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Abstract

Machine learning is a key component of state-of-the-art systems in many application

domains. Applied to many kinds of raw data, however, most learning algorithms

are unable to make good predictions. In order to succeed, most learning algorithms

are applied instead to “features” that represent higher-level concepts extracted from

the raw data. These features, developed by expert practitioners in each field, encode

important prior knowledge about the task that the learning algorithm would be unable

to discover on its own from (often limited) labeled training examples. Unfortunately,

engineering good feature representations for new applications is extremely difficult.

For the most challenging applications in AI, like computer vision, the search for good

features and higher-level image representations is vast and ongoing.

In this work we study a class of algorithms that attempt to learn feature repre-

sentations automatically from unlabeled data that is often easy to obtain in large

quantities. Though many such algorithms have been proposed and have achieved

high marks on benchmark tasks, it has not been fully understood what causes some

algorithms to perform well and others to perform poorly. It has thus been difficult

to identify any key directions in which the algorithms might be improved in order

to significantly advance the state of the art. To address this issue, we will present

results from an in-depth scientific study of a variety of factors that can affect the

performance of feature-learning algorithms. Through a detailed analysis, a surprising

picture emerges: we find that many schemes succeed or fail as a result of a few (eas-

ily overlooked) factors that are often orthogonal to the particular learning methods

involved. In fact, by focusing solely on these factors it is possible to achieve state-

of-the-art performance on common benchmarks using quite simple algorithms. More
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importantly, however, a main contribution of this line of research has been to identify

very simple yet highly scalable feature learning methods that, by virtue of focusing on

the most critical properties identified in our study, are highly successful in many set-

tings: the proposed algorithms consistently achieve top performance on benchmarks,

have been successfully deployed in realistic computer vision applications, and are even

capable of discovering high-level concepts like object classes without any supervision.
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Chapter 1

Introduction

In machine learning applications our typical goal is to learn a mapping from input

patterns to an output value. For instance, a common task in computer vision is to

learn to map an input image, represented by pixel intensity values, to a “label” that

identifies the object pictured in the image. To learn this mapping, we furnish an

algorithm with a large number of examples of correct input and output pairs and

the algorithm must learn a mapping that can predict the correct output value when

presented with a novel input. Learning to make such predictions directly, however,

turns out to be quite difficult: the mapping from pixel intensities to object class

labels, for instance, is an extremely complex, non-linear function that most machine

learning algorithms cannot discover on their own. As a result, researchers in many

fields attempt to engineer “features” that transform the raw input data into a new

representation (a vector of feature values) that makes the important characteristics of

the input more apparent. This simplifies the mapping that must be learned and can

lead to much better performance. Unfortunately, the process of engineering features

for each new application is arduous. For extremely complex tasks like computer vision

or speech recognition, the complexity of the necessary representations is so great that

building features based on prior knowledge is extraordinarily difficult.

In this thesis, we will study algorithms that attempt to learn the feature represen-

tations themselves from data. Such algorithms, in principle, could develop features

that can more accurately represent the important qualities of the input data and

1



CHAPTER 1. INTRODUCTION 2

surpass the level of complexity and variety of features that could reasonably be imag-

ined or implemented by human experts. Yet while many such algorithms have been

proposed, and a growing field of researchers have gained experience in employing

them, they can often be as complex and unwieldy as the hand-built features that

they replace. As a result, while hopes are high that such methods might alleviate

the requirement to engineer features once and for all, it has been unclear exactly

what characteristics of these algorithms make them successful and in what ways they

could clearly be made better. For instance, many algorithms that are apparently

quite similar often differ dramatically in performance while others that are appar-

ently very different may achieve similar scores on common benchmarks. Similarly,

though we often have a strong intuitive sense for the types of features our algorithms

should discover (such as object parts or object classes in images) it has been unclear

whether existing algorithms could learn these features or whether more sophisticated

approaches are necessary.

This work attacks these problems through an in-depth empirical study of existing

algorithms, attempting to tease out the fundamental ingredients that make some

algorithms more successful than others. From this study, we will identify a number

of critical components. One key result is that the scale of our representations (the

number of features, for instance) is a crucial factor in determining performance. Using

these results, we will identify a very simple yet highly successful feature learning

system that is not only competitive on many common benchmarks but is also a state-

of-the-art performer in real-world applications like scene text recognition. Further,

we will see that essentially the same ideas, with just a few extra ingredients, can

discover the kinds of high level concepts we expect: the system that we develop turns

out to be capable of discovering a commonly occurring object class (human faces) in

unlabeled images using no supervision at all.
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1.1 Supervised Learning, Self-Taught Learning, and

Unsupervised Feature Learning

The classic machine learning setting described above, where we are given a set of

labeled examples and attempt to learn to predict correct labels for novel inputs,

is known as “supervised learning”. This framework encompasses a vast number of

algorithms and successful real-world applications. In this setting, we assume that

we are provided with a set of m example input vectors x(i), i = 1, . . . ,m and their

corresponding (correct) labels y(i). For classification problems (which we will work

with throughout this thesis), we have y(i) ∈ {0, 1}. The goal of supervised learning is

to train a function y = f(x; θ) to predict the correct label y for a novel input vector

x. The vector θ is a set of parameters optimized by the learning algorithm to make

f(x; θ) as good a predictor as possible.

If we choose a very simple class of functions f(x; θ), say linear f(x; θ) = θ>x,

then f will only be able to make very simple predictions from its inputs. On the

other hand, if we have relatively little training data, we will not be able to train

a complex function f(x; θ) that has many parameters due to the risk of overfitting

(and hence poor performance on test data). As a result, most applications employ

“features”: We transform each n-dimensional input x ∈ Rn into a new representation

φ ∈ RK composed of K features, and then apply our learning algorithm to these

feature vectors to learn a function f(x; θ) = θ>φ. The feature vectors φ are computed

directly from x using a function φ = Φ(x) that is often designed by hand for each

application. When we can choose good features, this scheme works much better

than using raw inputs and does not necessitate training extremely large numbers of

parameters from our labeled data. We can think of the feature functions Φ(x) as

providing a way for us to encode prior knowledge into the learning system. Each

feature value often represents a “higher-level” concept that we do not expect our

supervised learning algorithm to find given only the labeled data. For instance, when

working with images, good features often try to detect edges, shapes, or textures that

might convey important high-level information about the input.

For the hardest applications, though, it can be extremely difficult to invent new
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features by hand. Other applications may be highly specialized or novel and thus do

not attract sufficient attention to foment the creation of new features when needed.

One way around the problem is to use very large quantities of labeled data [22, 3, 84,

13, 79, 12, 51], and then train a highly expressive class of functions f (e.g., a deep

neural network). This approach has seen some success, but is limited by our ability

to acquire enough labeled data for every task that we wish to solve.

The self-taught learning (STL) framework has been proposed [67] as one alterna-

tive to using only labeled data. In self-taught learning we are additionally given an

extremely large set of unlabeled examples. These examples often come from a similar

but much broader distribution than our labeled examples. For instance, in an ob-

ject recognition task, our labeled examples might contain cropped images of different

types of objects, yet our unlabeled examples might be random snippets cropped from

images downloaded from the Internet that do not necessarily contain any particular

object at all. (This contrasts self-taught learning from semi-supervised learning [10]

where we assume that the unlabeled images could be labeled, but that the label has

not been provided.) A major advantage of this setup is that unlabeled data is very

easy to acquire and, conceivably, could help our algorithms to understand the basic

properties of the underlying data distribution (the distribution of the x(i)) so that

subsequent learning tasks are easier. We may think of this as a way for algorithms

to acquire prior knowledge or experience from unlabeled examples in addition to la-

beled examples. Because unlabeled data is plentiful, we can potentially train highly

sophisticated models that would be impossible to train from only labeled data and

thus supplant much of the prior knowledge that we would otherwise need to encode

by hand.

Unsupervised Feature Learning (UFL) is one approach to tackling problems within

the self-taught learning framework. The main goal here is to learn, from only unla-

beled examples, a useful feature representation Φ(x) that can then be used for other

tasks (e.g., for supervised learning with a linear function class as above). This can be

done by letting Φ(x) be parametrized by a set of parameters Θ. The goal of a UFL

algorithm is to tune Θ so that the resulting feature vectors φ = Φ(x; Θ) are a “bet-

ter” representation than the raw inputs x. Note that while many of the evaluation
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tasks considered in our work are supervised classification tasks, our goal is to learn

higher-level features that are generally useful for many tasks. Thus we will usually

work with UFL algorithms as a “black box”: they take in unlabeled data and learn

parameters Θ without any integration with the particular task for which the features

Φ(x; Θ) will be used. We will present a simple template for building algorithms that

do this in Chapter 2. Much of the rest of this thesis will be concerned with analyz-

ing these algorithms and finding the best combinations of ingredients based on our

experiments.

1.2 Overview of Contributions

A significant degree of confusion has surrounded the many algorithms and applications

that may be included under the heading “unsupervised feature learning”. Many of

these algorithms can be viewed as different implementations of similar ideas and yet

their relative performance on benchmarks can vary dramatically. The reasons for

these basic differences have not been studied thoroughly, and thus it has been hard to

determine ways to make progress (either on individual algorithms or on the entire class

of methods generally). Indeed, with increasingly sophisticated models performance

on benchmarks generally improved without making clear exactly which ideas led to

the improvement.

As a result of this situation, a major focus of this work is to perform an extensive

study of several key factors that can play a role in the performance of various feature-

learning algorithms, like the number of features that we learn or the ways in which

we pre-process or slice up our data before applying a UFL method. Often these

factors are not peculiar to a specific algorithm, and we will be able to draw broad

conclusions that hold not only for specific algorithms but hold broadly for a large

number of feature learning methods.

Among these key factors it will become apparent that one of the drivers behind

progress is scale: algorithms that can learn large numbers of features are consistently

better performers. Motivated by this, and based on our empirical study, we will

develop a highly successful and very scalable feature learning method. The resulting
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system is an excellent performer on many standard benchmarks and is also useful

for practical applications. More importantly, however, we show that the same basic

components are capable of constructing sophisticated representations that capture

high-level concepts like object classes, and complex invariances in images. All of

these results rest critically on a few basic ideas that can be implemented quite easily

yet become powerful as a result of our focus on large scale implementation.

1.3 Outline

This thesis will proceed as follows:

Chapter 2: Background. Chapter 2 will cover some background material on learn-

ing hierarchical feature representations. This literature, which includes much

work from neural networks and unsupervised learning, is extremely large as a

result of decades of development. We will focus on a few major ingredients

as well as terminology that we have adopted from this literature. A key com-

ponent of our work will be unsupervised learning algorithms, which are the

primary learning mechanism in most of our systems. We will review several

such algorithms that will show up in our later work and also point out that

these algorithms are often implementing similar ideas in slightly different ways.

Chapter 3: A Scientific Study of UFL. We will begin with our study of feature

learning algorithms. Noting that many implementations in the literature dif-

fer along just a few axes, we will systematically study the effect of several

parameters common to many different algorithms. We will do this by laying

down a simple “pipeline” into which we can substitute many different feature

learning modules. It will turn out that the parameters that control the setup

of this pipeline are often far more important than how we go about learning

the features themselves. In some cases these parameters are numerical hyper-

parameters that we can select via cross-validation or rules of thumb based on

our results. Other factors, such as how we encode features using the results of

our unsupervised learning algorithm, can also have a very large effect. But the
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main impact of this study has been to lessen the focus on new models for unsu-

pervised learning and divert our attention to the more critical issues identified

in our experiments: scalability and careful choice of the various exogenous pa-

rameters in the system. This will motivate subsequent work on scalable, easily

tuned systems that zero in on these issues rather than developing new learning

methods.

Chapter 4: Selecting Receptive Fields in Deep Networks. Many algorithms

assume that the “connectivity” of features to inputs is known a priori. It is

easy enough to connect every feature to every input, but in these cases the

unsupervised learning procedure must learn parameters for all of the pair-wise

(feature-to-input) relationships. When we have extremely large numbers of in-

puts and features, this becomes prohibitive for many learning algorithms. We

can solve this problem by hand-coding the connectivity in order to reduce the

computational burden, but this solution turns out to be ineffective for deep

networks (for reasons we will explain). In order to improve the scalability of

algorithms for training deep networks, we will introduce a method for deter-

mining the connectivity of networks rapidly before the unsupervised learning

phase. As a result, we are able to train much larger networks and employ unsu-

pervised learning schemes that normally would not scale well to the very large

representations we consider.

Chapter 5: Application to Scene Text Recognition. Though feature learning

methods are showing a great deal of promise for learning complex concepts that

would be difficult to identify with hand-coded features, the results of this work

are already yielding benefits in realistic applications. Due to the recent prolifer-

ation of mobile phones with cameras, an interesting computer vision application

has emerged: detection and recognition of text in natural images. This problem

is much more difficult than document character recognition—which is largely

solved—and has received some attention from machine learning practitioners in

the past. As a result, a handful of engineered systems with custom features have

been built, but the problem has not been solved satisfactorily for widespread
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use. In this chapter we will apply our feature learning system in an essentially

“off the shelf” manner to the problem of scene text recognition and find that,

indeed, this approach is competitive, and usually superior, with more sophis-

ticated systems developed elsewhere. This work concretely demonstrates the

benefits that may be obtained by focusing on learned feature representations to

supplant hand-engineered features.

Chapter 6: Emergence of Object-Selective Features. Though a great deal of

work on feature learning focuses on discriminative tasks, there are many inter-

esting questions to be asked about what types of concepts such algorithms are

capable of learning on their own. Ideally, a sufficiently sophisticated method

should discover high-level concepts like object classes in images, or syllables and

words in audio clips. Intuitively we believe that these types of features capture

the important high-level information present in the data. Yet despite some

results suggesting that a few existing algorithms could discover such structure

(like decomposition of objects into object parts) in highly restrictive scenarios,

it has remained unknown whether additional ingredients might be necessary to

achieve similar results in the general case. Based on our prior results we will

show that, in fact, no additional sophistication is necessary: at very large scale,

even very “obvious” notions of selectivity and invariance—already present in a

wide range of algorithms—are enough to yield multi-layered networks of fea-

tures that are selective for a commonly occurring object (human faces) with

robustness to surprisingly complex types of distortion.

1.4 First Published Appearances

Much of the work presented here has appeared first in other publications. The results

of Chapter 3 appeared in [16] and [17], though the discussion here is amplified. The

receptive field learning procedure of Chapter 4 first appeared in [18]. Chapter 5

includes results on scene text recognition that first appeared in [14]. Finally, our work

in Chapter 6 on the emergence of object-selective features from our systems trained
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on unlabeled imagery covers results from [15] with some additional discussion.



Chapter 2

Background

Much work in Unsupervised Feature Learning adopts terminology and algorithmic

components from neural networks and unsupervised learning. In this chapter we

will cover some of the important components from this literature that we will re-use

frequently.

2.1 Feature Representations

2.1.1 Features in Supervised Learning

A typical goal in supervised learning is to fit a function ŷ = f(x; θ) to a given set of

example input-output pairs (x(i), y(i)), i = 1, . . . ,m where each x(i) is a vector of input

values and y(i) is a corresponding vector of target outputs. We will often concatenate

these vectors column-wise into matrices X and Y . So, for instance, Xji = x
(i)
j . To

train the predictor f we typically optimize over the parameters θ to find the optimal

choice θ? that minimizes the expected value of a loss function L on the training data:

θ? = arg min
θ

1

m

m∑
i=1

L(ŷ, y(i)).

10
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For example, in linear regression we may minimize squared error over linear func-

tions ŷ = f(x; θ) = θ>x:

θ? =arg min
θ

1

m

m∑
i=1

||θ>x(i) − y(i)||22

=arg min
θ

||θ>X − Y ||2F .

Of course, linear functions as above are not sufficiently expressive for many tasks

and thus we previously introduced the notion of feature functions Φ(x) to first trans-

form our inputs x ∈ Rn into feature vectors φ ∈ RK that may be more useful for

predicting y. Given such feature functions, we can simply train f by minimizing

L(f(Φ(x(i)); θ), y(i)) on the training data. Since the functions Φ(x) may be chosen

arbitrarily (even producing feature vectors of larger or smaller dimensionality than

x) we may construct very complex functions f(x; θ) = θ>Φ(x). If we are clever in

our choice of features, this may allow us to make much better predictions of y than

would be possible using the raw inputs x directly.

In this thesis we will be primarily concerned with the case that the feature func-

tions Φ(x) are themselves parametrized by a set of values Θ that may be trained or

tuned. For example, one simple choice that we will use frequently is:

Φ(x; Θ) = g(Wx+ b) (2.1)

where the parameters Θ = (W, b) are the parameters of an affine (vector-valued)

function, and g(·) is some simple element-wise nonlinear function. In a supervised

learning setting like the one above, our goal would be to tune both θ (the parameters

of f(·)) and Θ (the parameters of Φ(·)) to perform as well as possible on the final

prediction task:

θ?,Θ? = arg min
θ,Θ

∑
i

L(f(Φ(x(i); Θ); θ), y(i))

Since the function Φ(·) is nonlinear, this optimization is more difficult than the linear

case above, but in practice can be solved with off-the-shelf numerical optimizers when
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Φ(·) is very simple (e.g., as in Eq. (2.1)).

2.1.2 Feature Hierarchies

In the preceding we allowed for a single tunable feature function Φ(x; Θ) so that

our final prediction could be computed by composition of the functions f and Φ

(ŷ = f(Φ(x; Θ); θ)), where both f and Φ took very simple forms (e.g., f could be

linear, and Φ could be a linear function followed by an element-wise nonlinearity). In

general, we can build more sophisticated functions by composing multiple “layers” of

nonlinear functions in succession:

ŷ = f(Φ(L)(Φ(L−1)(. . .Φ(1)(x; Θ(1)); . . .Θ(L−1)); Θ(L)); θ) (2.2)

where L is the number of layers and Θ(1), . . . ,Θ(L) are the parameters for each layer

of features. Intuitively, we may think of the feature functions Φ(l)(·) as taking in a

“lower level” representation of x and converting it to a “higher level” Kl-dimensional

representation that is better for making predictions. These layers form a hierarchy of

increasingly sophisticated features, built from multiple non-linear operations applied

to the raw input vector.

2.2 Locally Connected, Convolutional Features for

Images

Most of the experiments in this thesis will involve features trained from unlabeled

images. That is, each input vector x(i) ∈ Rn represents a two-dimensional array

of pixel intensities. For a w-by-w pixel image with c channels per pixel we have

n = w2c. In this setting, we can incorporate several additional assumptions to reduce

computational and data requirements.

When we define features as affine functions of the input values (as in Eq. (2.1)),

the number of parameters is Kn + n, which grows linearly in both the number of

inputs and features. Typically, we aim to set K to be a constant factor multiple of n
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(often called the “overcompleteness” factor). For instance, we might choose K = 10n

and thus the number of parameters becomes O(n2). For modest-sized images (e.g.,

32-by-32 pixel color images, which gives n = 3072) we will often be unable to train all

of the parameters effectively given the time and data available. To reduce the number

of parameters (and computational cost), it is common to enforce certain constraints

on the structure of the parameters Θ that exploit the known properties of images.

Figure 2.1: Notation and setup of locally connected, convolutional features.

First, we will reduce the total number of parameters to be trained by using locally

connected features. Rather than allowing each feature value φk to depend on the

entire input vector through Φ(x), we will restrict each φk to depend only on a subset

of the inputs. Concretely, for images, we divide the image into (possibly overlapping)

square regions of size r-by-r pixels, separated by s pixels each. The region size r is

often called the “receptive field” size, and s the “step” size or “stride”. Each feature is

restricted to depend on only the inputs in one such region. This situation is depicted

in Figure 2.1. For a linear parametrization Wx it is easy to see that this reduces the

number of parameters from O(n2) to just O(r2c), which is a dramatic reduction in

computational and data requirements in many applications. Note that when an equal

number K of features are connected to each receptive field, the resulting feature vector

φ may also be interpreted as a 3D-array. Letting R = (w − r)/s + 1, the resulting

array has spatial dimensions R-by-R and K channels. 1 In this context, each channel

1We will often use K to refer to the number of features for each receptive field when we use
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is known as a “map”.

In addition to restricting the connectivity of the features, it is also useful to

reduce the number of unique parameters by sharing parameter values across features.

Concretely, suppose we wish to have K features for each r-by-r region in Figure 2.1.

The result can be represented as a R-by-R-by-K array of feature values, so we have

φ ∈ RK′ with K ′ = K ·R2. If Θ[i,j] denotes the parameters learned from the (i, j)’th

receptive field of the image, a common trick is to require that Θ[1,1] = Θ[1,2] = . . . =

Θ[R,R] = Θ. Thus, we just train parameters Θ that get “re-used” for every receptive

field. Referred to as “weight tying”, this constraint reduces the number of unique

features to be learned from K · R2 to just K. In the special case where the step

size s = 1 pixel, this is also called a “convolutional” architecture, since the set of

parameters Θ may be interpreted as a bank of filters that are convolved with the

input image.

The weight-tying trick relies on the assumption that the input distribution is

stationary with respect to 2D translations. That is, it relies on the (reasonable)

assertion that the statistical structure of a r-by-r window of the input image is not

affected by which sub-window is chosen. In this case, it is likely that parameters

Θ learned for one receptive field (or from patches extracted from randomly chosen

receptive fields) will yield features representing any particular receptive field just as

well. This may not be true for some types of images (e.g., tightly cropped images

where the borders may have different statistics than the center), but in most cases

this subtlety is safely ignored.

2.3 Template for Unsupervised Feature Learning

In order to train the parameters Θ associated with the feature representations, many

approaches are available. A great deal of work has focused on supervised methods

that train the entire hierarchy of features directly to minimize the top-level objec-

tive [50, 51, 40, 12]. In unsupervised feature learning, the features are learned from

unlabeled data—that is, we aim to train Θ using only unlabeled examples. Many

convolutional systems instead of the total number of features.
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Figure 2.2: A standard template that encompasses a wide range of unsupervised
feature learning algorithms.

unsupervised feature learning algorithms can be seen as instantiations of a common

template wrapped around two components: (i) an unsupervised learning algorithm

that trains the parameters Θ, and (ii) a definition for the feature map Φ(x; Θ).

The basic template is pictured in Figure 2.2. A set of unlabeled examples (e.g.,

images) are provided to the unsupervised learning algorithm. The unsupervised learn-

ing algorithm takes in x(i) and outputs a trained set of parameters Θ that, in some

sense, encode knowledge about the distribution of the data x(i). These parameters

are used to define the feature functions Φ(x; Θ), which are then applied to labeled

data points to yield feature vectors φ. Along with labels y, the feature vectors may

be passed to any machine learning algorithm to predict y from φ. Note that while

Φ(x; Θ) may often be closely related to the particular unsupervised learning method,

in general it can be chosen separately as an arbitrary function of x and Θ.
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2.4 Unsupervised Learning Algorithms

The first component needed to define an unsupervised feature learning system follow-

ing the template in Figure 2.2 is an unsupervised learning algorithm. A few notable

algorithms that we will use later in this thesis are reviewed here, though we will also

introduce a few other choices later.

2.4.1 Clustering

Mixture of Gaussians

A simple form of unsupervised learning algorithm is clustering, which posits that the

data is generated from a mixture model with K components:

P (x) =
K∑
k=1

πkPk(x; Θk)

where πk are the prior probabilities of x being sampled from each component, and

Pk are component distributions parametrized by Θk. A common case is the Gaus-

sian mixture model (GMM) where P (x; Θk) = N (x;µk,Σk) for mean and covariance

parameters µk and Σk. For a given dataset, all of the parameters in this proba-

bilistic model, Θ = (µ,Σ, π), can be estimated using the Expectation-Maximization

algorithm [21].

K-means: Euclidean Distance

K-means clustering is a simple algorithm that seeks cluster centers D(k) ∈ Rn, k =

1, . . . , K and assignments C(i) ∈ {1, 2, . . . , K} of the training samples x(i) to clusters

that minimize the distance between data points and their cluster centers. Specifically,

we find D and C by minimizing:

minimize
C,D

∑
i

||D(C(i)) − x(i)||22
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which is accomplished by an alternating optimization over C and D:

Repeat until convergence:

C :=
∑
i

||D(C(i)) − x(i)||22

D := arg min
D̂

∑
i

||D(C(i)) − x(i)||22.

This may be simplified to:

Repeat until convergence:

C(i) := arg min
k

||D(k) − x(i)||22, ∀i

D(k) :=

∑
i 1{C(i) == k}x(i)∑
i 1{C(i) == k}

,∀k

where the last line is simply the arithmetic mean of the samples x(i) assigned to

the k’th cluster. The main advantage of K-means clustering over more sophisticated

models is speed and simplicity: the computations above are easy to implement, easy

to parallelize (over examples), and do not require any parameter tuning.

K-means: Spherical

A variant of K-means that we will use is “spherical” K-means, sometimes also called

“gain-shape vector quantization” [23, 101]. This algorithm minimizes:

minimize
D,z

∑
i

||Dz(i) − x(i)||22 (2.3)

subject to ||D(k)||2 = 1,∀k

and ||z(i)||0 ≤ 1,∀i

where the vectors z(i) ∈ RK are called “code vectors”, and ||z(i)||0 ≤ 1 means that

each code vector may have at most a single non-zero element. This may similarly be
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optimized by an alternating iteration over z and D, given by:

Repeat until convergence:

z
(i)
k :=


D(k)>x(i) if k == arg max

j
|D(j)>x(i)|

0 otherwise

∀i, k

D := XZ>

D(k) := D(k)/||D(k)||2.

In the above algorithm Z represents the column-wise concatenation of the code vectors

z(i), and similarly for X. In short, this iteration determines which element of each z(i)

should be non-zero to minimize Eq. (2.3) by a brute-force check, then sets each z(i)

to its optimal value. The optimal (normalized) choice of each D(k) is then computed

holding the z(i) fixed.

2.4.2 Orthogonal Matching Pursuit

We can generalize the optimization problem for spherical K-means above to allow

multiple non-zero entries in z(i). This enables each code vector to represent more

complex patterns. Specifically, we would like to solve:

minimize
D,z

∑
i

||Dz(i) − x(i)||22 (2.4)

subject to ||D(k)||2 = 1,∀k

and ||z(i)||0 ≤ Λ, ∀i

where again ||z(i)||0 is the number of non-zero elements in z(i), and Λ is the largest

number of non-zero elements allowed to represent each x(i). Unfortunately, this opti-

mization is difficult since the constraint is non-convex and we cannot search over all

choices for the non-zero entries of z(i) as with the spherical K-means algorithm above.

In order to perform an alternating optimization like the one used for K-means,
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we can compute the code vectors z(i) approximately using Orthogonal Matching Pur-

suit [65, 5] to compute codes with at most Λ non-zeros (which we refer to as “OMP-

Λ”). For a single input x(i), OMP-Λ begins with z(i) = 0 and at each iteration greedily

selects an element of z(i) to be made non-zero to minimize the remaining reconstruc-

tion error. After each selection, z(i) is updated to minimize ||Dz(i) − x(i)||22 over z(i)

allowing only the selected elements to be non-zero. Note that OMP-1 is just spherical

K-means.

2.4.3 Sparse Coding

Sparse Coding is a neurologically-inspired algorithm [62] that encourages the vectors

z(i) to be sparse but does not have a hard limit on the number of non-zero entries.

Specifically, sparse coding solves the following minimization problem:

minimize
D,z

m∑
i=1

||Dz(i) − x(i)||22 + λ||z(i)||1

subject to ||D(k)||22 ≤ 1, ∀k.

This problem is similar to the minimization for spherical K-means, but the require-

ment for z(i) to have a single non-zero element has been replaced by a penalty on

the 1-norm (|| · ||1) of z(i). Such penalties encourage z(i) to have many zero entries

(roughly controlled by the penalty weight λ).

Holding D fixed in the optimization above results in m separate optimization

problems over the m code vectors z(i). These are convex optimization problems and

can be solved efficiently [83, 24]. Meanwhile, holding all of the z(i) fixed, the opti-

mization over D is convex and can be solved quickly. This motivates an alternating
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algorithm to estimate D:

Repeat until convergence:

z(i) := arg min
z

||Dz − x(i)||22 + λ||z||1,∀i (2.5)

D := arg min
D̂

||D̂Z −X||2F

subject to ||D̂(k)||22 ≤ 1.

Note that unlike K-means, which assigns each sample to a single cluster, sparse

coding uses a distributed representation that represents x(i) in terms of multiple basis

vectors from D while still requiring the code vector z(i) to be parsimonius (i.e., sparse).

The main disadvantage of this approach is that we must solve for every example the

optimizations in Eq. 2.5. Specialized algorithms [52, 95], and optimized solvers are

available for these problems though the expense is still extremely high compared to

simpler methods like K-means clustering.

2.4.4 Auto-encoders

All of the algorithms above may be seen as minimizing the distortion incurred by rep-

resenting each x(i) by the corresponding code vector z(i), subject to the z(i) satisfying

a constraint that requires it to be “simpler” than the original x(i) (namely, by requir-

ing all but a few elements to be zero). In each case we might need to actually solve

another optimization problem in order to find the code vector z(i) at each iteration,

which is potentially expensive.

An auto-encoder is a type of neural network that may be seen as learning a very

simple function to compute z(i) rapidly, but with similar requirements that the z(i) be

sparse and yield a good reconstruction of the original input x(i). For instance, a simple

“single layer” auto-encoder, as depicted in Figure 2.3, computes z = g(W (1)x+b(1)) for

a scalar nonlinearity g(·), with trainable parameters W (1) and b(1). The output layer x̂

is then computed by another affine transformation x̂ = W (2)z + b(2). The parameters

W (·), b(·) are then trained to ensure good reconstruction of x after encoding to z and
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… 

Figure 2.3: Diagram of a 1-layer auto-encoder.

then decoding to x̂:

minimize
W (·),b(·)

∑
i

||W (2)g(W (1)x(i) + b(1)) + b(2) − x(i)||22

The optimization above usually requires some form of regularization to avoid

trivial or degenerate solutions, and these often depend on the choice of nonlinearity

g(·). A popular choice of regularization is sparsity, where we penalize z = g(W (1)x+

b(1)) so that its activations tend to have mostly small values with a few large values.

When g(·) is the logistic sigmoid g(a) = (1 + exp(−a))−1, one such penalty is:

S(z) =
∑
k

KL(Ber(zk)||Ber(γ))

where KL(A||B) is the Kullback-Leibler divergence between distributions A and B,

Ber(p) is a Bernoulli distribution with mean parameter p, and γ is a tunable hyperpa-

rameter. In practice, this smooth penalty tends to be easier to work with when using

sigmoid units than alternatives (e.g., the 1-norm penalty used by sparse coding).

A second form of regularization is to tie together the weights W (1) for the “en-

coding” layer and W (2) for the “decoding” layer. Specifically, we often use W (1) =

W (2)> = W . This tends to encourage W to have columns that are more orthogonal
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and discourages arbitrary re-scaling of the weights (e.g., choosing W (1) very small

and W (2) very large).

Combining these two forms of regularization, training a typical auto-encoder re-

quires solving the following minimization:

minimize
W,b(1),b(2)

∑
i

||W>g(Wx(i) + b(1)) + b(2) − x(i)||22 + λS(g(Wx(i) + b(1))).

This optimization can be performed with off-the-shelf numerical solvers since the net-

work is very simple (using only a single nonlinear layer). The needed gradients my

be computed quickly via the back-propagation [76] algorithm. Though this approach

can be tricky to get working, it has the advantage that it learns “distributed” repre-

sentations much like sparse coding, but has a very fast way to compute z(i) for a new

input.

2.5 Feature Encodings

The second component required in the template of Figure 2.2 is a feature function

Φ(x; Θ) that maps an input x ∈ Rn to a new representation φ ∈ RK . For many choices

of unsupervised learning algorithm, a natural choice of Φ is clear. For instance, for

all of the unsupervised learning algorithms above where we defined a “code vector”

z corresponding to each x, we can simply take Φ(x; Θ) = z. For example, with the

spherical K-means algorithm, we might choose

Φ(x;D) =


D(k)>x if k == arg max

j
D(j)>x

0 otherwise.

Though one choice of Φ might be suggested by the unsupervised learning algorithm

(as above), there is no strict reason that we must use this particular Φ. In practice,

we can choose Φ arbitrarily. For instance, we may choose Φ : Rn → RK′ where K ′ is

a different number of features from K, the number of clusters or basis vectors that

might be trained by the unsupervised learning algorithm. We will consider the effect
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of non-standard choices of feature functions in Chapter 3.

2.6 Summary

In this chapter we introduced the notion of feature representations as a generic way

of transforming data into a form that is more useful for making predictions. Though

one can, in principle, train these from labeled data directly on the end task, a major

advantage of having trainable features is that we can potentially learn them from

unlabeled data. This gives us the opportunity to acquire useful prior knowledge, in

the form of the parameters Θ, from background data that makes subsequent learning

tasks easier.

We introduced a practical set of building blocks from which many unsupervised

feature learning systems may be built. For instance, we showed how the basic def-

initions of features may be restricted to “locally connected” and “convolutional”

features, useful for applications to image data. In addition, we proposed a stan-

dard template that encompasses a large number of feature learning algorithms used

in practice. This template allows us to build a UFL method by incorporating (i)

any unsupervised learning algorithm, and (ii) any function that maps an input x to

features φ using the learned model parameters Θ. The rest of this thesis explores

algorithms built from these ingredients, seeking the key factors that separate high-

performing systems from low-performing ones, and aiming to extend the model in

ways that leverage these insights.



Chapter 3

A Scientific Study of Unsupervised

Feature Learning

Unsupervised Feature Learning (UFL) algorithms of the sort described in Chapter 2

can be constructed from a variety of different components and often have many

“hyper-parameters” associated with their implementation: pre-processing stages, pa-

rameters that determine local connectivity (as in Section 2.2), the choice of unsuper-

vised learning algorithm, the number of features to learn, and the feature mapping

Φ(x; Θ). Though there are many examples of successful applications in the literature,

there is not much guidance for how to choose these many parameters. Indeed, many

results in the past have appeared contradictory: apparently similar algorithms have

achieved very different results on benchmarks while some very different algorithms

end up with similar results. In this chapter we present the results of an in-depth

scientific study into many of the factors that can affect performance in order to make

sense of prior results and to understand what makes a UFL system work well. Sur-

prisingly, we will find that good performance is not related to the sophistication of

our learning algorithms—instead, other (sometimes neglected) factors turn out to be

much more important.

24
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3.1 Related Work

One area of feature learning that has been thoroughly studied is the choice of unsu-

pervised learning algorithm. Since the introduction of unsupervised pre-training [31],

many new schemes for stacking layers of features to build “deep” representations

have been proposed. Most have focused on creating new training algorithms to build

single-layer models that are composed to build deeper structures. Among the algo-

rithms considered in the literature are sparse-coding [62, 52, 96], RBMs [31, 45], sparse

RBMs [53], sparse auto-encoders [28, 71], denoising auto-encoders [89], “factored” [70]

and mean-covariance [69] RBMs, as well as many others [68, 54, 99]. Thus, amongst

the many components of feature learning architectures, the unsupervised learning

module appears to be the most heavily scrutinized.

On top of the many models proposed, some consensus has emerged on which

combinations of algorithms are fastest or which tend to yield the highest performance

on benchmarks. For example, K-means clustering is extremely fast and widely used

in computer vision, yet sparse coding has been shown to yield consistently better

features [6, 42, 96]. Thus, fast algorithms and approximations have been devised to

make sparse coding more practical on large problems [30, 95]. Other authors, however,

have chosen to dissect algorithms like sparse coding in search of its strengths and

weaknesses, with an eye toward developing new encodings. For example, [99] have

argued for “locality preserving” encodings based on the idea that such encodings allow

higher-level systems to learn functions across the data manifold more easily, and they

show that this method is often superior to sparse coding. Yet many of these previous

results do not carefully control for other differences between implementations, or

attempt to decompose the system in a way that clearly shows which parts of the

pipeline yield higher performance. In this chapter, we will try to remedy this by

a more careful set of controlled experiments aimed at understanding exactly which

algorithms perform best and why. We note that some of the basic results of these

experiments have appeared in more limited experiments; for instance, it has been

shown several times that model parameters Θ trained with K-means, but combined

with non-standard encodings Φ can yield high performance [90, 87].
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Beyond the study of learning algorithms and feature encodings, some work has

considered the impact of other choices in these feature learning systems, especially

the choice of network architecture. Jarret et al. [40], for instance, have considered the

impact of changes to the “pooling” strategies frequently employed between layers of

features, as well as different forms of normalization and rectification between layers.

Similarly, Boureau et al. have considered the impact of coding strategies and different

types of pooling, both in practice [6] and in theory [7]. Our experiments follow in

this vein, but consider instead the structure of single-layer networks—before feature

pooling, and orthogonal to the choice of algorithm or feature encoding.

of our experiments is very closely related to “visual words” models used in com-

puter vision. Specifically, the K-means clustering algorithm is used to learn a set of

centroids that are then used to map inputs into a new feature space. For instance,

in the “bag of words” and spatial pyramid models [19, 47, 26, 94] it is typical to

map an input x to a 1-of-K coded feature vector (i.e., one uses a “Hard Assign-

ment” encoding for Φ(x; Θ), as detailed in Section 3.2.1). This kind of quantization

makes K-means learning very fast, but results in crude features. Thus, other authors

have used “soft” assignments (e.g., Gaussian activations) to improve performance of

the encoding stage [87]. Similarly, these types of features have been trained recur-

sively to construct multiple layers of features [2]. The effects of pooling and choice

of activation function or coding scheme have similarly been studied for these mod-

els [47, 87, 60]. The primary distinction that should be drawn with the experiments

here is that we use a much wider array of pipeline combinations in a large battery of

controlled experiments: we use many different unsupervised learning algorithms and

feature encodings, and consider the effect of changes to our image processing pipeline

across algorithms in a deliberate search for the specific changes that are consistently

related to high recognition performance across datasets and across learning schemes.
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3.2 Standard Feature Learning Framework for Im-

age Recognition

To study the effect of various parameters, we will construct a standard pipeline for

learning image features using the basic concepts in Chapter 2. The pipeline will

enable us to easily alter various parameters, including the choice of unsupervised

learning algorithm and feature mapping, in a systematic way to test the effect of each

on (supervised) image recognition benchmarks. In this chapter all of our experiments

will be performed with a single layer of learned features and a fixed post-processing

stage (feature pooling) in order to simplify the experiments. We will consider training

multiple layers of features in later chapters.

At a high-level, our system performs the following steps to learn a feature repre-

sentation from a set of unlabeled images:

1. Extract small patches from random locations in unlabeled training images.

2. Apply a pre-processing stage to the patches.

3. Train model parameters Θ from these patches using one of several unsupervised

learning algorithms.

Given the learned feature parameters and a set of labeled training images we can

then perform feature extraction and classification:

1. Define a feature encoding Φ(x; Θ) that maps a patch x to a feature vector φ.

2. Extract features using Φ from equally spaced sub-patches covering the input

image.

3. Pool features together over regions of the input image to reduce the total number

of feature values.

4. Train a linear classifier to predict image labels given the pooled feature vectors.

This pipeline is simply an extension of the basic feature learning framework described

in Chapter 2 (see Figure 2.1) with both local connectivity and weight tying. That is,



CHAPTER 3. A SCIENTIFIC STUDY OF UFL 28

features are evaluated for small patches, rather than over the whole image and the

same parameters Θ are used to extract features from many patches within a larger

image. A few additional steps were added to the basic recipe that are specific to the

image recognition experiments we will use as a benchmark.

We will now describe the components of this pipeline and its parameters in more

detail.

3.2.1 Feature Learning from Patches

As mentioned above, we begin by extracting random sub-patches from unlabeled

input images. Each patch has dimension r-by-r and has c channels,1 with r referred

to as the “receptive field size”. Each r-by-r patch can be represented as a vector

in Rn of pixel intensity values, with n = r · r · c. We then construct a dataset of m

randomly sampled patches, x(1), ..., x(m), where x(i) ∈ Rn. Recall that we denote by X

the entire dataset concatenated column-wise into a matrix of n rows and m columns.

Given this dataset, we apply the pre-processing and unsupervised learning steps.

Pre-processing

It is common practice to perform several simple normalization steps before attempt-

ing to generate features from image data. For our experiments, we assume that every

patch x(i) is normalized by subtracting the mean and dividing by the standard de-

viation of its elements. Note that this corresponds to local brightness and contrast

normalization within the original (larger) image.

After normalizing each input vector, the entire dataset X may optionally be

whitened [39], which removes linear correlations amongst the input values. Here

1For example, if the input image is represented in (R,G,B) color, then it has three channels.
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we will use ZCA whitening:

µ := mean(X)

Σ := cov(X)

% Find V and D such that V DV > == Σ :

[V,D] := eig(Σ)

x
(i)
centered := x(i) − µ

x
(i)
whitened := V D−1/2V >x

(i)
centered.

We then use x
(i)
whitened as the input to the rest of our pipeline, though we will continue

to denote it merely as x(i). While this pre-process is commonly used in deep learning

work (e.g., [70]) it is less frequently employed in computer vision.

Unsupervised learning

After pre-processing, an unsupervised learning algorithm is applied to train a model,

parameterized by Θ, of the unlabeled patches. For the purposes of the experiments in

this chapter, we will view the unsupervised learning module as a function that takes

in the unlabeled patches X and outputs a trained set of model parameters Θ. These

parameters are used (however we like) to define the feature mapping Φ. We briefly

summarize the unsupervised learning algorithms that we will use in this chapter,

along with a few notes about their specific implementation and a description of the

parameters Θ that they produce. The first of these were introduced in Section 2.4;

several additional algorithms are briefly described here as well.

1. Gaussian mixture model (GMM): We estimate a Gaussian mixture model

with K components from the unlabeled patches X. As is common practice, we

run a single iteration of K-means to initialize the means of the mixture model.2

The algorithm outputs parameters Θ = (µ·,Σ·, π) that represent the means,

2When K-means is run to convergence we have found that the mixture model does not lead to
feature representations substantially different from the K-means result.
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covariances and prior probabilities, respectively, of each mixture component. In

all of our experiments we restrict the covariance matrices Σ· to be diagonal.

2. K-means clustering: In our experiments we will use both variants of K-

means (Euclidean and spherical) introduced in Section 2.4.1. In either case the

algorithm outputs Θ = (D), where D is the matrix whose columns D(k), k =

1, . . . , K are the centroids learned by K-means. For spherical K-means, we have

||D(k)||2 = 1.

3. Sparse coding (SC): A dictionary of basis vectors is trained as in Section 2.4.3.

The algorithm outputs Θ = (D), where D is the matrix whose columns D(k) are

the K learned basis vectors. Our implementation renormalizes the basis vectors

D(k) to unit length after each optimization over D. This step tends to prevent

individual basis vectors from shrinking to zero (a problem analogous to empty

clusters in K-means). We use the coordinate descent algorithm [95] to solve for

the sparse codes (implemented by [56]) and a standard least-squares solver to

compute D given the matrix of codes Z.

4. Orthogonal matching pursuit (OMP-Λ): We use orthogonal matching pur-

suit as in Section 2.4.2 to train a dictionary Θ = (D), similarly to sparse coding.

As with sparse coding and K-means, we normalize the basis vectors D(k) to unit

length after each iteration to prevent basis vectors from shrinking to zero. The

implementation of [56] is used to compute the OMP code vectors. Note again

that OMP-1 is equivalent to spherical K-means.

5. Sparse auto-encoder (SAE): We train an auto-encoder with K hidden nodes

using back-propagation to minimize squared reconstruction error. As in Sec-

tion 2.4.4, we use an additional penalty term that encourages the units to main-

tain a low average activation [53, 28] (sparsity) and tied encoding/decoding

weights. The training algorithm outputs Θ = (W, b(1), b(2)), where W ∈ RK×n

is the matrix of weights and b(1) ∈ RK , b(2) ∈ Rn are the biases for the encoding

and decoding layers, respectively.

There are several hyper-parameters used by the training algorithm (e.g., the
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target activation γ). These parameters were chosen using a cross-validation

procedure for each of our benchmarks. A separate cross-validation run is used

for each choice of the receptive field size, r (the dimension of the unlabeled

image patches).3

6. Sparse restricted Boltzmann machine (SRBM): The restricted Boltz-

mann machine (RBM) is an undirected graphical model with K binary hidden

variables. Sparse RBMs can be trained using the contrastive divergence ap-

proximation [32] with the same type of sparsity penalty as the auto-encoders.

The training also produces weights W and biases b. As above, the necessary

hyper-parameters for the learning algorithm are determined by cross-validation

for each receptive field size.

7. Randomly sampled patches (RP): As a baseline unsupervised learning al-

gorithm, we represent the input data x(i) with a set of randomly chosen exem-

plars. Specifically, this algorithm generates Θ = (D) where the columns of D

are normalized vectors sampled randomly from amongst the x(i).

8. Random weights (R): It has also been shown that completely random val-

ues used in place of learned parameters can perform surprisingly well in some

tasks [40, 80]. Thus, we have also tried using Θ = (D), where the columns of

the dictionary D ∈ RK×n are vectors sampled from a unit normal distribution,

normalized to unit length.

Feature Encodings

After running an unsupervised learning algorithm to train model parameters Θ from

the unlabeled patches X, we must define a mapping from a new patch x to a corre-

sponding feature vector φ. As explained in Section 2.5 this function may be chosen

arbitrarily, though there is usually a “natural” choice of mapping for a particular un-

supervised learning algorithm. Here we summarize for concreteness all of the feature

3Ideally, we would perform this cross-validation for every choice of parameters, but the expense
is prohibitive for the number of experiments we perform here.
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mappings Φ(x; Θ) that will be used in our experiments. The first of these correspond

to the “natural” encodings for the unsupervised learning algorithms above, but the

last few are chosen without reference to a particular learning algorithm.

1. Soft assignment (SA) Given means and covariances Θ = (µ·,Σ·), the feature

vector for x is defined as:

φk =
1

(2π)n/2|Σk|1/2
exp

(
−1

2
(x− µk)>Σ−1

k (x− µk)
)
.

We call this the “natural” encoding for the mixture of Gaussian model since

each feature is the probability that x was generated by component k given

that it belongs to cluster k. This approach has been used frequently in prior

art [87, 2, 6].

2. Hard assignment: Given centroids D(k), the feature vector for x is defined

as:

φk =


1 if k = arg min

j
||D(j) − x||22

0 otherwise.

This is the natural encoding for K-means with Euclidean distance, used fre-

quently in previous work [19, 94, 47].

3. Sparse coding (SC): Given a learned dictionary D from one of the above

algorithms, we solve for the sparse code z ∈ RK for x by minimizing (2.5) with

D fixed. Note that the choice of λ in this case may be different from that used

during training. We then take:

φk = max {0, zk}

φk+n = max {0,−zk}
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That is, we split the positive and negative components of the sparse code z into

separate features. Note that this results in φ ∈ R2K . This allows the higher-

level parts of the system (i.e., the classifier) to weight positive and negative

responses differently if necessary.4

4. Orthogonal matching pursuit (OMP-Λ): As above, we compute z given

x and D using OMP-Λ to yield at most Λ non-zeros. Given z, the features

φ ∈ R2K are defined as for sparse coding above. In the special case that Λ = 1,

z will have just one non-zero element (equal to D(k)>x, for one choice of k). This

is the “one hot” encoding, which is the natural encoding for Spherical K-means

(equivalent to OMP-1).

5. Sigmoid (S) For parameters Θ = (W, b(1)) learned by auto-encoder or RBM

training, we use the hidden unit responses as features:

φk = g(W (k)x+ b
(1)
k )

φk+d = g(−W (k)x+ b
(1)
k ) % Optional

where W (k) is the k’th row of W , and g is the logistic sigmoid function. Note

that we allow for a “two-sided” encoding here so that the Sigmoid encoder

is not at a disadvantage compared to sparse coding during some of our later

experiments.

6. Triangle: Given centroids D, we define φ by:

φk = max {0,mean(v)− vk}

where vk = ||x − D(k)||2 and mean(v) is the mean of the elements of v. This

activation function outputs 0 for any feature φk where the distance from x to

the centroid D(k) is “above average”. In practice, this means that roughly half

of the features will be set to 0. This can be thought of as a very simple form of

4This polarity splitting has always improved performance in our experiments, and can be thought
of as non-negative sparse coding with the dictionary [−D D].



CHAPTER 3. A SCIENTIFIC STUDY OF UFL 34

Input Image Image Representation 

  
. 

. 

. 

. 

. 

. 

 

  

Σ 

Classifier Features 

Figure 3.1: Diagram of our image recognition pipeline. We use locally connected
features and convolutions as detailed in Section 2.2 (see also Figure 2.1). This yields
features φ[i,j] for each patch x[i,j], which are pooled over local (non-overlapping) re-
gions of a p-by-p grid to yield a vector for classification. (The diagram shows p = 2.)

“competition” between features.

7. Soft threshold (T): Another very simple encoding is a feed-forward “soft

threshold” with a fixed threshold α. For a dictionary D of learned basis vectors:

φk = max
{

0, D(k)>x− α
}

φk+n = max
{

0,−D(k)>x− α
}

This function has become popular in other feature learning architectures based

on many different learning algorithms [41, 42, 58, 46], and is often referred

to as a “shrinkage” function for its role in regularization and sparse coding

algorithms [30].

Convolution

Given learned parameters Θ and an applicable feature encoding Φ : Rn 7→ RK , we are

now able to map any r-by-r pixel input patch (with c channels) to a K-dimensional

feature vector φ. As described in Section 2.2, rather than learning different features
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(a different set of parameters Θ) for each possible r-by-r sub-patch of the image, we

can simply re-use the same Φ(x; Θ) to extract features from each sub-patch. More

concretely, let x[i,j] represent the (i, j)’th sub-patch (with c channels) of an image.

As in Figure 3.1, the upper-left corner of this r-by-r pixel patch is at pixel ((i −
1)s, (j − 1)s) (for step size s pixels between patches). We apply Φ to each of these

sub-patches to yield a feature vector φ[i,j] for every location, then concatenate them

into a (r−w)/s-by-(r−w)/s-by-K dimensional representation of the original image.

This array can be interpreted as an image of reduced spatial dimension but with K

channels.

Feature Pooling

In this chapter, we will use a simple “pooling” stage to reduce the features before

classification. Pooling aggregates feature responses from a small spatial region in

order to introduce invariance to small translations of the input image and to reduce

the total number of features given to the classification stage. Such techniques are a

mainstay of computer vision systems [96, 47, 19]. Here, we use average pooling over

square sub-regions of the image. Specifically, given an R-by-R-by-K array of feature

responses computed as above (where R = (r − w)/s), we reduce the representation

to p-by-p-by-K responses by computing the mean over non-overlapping sub-windows

of p-by-p grid for each of the K channels (see Figure 3.1).

Classifier Training

In the experiments of this chapter, we will benchmark feature representations in image

recognition problems. In these problems we are given a labeled dataset x(i), y(i), i =

1, . . . ,m where the x(i) are images and the y(i) ∈ {1, . . . , C} are object class labels.

To perform classification, we apply the feature extraction pipeline described above

to the image x(i) to yield the pooled feature representation, which we denote φ(i)

(overloading our above notation where φ referred to the feature representation of a

single patch). Each array of pooled features is stretched into a vector and passed to

our classification stage.
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To perform the multi-class classification we use 1-versus-all classification with

linear L2 SVMs [9]. Specifically, for class C we train a linear classifier as:

minimize
θC

∑
i

(max{0, 1− Y(i)
C (θC

>φ(i))})2 + λ||θC ||22

where Y(i)
C = 1 when y(i) == C and Y(i)

C = −1 otherwise. The final classification

decision, is given by:

ŷ(i) = f(x(i); θ) = arg max
C

θ>Cφ
(i).

The regularization parameter λ is determined by cross-validation on training data for

all of our experiments.

3.3 Experimental Results and Analysis

Using the pipeline introduced above, we have performed an extensive analysis of how

various components and parameters in the system affect image recognition perfor-

mance. Though recognition performance is not a general measurement of feature

quality, we have found that certain key factors are almost universally associated with

higher performance regardless of dataset or the exact application. In our experi-

ments we will use several common image recognition datasets to benchmark various

instantiations of the above pipeline. We will see that the trends identified in these

experiments continue to hold for a realistic application (scene text recognition) in

Chapter 5.

3.3.1 Effect of pipeline parameters

The pipeline described above includes many adjustable parameters. In addition to

the unsupervised learning algorithm and feature encoding method needed to define

a feature learning system, many of these parameters are a part of the surrounding

pipeline. Specifically, we must also choose:
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1. Whether to perform whitening.

2. The number of features, K, to train.

3. The step size (stride), s, between sub-patches where features are extracted.

4. The receptive field size, r.

Here we will analyze the effect of each of these parameters on the CIFAR-10 [45]

and NORB [51] datasets. First, we will evaluate the effects of these parameters

using cross-validation on the CIFAR-10 training set. We will then report the results

achieved on both CIFAR-10 and NORB test sets using each unsupervised learning

algorithm and the parameter settings that our analysis suggests is best overall (i.e.,

in our final results, we use the same settings for all algorithms).5

For our unsupervised learning algorithms we will use Gaussian mixture models

trained with EM, K-means with Euclidean distance, sparse auto-encoders, and sparse

RBMs. In each case we use the “natural” encoding associated with each algorithm,

except for K-means where we will also use the “triangle” encoding defined in Section 6.

For these experiments, we do not use the “two-sided” encoding for the auto-encoders

and RBMs (i.e., we only use φk = g(Wx+ b(1)), and omit φk+n = g(−Wx+ b(1))).

Our basic testing procedure is as follows. For each of these unsupervised learning

algorithms, we will train a single layer of features using either whitened data or raw

data and a choice of the parameters K, s, and r. We then train a linear classifier

as described in Section 3.2.1, and finally test the classifier on a holdout set (for our

main analysis) or the test set (for our final results in this section).

Feature visualization

Before we present our quantitative analysis of classification results, we first show

visualizations of the learned feature representations.

The bases (or centroids) learned by sparse autoencoders, sparse RBMs, K-means,

and Gaussian mixture models are shown in Figure 3.2 for 8 pixel receptive fields. It is

5To clarify: The parameters used in our final evaluation are those that achieved the best (average)
cross-validation performance across all models: whitening, 1 pixel stride, 6 pixel receptive field, and
1600 features.
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(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without
whitening)

(d) Sparse RBM (with and without whitening)

Figure 3.2: Randomly selected bases (or centroids) trained on CIFAR-10 images using
different learning algorithms. Best viewed in color.

well-known that autoencoders and RBMs yield localized filters that resemble Gabor

filters and we can see this in our results both when using whitened data and, to a lesser

extent, raw data. However, these visualizations also show that similar results can be

achieved using clustering algorithms. In particular, while clustering raw data leads

to centroids consistent with those in [26] and [88], we see that clustering whitened

data yields sharply localized filters that are very similar to those learned by the other

algorithms. Thus, it appears that such features are easy to learn with clustering

methods (without any parameter tweaking) as a result of whitening.

Effect of whitening

We now move on to our characterization of performance on various axes of parameters,

starting with the effect of whitening, which visibly changes the learned bases (or

centroids) as seen in Figure 3.2. Figure 3.3 shows the performance for all of our
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Figure 3.3: Effect of whitening and number of bases (or centroids).

algorithms as a function of the number of features (which we will discuss in the next

section) both with and without whitening. These experiments used a stride of s = 1

pixel and r = 6 pixel receptive field.

For sparse autoencoders and RBMs, the effect of whitening is somewhat ambigu-

ous. When using only 100 features, there is a significant benefit of whitening for

sparse RBMs, but this advantage disappears with larger numbers of features. For the

clustering algorithms, however, we see that whitening is a crucial pre-process since

the clustering algorithms cannot handle the correlations in the data.6

Clustering algorithms have been applied successfully to raw pixel inputs in the

past [26, 88] but these applications did not use whitened input data. Our results

suggest that improved performance might be obtained by incorporating whitening.

6Our GMM implementation uses diagonal covariances and K-means uses Euclidean distance.
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Number of features

Our experiments considered feature representations with 100, 200, 400, 800, 1200, and

1600 learned features.7 Figure 3.3 clearly shows the effect of increasing the number

of learned features: all algorithms generally achieved higher performance by learning

more features as expected.

Surprisingly, K-means clustering coupled with the “triangle” activation function

and whitening achieves the highest performance. This is particularly notable since

K-means requires no tuning whatsoever, unlike the sparse auto-encoder and sparse

RBMs which require us to choose several hyper-parameters to ensure reasonable re-

sults.

Effect of step size

The step size or stride s used in our framework is the spacing between patches where

feature values will be extracted (see Figure 2.1). Frequently, learning systems will

use a stride s > 1 because computing the feature mapping is very expensive. For

instance, sparse coding requires us to solve an optimization problem for each such

patch, which may be prohibitive for a stride of 1. It is reasonable to ask, then, how

much this compromise costs in terms of performance for the algorithms we consider

(which all have the property that their feature mapping can be computed extremely

quickly). In this experiment, we fixed the number of features (1600) and receptive

field size (6 pixels), and vary the stride over 1, 2, 4, and 8 pixels. The results are

shown in Figure 3.4. (We do not report results with GMMs, since training models of

this size was impractical.)

The plot shows a clear downward trend in performance with increasing step size as

expected. However, the magnitude of the change is striking: for even a stride of s = 2,

we suffer a loss of 3% or more accuracy, and for s = 4 we lose at least 5%. These

differences can be significant in comparison to the choice of algorithm. For instance,

a sparse RBM with stride of 2 performed comparably to the simple hard-assignment

K-means scheme using a stride of 1—one of the simplest possible algorithms we could

7We found that training Gaussian mixture models with more than 800 components was often
difficult and always extremely slow. Thus we only ran this algorithm with up to 800 components.
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Figure 3.4: Effect of step size.

have chosen for unsupervised learning (and certainly much simpler than a sparse

RBM).

Effect of receptive field size

Finally, we also evaluate the effect of receptive field size. Given a scalable algorithm,

it’s possible that leveraging it to learn larger receptive fields could allow us to recognize

more complex features that cover a larger region of the image. On the other hand,

this increases the dimensionality of the space that the algorithm must cover and may

require us to learn more features or use more data. As a result, given the same

amount of data and using the same number of features, it is not clear whether this

is a worthwhile investment. In this experiment, we tested receptive field sizes of 6, 8,
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Figure 3.5: Effect of receptive field size.

and 12 pixels. For other parameters, we used whitening, stride of 1 pixel, and 1600

bases (or centroids).

The summary results are shown in Figure 3.5. Overall, the 6 pixel receptive field

worked best. Meanwhile, 12 pixel receptive fields were similar or worse than 6 or 8

pixels. Thus, if we have computational resource to spare, our results suggest that it is

better to spend it on reducing stride and expanding the number of learned features.

Unfortunately, unlike for the other parameters, the receptive field size does require

some form of cross validation in order to make an informed choice. Our experiments

do suggest, though, that even very small receptive fields can work well (with pooling)

and are worth considering. This is especially important if reducing the input size

allows us to use a smaller stride or more features which both have large positive

impact on results. On the other hand, the proper receptive field size is related to the
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Table 3.1: Test recognition accuracy on CIFAR-10

Algorithm Accuracy
10K linear random projections (reported in [69]) 36.0%
Raw pixels (reported in [45]) 37.3%
GIST (384 dimension) (from [69]) 54.7%
10K Gaussian RBM (2 layers) [45] 56.6%
RBM with backpropagation [45] 64.8%
3-Way Factored RBM (3 layers) [70] 65.3%
Mean-covariance RBM (3 layers) [69] 71.0%
Improved Local Coord. Coding [98] 74.5%
Conv. Deep Belief Net (2 layers) [46] 78.9%
Sparse auto-encoder 73.4%
Sparse RBM 72.4%
K-means (Hard) 68.6%
K-means (Triangle) 77.9%
K-means (Triangle, 4000 features) 79.6%

spatial extent of dependencies in the data—we should try to choose r so that pixel

intensities more than r pixels apart tend to be almost independent. A more general

way to pick receptive fields is the topic of Chapter 4.

Full test results on CIFAR-10 and NORB

We have shown that whitening, a stride of 1 pixel, a 6 pixel receptive field, and a

large number of features works best on average a range of different training methods

for CIFAR-10. Using these parameters we ran the full pipeline on the entire CIFAR-

10 training set, trained a SVM classifier and tested on the standard CIFAR-10 test

set. Our final test results on the CIFAR-10 data set with these settings are reported

in Table 3.1 along with results from other prior publications. Quite surprisingly,

K-means clustering (with Euclidean distance) paired with the “triangle” encoding

scheme attains very high performance (77.9%) with 1600 features. Based on this

success, we can improve the results further simply by increasing the number of features

to 4000. Using these features, our test accuracy increases to 79.6%.

Based on the analysis above, we have also run each of these algorithms on the

NORB “normalized uniform” dataset. We use all of the same parameters as for
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Table 3.2: Test recognition accuracy (and error) for NORB (normalized-uniform)

Algorithm Accuracy (error)
Conv. Neural Network [51] 93.4% (6.6%)
Deep Boltzmann Machine [78] 92.8% (7.2%)
Deep Belief Network [57] 95.0% (5.0%)
(Best result of [40]) 94.4% (5.6%)
Deep neural network [85] 97.13% (2.87%)
Sparse auto-encoder 96.9% (3.1%)
Sparse RBM 96.2% (3.8%)
K-means (Hard) 96.9% (3.1%)
K-means (Triangle) 97.0% (3.0%)
K-means (Triangle, 4000 features) 97.21% (2.79%)

CIFAR-10, including the 6 pixel receptive field size. The results are summarized in

Table 3.2. Here, all of the algorithms achieve very high performance. Again, K-means

with the “triangle” activation achieves the highest performance. When using 4000

features as for CIFAR, we achieve 97.21% accuracy. We note, however, that the other

results are very similar regardless of the algorithm used. This suggests that the main

source of performance here is from our choice of network structure, not from the

particular choice of unsupervised learning algorithm.

Discussion

At the time of their initial publication [16], the system above achieved the highest

known performance on the benchmarks we tested. Considering the simplicity of the

system compared to contemporary methods, this outcome is rather surprising—it

is not clear, on first inspection, exactly what in this particular set of experiments

allows us to achieve such high performance compared to prior work. We believe

that the main explanation for the performance gain is, in fact, our choice of network

parameters since almost all of the algorithms performed favorably relative to previous

results.

Each of the network parameters (feature count, stride and receptive field size)

we have tested potentially confers a significant benefit on performance. For instance,

large numbers of features (regardless of how they’re trained) gives us many non-linear
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projections of the data. Unlike simple linear projections, which have limited represen-

tational power, it is well-known that using extremely large numbers of non-linear pro-

jections can make data closer to linearly separable and thus easier to classify. Hence,

larger numbers of features may be uniformly beneficial, regardless of the training

algorithm.

The dramatic impact of changes to the stride parameter may be partly explained

by the work of Boureau [7]. By setting the stride small, a larger number of samples

are incorporated into each pooling area which was shown both theoretically and

empirically to improve results. It is also likely that high-frequency features (edges)

are more accurately identified using a dense sampling.

Finally, the receptive field size, which we chose by cross-validation appears to be

important as well. It appears that large receptive fields result in a space that is simply

too large to cover effectively with a small number of nonlinear features. For instance,

because our features often include shifted copies of edges, increasing the receptive

field size also increases the amount of redundancy we can expect in our filters. This

caveat might be ameliorated by training convolutionally [54, 51, 42]. Note that small

receptive fields might also increase the number of samples used in pooling and thus

have a small effect similar to using a smaller stride.

3.3.2 Encoding versus training

A critical design decision that must be made when constructing a feature learning

system is the choice of unsupervised learning algorithm and feature encoding. Above,

we evaluated the effect of altering the various “parameters” that control how fea-

tures are constructed and extracted from images given a fixed choice of the training

algorithm that yields parameters Θ and feature encoding function Φ(x; Θ). In this

section we take the alternate approach: we hold the pipeline parameters fixed and

study the effect of altering the training and encoding methods. Specifically, we note

that (i) many of the algorithms described above may be seen as a “black box” that

takes in an unlabeled dataset X and learn a set of basis functions Θ = (D) (referred

to variously as “weights”, a “codebook”, or a “dictionary”), and (ii) many encoding
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Table 3.3: Cross-validation results for combinations of learning algorithms and en-
coders on CIFAR-10. All numbers are percent accuracy. The reported accuracies are
from 5-fold cross validation on the CIFAR training set, maximizing over the choice
of hyper-parameters for both the training and encoding algorithm. I.e., these are
the best results we can obtain using the given combination of training and encoding
algorithms if we choose the hyper-parameters to maximize the CV accuracy.

Train E
n
c
o
d
e
r

N
a
t
u
r
a
l

S
C

O
M
P

1

O
M
P

1
0

T

R 70.5 74.0 65.8 68.6 73.2

RP 76.0 76.6 70.1 71.6 78.1

RBM 74.1 76.7 69.5 72.9 78.3

SAE 72.9 76.5 68.8 71.5 76.7

SC 77.9 78.5 70.8 75.3 78.5

OMP 1 71.4 78.7 71.4 76.0 78.9

OMP 2 73.8 78.5 71.0 75.8 79.0

OMP 5 75.4 78.8 71.0 76.1 79.1

OMP 10 75.3 79.0 70.7 75.3 79.4

algorithms define a mapping from a vector x to feature vector φ given D agnostic to

how D was trained. In this section, we exploit the ability to “mix and match” these

training algorithms and encodings to analyze the contributions of each module in a

controlled setting.

We will analyze the benefits of sparse coding both as a training algorithm and as an

encoding strategy in comparison to Spherical K-means, Orthogonal Matching Pursuit,

sparse RBMs and sparse auto-encoders, randomly sampled patches and randomly

populated dictionaries. Refer again to Section 2.4 for a summary of these algorithms.

For a particular choice of unsupervised learning algorithm, we will select a single

compatible encoding function Φ from those in Section 3.2.1 and then benchmark the

performance on CIFAR-10, Caltech-101, and NORB datasets.
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Comparison on CIFAR-10

Our first and most expansive set of experiments are conducted on the CIFAR-10

dataset [45]. Here, we perform a full comparison of all of the learning and encoding

algorithms. In particular, we train the dictionary with 1600 entries from whitened, 6

by 6 pixel color image patches (108-dimensional vectors), using sparse coding (SC),

orthogonal matching pursuit (OMP) with Λ = 1, 2, 5, 10, sparse RBMs (RBM), sparse

auto-encoders (SAE), randomly sampled image patches (RP), and random weights

(R).

For each dictionary learned with the algorithms above, we then extract features

not only using the “natural” encoding associated with the learning algorithm, but also

with other compatible encodings from the ones described in Section 2.5. Specifically,

we use sparse coding, with λ ∈ {0.5, 0.75, 1.0, 1.25, 1.5}, OMP with Λ = 1, 10, and

soft thresholding (T) with α ∈ {0.1, 0.25, 0.5, 1.0}. After computing the features for

a combination of dictionary and encoding method, we construct a final feature vector

by average pooling over the 4 image quadrants, yielding 4×2×1600 = 12800 features.

We report the best 5-fold cross-validation results, maximizing over the choice of hyper-

parameters8, for each combination of training algorithm and encoding algorithm in

Table 3.3.

From these numbers, a handful of trends are readily apparent. First, we note

that the first column (which pairs each learning algorithm with its standard encoder)

shows that sparse coding is superior to all of the other methods by a fairly significant

margin, with 77.9% accuracy. OMP-1 (Spherical K-means) is far worse (71.4%).

However, we do get surprisingly close with OMP-10 and random patches. If we look

at the results in the remaining columns, it becomes clear that this is not due to

the learned basis functions: when using sparse coding as the activation (column 2),

all of the dictionaries, except the Random dictionary, perform competitively. This

suggests that the strength of sparse coding on CIFAR comes not from the learned

8Note that for sparse coding this means that the number reported for the “natural” encoding is
for the best choice of λ when using the same penalty for both training and encoding. The number in
the “sparse coding” column is the best performance possible when choosing different λ for training
and encoding.
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Table 3.4: Test results for some of the best systems of Table 3.3 on CIFAR-10. All
numbers are percent accuracy.

Train / Encoder Test Acc.

RP / T 79.1%
SC / SC 78.8%
SC / T 78.9%
OMP 1 / SC 78.8%
OMP 1 / T 79.4%
OMP 10 / T 80.1%
OMP 1 / T (d = 6000) 81.5%

Euclidean K-means / Triangle [16] 1600 features 77.9%
Euclidean K-means / Triangle [16] 4000 features 79.6%
Improved LCC [98] 74.5%
Conv. DBN [46] 78.9%
Deep neural net [12] 80.49%

basis functions, but primarily from the encoding mechanism.

Another striking result of these experiments is the success of the soft thresh-

old activation function. Despite using only a feed-forward non-linearity with a fixed

threshold, this encoding also performs uniformly well across dictionaries, and as well

or even better than sparse coding.

We next take several of the best performing systems according to the cross-

validation results in Table 3.3, re-train the classifiers on the full CIFAR training

set and then test them on the standard test set. The final test results are reported in

Table 3.4. We note several key numbers. First, using a dictionary of random patches

and a soft threshold, we obtain 79.1% accuracy. This is very surprising since this al-

gorithm requires no training beyond the choice of the threshold (α = 0.25). All of the

other results are similar, with just more than 1% separating them. The best overall

system identified by cross-validation was OMP-10 with the soft threshold, achieving

80.1% accuracy.

In addition, we note that it is often possible to achieve better performance sim-

ply by using much larger dictionaries [87]. This is easily achieved with inexpensive

training and encoding algorithms like OMP-1 and the soft-threshold. If we use a

dictionary with d = 6000 basis vectors, we can achieve 81.5% accuracy—better than
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Table 3.5: Test accuracies for the NORB jittered-cluttered dataset. All numbers are
percent accuracy.

Train E
n
c
o
d
e
r

N
a
t
u
r
a
l

S
C

(λ
=

1)

T
(α

=
0.

5
)

R 91.9 93.8 93.1

RP 92.8 95.0 93.6

SC λ = 1 94.1 94.1 93.5

OMP 1 90.9 94.2 92.6

Conv.Net [81] 94.4%
SVM-Conv.Net [33] 94.1%
ReLU RBM [58] 84.8%

those obtained with euclidean K-means in Table 3.1, and the best known result on

CIFAR-10 when these results were first published [17].

Experiments on NORB

We also perform experiments on the NORB (jittered-cluttered) dataset [51]. Each

108x108 image includes 2 gray stereo channels. We resized the images to 96x96 pixels

and average-pool over a 5x5 grid. We train on the first 2 folds of training data

(58320 examples), and test on both folds of test data (58320 examples). Based on

our experience with CIFAR, we chose fixed values for hyper-parameters for these

experiments. For sparse coding, we have used λ = 1.0 and for the soft threshold

α = 0.5, though the test results are mostly insensitive to these choices.

We report test errors achieved with the natural encoder for each dictionary as

well as sparse coding and the soft threshold in Table 3.5. Again we see that the soft

threshold, even when coupled with randomly sampled patches, performs nearly as

well as sparse coding. Though performance is slightly lower, we note that its best

showing (93.6%) is achieved with far less labor: the sparse coding system requires

over 7 hours to run on 40 2.26GHz cores, while the soft threshold scheme requires just

1 hour. In addition, we also see that sparse coding performs comparably regardless

of which training algorithm we use. Surprisingly, when using random patches we



CHAPTER 3. A SCIENTIFIC STUDY OF UFL 50

Table 3.6: Test results for the Caltech 101 dataset. Numbers are percent accuracy
(and standard deviation) with 30 training images per class.

SC (λ = 0.15) T (α = 0.5)

R 67.2% (0.8%) 66.6% (0.2%)

RP 72.6% (0.9%) 64.3% (1.2%)

SC 72.6% (0.9%) 67.7% (0.3%)

OMP 1 71.9% (0.9%) 63.2% (1.4%)

SC-SPM [96] 73.2% (0.54%)
Boureau et al., 2010 [6] 75.7% (1.1%)
Jarret et al., 2009 [40] 65.5%

achieve 95.0% accuracy—better than previously published results for this dataset.

For comparison, a contemporary convolutional neural network system (using max

pooling) [81] achieved 94.4% on this dataset.

Experiments on Caltech 101

Finally, we also performed experiments on the Caltech 101 dataset. For these ex-

periments, we adopted the system of [96]. This system uses SIFT descriptors as the

input to feature learning instead of raw pixels. In particular, SIFT descriptors are ex-

tracted from each image over a grid. This yields a representation of the image as a set

of 128-dimensional vectors, with one descriptor representing each patch of the grid.

These vectors become the inputs x ∈ R128 to the training and encoding algorithms

and play the same role as the patches of pixels in our previous experiments.

Given the inputs x(i), a dictionary is constructed as before using random noise

(R), randomly sampled descriptors (RP), sparse coding (SC), or spherical K-means

(OMP 1). After performing the encoding, the features are pooled using max-pooling

in a 3-level spatial pyramid [47] (i.e., we pool over 4x4, 2x2, and 1x1 grids). We use

30 training examples per class in our experiments, and report the average accuracy

over 5 samplings of the training and test sets in Table 3.6. We use λ = 0.15 (the

same used in [96]), and again α = 0.5 for the soft threshold.

As can be seen in Table 3.6 the results are similar, though not identical to those

on CIFAR and NORB. First, these results confirm that the choice of dictionary is
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not especially critical: when using sparse coding as the encoder, we can use randomly

sampled descriptors and achieve high performance. However, it appears that the soft

threshold works less well for this dataset. One shortcoming of the soft threshold

activation is the use of a constant threshold. If we instead use a variable threshold

(and a dictionary trained with sparse coding), setting α dynamically to yield exactly

20 non-zeros for each example, we achieve 70.1% accuracy (±0.9%). Still a gap

remains, which appears to be a result of having few training examples.

Discussion

Our experiments above emphasize primarily that the choice of encoding scheme can

often be more important than how we train the parameters Θ of our features. In-

terestingly though, sparse coding—a very sophisticated encoder—is often no better

in terms of final image recognition performance than a simple soft-threshold non-

linearity. We add a few comments here on what may be behind these particular

results.

Sparse coding and small datasets First, a primary distinction between the Cal-

tech 101 dataset and the CIFAR and NORB datasets is the number of available

labeled training examples (just 30 per class for Caltech 101). In the situation where

we have little labeled data regularization and prior knowledge become much more im-

portant, as we have very few labels for supervised training. It turns out that sparse

coding excels in this scenario: it yields a feature vector that works well even when

we have very few labels, and even when we use simple algorithms to populate the

dictionary.

We have verified this phenomenon on the CIFAR and STL-10 [16] datasets. We be-

gan with a dictionary composed of random patches. We then tested the performance

of the sparse-coding and soft-threshold encoders when the SVM training procedure is

limited to a small number of labeled examples. For CIFAR, the average test perfor-

mance over 5 folds of labeled data, for various numbers of labeled examples, is plotted

in Figure 3.6. There it can be seen that the performance of sparse coding and the soft-

threshold are essentially identical when we use large labeled training sets, but that
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Figure 3.6: Performance of sparse coding and soft-threshold activations with small
quantities of labeled data on CIFAR-10.

sparse coding performs much better for smaller numbers of examples. The STL-10

dataset similarly emphasizes smaller labeled datasets (100 examples per fold), though

providing additional unlabeled data. On this dataset, the same phenomenon is appar-

ent: on 32x32 downsampled images, sparse coding (λ = 1.0) achieves 59.0% average

accuracy (±0.8%), while the soft-threshold (α = 0.25) achieves 54.9% (±0.4%). Thus

it appears that sparse coding yields a representation that is consistently better when

we do not have many labeled examples, though both results are better than those

previously reported in [16].
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Dictionary Learning Our results have shown that the main advantage of sparse

coding is as an encoder, and that the choice of basis functions has little effect on

performance. Indeed, we can obtain performance on par with any of the learning

algorithms tested simply by sampling random patches from the data. This indicates

that the main value of the dictionary is to provide a highly overcomplete basis on

which to project the data before applying an encoder, but that the exact structure

of these basis functions (which comprise the bulk of the parameters that we would

normally need to estimate) is less critical than the choice of encoding. All that appears

necessary for success in these experiments is to choose the basis to roughly tile the

space of the input data. This increases the chances that a few basis vectors will be

near to an input, yielding a large activation that is useful for identifying the location

of the input on the data manifold later [61, 99]. This explains why spherical K-means

(OMP-1) is quite capable of competing with more complex algorithms: it simply

ensures that there is at least one dictionary entry near any densely populated areas

of the input space. We expect that learning is more crucial if we use small dictionaries,

since we would then need to be more careful to pick basis functions that span the

space of inputs equitably—in such cases, the requirement that dictionaries produce

a sparse basis (where only a few projections D(k)>x yield significant responses) may

be important.

Caveats It is worth noting a couple of caveats to the analysis above. First, all of

our results are based on a common pipeline that incorporates a number of “special

purpose” components, including contrast normalization and feature pooling. These

are necessary in order to make our end task practical, and to provide a single (and

already widely used) reference point for comparison. Nevertheless, it is conceivable

that some of our conclusions are influenced by the particulars of the pipeline. All of

the results above are also based on a single layer of features and thus may not hold

for multi-layered representations. Despite this shortcoming in our analysis we have

found that this pipeline is remarkably successful in real applications (see Chapter 5

for one) and on many different benchmarks where previous authors have used many

different types of architectures. More importantly still, this analysis has served as
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the seed for our own later work in this area: in later chapters, we will continue to use

the surprisingly versatile spherical K-means algorithm and soft-threshold encoding,

and pay special attention to factors such as scalability.

3.4 Summary

In this chapter we proposed a standard image processing pipeline that covered a

wide array of possible architectures similar to those used in computer vision appli-

cations [19, 96, 47, 87] and in feature learning and deep learning work [54, 46, 51].

This has allowed us to systematically test the impact of changes in the parameters

and algorithms that are part of the pipeline and to discover the main areas where

more attention might yield improvements in performance. Surprisingly, the main

contributors to high performance are factors that are mostly unrelated to the choice

of training algorithm—the parameters that define the feature extraction pipeline (re-

ceptive field size r, step size s, number of features K and the use of whitening), and

the choice of encoding Φ are apparently more important than the exact training al-

gorithm. These observations have served as the jumping off point for the remaining

chapters of this thesis. Rather than developing new learning algorithms and more

sophisticated models of data, we instead focus on scalability and on improvements to

the other components of our pipeline that are apparently more crucial.



Chapter 4

Selecting Receptive Fields in Deep

Networks

4.1 Introduction

An important practical concern in building multi-layered (“deep”) feature represen-

tations is to specify how the features in each layer connect to the features in the

layers beneath. Traditionally, the number of parameters in models for visual tasks

is reduced by restricting higher level features to depend only on a “receptive field”

of lower-level inputs. For instance, in Section 2.2 we described a simple heuristic to

choose the connectivity for computer vision applications: each feature φk depends

only on a small rectangular area within a larger image instead of allowing every fea-

ture to depend on the entire image [51, 54]. When we use linear filters to represent

our features (where there is one parameter for each input pixel in the receptive field)

this trick dramatically reduces the number of parameters that must be trained and

is a key element of several state-of-the-art systems [12, 81, 17]. In this chapter we

propose a method to automatically choose such receptive fields in situations where

we do not know how to specify them by hand—a situation that, as we will explain,

is commonly encountered in deep feature representations.

There are now many known results indicating that large hierarchies of features

with thousands of unique feature extractors are top competitors in applications and

55



CHAPTER 4. SELECTING RECEPTIVE FIELDS IN DEEP NETWORKS 56

benchmarks (e.g., [12, 33, 81] and the results of Chapter 3). A major obstacle to

scaling up feature representations further is the blowup in the number of parameters:

if we aim to estimate a dictionary D ∈ RK×n using an algorithm like K-means or

sparse coding, then for n input features, a complete representation with K = n fea-

tures requires a matrix of n2 weights—one weight for every feature and input. This

blowup leads to a number of practical problems: (i) it becomes difficult to represent,

and even more difficult to update, the entire matrix D during learning, (ii) feature

extraction becomes extremely slow, and (iii) many algorithms and techniques (like

whitening and local contrast normalization) are difficult to generalize to large, un-

structured input domains. As mentioned above, we can solve this problem by limiting

the “fan in” to each feature by connecting each feature extractor to a small recep-

tive field of inputs. In this chapter we will introduce a method that chooses these

receptive fields automatically during unsupervised training of deep feature represen-

tations. The scheme can operate without prior knowledge of the underlying data

and is applicable to virtually any UFL pipeline, including any of the unsupervised

feature learning methods introduced previously in this thesis. In our experiments,

we will show that when this method is combined with our K-means-based pipeline

from Chapter 3, we can construct highly scalable systems that achieve even higher

accuracy on CIFAR-10 and STL datasets.

It may not be clear yet why it is necessary to have an automated way to choose

receptive fields since, after all, it is already common practice to pick receptive fields

simply based on prior knowledge. However, this type of solution is insufficient for

large, deep representations. For instance, in local receptive field architectures for

image data, we typically train a bank of linear filters Θ = (D) using an unsupervised

learning algorithm and then define features Φ(x; Θ) to be extracted from small image

patches. These features can then be extracted from sub-patches of a larger image

in a convolutional manner. As an example, if we train 100 6-by-6 pixel filters and

convolve them with a 32-by-32 pixel input, then we will get a 27-by-27-by-100 array

of features. Each 2D grid of 27-by-27 feature responses for a single filter is frequently

called a “map” [51, 12]. Though there are still spatial relationships amongst the

feature values within each map, it is not clear how two features in different maps are
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related. Thus when we train a second layer of features we must typically resort to

connecting each feature to every input map or to a random subset of maps [40, 12]

(though we may still take advantage of the remaining spatial organization within

each map). At even higher layers of deep feature hierarchies, this problem becomes

extreme: our array of responses will have very small spatial resolution (e.g., 1-by-1)

yet will have a large number of maps and thus we can no longer make use of spatial

receptive fields. This problem is exacerbated further when we try to use very large

numbers of maps which are often necessary to achieve top performance [12, 16].

In this chapter we propose a way to address the problem of choosing receptive fields

that is not only a flexible addition to feature learning pipelines, but that can scale up

to the extremely large networks of features used in state-of-the-art systems. In our

method we select local receptive fields that group together (pre-trained) lower-level

features according to a pairwise similarity metric between features. Each receptive

field is constructed using a greedy selection scheme so that it contains features that are

similar according to the similarity metric. Given the learned receptive fields (groups of

features) we can subsequently apply an unsupervised learning method independently

over each receptive field. Using this method in conjunction with the pipeline proposed

in Chapter 3, we demonstrate the ability to train multi-layered networks of features

using only spherical K-means as our unsupervised learning module. All of our results

are achieved without supervised fine-tuning1, and thus rely heavily on the success of

the unsupervised learning procedure. Nevertheless, this system attains performance

on the CIFAR-10 and STL datasets better than the best contemporary results.

4.2 Related Work

While much work has focused on different representations for deep networks, an

orthogonal line of work has investigated the effect of network structure on performance

of these systems. Much of this line of inquiry has sought to identify the best choices of

network parameters such as size, activation function, pooling method and so on [40,

1That is, we do not need to tune the parameters Θ(1),Θ(2), . . . jointly using a supervised objective,
which has been necessary to achieve improved results for deep representations in the past.
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6, 58, 81], similar to our study in Chapter 3. Through these investigations a handful

of key factors have been identified that strongly influence performance (such as the

type of pooling, activation function, and number of features). These studies, however,

do not address the finer-grained questions of how to choose the internal structure of

deep representations directly.

Other authors have tackled the problem of architecture selection more generally.

One approach is to search for the best architecture. For instance, Saxe et al. [80]

propose using randomly initialized networks (forgoing the expense of training) to

search for a high-performing structure. Pinto et al. [66], on the other hand, use a

screening procedure to choose from amongst large numbers of randomly composed

networks, collecting the best performing networks.

More powerful modeling and optimization techniques have also been used for

learning the structure of deep networks in-situ. For instance, Adams et al. [1] use

a non-parametric Bayesian prior to jointly infer the depth and number of hidden

units at each layer of a deep belief network during training. Zhang and Chan [102]

use an L1 penalization scheme to zero out many of the connections in an otherwise

bipartite structure. Unfortunately, these methods require optimizations that are as

complex or expensive as the algorithms they augment, thus making it difficult to

achieve computational gains from any architectural knowledge discovered.

In this chapter, the receptive fields will be built by analyzing the relationships

between feature responses rather than relying on prior knowledge of their organiza-

tion. A popular alternative solution is to impose topographic organization on the

feature outputs during training. In general, these learning algorithms train a set of

features (usually linear filters) such that features nearby in a pre-specified topography

share certain characteristics. The Topographic ICA algorithm [37], for instance, uses

a probabilistic model that implies that nearby features in the topography have corre-

lated variances (i.e., energies). This statistical measure of similarity is motivated by

empirical observations of neurons and has been used in other analytical models [82].

Similar methods can be obtained by imposing group sparsity constraints so that fea-

tures within a group tend to be on or off at the same time [27, 29]. These methods
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have many advantages but require us to specify a topography first, then solve a large-

scale optimization problem in order to organize our features according to the given

topographic layout. This will typically involve many epochs of training and repeated

feature evaluations in order to succeed. Here, we perform this procedure in reverse:

our features are pre-trained using whatever UFL method we like, then we will extract

a useful grouping of the features post-hoc. This approach has the advantage that

it can be scaled to large distributed clusters and is very generic, allowing us to po-

tentially use different types of grouping criteria and learning strategies in the future

with few changes. In that respect, part of the novelty in this approach is to convert

existing notions of topography and statistical dependence in deep representations into

a highly scalable “wrapper method” that can be re-used with other algorithms.

4.3 Algorithm Details

In this section we will describe our approach to selecting the connections between

the feature values φ and their lower-level inputs x (i.e., how to “learn” the receptive

field structure of the high-level features) from an arbitrary set of data based on a

particular pairwise similarity metric: square-correlation of feature responses.2 We

will then explain how our method integrates with a typical learning pipeline and, in

particular, how to couple our algorithm with the feature learning system proposed in

Chapter 3.

In what follows, we assume that we are given a dataset X of input vectors x(i), i ∈
{1, . . . ,m}, with elements x

(i)
j . These vectors may be raw values (e.g., pixel values)

but will usually be features computed by lower layers of a deep network.3

2Though we use this metric throughout, and propose some extensions, it can be replaced by many
other choices such as the mutual information between two features.

3We will often refer to the elements x1, x2, . . . as “inputs” or “input features” to disambiguate
from φ1, φ2, . . ., which we refer to as “output features” or simply “features”.
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4.3.1 Similarity of Input Features

In order to group two input features together, we must first define a similarity metric

between them. Ideally, we should group together input elements whos values are

closely related (e.g., because they respond to similar patterns or tend to appear to-

gether). By putting these input features in the same receptive field, we allow their

relationship to be modeled more finely by higher level learning algorithms. Mean-

while, it also makes sense to model seemingly independent subsets of input features

separately, and thus we would like such inputs to end up in different receptive fields.

A number of criteria might be used to quantify this type of relationship. One

popular choice is “square correlation” of feature responses, which partly underpins

the Topographic ICA [37] algorithm. The idea is that if our dataset X consists of

linearly uncorrelated input features (as can be obtained by applying a whitening

procedure), then a measure of the higher-order dependence between two inputs can

be obtained by looking at the correlation of their energies (squared responses). In

particular, if we have E [x] = 0 and E
[
xx>

]
= I, then we will define the similarity

between inputs xj and xk as the correlation between the squared responses:

S[xj, xk] = corr(x2
j , x

2
k) = E

[
x2
jx

2
k − 1

]
/
√

E
[
x4
j − 1

]
E [x4

k − 1].

This metric is easy to compute by first whitening our input dataset with ZCA4 whiten-

ing [4], then computing the pairwise similarities between all of the input features:

Sj,k ≡ SX [xj, xk] ≡
∑

i x
(i)
j

2
x

(i)
k

2
− 1√∑

i(x
(i)
j

4
− 1)

∑
i(x

(i)
k

4
− 1)

. (4.1)

This computation is completely practical for fewer than 5000 input features. For

fewer than 10000 inputs it is feasible but somewhat arduous: we must not only hold

a 10000x10000 matrix in memory but we must also whiten our 10000-dimensional

dataset—requiring a singular value or eigenvalue decomposition. We will explain

4If E
[
xx>

]
= Σ = V DV >, ZCA whitening uses the transform P = V D−1/2V > to compute the

whitened vector x̂ as x̂ = Px.
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how this expense can be avoided in Section 4.3.3, after we describe our receptive field

learning procedure.

4.3.2 Selecting Local Receptive Fields

We now assume that we have available to us the matrix of pairwise similarities between

input features Sj,k computed as above. Our goal is to construct “receptive fields”: sets

of input features Rn, n = 1, . . . , N whose responses will become the inputs to one or

more higher-level features. We would like for each Rn to contain pairs of features with

large values of Sj,k. We might achieve this using various agglomerative or spectral

clustering methods, but we have found that a simple greedy procedure works well: we

choose one feature as a seed, and then group it with its nearest neighbors according

to the similarities Sj,k. In detail, we first select N rows, j1, . . . , jN , of the matrix

S at random (corresponding to a random choice of features xjn to be the seed of

each group). We then construct a receptive field Rn that contains the features xk

corresponding to the top T values of Sjn,k. We typically use T = 200, though our

results are not too sensitive to this parameter. Upon completion, we have N (possibly

overlapping) receptive fields Rn that can be used during training of the next layer of

features.

4.3.3 Approximate Similarity

Computing the similarity matrix Sj,k using square correlation is practical for fairly

large numbers of input features using the obvious procedure given above. However,

if we want to learn receptive fields over huge numbers of input features (as arise, for

instance, when we use hundreds or thousands of maps), we may often be unable to

compute S directly. For instance, as explained above, if we use square correlation

as our similarity criterion then we must perform whitening over a large number of

features.

Note, however, that the greedy grouping scheme requires only N rows of the

matrix. Thus, provided we can compute Sj,k for a single pair of input features, we

can avoid storing the entire matrix S. To avoid performing the whitening step for all
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of the input features, we can instead perform pair-wise whitening between features.

Specifically, to compute the squared correlation of xj and xk, we whiten the jth and

kth inputs of X together (independently of all other columns), then compute the

square correlation between the whitened values x̂j and x̂k. Though this procedure is

not equivalent to performing full whitening, it appears to yield effective estimates for

the squared correlation between two features in practice. For instance, for a given

“seed”, the receptive field chosen using this approximation typically overlaps with

the “true” receptive field (computed with full whitening) by 70% or more. More

importantly, our final results (Section 4.4) are unchanged compared to the exact

procedure.

Compared to the “brute force” computation of the similarity matrix, the approxi-

mation described above is very fast and easy to distribute across a cluster of machines.

Specifically, the 2x2 ZCA whitening transform for a pair of features can be computed

analytically, and thus we can express the pair-wise square correlations analytically as

a function of the original inputs without having to numerically perform the whitening

on all pairs. If we assume that all of the input features of x(i) are zero-mean and unit

variance, then we have:

x̂
(i)
j =

1

2
((γjk + βjk)x

(i)
j + (γjk − βjk)x(i)

k )

x̂
(i)
k =

1

2
((γjk − βjk)x(i)

j + (γjk + βjk)x
(i)
k )

where βjk = (1−αjk)−1/2, γjk = (1+αjk)
−1/2 and αjk is the correlation between xj and

xk. Substituting x̂(i) for x(i) in Equation 4.1 and expanding yields an expression for the

similarity Sj,k in terms of the pair-wise moments, E
[
x4
j

]
,E
[
x3
jxk
]
,E
[
x2
jx

2
k

]
,E [xjx

3
k] ,

and E [x4
k], for each pair of features. We can compute these statistics in a single pass

over the dataset, compute Sj,k, and then select the receptive fields based on the

results. Many alternative methods (e.g., Topographic ICA) would require some form

of distributed optimization algorithm to achieve a similar result, which requires many

feed-forward and feed-back passes over the dataset. In contrast, the above method is

typically about as costly as a single feed-forward pass (to compute the feature values

x(i)) and is thus very fast compared to other conceivable solutions.
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4.3.4 Learning Architecture

For our experiments, we will continue using the architecture of Chapter 3, which we

previously applied with success to image recognition problems. Specifically, we will

use one of the top-performing systems from Section 3.3.2: spherical K-means to train

the parameters Θ(l) for the l’th layer of features, and a soft threshold nonlinearity

for our feature encoding. In this section we will briefly review this specific system

as it will be used in conjunction with our receptive field learning approach, but it

should be noted that our basic method is equally applicable to many other choices of

processing pipeline and unsupervised learning algorithm.

Let x(i), i = 1, . . . ,m be a dataset composed of a large number of 3-channel (RGB),

6-by-6 pixel image patches extracted from random locations in unlabeled training

images. Then our system from Section 3.3.2 applies the following procedure to learn

a new representation of these image patches:

1. Normalize each example x(i) by subtracting out the mean and dividing by the

norm. Apply a ZCA whitening transform to x(i) to yield x̂(i).

2. Apply spherical K-means to obtain a (normalized) set of linear filters (“dictio-

nary”), Θ = (D).

3. Define a mapping from the whitened input vectors x̂(i) to output features given

the dictionaryD. We use the soft threshold encoding that computes each feature

φ
(i)
j as φ

(i)
j = max{0,D(j)>x̂(i) − α} for a fixed threshold α.

The computed feature values for each example, φ(i), become the new representation

for the patch x(i). We then apply the feature extractor Φ(x; Θ) to a larger image

convolutionally as described in Section 3.2.1 with a stride s = 1.

Clearly we can modify this procedure to use choices of receptive fields other than

6-by-6 patches of images. Concretely, given a 32-by-32 pixel image, we could break the

vector of 3072 pixel intensities into arbitrary overlapping subsets Rn where each Rn

includes a subset of the RGB values of the whole image. Then we apply the procedure

outlined above to each set of inputs Rn independently, followed by concatenating all

of the extracted features. In general, if X is now any training set (not necessarily
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image patches), we can define XRn as the training set X reduced to include only those

inputs from one receptive field, Rn (that is, we simply discard all of the input features

from X that do not correspond to features in Rn). We may then apply the feature

learning and extraction methods above to each reduced dataset XRn separately, just

as we would for the hand-chosen patch receptive fields used in previous work.

4.3.5 Feature Hierarchy Details

The above components, conceptually, allow us to lump together arbitrary types and

quantities of data into our unlabeled training set and then automatically partition

them into receptive fields in order to learn higher-level features. The automated re-

ceptive field selection can choose receptive fields that span multiple feature maps,

but the receptive fields will often span only small spatial areas (since features ex-

tracted from locations far apart tend to appear nearly independent). Thus, we will

also exploit spatial knowledge to enable us to use large numbers of maps rather than

trying to treat the entire input as unstructured data. Note that this is mainly to

reduce the expense of feature extraction and to allow us to use spatial pooling (which

introduces some invariance between layers of features); the receptive field selection

method itself can be applied to hundreds of thousands of inputs. We now detail the

network structure used for our experiments that incorporates this structure.

First, there is little point in applying the receptive field learning method to the

raw pixel layer. Thus, we use 6-by-6 pixel receptive fields with a step size s = 1 pixel

between them for the first layer of features just as in our previous experiments. If

the first layer contains K1 maps (i.e., K1 dictionary elements learned by K-means),

then a 32-by-32 pixel color image takes on a 27-by-27-by-K1 representation after the

first layer of (convolutional) feature extraction. Second, depending on the unsuper-

vised learning module, it can be difficult to learn features that are invariant to image

transformations like translation. This is handled traditionally by incorporating “pool-

ing” layers [6, 51]. Here we use average pooling over adjacent, disjoint 3-by-3 spatial

blocks. Thus, applied to the 27-by-27-by-K1 representation from layer 1, this yields

a 9-by-9-by-K1 pooled representation.
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After extracting the 9-by-9-by-K1 pooled representation from the first two layers,

we apply our receptive field selection method. We could certainly apply the algorithm

to the entire high-dimensional representation. As explained above, it is useful to

retain spatial structure so that we can perform spatial pooling and convolutional

feature extraction. Rather than applying our algorithm to the entire input, we apply

the receptive field learning to 2-by-2 spatial regions within the 9-by-9-by-K1 pooled

representation. Thus the receptive field learning algorithm must find receptive fields

to cover 2 × 2 × K1 inputs. The next layer of feature learning then operates on

each receptive field within the 2-by-2 spatial regions separately. This is similar to

the structure commonly employed by prior work [12, 40], but here we are able to

choose receptive fields that span several feature maps in a deliberate way while also

exploiting knowledge of the spatial structure.

In our experiments we will benchmark our system on image recognition datasets

using K1 = 1600 first layer maps and K2 = 3200 second layer maps learned from

N = 32 receptive fields. When we use three layers, we apply an additional 2-by-

2 average pooling stage to the layer 2 outputs (with stride of 1) and then train

K3 = 3200 third layer maps (again with N = 32 receptive fields). To construct

a final feature representation for classification, the outputs of the first and second

layers of trained features are average-pooled over quadrants as in our previous results

(Section 3.2.1). Thus, our first layer of features result in 1600 × 4 = 6400 values in

the final feature vector, and our second layer of features results in 3200× 4 = 12800

values. When using a third layer, we use average pooling over the entire image to yield

3200 additional feature values. As in our previous results, we combine the features

from all of the pooling stages into a single long vector and use these for training and

testing in a L2-SVM (Section 3.2.1).

4.4 Experimental Results

We again benchmark this method on visual recognition problems: the CIFAR-10 and

STL datasets. In addition to training on the full CIFAR training set, we also provide

results of our method when we use only 400 training examples per class to compare
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with other single-layer results in Figure 3.6.

The CIFAR-10 examples are all 32-by-32 pixel color images. For the STL dataset,

we downsample the (96 pixel) images to 32 pixels. We use the pipeline detailed in

Section 4.3.4, with spherical K-means to train up to 3 layers. For each set of experi-

ments we provide test results for 1 to 3 layers of features, where the receptive fields

for the 2nd and 3rd layers of features are learned using the method of Section 4.3.2

and square-correlation for the similarity metric.

For comparison, we also provide test results in each case using several alternative

receptive field choices. In particular, we have also tested architectures where we use

a single receptive field (N = 1) where R1 contains all of the inputs, and random

receptive fields (N = 32) where Rn is filled according to the same algorithm as in

Section 4.3.2, but where the matrix S is set to random values. The first method

corresponds to the “completely connected”, brute-force case described earlier, while

the second is the “randomly connected” case. Note that in these cases we use the same

spatial organization outlined in Section 4.3.5. For instance, the completely-connected

layers are connected to all the maps within a 2-by-2 spatial window. Finally, we

also provide test results using a large 1st layer representation (K1 = 4800 maps) to

verify that the performance gains we achieve are not merely the result of passing more

projections of the data to the supervised classification stage.

4.4.1 Comparison on CIFAR-10

Learned 2nd-layer Receptive Fields and Features

Before we look at classification results, we first inspect the learned features and their

receptive fields from the second layer (i.e., the features that take the pooled first-layer

responses as their input). Figure 4.1 shows two typical examples of receptive fields

chosen by our method when using square-correlation as the similarity metric. In

both of the examples, the receptive field incorporates filters with similar orientation

tuning but varying phase, frequency and, sometimes, varying color. The position of

the filters within each window indicates its location in the 2-by-2 region considered

by the learning algorithm. As we might expect, the filters in each group are visibly
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similar to those placed together by topographic methods like TICA that use related

criteria.

Figure 4.1: Two examples of receptive fields chosen from 2-by-2-by-1600 image rep-
resentations. Each box shows the low-level filter and its position (ignoring pooling)
in the 2-by-2 area considered by the algorithm. Only the most strongly dependent
features from the T = 200 total features are shown. (Best viewed in color.)

Figure 4.2: Most inhibitory (left) and excitatory (right) filters for two 2nd-layer
features. (Best viewed in color.)

We also visualize some of the higher-level features constructed by the vector quan-

tization algorithm when applied to these two receptive fields. The filters obtained from

VQ assign weights to each of the lower level features in the receptive field. Those

with a high positive weight are “excitatory” inputs (tending to lead to a high response

when these input features are active) and those with a large negative weight are “in-

hibitory” inputs (tending to result in low filter responses). The 5 most inhibitory

and excitatory inputs for two learned features are shown in Figure 4.2 (one from each

receptive field in Figure 4.1). For instance, the two most excitatory filters of feature

(a) tend to select for long, narrow vertical bars, inhibiting responses of wide bars.

Classification Results

We have tested our method on the task of image recognition using the CIFAR training

and testing labels. Table 4.1 details our results using the full CIFAR dataset with

various settings. We first note the comparison of our 2nd layer results with the
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Table 4.1: Results on CIFAR-10 (full)

Architecture Accuracy (%)
1 Layer 78.3%
1 Layer (4800 maps) 80.6%
2 Layers (Single RF) 77.4%
2 Layers (Random RF) 77.6%
2 Layers (Learned RF) 81.2%
3 Layers (Learned RF) 82.0%
Spherical K-means (6000 maps) [17] 81.5%
Conv. DBN [46] 78.9%
Deep NN [12] 80.49%

Table 4.2: Results on CIFAR-10 (400 ex. per class)

Architecture Accuracy (%)
1 Layer 64.6% (±0.8%)
1 Layer (4800 maps) 63.7% (±0.7%)
2 Layers (Single RF) 65.8% (±0.3%)
2 Layers (Random RF) 65.8% (±0.9%)
2 Layers (Learned RF) 69.2% (±0.7%)
3 Layers (Learned RF) 70.7% (±0.7%)
Sparse coding (1 layer) [17] 66.4% (±0.8%)
VQ (1 layer) [17] 64.4% (±1.0%)

alternative of a single large 1st layer using an equivalent number of maps (4800) and

see that, indeed, our 2nd layer created with learned receptive fields performs better

(81.2% vs. 80.6%). We also see that the random and single receptive field choices

work poorly, barely matching the smaller single-layer network. This confirms our

belief that grouping together similar features is necessary to allow our unsupervised

learning module (spherical K-means) to identify useful higher-level structure in the

data. Finally, with a third layer of features, we achieve results exceeding our previous

high (Table 3.4) on the full CIFAR dataset with 82.0% accuracy.

It is difficult to assess the strength of feature learning methods on the full CIFAR
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Table 4.3: Classification Results on STL-10

Architecture Accuracy (%)
1 Layer 54.5% (±0.8%)
1 Layer (4800 maps) 53.8% (±1.6%)
2 Layers (Single RF) 55.0% (±0.8%)
2 Layers (Random RF) 54.4% (±1.2%)
2 Layers (Learned RF) 58.9% (±1.1%)
3 Layers (Learned RF) 60.1% (±1.0%)
Sparse coding (1 layer) [17] 59.0% (±0.8%)
VQ (1 layer) [17] 54.9% (±0.4%)

dataset because the performance may be attributed to the success of the supervised

SVM training and not the unsupervised feature training. For this reason we have

also performed classification using 400 labeled examples per class.5 Our results for

this scenario are in Table 4.2. There we see that our 2-layer architecture significantly

outperforms our 1-layer system as well as the two 1-layer architectures developed in

Section 3.3.2. As with the full CIFAR dataset, we note that it was not possible to

achieve equivalent performance by merely expanding the first layer or by using either

of the alternative receptive field structures (which, again, make minimal gains over a

single layer).

4.4.2 Comparison on STL-10

Finally, we also tested our algorithm on the STL-10 dataset [16]. Compared to

CIFAR, STL provides many fewer labeled training examples (allowing 100 labeled in-

stances per class for each training fold). Instead of relying on labeled data, one tries

to learn from the provided unlabeled dataset, which contains images from a distribu-

tion that is similar to the labeled set but broader. We used the same architecture for

this dataset as for CIFAR, but rather than train our features each time on the labeled

training fold (which is too small), we use 20000 examples taken from the unlabeled

dataset. Our results are reported in Table 4.3.

5Our networks are still trained unsupervised from the entire training set.
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Here we see increasing performance with higher levels of features once more,

achieving state-of-the-art performance with our 3-layered model. This is especially

notable since the higher level features have been trained purely from unlabeled data.

We note, one more time, that none of the alternative architectures (which roughly

represent common practice for training deep networks) makes significant gains over

the single layer system.

4.5 Summary

This chapter presented a mechanism to automatically learn the “receptive fields” used

in deep feature representations. Though our previous systems (and much of prior art)

rely on known spatial structure to restrict the connectivity of input features to out-

put features, we showed that this becomes impractical when using an extremely large

number of maps (i.e., very large choices of K in our unsupervised learning stage)

since many scalable algorithms like K-means produced unorganized features whose

relationships are not clear (unlike much more expensive topographic methods). To

remedy this problem, we proposed to use pair-wise dependency tests amongst input

features to greedily group inputs into receptive fields. Once these groups are iden-

tified, each receptive field is used to train new higher-level features that are later

concatenated. In our results, we showed that this approach was not only superior to

other “obvious” choices of connectivity but also better than very large single-layer

systems that were consistently successful in benchmarks. Importantly, this method is

a convenient “wrapper” that can be used as an off-the-shelf tool combined with any

choice of UFL algorithm to help manage extremely large, higher-level feature repre-

sentations where more traditional spatio-temporal local receptive fields are unhelpful

or impossible to employ successfully.



Chapter 5

Application to Scene Text

Recognition

5.1 Introduction

Detection of text and identification of characters in scene images is a challenging visual

recognition problem. As in much of computer vision, the challenges posed by the com-

plexity of these images have been combated with hand-designed features [20, 97, 92]

and models that incorporate various pieces of high-level prior knowledge [91, 64]. In

this chapter, we produce results from our feature learning systems applied to prob-

lems in this domain. Thus we attempt to use the algorithms developed in Chapters 2

& 3 to learn the necessary features directly from the data as an alternative to using

purpose-built, text-specific features or models. Among our results, we have achieved

performance among the best known on the ICDAR 2003 character recognition dataset

using essentially an off-the-shelf instantiation of the pipeline in Chapter 3.

In contrast to more classical OCR problems, where the characters are typically

monotone on fixed backgrounds, character recognition in scene images is potentially

far more complicated due to the many possible variations in background, lighting,

texture and font. As a result, building complete systems for these scenarios requires

us to invent representations that account for all of these types of variations. Indeed,

significant effort has gone into creating such systems, with top performers integrating

71
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dozens of cleverly combined features and processing stages [64]. In contrast, the main

goal of this thesis has been to study and identify promising algorithms that can learn

higher level representations of data automatically for new tasks, thus avoiding some of

this engineering effort. Scene text recognition is an interesting type of problem in this

respect, since feature learning systems may be especially valuable when specialized

features are clearly needed but it is difficult to build them by hand.

In this chapter, we will aim to determine to what extent the basic systems de-

veloped in earlier chapters may be useful in scene text detection (where we try to

identify regions of text in an image) and character recognition (where we try to clas-

sify a small image as one of several characters in an alphabet). Specifically, we will

again employ a system like the ones in Section 3.3.2 to learn image features for these

tasks and then a supervised classification stage. Among our results, we will show the

effect on recognition performance as we increase the number of learned features, and

that it is possible to obtain performance comparable to or better than state-of-the-art

systems.

5.2 Related Work

Scene text recognition has generated significant interest from many branches of re-

search. While it is now possible to achieve extremely high performance on tasks such

as digit recognition in controlled settings [68], the task of detecting and labeling char-

acters in complex scenes remains an active research topic. However, many of the meth-

ods used for scene text detection and character recognition are predicated on purpose-

built systems specific to the new task. For text detection, for instance, solutions have

ranged from simple off-the-shelf classifiers trained on hand-coded features [11] to

multi-stage pipelines combining many different algorithms [63, 64]. Common features

include edge features, texture descriptors, and shape contexts [20]. Meanwhile, var-

ious flavors of probabilistic model have also been applied [91, 93, 25], folding many

forms of prior knowledge into the detection and recognition system.

On the other hand, some systems with highly flexible learning schemes attempt

to learn all necessary information from labeled data with minimal prior knowledge.
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Figure 5.1: A small subset of the dictionary elements learned from grayscale, 8-by-8
pixel image patches extracted from the ICDAR 2003 dataset.

For instance, multi-layered neural network architectures have been applied to char-

acter recognition and are competitive with other leading methods [77]. This mirrors

the success of such approaches in more traditional document and hand-written text

recognition systems [50].

5.3 Feature Learning Architecture

The system we use to learn and extract features for this application is essentially

identical to the one used in Section 3.3.2 with straight-forward changes to the param-

eters. Specifically, we use spherical K-means for the unsupervised learning algorithm,

and again the soft-threshold function for Φ(x; Θ). We use the convolutional archi-

tecture proposed in Section 2.2 with receptive field size r = 8 pixels and step size

s = 1 pixel. That is, we use K-means to train dictionary parameters Θ = (D) from

8-by-8 pixel grayscale patches cropped from images of scene text, and then use the

learned parameters to extract features using Φ(x; Θ) from 8-by-8 sub-patches of a

larger image.

Shown in Figure 5.1 are a set of dictionary elements (columns of D visualized

as patches) resulting from application of spherical K-means to whitened patches ex-

tracted from small images obtained from the ICDAR 2003 dataset. Note that the fea-

tures are specialized to the data—some elements correspond to short, curved strokes

rather than simply to edges since such features are very common in images with text

compared to natural images.
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5.3.1 Feature extraction

Both our detector and character classifier consider 32-by-32 pixel images. To com-

pute the feature representation of the 32-by-32 image, we compute the representation

described above for every 8-by-8 sub-patch of the input, yielding a 25-by-25-by-K

representation. This representation is then spatially pooled (as in Section 3.2.1) over

9 blocks in a 3-by-3 grid over the image, yielding a final feature vector φ with 9K

features for this image.

5.3.2 Text detector training

For text detection, we train a binary classifier that aims to distinguish 32-by-32

windows that contain text from windows that do not. We build a training set for

this classifier by extracting 32-by-32 windows from the ICDAR 2003 training dataset,

using the word bounding boxes to decide whether a window is text or non-text.1

With this procedure, we harvest a set of 60000 32-by-32 windows for training (30000

positive, 30000 negative) from the ICDAR training data. We then use the feature

extraction method described above to convert each image into a 9K-dimensional

feature vector. These feature vectors and the ground-truth “text” and “not text”

labels acquired from the bounding boxes are then used to train a linear SVM. We will

later use our feature extractor and the trained classifier for detection in the “sliding

window” fashion.

5.3.3 Character classifier training

For character classification, we also use a fixed-sized input image of 32-by-32 pixels.

Unlike the detector, however, the images are not “text” and “non-text” images, but

images of cropped characters acquired from labeled datasets.2 To build a character

1We define a window as “text” if 80% of the window’s area is within a text region, and the
window’s width or height is within 30% of the width or height (respectively) of the ground-truth
region. The latter condition ensures that the detector tends to detector characters of size similar to
the window.

2Typically, input images from public datasets are already cropped to the boundaries of the
character. Since our classifier uses a fixed-sized window, we re-cropped characters from the original
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(a) Distorted ICDAR examples (b) Synthetic examples

Figure 5.2: Augmented training examples.

recognizer, we extract features from these 32-by-32 images and then train a 63-class

(26 characters, upper and lower case, 10 digits) SVM classifier using the 1-versus-all

approach. Other than the choice of input data and class labels, the feature extraction

procedure is identical to the one used for the detection system.

Since we can produce large numbers of features using our feature learning system,

over-fitting becomes a serious problem when training from the (relatively) small char-

acter datasets currently available. To help mitigate this problem, we have combined

data from multiple sources. In particular, we have compiled our training data from

the ICDAR 2003 training images [55], Weinman et al.’s sign reading dataset [91], and

the English subset of the Chars74k dataset [20]. Our combined training set contains

approximately 12400 labeled character images.

With large numbers of features, it is useful to have even more data. To satisfy these

needs, we have also experimented with synthetic augmentations of these datasets. In

particular, we have added synthetic examples that are copies of the ICDAR training

samples with random distortions and image filters applied (see Figure 5.2(a)), as well

as artificial examples of rendered characters blended with random scenery images

(Figure 5.2(b)). With these examples included, our dataset includes a total of 49200

images using an enclosing window of the proper size.
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images.

5.4 Detection and Recognition Experiments

We now present experimental results achieved with the system above, demonstrating

the impact of being able to train increasing numbers of features. Specifically, for

detection and character recognition, we trained our classifiers with increasing numbers

of learned features (increasing values of K) and in each case evaluated the results on

the ICDAR 2003 test sets for text detection and character recognition.

5.4.1 Detection

To evaluate our detector over a large input image, we take the classifier trained as in

Section 5.3.2 and compute the features and classifier output for each 32-by-32 window

of the image. We perform this process at multiple scales and then, for each location in

the original image assign it a score equal to the maximum classifier output achieved at

any scale. By this mechanism, we label each pixel with a score according to whether

that pixel is part of a block of text. These scores are then thresholded to yield binary

decisions at each pixel. By varying the threshold and using the ICDAR bounding

boxes as per-pixel labels, we sweep out a precision-recall curve and report the area

under the curve as our final performance measure.

Figure 5.3 plots the area under the precision-recall curve for our detector for vary-

ing numbers of features. It is seen there that performance improves consistently as we

increase the number of features: our detector improves from roughly 0.3 AUC, to 0.45

AUC simply by including more features. While our performance is not yet compara-

ble to top performing systems it is notable that our approach included virtually no

prior knowledge. In contrast, Pan et al.’s recent state-of-the-art system [64] involves

multiple highly tuned processing stages incorporating several sets of expert-chosen

features.

Note that these numbers are per-pixel accuracies (i.e., the performance of the

detector in identifying, for a single window, whether it is text or non-text). In practice,
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Figure 5.3: Area under PR curve as a function of number of learned features.

(a) ICDAR test image (b) Text detector scores

Figure 5.4: Example text detection classifier outputs.

the predicted labels of adjacent windows are highly correlated and thus the outputs

include large contiguous “clumps” of positively and negatively labeled windows that

could be passed on for more processing. A typical result generated by our detector is

shown in Figure 5.4.
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Figure 5.5: Character classification accuracy (62-way) on ICDAR 2003 test set as a
function of the number of learned features.

Table 5.1: Test recognition accuracy on ICDAR 2003 character sets. (Dataset-
Classes)

Algorithm Test-62 Sample-62 Sample-36
Neumann and Matas, 2010 [59] 67.0%7 - -
Yokobayashi et al., 2006 [97] - 81.4% -
Saidane and Garcia, 2007 [77] - - 84.5%
Our system 81.7% 81.4% 85.5%

5.4.2 Character Recognition

As with the detectors, we trained our character classifiers with varying numbers of

features K on the combined training set described in Section 5.3. We then tested

this classifier on the ICDAR 2003 test set, which contains 5198 test characters from

62 classes (10 digits, 26 upper- and 26 lower-case letters). The average classifica-

tion accuracy on the ICDAR test set for increasing numbers of features is plotted in

7Achieved without pre-segmented characters.
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Figure 5.5. Again, we see that accuracy climbs as a function of the number of fea-

tures. Note that the accuracy for the largest system (1500 features) is the highest, at

81.7% for the 62-way classification problem. This is comparable or superior to other

(purpose-built) systems tested on the same problem. For instance, the system in [97],

achieves 81.4% on the smaller ICDAR “sample” set where we, too, achieve 81.4%.

The authors of [77], employing a supervised convolutional network, achieve 84.5%

on this dataset when it is collapsed to a 36-way problem (removing case sensitivity).

In that scenario, our system achieves 85.5% with 1500 features. These results are

summarized in comparison to other work in Table 5.1.

5.5 Summary

In this chapter we presented results from an application of our feature learning

pipeline to scene text detection and character recognition. The basic system we

used is essentially identical to the best performer from Chapter 3, emphasizing that

these types of learning schemes can successfully construct feature representations that

perform well on new, realistic tasks. Interestingly, the basic phenomenon identified

earlier that showed increasing performance with larger numbers of features appears

to hold for text detection and character recognition as well. (See, e.g., Figure 3.3.)

Thus, while much research has focused on developing by hand the models and fea-

tures used in scene-text applications, our results point out that it may be possible to

achieve high performance using a more automated and generic approach. With more

scalable and sophisticated feature learning algorithms currently being developed by

machine learning researchers, it is possible that the approaches pursued here might

achieve performance well beyond what is possible through other methods that rely

heavily on hand-coded prior knowledge.



Chapter 6

Emergence of Object-Selective

Features

6.1 Introduction

Previously in this thesis we have studied feature learning algorithms geared toward

constructing feature representations for supervised tasks. In our experiments and

application to scene text, we found that these algorithms were apparently able to

learn useful high-level features without labels. Yet in the end we trained our features

from labeled datasets (ignoring the labels) and used a supervised learning algorithm to

learn to detect patterns like object classes that the unsupervised learning algorithm is

not expected to find on its own. An interesting open question is whether unsupervised

feature learning algorithms of the sort proposed in Chapter 3 are able to construct

features, without the benefit of supervision, that can identify high-level concepts like

frequently-occurring object classes. It is already known that this can be achieved when

the dataset is sufficiently restricted that object classes are clearly defined (typically

closely cropped images) and occur very frequently [54, 100, 103]. In this chapter our

goal is to test whether unsupervised feature learning algorithms can achieve a similar

result without any supervision at all.

The setting we consider for our experiments is a challenging one. We have har-

vested a dataset of 1.4 million image thumbnails from YouTube and extracted roughly

80
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57 million 32-by-32 pixel patches at random locations and scales. These patches are

very different from those found in the labeled datasets like CIFAR-10 [45] used for

our other experiments. The overwhelming majority of patches in our dataset appear

to be random clutter. In the cases where such a patch contains an identifiable object,

it may well be scaled, arbitrarily cropped, or uncentered. As a result, it is very un-

clear what makes an “object class” in this type of patch dataset, and less clear that a

completely unsupervised learning algorithm could manage to create “object-selective”

features able to distinguish an object from the wide variety of clutter without some

other type of supervision.

In order to have some hope of success, we can identify several key properties that

our feature learning algorithm should likely have. First, since identifiable objects show

up very rarely, it is clear that we are obliged to train from extremely large datasets.

We have no way of controlling how often a particular object shows up and thus enough

data must be used to ensure that an object class is seen many times—often enough

that it cannot be disregarded as random clutter. Second, we are also likely to need

a very large number of features. Training too few features will cause us to “under-

fit” the distribution, forcing the learning algorithm to ignore rare events like objects.

Finally, we should aim to build features that incorporate invariance so that features

respond not just to a specific pattern (e.g., an object at a single location and scale),

but to a range of patterns that collectively belong to the same object class (e.g.,

the same object seen at many locations and scales). Unfortunately, these desiderata

are difficult to achieve at once: typical off-the-shelf methods for building invariant

hierarchies of features are not sufficiently scalable to be able to train many thousands

of features from our 57 million patch dataset using our cluster of 30 machines.

In the preceding chapters we have already identified a learning algorithm (spherical

K-means) capable of training large numbers of selective features from large datasets.

That is, we are able to train many thousands of linear filters that respond whenever

a given input appears similar to the filter. In this chapter, we propose a similarly

scalable algorithm for building invariant features that respond to a range of related

patterns. Surprisingly, we find that despite the simplicity of these algorithms we

are nevertheless able to discover high-level features sensitive to the most commonly
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occurring object class present in our dataset: human faces. In fact, we find that

these features are better face detectors than a linear filter trained from labeled data,

achieving up to 86% AUC compared to 77% on labeled diagnostic data. Thus, our

results emphasize that not only can unsupervised feature learning algorithms discover

object-selective features with no labeled data, but that such features can potentially

perform better than supervised detectors due to their deep, nonlinear representation.

A key point of these experiments is that the basic behavior of our feature learning

algorithms is extremely similar to existing methods for building invariant feature

hierarchies, suggesting that other popular feature learning methods currently available

may also be able to achieve such results if run at large enough scale.

6.2 Algorithms

Our system is built on two separate learning modules: (i) an algorithm to learn

selective features (linear filters that respond to a specific input pattern), and (ii) an

algorithm to combine the selective features into invariant features (that respond to a

spectrum of gradually changing patterns). We will refer to these features as “simple

cells” and “complex cells” respectively, in analogy to previous work and to biological

cells [35] with (very loosely) related response properties. Following other popular

systems [72, 50, 37, 36] we will then use these two algorithms to build alternating

layers of simple cell and complex cell features.

6.2.1 Learning Selective Features (Simple Cells)

The first module in our learning system trains a bank of linear filters to represent

our selective “simple cell” features. For this purpose we use the spherical K-means

system of Chapters 3-5 which has been a very successful approach to large-scale

feature learning.

The algorithm is given a set of input vectors x(i) ∈ Rn, i = 1, . . . ,m. These

vectors are pre-processed by removing the mean and normalizing each example, then

performing PCA whitening. We then learn a dictionary Θ = D ∈ Rn×K of linear
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filters using spherical K-means.

Given the linear filters D, we then define the responses of the learned simple

cell features as s(i) = g(a(i)) where a(i) = D>x(i) and g(·) is a nonlinear activation

function. In our experiments we will typically use g(a) = |a| for the first layer of

simple cells, and g(a) = a for the second.1

6.2.2 Learning Invariant Features (Complex Cells)

To construct invariant complex cell features, a common approach is to create “pooling

units” that combine the responses of lower-level simple cells. In this work, we use

max-pooling units [72, 54, 81]. Specifically, given a vector of simple cell responses

s(i), we will train complex cell features whose responses are given by:

c
(i)
j = max

k∈Gj

s
(i)
k

where Gj is a set that specifies which simple cells the j’th complex cell should pool

over. Thus, the complex cell cj is an invariant feature that responds significantly to

any of the patterns represented by simple cells in its group.

Each group Gj should specify a set of simple cells that are, in some sense, similar

to one another. In convolutional neural networks [50], for instance, each group is

hard-coded to include translated copies of the same filter resulting in complex cell

responses cj that are invariant to small translations. Some algorithms [37, 27] fix the

groups Gj ahead of time then optimize the simple cell filters D so that the simple

cells in each group share a particular form of statistical dependence. In our system,

we will use linear correlation of the linear filter responses as our similarity metric,

E [akal], and construct groups Gj that combine similar features according to this

metric. Computing the similarity directly would normally require us to estimate the

correlations from data, but since the inputs x(i) are whitened we can instead compute

the similarity directly from the filter weights:

E [akal] = E
[
D(k)>x(i)x(i)>D(l)

]
= D(k)>D(l).

1This allows us to train roughly half as many simple cell features for the first layer.
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For convenience in the following, we will actually use the dissimilarity between fea-

tures, defined as d(k, l) = ||D(k) −D(l)||2 =
√

2− 2 ∗ E [akal].

To construct the groups G, we will use a version of single-link agglomerative

clustering to combine sets of features that have low dissimilarity according to d(k, l).2

To construct a single group G0 we begin by choosing a random simple cell filter, say

D(k), as the first member. We then search for candidate cells to be added to the group

by computing d(k, l) for each simple cell filter D(l) and add D(l) to the group if d(k, l)

is less than some limit τ . The algorithm then continues to expand G0 by adding any

additional simple cells that are closer than τ to any one of the simple cells already

in the group. This procedure continues until there are no more cells to be added, or

until the diameter of the group (the dissimilarity between the two furthest cells in

the group) reaches a limit ∆.3

This procedure can be executed, quite rapidly, in parallel for a large number of

randomly chosen simple cells to act as the “seed” cell, thus allowing us to train

many complex cells at once. Compared to the simple cell learning procedure, the

computational cost is extremely small even for our rudimentary implementation. In

practice, we often generate many groups (e.g., several thousand) and then keep only

a random subset of the largest groups. This ensures that we do not end up with many

groups that pool over very few simple cells (and hence yield complex cells cj that are

not especially invariant).

6.3 Algorithm Behavior

Though it seems plausible that pooling simple cells with similar-looking filters ac-

cording to d(k, l) as above should give us some form of invariant feature, it may not

yet be clear why this form of invariance is desirable. To explain, we will consider a

simple “toy” data distribution where the behavior of these algorithms is more clear.

Specifically, we will generate three heavy-tailed random variables X, Y, Z according

2Since the first layer uses g(a) = |a|, we actually use d(k, l) = min{||D(k)−D(l)||2, ||D(k)+D(l)||2}
to account for −D(l) and +D(l) being essentially the same feature.

3In our experiments, we will use τ = 0.3 for the first layer of complex cells, and τ = 1.0 for the
second layer. In all cases we use ∆ = 1.5 >

√
2.
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to:

σ1, σ2 ∼ L(0, λ)

e1, e2, e3 ∼ N (0, 1)

X = e1σ1, Y = e2σ1, Z = e3σ2

Here, σ1, σ2 are scale parameters sampled independently from a Laplace distribution,

and e1, e2, e3 are sampled independently from a unit Gaussian. The result is that Z is

independent of both X and Y , but X and Y are not independent due to their shared

scale parameter σ1 [37]. An isocontour of the density of this distribution is shown in

Figure 6.1a.

Other popular algorithms [37, 36, 27] for learning complex-cell features are de-

signed to identify X and Y as features to be pooled together due to the correla-

tion in their energies (scales). One empirical motivation for this kind of invariance

comes from natural images: if we have three simple-cell filter responses a1 = D(1)>x,

a2 = D(2)>x, a3 = D(3)>x where D(1) and D(2) are Gabor filters in quadrature phase,

but D(3) is a Gabor filter at a different orientation, then the responses a1, a2, a3 will

tend to have a distribution very similar to the model of X, Y, Z above [38]. By pooling

together the responses of a1 and a2 a complex cell is able to detect an edge of fixed

orientation invariant to small translations. This model also makes sense for higher-

level invariances where X and Y do not merely represent responses of linear filters

on image patches but feature responses in a deep network. Indeed, the X–Y plane in

Figure 6.1a is referred to as an “invariant subspace” [43].

Our combination of simple cell and complex cell learning algorithms above tend

to learn this same type of invariance. After whitening and normalization, the data

points X, Y, Z drawn from the distribution above will lie (roughly) on a sphere. The

density of these data points is pictured in Figure 6.1b, where it can be seen that the

highest density areas are in a “belt” in the X–Y plane and at the poles along the

Z axis with a low-density region in between. If we apply our K-means clustering

method to this dataset we get the centroids shown as ∗ marks in Figure 6.1b. From

this picture it is clear what a subsequent application of our single-link clustering
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algorithm will do: it will try to string together the centroids around the “belt” that

forms the invariant subspace and avoid connecting them to the (distant) centroids at

the poles. Max-pooling over the responses of these filters will result in a complex cell

that responds consistently to points in the X–Y plane, but not in the Z direction—

that is, we end up with an invariant feature detector very similar to those constructed

by existing methods. Figure 6.1c depicts this result, along with visualizations of the

hypothetical gabor filters D(1), D(2), D(3) described above that might correspond to

the learned centroids.

(a) (b) (c)

Figure 6.1: (a) An isocontour of a sparse probability distribution over variables X,
Y, and Z. (See text for additional detail.) (b) A visualization of the spherical density
obtained from the distribution in (a) after normalization. Red areas are high density
and dark blue areas are low density. Centroids learned by K-means from this data are
shown on the surface of the sphere as red * marks. (c) A pooling unit identified by
applying single-link clustering to the centroids (black links join pooled filters). (See
text.)

6.3.1 Feature Hierarchy

Now that we have defined our simple and complex cell learning algorithms, we can

use them to train alternating layers of selective and invariant features. We will train

4 layers total, 2 of each type. The architecture we use is pictured in 6.2a.

Our first layer of simple cell features are locally connected to 16 non-overlapping

8-by-8 pixel patches within the 32-by-32 pixel image. These features are trained by

building a dataset of 8-by-8 patches and passing them to our simple cell learning
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procedure to train 6400 first-layer filters D ∈ R64×6400. We apply our complex cell

learning procedure to this bank of filters to find 128 pooling groups G1, G2, . . . , G128.

Using these results, we can extract our simple cell and complex cell features from

each 8-by-8 pixel subpatch of the 32-by-32 image. Specifically, the linear filters D

are used to extract the first layer simple cell responses s
(p)
i = g(D(i)>x(p)) where

x(p), p = 1, .., 16 are the 16 subpatches of the 32-by-32 image. We then compute the

complex cell feature responses c
(p)
j = maxk∈Gj

s
(p)
k for each patch.

Once complete, we have an array of 128-by-4-by-4 = 2048 complex cell responses

c representing each 32-by-32 image. These responses are then used to form a new

dataset from which to learn a second layer of simple cells with K-means. In our

experiments we train 150,000 second layer simple cells. We denote the second layer of

learned filters as D̄, and the second layer simple cell responses as s̄ = D̄>c. Applying

again our complex cell learning procedure to D̄, we obtain pooling groups Ḡ, and

complex cells c̄ defined analogously.

6.4 Experiments

As described above, our algorithm is trained from patches harvested from YouTube

thumbnails downloaded from the web. Specifically, we downloaded the thumbnails

for over 1.4 million YouTube videos4, some of which are shown in Figure 6.2b. These

images were downsampled to 128-by-96 pixels and converted to grayscale. We then

cropped 57 million randomly selected 32-by-32 pixel patches from these images to form

our unlabeled training set. No supervision is used here—thus most patches represent

partial views of objects or clutter at differing scales. We applied our algorithm as

described above to these images on a cluster of 30 machines. The entire training

procedure takes approximately 3 days to run—virtually all of it consumed training

the 150,000 high-level simple cells (D̄).5

4We cannot select videos at random, so we query videos under each YouTube category (“Pets &
Animals”, “Science & Technology”, etc.) along with a date (e.g., “January 2001”).

5Though this is a fairly long run, we note that 1 iteration of K-means is cheaper than a single
batch gradient step for most other methods able to learn high-level invariant features. We expect
that these experiments would be impossible to perform in a reasonable amount of time on our cluster
with another algorithm.
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(a) (b)

Figure 6.2: (a) Cross-section of network architecture used for experiments. Full layer
sizes are shown at right. (b) Randomly selected 128-by-96 images from our dataset.

6.4.1 Low-Level Simple and Complex Cell Visualizations

Before checking our higher-layer features for object-selectivity, we will first visualize

the learned low-level filters D and pooling groups G to demonstrate that they are,

in fact, quite similar to those learned by other well-known algorithms. It is already

known that our K-means-based algorithm learns simple-cell-like filters (e.g., edge-like

features as well as spots, curves) as can be seen in Figure 6.3a.

To visualize the learned complex cells, we can inspect the simple cell filters that

belong to each of the pooling groups. The filters for several pooling groups are

visualized in Figure 6.3b. There it can easily be seen that the filters, as expected,

represent a spectrum of very similar image structures. Though many pairs of filters

may be extremely similar6, there are also other pairs that differ significantly and are

included in the group due to the single-link clustering method. Note that some of our

groups are composed of similar edges at differing locations, and thus appear to learn

translation invariance as we expect.

6.4.2 Higher-Level Simple and Complex Cells

We will now investigate the learned higher layer simple cell and complex cell features,

s̄ and c̄, to see if any of them have managed to become selective for an object class.

6Some filters have reversed polarity due to our use of absolute-value rectification during training
of the first layer.
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Best 32-by-32 simple cell Best in s̄ Best in c̄ Supervised Linear SVM
AUC 64% 86% 80% 77%

Table 6.1: Area under PR curve for different cells on our face detection validation
set. Only the SVM uses labeled data.

In particular, the most commonly occurring object class in these video thumbnails is

human faces (even though we estimate that much less than 0.1% of patches contain

a well-framed face). Thus, we would like to know whether our algorithm has learned

any higher-level features selective for human faces at varying locations and scales.

To locate such features if they exist, we use labeled images from the “Labeled Faces

in the Wild” (LFW) dataset [34]. We constructed a dataset composed of several

hundred thousand non-face images as well as tens of thousands of known face images

from the LFW dataset.

To test whether any of the s̄ simple cell features are selective for faces, we used each

feature by itself as a “detector” on the labeled dataset: we compute the area under

the precision-recall curve (AUC) obtained when using each single feature’s response

s̄k as a simple classifier. Indeed, it turns out that there are a handful of high-level

features that tend to be good detectors for faces. The precision-recall curves for the

best 5 detectors are shown in Figure 6.3c (top curves); the best of these achieves

86% AUC. We visualize 16 of the simple cell features identified by this procedure7 in

Figure 6.4(a) along with a sampling of the image patches that activate the first of

these cells strongly. There it can be seen that these simple cells are selective for faces

located at differing locations and at varying scales. Within each group the faces may

differ slightly due to the learned invariance provided by the complex cells in the lower

layer (and thus the mean of each group of images appears quite blurry).

On first sight, it appears that this result could have been obtained by applying our

simple cell learning procedure directly to the 32-by-32 images without any attempts

at incorporating local invariance as done here. That is, rather than training D (the

7We visualize the higher-level features by averaging together the 100 unlabeled images from our
YouTube dataset that elicit the strongest activation.
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Figure 6.3: (a) First layer simple cell filters learned by K-means. (b) Sets of simple
cell filters belonging to three pooling groups learned by our complex cell training
algorithm. (c) Precision-Recall curves showing selectivity for human faces of 5 low-
level simple cells trained from a full 32-by-32 patch (red curves, bottom) versus 5
higher-level simple cells (green curves, top). Performance of the best linear filter
found by SVM from labeled data is also shown (black dotted curve middle).

first-layer filters) from 8-by-8 patches, we could simply train D directly from the 32-

by-32 images. This turns out not to be successful. The lower curves in Figure 6.3c

are the precision-recall curves for the best 5 simple cells found in this way. It can

be seen quite clearly that the higher-level features are dramatically better detectors

than simple cells built directly from pixels8 (only 64% AUC).

As a second control experiment we also trained a linear SVM from half of the

labeled data using only pixels as input (contrast-normalized and whitened). The PR

curve for this linear classifier is shown in Figure 6.3c as a black dotted line. There

we can see that the supervised linear classifier is significantly better (77% AUC) than

the 32-by-32 linear simple cells. On the other hand, it does not perform as well as

the higher level simple cells learned by our system even though it is likely the best

possible linear detector.

Finally, we have applied the same complex-cell learning procedure as before to the

8These simple cells where trained by applying K-means to normalized, whitened 32-by-32 pixel
patches from a smaller unlabeled set known to have a higher concentration of faces. As a result, a
handful of centroids look roughly like face exemplars and hence can be considered simple “template
matchers”. When trained on the full dataset (which contains far fewer faces), K-means learns only
edge and arc features which perform much worse (about 45% AUC).
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higher-level simple cell filters. Due to the invariance introduced at the lower layers,

two simple cells that detect faces at slightly different locations or scales will often

have very similar filter weights and thus we expect our algorithm to find and combine

these simple cells into higher-level invariant features.

We will visualize our higher-level complex cell features c̄ to see what they detect.

To visualize these features, we can simply look at visualizations for all of the simple

cells in each of the groups Ḡ. These visualizations show us the set of patches that

strongly activate each simple cell, and hence also activate the complex cell. The results

of such a visualization for one group that was found to contain only face-selective cells

is shown in Figure 6.4c. There it can be seen that this single “complex cell” selects

for faces at multiple positions and scales. A sampling of image patches collected from

the unlabeled data that strongly activate the corresponding complex cell are shown

in Figure 6.4d. We can see that the complex cell detects many faces but at a much

wider variety of positions and scales compared to the simple cells, demonstrating

that even “higher level” invariances are being captured, including scale invariance.

Benchmarked on our labeled set, this complex cell achieves 80.0% AUC—somewhat

worse than the very best simple cells, but still in the top 10 performing cells in the

entire network. Interestingly, the qualitative results in Figure 6.4d are excellent, and

we believe these images represent even greater range of variations than those in the

labeled set. Thus the 80% AUC number may somewhat under-rate the quality of

these features.

These results suggest that the basic notions of invariance and selectivity that un-

derpin many popular feature learning algorithms may be sufficient to discover the

kinds of high-level features that we desire, possibly including whole object classes

robust to both local and global variations. Indeed, using extremely simple imple-

mentations of selective and invariant features closely related to existing algorithms,

we have found that is possible to build features with high selectivity for a coherent,

commonly occurring object class. Though human faces occur only very rarely in our

very large dataset, it is clear that the complex cell visualized Figure 6.4d is adept at

spotting them amongst tens of millions of images. The enabler for these results is

the scalability of the algorithms we have employed, suggesting that other systems can
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likely achieve similar results to the ones shown here if their computational limitations

are overcome.

6.5 Related Work

The method that we propose here close connections to a wide array of prior work, as

we have noted throughout this paper. For instance, the basic notions of selectivity

and invariance that drive our system can be identified in many other algorithms.

For instance, group sparse coding methods [27] and Topographic ICA [37, 38] build

invariances by pooling simple cells that lie in an invariant subspace, identified by

strong scale correlations between the cell responses. The advantage of the statistical

criterion embodied by these algorithms to learn invariance is that they can often

determine which features should be pooled together even when the simple cell filters

are orthogonal (where they would be too far apart for our algorithm to recognize that

their relationship since we use only linear correlation). Our results suggest that while

this type of invariance is very useful, there are other ways to achieve a similar effect.

Our approach can also be connected with methods that attempt to model the

geometric (e.g., manifold) structure of the input space. For instance, Contractive

Auto-Encoders [74, 73], Local Coordinate Coding [99], and Locality-constrained Lin-

ear Coding [90] tend to learn sparse linear filters while also attempting to model the

manifold structure staked out by these filters (sometimes termed “anchor points”).

One plausible interpretation of our results, suggested by Figure 6.1b, is that with

extremely overcomplete dictionaries it becomes possible to “walk” between distant

anchor points on the image manifold, thus constructing pooling units that make our

complex cells invariant to shifts along this manifold. [8] use similar intuitions to

propose a clustering method that is quite similar to our own approach, though the

method in their work is used to build pooling regions for supervised learning appli-

cations.

One of our key results, the unsupervised discovery of features selective for human

faces, is fairly unique in the literature. Results of this kind have appeared in many

guises in more restricted settings. For instance, [54] learned Deep Belief Network
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models that decomposed object classes like faces, cars, and motorbikes into parts

using a probabilistic version of translation-invariant max-pooling. Similarly, [100] has

shown results of a similar flavor on the Caltech recognition datasets. [103] showed

that a probabilistic model (with some hand-coded geometric knowledge) is able to

correctly recover clusters containing 20 known object class silhouettes from outlines in

the LabelMe dataset. Other authors have also shown the ability to discover some form

of global invariance or manifold structure (e.g., as seen in the results of embedding

algorithms [86, 75]) when trained in similarly restricted settings.

The methods above, however, are usually discovering decompositions of objects

into parts or some other structure that is far more apparent when we are using labeled,

tightly cropped images. Even if we do not use the labels themselves the labeled

examples are, by construction, highly clustered: faces will be better-separated from

other objects because there are no partial faces or random clutter. In our dataset,

no supervision is used except to probe the representation post hoc. Our system

nevertheless appears capable of identifying faces in the far more general scenario that

we have proposed.

Finally, we also note the recent, extensive findings of Le et al. [49]. In that work an

extremely large 9-layer neural network based on a TICA-like learning algorithm [48,

37] also appears to be capable of identifying a wide variety of object classes (including

cats and upper-bodies of people) seen in YouTube videos. Our results complement

this work in several key ways. First, by training on smaller randomly cropped patches,

we show that object-selectivity may still be obtained even when objects are framed

properly within the image only rarely. By contrast, the input images used by Le

et al. are so large (200-by-200 pixels) it is more likely to be the case that a full

object may be found somewhere in the image.9 Second, and perhaps more important,

we have shown that the key concepts of selectivity and invariance (sparse selective

filters combined with invariant-subspace pooling) present in their system may also be

implemented in a very different way using scalable clustering algorithms, allowing us

to achieve results reminiscent of theirs but using a vastly smaller amount of computing

9Of course, their network still performs the difficult feat of learning invariance to long-range
translations within this window.
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power. (We used 240 cores, while their large-scale system is composed of 16,000 cores.)

In combination, these results point strongly to the conclusion that highly scalable

implementations of existing feature-learning concepts can discover very sophisticated

high-level representations.

6.6 Summary

In this chapter we presented a variation on our previous feature learning systems com-

posed of highly scalable learning methods. To learn simple selective features (“simple

cells”), we applied K-means clustering, which we have used throughout this thesis.

In addition, we have replaced the hard-coded spatial invariances (pooling) used in

Chapters 3-4 with a second algorithm: agglomerative clustering, which stitches the

simple cells together into invariant features (“complex cells”). Based on the observa-

tion that K-means tends to tile the invariant subspaces of the input data distribution,

we argue that these invariant features are essentially the same as those identified by

other (much more expensive) learning algorithms. We showed that these two compo-

nents are, in fact, capable of learning complicated high-level representations in large

scale experiments on unlabeled images from YouTube. Specifically, we showed that

higher level simple cells could learn to detect human faces without any supervision

at all, and that our complex-cell learning procedure could combine these into even

higher-level invariances. These results indicate that we are apparently equipped with

many of the key principles needed to achieve such results and that a critical remaining

puzzle is how to scale up more sophisticated algorithmic solutions to the sizes needed

to capture more object classes and even more complex invariances.
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(a) (b) (c)

(d)

Figure 6.4: Visualizations. (a) A collection of patches from our unlabeled dataset
that maximally activate one of the high-level simple cells from s̄. (b) The mean of
the top stimuli for a handful of face-selective cells in s̄. (c) Visualization of the face-
selective cells that belong to one of the complex cells in c̄ discovered by the single-link
clustering algorithm applied to D̄. (d) A collection of unlabeled patches that elicit a
strong response from the complex cell visualized in (c) — virtually all are faces, at a
variety of scales and positions. Compare to (a).



Chapter 7

Conclusions

This thesis has presented a detailed study of a variety of unsupervised feature learn-

ing algorithms. In particular, we have sought to develop a relatively flexible set of

ingredients from which to construct UFL systems: a common template for image

recognition algorithms, many choices of unsupervised learning algorithms, a variety

of encoding schemes, and multiple ways of cobbling these pieces together into a hi-

erarchy of learned features. Using these ingredients as a starting point, we have

evaluated a wide range of variations and benchmarked them on common recogni-

tion tasks. Though such results can often be highly application-specific, it turns out

that there are certain trends that hold true across many types of image recognition

problems: feature representations with very large numbers of features, large datasets

and otherwise simple learning algorithms are often top performers, even enabling

state-of-the-art results on applications like scene-text recognition. More important,

taken to their limits, we have even found that feature-learning systems with sim-

ilar components can learn to identify complex patterns like human faces (complete

with translation and scale invariance) without any supervision. These results suggest,

critically, that the components needed to learn successful hierarchies of features are

not necessarily complex, and that the key pieces of the puzzle that deserve added

attention are often unrelated to the learning algorithm itself.

More specifically, some of the main findings of this work have been:

1. Even simple unsupervised learning algorithms that find sparse linear projections

96
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of data are sufficient to learn layers of features.

2. The choice of “architecture” (how features are connected to inputs, and the

type of encoding Φ used), is often more critical than the unsupervised learn-

ing algorithm. In practice, larger representations are almost universally better

performers.

3. Combined with very simple algorithms to build invariant features (similar in be-

havior to existing methods [43, 44, 37, 27]), we can construct high-level invariant

features selective for a commonly occurring object class.

This last result is useful not because it suggests a new algorithm. Instead it shows

that known notions of selectivity and invariance, even implemented with stunning

simplicity, are sufficient to generate complicated but intuitive high-level features.

The key to achieving this result was, as suggested by our earlier analysis, to refocus

resources on problems of scalability.

Overall, the take-home message of this line of work is that scalability and exoge-

nous system parameters play a remarkably large role in the success or failure of feature

learning algorithms. When we push these design choices to their limits, we have been

able to repeatedly best state-of-the-art benchmark scores and even construct very

competitive systems in fields where we have little prior expertise (as in our scene text

recognition work of Chapter 5). Similarly, with only a little extra algorithmic novelty,

we are starting to see hints of the ability to discover complex features like objects.

These promising early results emphasize the importance of carefully teasing out the

major contributors to success in feature learning systems and then optimizing along

those dimensions; indeed, this thesis has shown that on a modest scale the payoff

may be substantial.
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