minimizing strategies have attra
tivefeatures, they have smaller average loss and, possibly, smaller 
umulative hegding 
ost thanthe total risk minimizing strategies. However, when 
hoosing between shortfall and totalrisk minimization, one has to take into a

ount the fa
t that shortfall risk minimization
an only be used for hedging purposes, while total risk minimization 
an be used for bothhedging and pri
ing, sin
e the initial value of a total risk minimizing strategy may be
onsidered as a \fair value" of the option. Moreover, when hedging an option, the shortfallrisk measure is appropriate if one is in
lined to penalize only the 
osts, and not the pro�ts37



of his position; if one prefers to penalize both losses and gains, he has to 
hoose a symmetri
risk measure, su
h as the total risk measure.5. Con
lusionsIn a 
omplete market, there exists a unique self-�nan
ing strategy that exa
tly repli
ates theoption payo�. Market 
ompleteness is not, however, a realisti
 assumption. For example,introdu
ing sto
hasti
 volatility or volatility with jumps in the Bla
k-S
holes model in orderto explain the market data, or allowing for dis
rete hedging, leads to an in
omplete market.If the market is in
omplete, the optimal hedging strategy for an option depends on the
riterion for measuring the risk. The traditional strategies found in the literature are basedon quadrati
 risk measures.We investigate alternative pie
ewise linear risk minimizing 
riteria for total-risk mini-mization. Unfortunately, there are no analyti
 solutions to the pie
ewise linear risk mini-mization problem. Sin
e a dire
t approa
h to this dynami
 sto
hasti
 programming problemmay be 
omputationally very expensive, we obtain the optimal pie
ewise linear risk min-imizing strategies using Monte Carlo simulations and approximating the holdings in thehedging portfolio by 
ubi
 splines. We analyze this approa
h in the Bla
k-S
holes andsto
hasti
 volatility frameworks.The numeri
al results illustrate that, as in the 
ase of the lo
al risk minimization, thepie
ewise linear total risk minimization 
riterion typi
ally leads to smaller average hedging
ost and risk. We remark that the hedging performan
e of the optimal strategies dependson the moneyness of the options and on the number of rebalan
ing opportunities. Thehedging strategies based on pie
ewise linear risk minimization have quite di�erent, and oftenpreferable, properties 
ompared to the traditional, quadrati
 risk minimizing strategies. Thedistributions of the 
umulative 
ost and risk show that these new strategies have a largerprobability of small 
ost and risk, though they also have a very small probability of larger
ost and risk. We also remark that in the sto
hasti
 framework analyzed in this paper,the volatility does not signi�
antly a�e
t the average total 
ost and risk of the hedgingstrategies.Comparing the hedging performan
e of the optimal strategies for pie
ewise linear andquadrati
 total risk minimization to the performan
e of the shortfall risk minimizing strate-gies, we note that the quadrati
 
riterion yields the largest values of the average 
umulativehedging 
ost. Shortfall risk minimization may lead to smaller average 
umulative hedging
ost than pie
ewise linear risk minimization, depending on the moneyness of the optionsand the number of hedging opportunities.By analyzing the values of the shortfall risk for the pie
ewise linear and quadrati
 totalrisk minimizing hedging strategies, we infer that the pie
ewise linear 
riterion typi
ally leadsto options being underhedged, while quadrati
 total risk minimization shows no trend foreither overhedging, or underhedging the options.A shortfall risk measure may be more attra
tive than a total risk measure when one triesto hedge an option and he is in
lined to penalize only the 
osts of his position. However,shortfall risk minimization 
annot be used for pri
ing the option, while total risk minimiza-tion 
an be used for both hedging and pri
ing. Moreover, when one prefers to penalize bothlosses and gains, a shortfall risk measure is no longer appropriate.38
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