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ABSTRACT
EVOLVING ARTIFICIAL NEURAL NETWORKS WITH GENERATIVE

ENCODINGS INSPIRED BY DEVELOPMENTAL BIOLOGY

By Jeff Clune

In this dissertation I investigate the difference between generative encodings and direct

encodings for evolutionary algorithms. Generative encodings are inspired by developmen-

tal biology and were designed, in part, to increase the regularity of synthetically evolved

phenotypes. Regularity is an important design principle in both natural organisms and engi-

neered designs. The majority of this dissertation focuses on how the property of regularity

enables a generative encoding to outperform direct encoding controls, and whether a bias

towards regularity also hurts the performance of the generative encoding on some prob-

lems. I also report on whether researchers can bias the types of regularities produced by a

generative encoding to accommodate user preferences. Finally, I study the degree to which

a generative encoding produces another important design principle, modularity.

Several previous studies have shown that generative encodings outperform direct en-

codings on highly regular problems. However, prior to this dissertation, it was not known

how generative encodings compare to direct encodings on problems with different levels

of regularity. On three different problems, I show that a generative encoding can exploit

intermediate amounts of problem regularity, which enabled the generative encoding to in-

creasingly outperform direct encoding controls as problem regularity increased. This per-

formance gap emerged because the generative encoding produced regular artificial neural

networks (ANNs) that produced regular behaviors. The ANNs evolved with the generative

encoding contained a diverse array of complicated, regular neural wiring patterns, whereas

the ANNs produced by a direct encoding control were irregular.

I also document that the bias towards regularity can hurt a generative encoding on prob-

lems that have some amount of irregularity. I propose a new algorithm, called HybrID,

wherein a generative encoding produces regular patterns and a direct encoding modifies



those patterns to provide fitness-enhancing irregularities. HybrID outperformed a genera-

tive encoding alone on three problems for nearly all levels of regularity, which raises the

question of whether generative encodings may ultimately excel not as stand-alone algo-

rithms, but by being hybridized with a further process of irregular refinement.

The results described so far document that a generative encoding can produce regular

solutions. I then show that, at least for the generative encoding in this case study, it is

possible to influence the types of regularities produced, which allows domain knowledge

and preferences to be injected into the algorithm. I also investigated whether the generative

encoding can produce modular solutions. I present the first documented case of this gener-

ative encoding producing a modular phenotype on a simple problem. However, the genera-

tive encoding’s inability to create modularity on harder problems where modularity would

have been beneficial suggests that more work is needed to increase the likelihood that this

encoding produces modular ANNs in response to challenging, decomposable problems.

Overall, this dissertation paints a more complete picture of generative encodings than

prior studies. Initially, it demonstrates that, by producing regular ANNs and behaviors,

generative encodings increasingly outcompete direct encodings as problem regularity in-

creases. It next documents that a bias towards regularity can harm the performance of

direct encodings when problems contain irregularities. The HybrID algorithm suggests a

path forward, however, by revealing that a refinement process that fine-tunes the regular

patterns produced by a generative encoding can boost performance by accounting for prob-

lem irregularities. Finally, the dissertation shows that the generative encoding studied can

produce modular networks on simple problems, but may struggle to do so on harder prob-

lems. The general conclusion that can be drawn from this work is that generative encodings

can produce some of the properties seen in complex, natural organisms, and will likely be

an important part of our long-term goal of synthetically evolving phenotypes that approach

the capability, intelligence, and complexity of their natural rivals.
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Chapter 1

Overview

A long-term goal of human engineering is to produce artifacts as complex and intelligent

as the bodies and brains in the natural world. The field of Evolutionary Computation (EC)

studies how natural evolution produced this complexity and implements abstractions of

such principles in Evolutionary Algorithms (EAs), which are synthetic evolutionary pro-

cesses that allow us to study evolution and harness its engineering capabilities. An out-

standing challenge in EC is the creation of encodings (also called representations) for EAs

that enable the evolution of increased levels of complexity. Encodings in EAs are the

way information is stored in a genome and how that information is mapped to a pheno-

type. Traditional EAs use direct encodings, where each element in the genotype encodes

an independent aspect of the phenotype. Direct encodings are limited in their ability to

evolve regular and modular phenotypes because individual mutations cannot produce co-

ordinated changes to multiple elements of a phenotype. Additionally, direct encodings do

not scale well (imagine evolution searching for a genome that had to independently specify

the blueprint for every cell in a blue whale). The alternative is a generative encoding (also

called an indirect encoding or developmental encoding), where each genomic element can

influence multiple aspects of a phenotype.

Generative encodings are a relatively new area of research, and the search for the
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proper way to abstract biological development is still underway. A new generative en-

coding was introduced in 2007 that is based on a novel abstraction of development. It

is called Hypercube-based NEAT (HyperNEAT), and it incorporates a key concept from

developmental biology that enables the evolution of regular brains: determining the fates

of phenotypic components as a function of their geometric location. In this dissertation, I

investigate the merits and costs of generative encodings using HyperNEAT as the exemplar

generative encoding. I chose HyperNEAT because it is a cutting-edge generative encoding

that has proven effective on a wide range of problems. It also has direct encoding controls,

which is rare for generative encodings. Finally, while HyperNEAT is currently the only

generative encoding to incorporate geometry, this technique requires a generative encod-

ing and may be incorporated into many generative encodings in the future. It is therefore

worthwhile to investigate the effects of this inclusion of geometric information. Overall,

this dissertation contains an extensive case study comparing one generative encoding with

its direct encoding controls, but I will also discuss how the results from this case study are

relevant to the larger conversation about the merits and drawbacks of generative encodings

versus direct encodings.

Specifically, I will show that HyperNEAT automatically exploits the regularity of prob-

lems, and increasingly outcompetes direct encoding controls as the regularity of a problem

increases. I show this effect on three different problems that have tunable levels of regular-

ity. The first two problems I specifically designed to test the exploitation of varying degrees

of regularity with and without epistasis (Chapter 3). The third problem is a challenging en-

gineering task: producing gaits for simulated quadruped robots (Chapter 4). Because most

challenging problems have many different types of regularity, this ability to automatically

discover and exploit regularity is a desirable attribute in an EA encoding.

I then investigate a potential downside that can result from the bias towards regularity

in generative encodings: if an encoding is too biased toward producing regularities, it may

be unable to create exceptions to a pattern to account for irregularities in a problem. The

2



results from Chapters 3 and 4 show that HyperNEAT’s bias towards regularity prevents it

from creating some exceptions to handle problem irregularity. In Chapter 5, I introduce a

new algorithm, which is a Hybridization of Indirect and Direct encodings (HybrID), that

combines the best attributes of generative and direct encodings: the generative encoding

produces phenotypic regularities and the direct encoding creates necessary exceptions to

those regularities. HybrID ties or outperforms HyperNEAT on a variety of regularity lev-

els in three different problems. The success of HybrID raises the interesting question of

whether the true promise of generative encodings is not as stand-alone algorithms, but in

combination with a further algorithmic process that refines their regular patterns.

An interesting and novel aspect of generative encodings implemented in the style of

HyperNEAT is that they can exploit the geometry of a problem because phenotypic ele-

ments are determined as a function of their geometric location. Future generative encod-

ings may also incorporate this feature, given its effectiveness in HyperNEAT and nature.

However, this technique requires the experimenter to choose a geometric representation for

each problem. In Chapter 6, I describe the first extensive investigation into whether Hyper-

NEAT is sensitive to choices of different geometric representations. I show that different

geometric representations can indeed affect both the quality and kind of solutions pro-

duced by HyperNEAT. My results suggest that HyperNEAT practitioners can obtain good

results even if they do not know how to geometrically represent a problem, and that further

improvements are possible with a well-chosen geometric representation. My results also

imply that experimenters can bias the type of solutions produced by HyperNEAT via the

way a problem is represented geometrically, which enables user preferences to be injected

into the algorithm. These results show HyperNEAT’s sensitivity to geometry and suggest

that future generative encodings that exploit geometry may behave similarly.

Chapters 3-5 document that HyperNEAT excels at producing regular Artificial Neural

Networks (ANNs). In Chapter 7, I investigate whether HyperNEAT can produce mod-

ular ANNs. Modularity is important in ANNs because it can facilitate both evolvability
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and learning, by making it is easier to rearrange functional subcomponents. I conducted

this research on problems where I demonstrate modularity to be beneficial, and found that

HyperNEAT failed to generate modular ANNs, even with modifications to it that should

encourage modularity. I then performed tests on a simpler problem that requires modular-

ity and found that HyperNEAT was able to rapidly produce modular solutions that solved

the problem. I thus present the first documented case of HyperNEAT producing a modular

phenotype. However, its inability to generate modularity on harder problems where modu-

larity would have been beneficial suggests that more work is needed to increase the likeli-

hood that HyperNEAT and similar algorithms will produce modular ANNs in response to

challenging, decomposable problems.

Overall, this dissertation adds evidence to the claim that generative encodings in gen-

eral, and HyperNEAT in particular, are on the path toward the goal of evolving phenotypes

as complex as natural animals. However, much work remains to achieve that lofty goal.

The main contribution of this dissertation is to increase our understanding of these tech-

nologies so that we may improve upon them to create the next generation of generative

encodings for Evolutionary Algorithms.
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Chapter 2

Background

2.1 Generative versus direct encodings

While the field of evolutionary computation has produced impressive results, the complex-

ity of its evolved solutions pale in comparison to organisms in the natural world. One of

several likely reasons for this difference is that evolutionary computation typically uses a

direct encoding, where every part of the genotype encodes for a separate part of the phe-

notype. Given that natural organisms can contain trillions of parts (e.g. cells in the human

body), a direct representation of such an organism would require a genome with at least that

many separate genetic elements. We do not find such inefficient genomes in nature. An al-

ternative is a generative encoding, where elements in a genome can be reused to produce

many parts of a phenotype [47]. For example, about 25,000 genes encode the information

that produces the trillions of parts that make up a human [44]. Generative encodings al-

low evolution to search a genotype space with far fewer dimensions than that of the final

phenotype.

A further benefit of generative encodings is that the reuse of code facilitates the evo-

lution of regular, modular, and hierarchical phenotypes, with and without variation [27].

Modularity is the localization of function within an encapsulated unit. In a network, mod-
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ularity entails clusters of nodes with high connectivity within the cluster and low connec-

tivity to nodes outside the cluster [28, 33]. Regularity refers to the compressibility of the

information describing a structure, and typically involves symmetries and module repe-

tition [33]. Hierarchy is the recursive composition of lower-level units [33]. Note that

modularity does not require regularity, as is often assumed: the single wheel on a uni-

cycle is a module, whereas the four wheels on a car are a regular repetition of a wheel

module [33]. Without the ability to evolve phenotypes that possess regularity, modularity,

and hierarchy, it may be difficult to synthetically evolve creatures as complicated as those

found in nature [2, 33, 38]. A third benefit of generative encodings is that mutations in

them can produce coordinated phenotypic effects (e.g., one mutation lengthening all legs

proportionally). In investigations carried out so far, albeit on problems where regularity in

the phenotype is advantageous, generative encodings have been found to outcompete direct

encodings and produce more modular, regular and or hierarchical phenotypes, with more

beneficial mutations on average than direct encoding controls [10, 15, 20, 21, 26, 40, 48]. In

one experiment where tables were evolved, it is visually apparent that artifacts produced

by a generative encoding are more regular, modular, and elegant than those produced by a

direct encoding [24].

Broadly speaking, two types of generative encodings have attracted a lot of attention.

The first type is based on rules for rewriting grammar, such as Lindenmayer Systems (L-

Systems), which expand a few symbols iteratively according to a rule set [32]. A drawback

to this method is that a slight change in a rule drastically affects the resultant phenotype,

leading to a rugged fitness landscape. Additionally, such systems tend to be biased to-

ward the production of overly repetitive and regular structures, since symbols tend to be

rewritten deterministically (e.g., [25, 43]). The second common type of generative en-

coding evolves Genetic Regulatory Networks (GRNs), which typically involve simulated

artificial chemistries to allow for the diffusion of proteins (e.g., [22]). Such simulation is

computationally expensive, which limits the complexity of the artifacts evolved [45]. It
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also requires evolution to first figure out how to produce chemical gradients that indicate

where, geometrically, parts of the phenotype are situated, and then utilize such geometric

information to produce phenotypes as a function of that geometry. While natural systems

do just that, computational limits mean that EAs based on GRNs with chemical simulations

cannot take advantage of the massive amounts of parallelism and time that enabled natural

systems to produce complexity.

Generative encodings were created to enable the evolution of phenotypes that have

modularity, regularity, and hierarchy, with and without variation, to the degrees seen in

natural organisms. Artifacts evolved to date with generative encodings do display repeated

modules or themes [26, 43], but we are still a long way off from synthetically evolving

the level of complexity found in natural organisms. As such, the search for the proper

abstraction of biological development continues. In the next section, I describe a recently

introduced novel abstraction of development.

2.2 The HyperNEAT generative encoding

In 2007 an encoding was introduced that captures some of the power of natural encodings,

but does not require the physical simulation of diffusing chemicals [45]. The encoding is

called Compositional Pattern Producing Networks (CPPNs) [45]. When CPPNs encode

artificial neural networks, the algorithm is called HyperNEAT, which will be described in

detail below. A key idea behind CPPNs is that complex patterns (such as natural organisms)

can be produced by determining the attributes of phenotypic components as a function of

their geometric location. This idea is based on the knowledge that cells (or higher-level

modules) in nature often differentiate into their possible types (spleen, liver, etc.) as a

function of where they are situated in geometric space [2]. For example, for some insects,

a segment at the anterior pole should produce antennae and a segment at the posterior pole

should produce a stinger. Components of natural organisms cannot directly determine their
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location in space, so organisms have evolved developmental processes that create chemi-

cal gradients and other signals that organismal components use to figure out where they are

and, thus, what to become [2]. For example, early on in the development of embryos, differ-

ent axes (e.g., anterior-posterior) are indicated by chemical gradients. Additional gradients

signaled by different proteins can exist in the same area to represent a different pattern,

such as a repeating motif. Downstream genes, such as Hox genes, can then combine re-

peated and asymmetric information to govern segmental differentiation. Further coordinate

frames can then be set up within segments to govern intra-module patterns [2].

One of the key insights of CPPNs is that cells in silico can be directly given their

geometric coordinates. The CPPN genome is a function that takes geometric coordinates

as inputs and outputs the fate of an organismal component. When CPPNs encode two-

dimensional pictures, the coordinates of each pixel on the canvas (e.g., x = 2, y = 4) are

iteratively passed to the CPPN genome, and the output of the function is the color or shade

of the pixel (Figure 2.1).

Each CPPN is a directed network, where each node is itself a mathematical function.

The nature of the functions included can enable a variety of desirable properties, such as

symmetry (e.g., a Gaussian function) and repetition (e.g., a sine function) that evolution

can take advantage of. Nested coordinate frames can develop in the CPPN to compose

complex coordinate frames. For instance, a sine function early in a network can create a

repeating theme that, when passed into the symmetric Gaussian function, creates a repeat-

ing, symmetric motif, as demonstrated by the body segments in Figure 2.1. This process

is similar to how natural organisms develop [2]. For example, many organisms set up a

repeating coordinate frame (e.g., body segments) within which are symmetric coordinate

frames (e.g., left-right body symmetry). Asymmetries can be generated by referencing

global coordinate frames, such as the y-axis. The links that connect and allow information

to flow between nodes in a CPPN have a weight value that can magnify or diminish the

values that pass along them. Mutations that change these weights may, for example, give a
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Figure 2.1: Compositional Pattern Producing Networks. CPPNs compose math functions to
generate regularities, such as symmetries and repeated modules, with and without variation.
This figure is adapted from Stanley (2007).

stronger influence to a symmetry-generating part of a network or diminish the contribution

from another part.

One way to understand the types of forms CPPNs can produce is to evolve pictures with

them, having humans perform the selection [42]. This process can generate shapes that look

complex and natural (Figure 2.2). The images created demonstrate that the CPPN encoding

can create forms with some of the features that generative encodings were designed to

produce (e.g., regularity and modularity, with and without variation).

In the HyperNEAT algorithm, CPPNs encode for ANNs instead of pictures, and evo-

lution modifies the population of CPPNs [46]. HyperNEAT evolves the weights for fixed-

topology ANNs. Unless otherwise specified, the ANNs in the experiments in this disserta-

tion feature a two dimensional, m× n Cartesian grid of inputs and a corresponding m× n

grid of outputs. If an experiment uses an ANN with hidden nodes, the hidden nodes are
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Figure 2.2: Images Evolved with CPPNs. Displayed are pictures from picbreeder.org [42],
a website where visitors select images from a population evolved with the CPPN generative
encoding, which is also used in HyperNEAT. The bottom row shows images from a single
lineage. Blue arrows represent intermediate forms that are not pictured.

placed in their own grid between the input and output grid. Recurrence is disabled, so each

of the m× n nodes in a grid has a link of a given weight to each of the m× n nodes in

the proximate grid, excepting output nodes, which have no outgoing connections. Link

weights can be zero, functionally eliminating a link.

The inputs to the CPPNs are a constant bias value and the coordinates of both a source

node (e.g., x1 = 0,y1 = 0) and a target node (e.g., x2 = 1,y2 = 1) (Figure 2.3). The CPPN

takes these five values as inputs and produces one or two output values, depending on the

ANN topology. If there is no hidden layer in the ANN, the single output is the weight of

the link between a source node on the input layer and a target node on the output layer.

If there is a hidden layer, the first output value determines the weight of the link between

the associated input (source) and hidden layer (target) nodes, and the second output value

determines the weight of the link between the associated hidden (source) and output (target)

layer nodes. All pairwise combinations of source and target nodes are iteratively passed as

inputs to a CPPN to determine the weight of each ANN link. HyperNEAT can thus produce
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patterns in link weight space similar to the patterns it produces in 2D pictures (Figure 2.2).

Figure 2.3: HyperNEAT Produces ANNs from CPPNs. Weights are specified as a function
of the geometric coordinates of the source node and the target node for each connection.
The coordinates of these nodes and a constant bias are iteratively passed to the CPPN to de-
termine each connection weight. If there is no hidden layer, the CPPN has only one output,
which specifies the weight between the source node in the input layer and the target node
in the output layer. If there is a hidden layer in the ANN, the CPPN has two output values,
which specify the weights for each connection layer as shown. This figure is adapted from
Gauci and Stanley (2008).

An additional benefit of HyperNEAT is that it is one of the first neuroevolutionary

algorithms capable of exploiting the geometry of a problem [46]. Because the link values

between nodes are a function of the geometric positions of those nodes, if those geometric

positions represent aspects of the problem that are relevant to its solution, HyperNEAT can

exploit such information. For example, when playing checkers, the concept of adjacency

(on the diagonals) is important. Link values between neighboring squares may need to

be different than link values between distant squares. HyperNEAT can use adjacency to

create a connectivity motif and repeat it across the board [15, 46]. Producing this type

of regularity would be more difficult in other encodings, even generative ones, that do not

include geometric information, because there is no easy way for such algorithms to identify
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which nodes are adjacent.

Variation in HyperNEAT occurs when mutations or crossover change the CPPN func-

tion networks. Mutations can add a node to the graph, which results in the addition of a

function to the CPPN network, or change its link weights. The function set for CPPNs in

this dissertation includes sine, sigmoid, Gaussian, and linear functions. The evolution of

the population of CPPN networks occurs according to the principles of the NeuroEvolution

of Augmenting Topologies (NEAT) algorithm [47], which is described in Section 4 of this

chapter. NEAT, which was originally designed to evolve neural networks, can be effec-

tively applied to CPPNs because a population of CPPN networks is similar in structure to

a population of neural networks.

The parameters for all of the experiments below follow standard HyperNEAT conven-

tions [46] and can be found in the publications of these results [3–8].

2.3 FT-NEAT, a direct encoding control for HyperNEAT

A common direct encoding control for HyperNEAT is Fixed-Topology NEAT (FT-NEAT,

also called Perceptron NEAT or P-NEAT when it does not have hidden nodes) [3–7, 46].

FT-NEAT is similar to HyperNEAT in all ways, except that it directly evolves each weight

in the ANN independently instead of determining link weights via a generative CPPN. All

other elements from NEAT (e.g., its crossover and diversity preservation mechanisms) re-

main the same between HyperNEAT and FT-NEAT. Additionally, the number of nodes in

the ANN phenotype are the same in HyperNEAT and FT-NEAT. Mutations in FT-NEAT

cannot add nodes, making FT-NEAT a degenerate version of NEAT. Recall that the com-

plexification in HyperNEAT is performed on the CPPN genome, but that the number of

nodes in the resultant ANN is fixed. The end product of HyperNEAT and FT-NEAT are

thus neural network substrates with the same number of nodes, whose weights are deter-

mined in different ways.
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2.4 NEAT, a second direct encoding control for Hyper-

NEAT

While FT-NEAT is a good control for HyperNEAT because it holds the number of nodes in

the ANN constant, HyperNEAT should also be compared to a cutting-edge direct encoding

neuroevolution algorithm, such as regular NEAT [47].

The NEAT algorithm contains three major components [47]. Initially, it starts with

small genomes that encode simple networks and slowly complexifies them via mutations

that add nodes and links to the network. This complexification enables the algorithm to

evolve the network topology in addition to its weights. Secondly, NEAT has a fitness-

sharing mechanism that preserves diversity in the system and allows new innovations time

to be tuned by evolution before forcing them to compete against rivals that have had more

time to mature. Finally, NEAT uses historical information to perform crossover in a way

that is effective, yet avoids the need for expensive topological analysis. A full explanation

of NEAT can be found in Stanley & Miikkulainen (2002).

The only difference between FT-NEAT and NEAT is that hidden nodes can be added

during evolution in NEAT. In those experiments in this dissertation where the optimal num-

ber of hidden nodes is not known a priori, I compare HyperNEAT to NEAT in addition to

FT-NEAT.

The next chapter describes the experiments that I performed to investigate generative

encodings and the results of those experiments.
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Chapter 3

A generative encoding can exploit

problem regularity

Note:This Chapter is an expanded version of Clune, Ofria, and Pennock 2008.

While it has been shown that generative encodings can outperform direct encod-

ings [10, 15, 20, 21, 26, 35, 40, 46, 48], in every case the problem was highly regular or

the regularity of the problem was unspecified and ambiguous. Gruau’s work evolving neu-

ral nets with the generative encoding called Cellular Encoding used problem domains of bit

parity or bit symmetry [20], which are both highly regular, or pole-balancing [21], where

the regularity of the problem is unknown. Hornby (2002) demonstrated that a generative

encoding based on L-systems outperformed a direct encoding control when applied to the

perfectly regular parity problem and to evolving tables and mobile creatures (where repeat-

ing similar leg modules provided high fitness scores). The regularity of the Nothello game,

a variant on Othello, from [40] is unknown. HyperNEAT has been shown to outcompete

a direct encoding control on two problems that require the repetition of the same network

motif [46].

These previous studies show that generative encodings do well on highly regular prob-
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lems, but they raise the question of whether generative encodings achieve their increased

performance on regular problems at the expense of performing poorly on problems with

intermediate or low regularity. What is needed are comparisons of a generative encoding

versus direct encoding controls on multiple problems as problem-regularity is decreased

from high to low. Such studies should illuminate the degree to which generative encodings

can make exceptions to the patterns they produce. Additionally, this type of investigation

can test whether generative encodings provide any advantages over direct encodings on

problems with low and intermediate amounts of regularity. Such investigations are de-

scribed in the following sections.

3.1 Bit Mirroring problem

The Bit Mirroring problem is intuitively easy to understand, yet provides multiple types

of regularities, each of which can be scaled independently. For each input, a target output

is assigned (e.g., the input x1 = −1,y1 = −1 could be paired with output x2 = 0,y2 = 1,

Figure 3.1a). A value of one or negative one is randomly provided to each input, and the

fitness of an organism is incremented if that one or negative one is reflected in the target

output. Outputs greater than zero are considered 1, and values less than or equal to zero

are considered −1. The correct wiring is to create a positive weight between each input

node and its target output and, importantly, to set to zero all weights between each input

node and its non-target output nodes (Figure 3.1a). To reduce the effect of randomness in

the inputs, in every generation each organism is evaluated on ten different sets of random

inputs and these scores are summed to produce the fitness for that organism. The maximum

fitness is thus 10n2, where n is the number of nodes in the input sheet. Each run lasted 2000

generations and had a population size of 500. As in Target Weights, the number of nodes

does not change on this problem (additional nodes would only hurt performance), so only

FT-NEAT is tested as a control.
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Figure 3.1: The Bit Mirroring Problem. (a) The correct wiring motif for the links emanating
from each input node is to create a positive valued link (light green) to the correct target
output node, and to turn off all other links (dark gray). (b) Within-column regularity (Type
1) is highest when all targets are in the same column, and can be lowered by decreasing
the number of targets in the same column (by assigning unconstrained targets to columns
at random). For the experiments in this paper, within-column regularity is scaled while
keeping within-row regularity at its highest possible level, with all targets in the same
row. Within-row regularity (Type 2) is reduced by constraining fewer targets to be in the
same row. By first reducing within-column regularity, then further reducing within-row
regularity, the overall regularity of the Bit Mirroring problem can be smoothly scaled from
high to low. Note that the treatment with the lowest Type 1 regularity and the highest Type
2 regularity have identical constraints.

The first type of regularity in the problem is within-column regularity. This regularity

is high when targets are in the same column, and low when there is no expectation about

which column a target will be in (Type 1 in Figure 3.1b). The second type of regularity is

within-row regularity, which is the likelihood that a target is in the same row (Type 2 in

Figure 3.1b). While these two regularities are intuitively related, evolutionary algorithms

must compute them independently, which means they are independent. Each of these types

of regularity can be scaled by constraining a certain percent of targets to be in the same

column or row, and assigning the remaining targets randomly.

The third type of regularity, called inherent regularity, arises from the fact that, for each

node, the same pattern needs to be repeated: turning one link on and all other links off. This
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type of regularity can be reduced by decreasing the number of nodes in the network, and

hence the number of times that pattern needs to be repeated.

While the Bit Mirroring problem is easy to conceptualize, it is challenging for evolu-

tionary algorithms. It requires most links to be turned off, and only a few specific links to

be turned on. Moreover, links between input nodes and non-target nodes, which are likely

to exist in initial random configurations and to be created by mutations, can complicate fit-

ness landscapes. Imagine, for example, that a mutation switches the weight value on a link

between an input node and its target output from zero to a positive number. The organism is

now closer to the ideal wiring, but it may not receive a fitness boost if other incorrect links

to that output node result in the wrong net output. The Bit Mirroring problem is useful,

therefore, because it is challenging, yet its three main regularities are known, and can be

independently adjusted.

Bit Mirroring Experiment 1 (BM-1): Reduce within-column regularity

A first experiment (BM-1) uses a 7× 7 grid and decreases within-column regularity by

reducing the percentage of inputs whose target is constrained to be in the same column.

Unconstrained nodes must have the same y (row) value, but can have a different x (column)

value. 10 trials were performed for each treatment lasting 2000 generations. Figure 3.2 re-

veals that the performance of HyperNEAT falls off as within-column regularity decreases.

HyperNEAT is able to perfectly solve the problem in all but two trials of the most regular

treatment, when the targets are all constrained to be directly across. As the within-column

regularity decreases, the performance of HyperNEAT falls off fast. Interestingly, Hyper-

NEAT does not benefit from the within-column regularity when 50% or fewer of its nodes

are regularized in this way (only treatments with 60% or more column-constrained targets

have fitnesses significantly better at a p < 0.05 level than fitness values from the treatment

with 0% of nodes column-constrained; this and all future p values use Matlab’s Mann-

Whitney U-test unless otherwise specified).
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Figure 3.2: HyperNEAT and FT-NEAT on Versions of the Bit Mirroring Problem with
Different Levels of Regularity. For each treatment, from left to right, within-column reg-
ularity is first decreased (left panel) and then within-row regularity is further decreased
(right panel). The x-axis shows the fraction of targets constrained to columns or rows,
respectively. Experiments wherein within-column regularity is scaled all have maximum
within-row regularity, as described in the text.

Bit Mirroring Experiment 2 (BM-2): Further reduce row constraints

A second experiment (BM-2), which also involved 10 trials lasting 2000 generations and a

7x7 grid, scales a similar but different type of regularity by allowing all targets to be random

with respect to column, but decreasing the percent that are constrained to be in the same

row Figure 3.2. In a sense, BM-2 picks up where BM-1 left off (Figure 3.1). In fact, the

least regular treatment from BM-1 and the most regular treatment from BM-2 have identical

constraints (although different randomly generated mappings). The performance of Hyper-

NEAT also decreases as this type of regularity is diminished (Figure 3.2). Surprisingly, the

pattern of degradation is similar to BM-1; HyperNEAT no longer provides a fitness boost

due to within-row regularity once that regularity falls below 60% (p only < 0.05 comparing

0% row-constrained to >= 60% row-constrained treatments). While it is possible that run-

ning the BM-1 and BM-2 experiments longer would have allowed significant differences to
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develop between less regular treatments, it is relevant that no significant differences were

present after 2000 generations, which is a substantial number in the field of evolving neural

nets. It is also interesting that the range of fitness values is correlated with the regularity of

the problem for HyperNEAT. This variance might exist because, when regularity is present,

the generative representation either discovered and exploited it, which would result in high

fitness values, or it failed to fully discover the regularity, at which point its fitness more

closely resembles less regular treatments.

BM-1 and BM-2 were also performed with FT-NEAT, the direct encoding control for

HyperNEAT. As expected, the fitnesses produced by FT-NEAT were not affected by the

regularity of the problem (Figure 3.2). None of the FT-NEAT treatments from BM-1 were

significantly different from FT-NEAT treatments from BM-2 (p < 0.05). Furthermore,

within both experiments, none of the treatments were significantly different than that ex-

periment’s 0% constrained treatment (p > 0.05). All HyperNEAT treatments from BM-1

do significantly better than FT-NEAT treatments from BM-1, due to both the within-row

regularity present throughout and the inherent regularity of the Bit Mirroring problem. In

BM-2, the within-row regularity decreases, leaving only the inherent regularity. However,

presumably due to the inherent regularity of the problem, HyperNEAT still significantly

outperforms FT-NEAT on all treatment conditions except for the 20% constrained treat-

ment. Computational constraints prevented the performance of more trials, which may

have eliminated this overlap in performance on the 20% constrained trial. While it is pos-

sible that running the trials for more generations would have allowed FT-NEAT to catch

up to HyperNEAT on the irregular treatments in BM-2, viewing the fitness values across

generations (not shown) suggests that this outcome is unlikely.
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Bit Mirroring Experiment 3 (BM-3): Reduce inherent regularity (by reducing grid

size)

A third experiment (BM-3) continues the comparison of Hyper-NEAT to FT-NEAT as a

type of problem regularity is varied. For this experiment trials lasted 2000 generations, as

before, but I conducted 40 trials per treatment due to the high variance between trials. All

targets in BM-3 were random with respect to row and column, leaving only the inherent

regularity in the Bit Mirroring problem. Since this inherent regularity stems from a motif

that needs to be repeated for each input node (‘zero out links to all outputs but one’), the

number of times this motif needs to be repeated decreases with the grid size. Based solely

on problem regularity, FT-NEAT should perform better in comparison to HyperNEAT as

this type of regularity is decreased. Figure 3.3 reveals that this is the case. The perfor-

mance of HyperNEAT degraded to, and then fell below, that of FT-NEAT as the grid size

decreased. The overall decline was significant (p < 0.05 comparing the ratios on the 3×3

treatments to those 6× 6 and greater). It is not clear why the trend was reversed on the

smallest grid size. Note that BM-1 and BM-2 occurred on a 7× 7 grid, where the level

of inherent regularity provided HyperNEAT an advantage over FT-NEAT, even without

within-column or within-row regularity.

3.2 Target Weights problem

BM-3 shows that once problems are sufficiently irregular and simple, the direct encoding

FT-NEAT can outperform the generative encoding HyperNEAT. The likely explanation is

that HyperNEAT is biased toward creating regular phenotypes and has trouble when the

problem features mostly exceptions and little rule. However, even the 3× 3 version of

the Bit Mirroring problem has some inherent regularity left over. This section compares

HyperNEAT to FT-NEAT on a problem that can be scaled to complete irregularity.

One way to create a completely irregular problem is to challenge evolution to pro-
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Figure 3.3: HyperNEAT Vs. FT-NEAT as the Inherent Regularity of the Bit Mirroring
Problem is Decreased. Reducing the grid size reduces the amount of inherent regularity in
the problem. Error bars show one standard error of the mean. Ratios are used instead of
absolute differences because the allowable fitness range changes with grid size.

duce an ANN phenotype (P) that is identical to a target neural network (T ), where T is

completely irregular. Regularity can then be scaled by increasing the regularity of T (Fig-

ure 3.4). We call this the Target Weights problem because evolution is attempting to match

a target vector of weights (recall that the number of nodes is constant, so the vector of

weights in T fully describes T ). Fitness is a function of the difference between each weight

in P and the corresponding weight in T , summed across all weights. The lower this summed

error is, the higher the fitness value. Specifically, the summed error is calculated as
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error =
N
∑
i=1

M− |Pi−Ti|, (3.1)

where N is the number of weights, M is the maximum error possible per weight (which is 6

because weights could range from −3 to 3) Pi is the value of the ith weight in the phenotype,

and Ti is the value of the ith weight in the Target ANN. To amplify the importance of small

improvements, fitness is then calculated as

f itness = 2error. (3.2)

To scale the regularity of this problem, some randomly chosen subset of the target

weight values, S, are assigned Q, a single randomly-chosen value. All remaining weight

values are independently assigned a value at random. Changing the number of weights in S

scales the regularity of the problem. When S is set to 0%, all of the target weight values are

chosen independently at random. When S is set to 50%, half the weights have the value Q

and the rest have values independently chosen at random. In the most regular version of the

problem, S is set to 100% and all weights have the value Q. There are 11 treatments, with

S values of 0,10,20...100, and 10 runs per treatment. Target vectors are constant for each

evolutionary run, but are different between runs (due to differences in randomly generated

weight values, including Q). Trials last 1000 generations with a population size of 1000.

The ANNs have 3×3 grids of input and output neurons. Because the number of nodes on

this problem does not change, I test only FT-NEAT as a direct encoding control.

Figure 3.4: Scaling Regularity in the Target Weights Problem. Regularity is scaled by
changing the percentage of weights S (which increases from right to left) that are set to
Q, a single randomly-chosen value (shown as dark blue lines). The remaining weights are
each set to a random number (shown as light orange lines).
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The Target Weights problem is useful because it allows regularity to be scaled from zero

to complete, and because the regularity of the solution is known a priori. It is also a sim-

plistic problem because it has no interactions (epistasis) between link elements. Altering a

given link will not change the optimal value for other links. While these attributes makes

the Target Weights problem useful for investigating regularity, more challenging problems

are also required to understand performance on more realistic types of problems.

The results from the Target Weights experiments (Figure 3.5) show that HyperNEAT

exploited the regularity of the Target Weights problem early on, but FT-NEAT closed the

gap and eventually outperformed HyperNEAT on all but the most regular treatment. This

experiment provides another example of where a generative encoding can exploit interme-

diate amounts of problem regularity, and increasingly outperformed a direct encoding as

problem-regularity rose. HyperNEAT performed better as the regularity of the problem in-

creased, especially in early generations, where mean performance perfectly correlates with

problem-regularity. Interestingly, after 1000 generations of evolution, the performance of

HyperNEAT is once again statistically indistinguishable below a certain regularity thresh-

old (p > 0.05 comparing the final performance of the S = 0% treatment to treatments with

S ≤ 30%. Above that regularity threshold, however, HyperNEAT performed significantly

better at each increased level of regularity (p < 0.01 comparing treatment with values of

S ≥ 30% to the treatment with an S value 10% higher). However, the difference in Hy-

perNEAT’s performance between treatments early on complicates the story of how Hyper-

NEAT’s performance plateaus below a certain regularity threshold, by making it depend

on time. Fitness plots across generations from experiments BM1 and BM2 (not shown) do

not tell a similar story; in those experiments the less regular treatments have similar fitness

scores throughout.

In contrast to HyperNEAT, FT-NEAT was blind to the regularity of the problem: the

results from different treatments are visually and statistically indistinguishable (p > 0.05).

Early on HyperNEAT outperformed FT-NEAT on regular versions of the problem (p< 0.01
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comparing treatments of S ≥ 60% at generation 100), but at 1000 generations FT-NEAT

outperformed HyperNEAT on all but the two most regular versions of the problem (p <

0.001). HyperNEAT outperformed FT-NEAT on the most regular version of the problem at

generation 1000 (p < 0.001), and the algorithms are statistically indistinguishable on the

S = 90% treatment (p > 0.05).

A further point of interest is the lack of progress HyperNEAT makes on the highly

regular treatments (e.g., where 80% or 90% of the targets are repeated). While it exploits

the regularity early on, HyperNEAT seems unable to make exceptions to the rule in order to

encode the non-conforming link values, as evidenced by the lack of fitness improvements

after the initial gains. This evidence suggests HyperNEAT is too biased towards producing

regular solutions, and cannot create irregularities that would improve its performance.

3.3 Scaling concurrent regularity

Each of the previous experiments have shown how HyperNEAT and FT-NEAT perform as a

single type of regularity is scaled from high to low. Figure 3.6 shows how HyperNEAT and

FT-NEAT perform as the number of concurrent types of regularity is decreased. It samples

from the Target Weights experiment and the three Bit Mirroring experiments. While it

could have been the case that exploiting one type of regularity prevented the exploitation

of others, Figure 3.6 reveals that it is possible for HyperNEAT to simultaneously exploit

multiple types of regularity. It also demonstrates that the performance of HyperNEAT

degrades to, then falls below, that of FT-NEAT as concurrent problem regularity decreases.

3.4 Conclusions

The experiments in this section, which cover four types of regularity from two different

problems, paint a consistent picture despite some idiosyncrasies. In general, the Hyper-

NEAT generative encoding showed some difficulty in making exceptions to the rules it
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Figure 3.5: Mean Performance of HyperNEAT and FT-NEAT on a Range of Problem Reg-
ularities for the Target Weights Problem. HyperNEAT lines are colored for each regularity
level, and in early generations are perfectly ordered according to the regularity of the prob-
lem (i.e., regular treatments have less error). The performance of FT-NEAT (black lines) is
unaffected by the regularity of the problem, which is why the lines are overlaid and mostly
indistinguishable.

discovered. Its performance decreased as problem regularity decreased. Nevertheless, the

generative encoding did provide a fitness boost over its direct encoding counterpart as prob-

lem regularity increased. The generative encoding’s ability to simultaneously exploit con-

current types of regularities meant that the more types of regularity, the larger the boost.

However, the generative encoding could exploit a type of regularity only when the amount

of regularity within that type was relatively high. This result is not obvious from theoretical

considerations and has not been reported before. As I show in Chapter 4, similar conclu-

sions hold on a challenging engineering problem. Additional work is needed to see if the

conclusions drawn from this generative encoding on these problems apply to most gen-

erative encodings on many problems. Finally, while the direct encoding outperformed the

generative encoding on irregular problems, it was not until the problem was relatively irreg-
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Figure 3.6: Comparison of HyperNEAT to FT-NEAT Across Experiments as Regularity is
Decreased. a) All targets are constrained to be within the same column and row as their
source on the 7x7 Bit Mirroring problem (three types of concurrent regularity). b) Targets
are only constrained to be in the same row on the 7x7 Bit Mirroring problem (two types of
concurrent regularity) c) Targets are randomly chosen, leaving only the inherent regularity
of the 7x7 Bit Mirroring problem (one type of regularity) d) The Target Weights problem
with all link values randomly chosen (no type of regularity).

ular that this transition occurred. FT-NEAT outperformed HyperNEAT only on the Target

Weights problem and small, irregular versions of the Bit Mirroring problem. In fact, it was

challenging for me to come up with problems irregular enough to provide an advantage to

the direct encoding. Even the 7× 7 Bit Mirroring problem, which is simple compared to

real-world problems, had multiple regularities that could be exploited. It is likely that on

most difficult, real-world problems, the existence of many types of regularities will provide

an advantage to generative encodings. One interesting question this section raises, how-

ever, is whether the level of regularity within each type will be sufficient for a generative

encoding to be able to exploit it.

The next section investigates these issues by testing HyperNEAT on a difficult real-

world problem.
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Chapter 4

A generative encoding can perform well

on a challenging real-world problem

(evolving gaits for simulated

quadrupeds) by automatically exploiting

problem regularity

Note: Chapter 4 is an expanded version of Clune, Beckmann, Ofria, and Pennock 2009.

The previous section showed that a generative encoding can exploit regularity on di-

agnostic problems that I invented because they are easy to conceptualize and because they

explicitly contain regularities that can be varied. This section tests whether that generative

encoding can show the same ability to automatically exploit problem regularity when the

problem is more challenging, and when regularity was not explicitly built into the problem.

Importantly, the problem chosen is one where previous attempts to evolve solutions to it

involved the researcher manually decomposing the problem because the EA did not recog-
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nize its regularity. The results from this chapter support the notion that the HyperNEAT

generative encoding can deliver on its promise of evolving regular ANNs that perform well

on complex problems by exploiting their regularity. Additionally, this problem provides

an opportunity to study how generative encodings outcompete direct encodings on regular

problems. I will show that HyperNEAT exploits problem regularity by producing regular

brains with regular behaviors.

I first describe the importance of the problem and previous attempts at solving it with

EAs before describing how I applied HyperNEAT to it.

4.1 The importance of producing gaits for legged robots

Legged robots are likely to play an increasingly important role in our lives in generations to

come. Legged consumer robots already exist, such as the biped ASIMO and the quadruped

AIBO. Both the military and industry have a variety of legged robots under development.

One benefit of legged robots over their wheeled counterparts is their mobility on rugged

terrain, but a major drawback is the challenge of creating controllers for them. The prob-

lem is complicated because of the number of degrees of freedom in each leg and because

of the body’s changing center of mass and momentum. Human engineers have had to de-

sign the majority of controllers for legged robots, which is a difficult and time-consuming

process [41, 56]. Furthermore, given how sensitive gait controllers are to slight changes in

the configuration of a robot, a new gait must be created each time a robot is changed, which

can lead to significant delays in the prototyping stage of robotic development [27].

4.2 Previous work evolving gaits for legged robots

It is not surprising, therefore, that people have tried to automate the process of gait creation.

Evolutionary computation, usually involving the evolution of neural network controllers,

has been successfully used to this end [14,19,25,27,34,43,51,52]. Evolved gaits are often
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better than those produced by human designers; one was even included on the commercial

release of Sony’s AIBO robotic dog [27, 52]. However, many researchers have found that

evolutionary algorithms do not perform well when challenged with the entire problem,

because of the large number of parameters that need to be simultaneously tuned to achieve

success [1, 13, 27, 30, 39, 51, 52]. Many of these scientists report that, while it is possible

to evolve a controller to manage the inputs and outputs for a single leg, once evolution is

challenged with the inputs and outputs of many legs, it fails to make progress.

One solution that has worked repeatedly is to explicitly help the evolutionary algo-

rithm exploit the regularities in the problem. This approach involves manually decompos-

ing the problem by, for example, evolving the controller for one leg of a quadruped and

then copying that controller to every leg, with some variation in phase. Many permuta-

tions of this strategy of manually decomposing the problem have produced functioning

gaits [1, 13, 27, 30, 39, 51, 52]. Another type of manual decomposition, which is often used

in addition to the previous one, is to simplify the high-level problem of locomotion by

breaking it into manually-defined subproblems (e.g., producing leg oscillations, not falling

over, moving certain legs in synchrony, etc.), and first rewarding the simple problems, then

more advanced problems, on upwards until a high-level goal, such as rapid locomotion, can

be rewarded directly [34, 51, 57].

Unfortunately, both of these strategies have drawbacks. It would be better if we could

completely automate the process and remove the need for human engineers to spend time

decomposing the problem. Furthermore, such manual decomposition potentially introduces

constraints and biases that could preclude the attainment of better solutions [36]. Finally, if

we can employ algorithms that can automatically discover and exploit problem regularities,

such algorithms will be able to do so for complex problems with respect to regularities of

which humans might not be aware.

For these reasons, it is important to investigate algorithms that can automatically ex-

ploit regularities in problems, such as generative encodings. While it has not been the
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norm, generative encodings have been used previously to evolve the gaits of legged robots.

In two well-known cases, a generative encoding was used to evolve the gaits and the mor-

phologies of robots [25,26,43]. These dual evolutionary goals complicate analysis because

the creatures may not be regular, and because it is unclear if any of the demonstrated fitness

advantage of generative encodings (e.g., [25]) was due to the ability to evolve regular neu-

ral networks or due to the ability to build better morphologies. In one paper with similar

goals as the current work, a generative encoding and direct encoding were compared for

their ability to evolve a gait for a legged robot in an attempt to see whether the generative

encoding could exploit the regularity of the problem without the problem being simplified

or manually decomposed [19]. However, this project used a simple model of a six-legged

insect that had only two degrees of freedom per leg. Nevertheless, the work showed that

a generative encoding could automatically discover the regularity of the problem and de-

compose it by encoding a neural submodule once and using it repeatedly. The generative

encoding also outperformed a direct encoding by solving the problem faster. Unfortunately,

computational limits at the time meant that such results were anecdotal and not statistically

significant because so few trials could be performed.

To summarize, prior to this work it has not been shown that a generative encoding

can automatically exploit problem regularity when evolving controllers for legged robots.

I demonstrate in this chapter that the HyperNEAT generative encoding can achieve this

objective.

4.3 Applying HyperNEAT to the Quadruped Controller

problem

The quadruped robots look like tables (Figure 4.1), which is fitting because seminal work

comparing generative encodings to direct encodings was performed on the evolution of

static tables [24]. There are two hip joints and one knee joint. The first hip joint (HipFB)
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Figure 4.1: The Simulated Robot in the Quadruped Controller Problem.

allows the legs to swing forward and backward (anterior-posterior) and is constrained to

180 degrees such that at maximum extension it is parallel with the torso. The second hip

joint (HipIO) allows a leg to swing in and out (proximal-distal). Together, the two hip joints

approximate a universal joint. The knee joint swings forward and backward. The HipIO

and knee joints are unconstrained. Robots were evaluated in the ODE physics simulator

[www.ode.org].

The ANN for this experiment features three two-dimensional, 5× 4 grids forming an

input, hidden and output layer (Figure 4.2). All possible connections between adjacent

layers can exist, meaning that there are 800 potential links in the ANN of each organism.

The inputs to the ANN are the current angles of each of the 12 joints of the robot

(described below), a touch sensor that provides a 1 if the lower leg is touching the ground

and a 0 if it is not, the pitch, roll and yaw of the torso, and a modified sine wave (which

facilitated the production of periodic behaviors). The sine wave function is

sin(t/120)π, (4.1)

where t is the number of milliseconds that have elapsed since the start of the simulation.
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Figure 4.2: ANN Configuration for HyperNEAT and FT-NEAT Treatments. The first four
columns of each row of the input layer receive information about a single leg (the current
angle of each of its three joints, and a 1 or 0 depending on whether the lower leg is touching
the ground). The final column provides the pitch, roll, and yaw of the torso, as well as a
sine wave. Evolution determines how to use the hidden-layer nodes. The nodes in the first
three columns of each of the rows in the output layer specify the desired new joint angle.
The joints move toward that desired angle in the next time step as described in the text. The
outputs of the nodes in the rightmost two columns of the output layer are ignored.
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Multiplying by π facilitates the production of numbers that go from −π to π, which was

the range of the unconstrained joints. The constant 120 was chosen because it was experi-

mentally found to produce fast, yet natural, gaits. While changing this constant can affect

the types of gaits produced, doing so was never observed to alter any of the qualitative

conclusions of this section. Preliminary tests determined that the touch, pitch, roll, yaw,

and sine inputs all improved the ability to evolve fit gaits (data not shown).

The outputs of the neural network were the desired joint angle for each joint. This

desired joint angle was fed into a PID controller that simulated a servo and moved the joint

toward the desired angle. 50 trials were conducted for each encoding. Each trial featured

a population of 150 organisms, which is common for HyperNEAT experiments [46], and

lasted 1000 generations.

Each organism was simulated for 6000 time steps. Trials were cut short if any part of the

robot save its lower leg touched the ground or if the number of direction changes in joints

exceeded 960. The latter condition was an attempt to roughly reflect the physical fact that

servo motors cannot be vibrated incessantly without breaking. The fitness of controllers

was the following function of d, the maximum distance traveled:

f itness = 2d2
. (4.2)

The exponential nature of the function magnified the selective advantage of small increases

in the distance traveled.

It is also possible to scale the regularity of the Quadruped Controller problem, which

enabled me to test whether the conclusions from the preceding diagnostic problems hold on

this real-world problem. Regularity in this problem can be scaled by changing the number

of faulty joints. A faulty joint is one where, if an angle A is requested, the actual desired

angle sent to the PID controller is A + E, where E is an error value in degrees in the range

[−2.5,2.5]. The value of E was chosen from a uniform random distribution in this range

for each faulty joint at the beginning of a run, and was constant throughout the run. Such
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errors are analogous to the inconsistencies of robotic joints produced by manufacturing

processes. The more faulty joints, the less regularity there is in the problem because fewer

legs behave identically. For HyperNEAT, FT-NEAT, and NEAT I performed 50 runs for

experiments with 0, 1, 4, 8, and 12 faulty joints. The default version of this problem is the

most regular version with 0 faulty joints, which is the version referred to throughout the

rest of the dissertation unless the regularity is specified.

4.4 Comparing the performance of HyperNEAT to direct

encoding controls on the Quadruped Controller prob-

lem

The data from the Quadruped Controller problem generally support the conclusions from

Target Weights and Bit Mirroring. Initially, HyperNEAT outperformed both FT-NEAT and

NEAT on the two most regular version of this problem, where there were 0 or 1 faulty joints

(Figure 4.3, p < 0.001). That HyperNEAT outperformed NEAT is particularly noteworthy,

given that NEAT is one of the most successful direct encoding neuroevolution algorithms.

This result provides another demonstration that generative encodings can outperform direct

encodings on regular problems.

As was seen on Target Weights and Bit Mirroring, HyperNEAT’s performance in-

creased with the regularity of the problem, but only above a certain threshold: the 0 faulty

joint treatment significantly outperformed the 1 faulty joint treatment (p < 0.001), which,

in turn, outperformed the 4 faulty joints treatment (p< 0.001) which, in turn, outperformed

the 8 faulty joints treatment (p < 0.001), but the 8 and the 12 faulty joints treatments were

statistically indistinguishable (p > 0.05). In contrast to Target Weights and Bit Mirroring,

FT-NEAT was not blind to the regularity of this problem, although it was less sensitive to

the regularity than HyperNEAT. The treatment with 0 faulty joints was statistically indis-
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Figure 4.3: Performance of HyperNEAT, FT-NEAT, and NEAT on the Quadruped Con-
troller Problem with 0, 1, 4, 8, and 12 Faulty Joints. Plotted for each treatment is the mean
across 50 trials of the greatest distance away from the starting place arrived at by the best
organism in that generation. Thin lines above and below the mean represent one standard
error of the mean.

tinguishable from the 1 faulty joint treatment (p > 0.05), but performance on both of these

treatments was higher than on the 4 faulty joints treatment (p < 0.001) which was, in turn,

higher than the 8 faulty joints treatment. As was the case for HyperNEAT, performances

for FT-NEAT on the treatments with 8 and 12 faulty joints were statistically indistinguish-

able (p > 0.05). The statistical comparisons for NEAT are the same as those for FT-NEAT.

One reason that regularity may affect the direct encodings in this problem is because

link weights tend to be near the maximum or minimum allowable value, which is partly

due to the fact that mutations that create links outside of this range are set to the maximum

or minimum value. This method makes it more likely to see extreme link values than all
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other link values, which can facilitate coordination in the joints because different joints are

controlled by links with similar weights. If normal joints were controlled by links with the

maximum or minimum link value, to have faulty joints behave the same as normal joints,

link values would either have to be outside the allowable range, or inside the range at a

non-extreme (and thus harder to set) value. Faulty joints thus increase the difficulty of the

problem for generative and direct encodings, and can help explain why the direct encodings

were not blind to the regularity of the problem.

Consistent with results from Bit Mirroring and Target Weights, FT-NEAT was able to

outperform HyperNEAT on the Quadruped Controller problem once the regularity of the

problem was sufficiently low. FT-NEAT and NEAT outperformed HyperNEAT on both the

8 and 12 faulty joints treatments. On the treatment with 8 faulty joints, the difference was

significant for FT-NEAT (p < 0.05), but not for NEAT. On the treatment with 12 faulty

joints, the difference for FT-NEAT was slightly insignificant (p = 0.066) but the difference

for NEAT was significant (p < 0.01).

The difference in fitness in the first generation, which is comprised of randomly gen-

erated organisms, is interesting. HyperNEAT begins with an advantage over FT-NEAT be-

cause even randomly generated CPPNs are sometimes able to produce the coordination of

legs that facilitates movement. I observed that some of the randomly generated organisms

in HyperNEAT displayed impressive amounts of coordination and immediately appeared to

be on the road toward rudimentary locomotion. Randomly generated FT-NEAT and NEAT

organisms did not provide this impression.

Overall, these results support the conclusions from Target Weights and Bit Mirror-

ing. The direct encodings outperform HyperNEAT when problem regularity is low, but

as problem regularity increases, HyperNEAT can exploit that regularity whereas the direct

encodings mostly do not. This ability to exploit problem regularity means that Hyper-

NEAT increasingly outperforms direct encoding controls as problem regularity increases.

I now investigate how HyperNEAT is able to exploit the regularity of problems, using the
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Quadruped Controller problem as a case study.

4.5 Investigating why HyperNEAT outperforms direct en-

coding controls on the Quadruped Controller Prob-

lem

I employ three methods to understand why HyperNEAT outperforms direct encoding con-

trols on the Quadruped Controller problem. I classify the gait behaviors by watching videos

of evolved gaits, measure the joint angles during locomotion, and view ANNs of each robot.

Each of these methods reveals that the brains and behaviors produced by the generative en-

coding are more regular than those produced by the direct encoding.

4.5.1 HyperNEAT gaits are more coordinated and general

One of the benefits of evolving behaviors in three dimensions is that human beings have a

good intuitive understanding of such environments. I took advantage of these intuitions to

subjectively judge the coordination of evolved gaits by watching videos of them. Specifi-

cally, I watched videos of the best organism produced in each of the 50 runs on the problem

with 0 faulty joints for HyperNEAT, FT-NEAT, and NEAT. Videos of these gaits are avail-

able at http://devolab.msu.edu/SupportDocs/HyperNEAT.

The videos reveal that HyperNEAT quadrupeds tend to have a large amount of coor-

dination among all of their legs. The HyperNEAT gaits were all extremely regular. They

featured two separate types of regularity: coordination between legs, and the repetition of

the same movement pattern across time. Generally, the gaits were one of two types. The

first type involved a four-way symmetry where each leg moved in unison and the creature

bounded forward repeatedly (Figure 4.4, top row). This gait implies that HyperNEAT is

reusing neural information in a regular way to control all of the robot’s legs. The sec-
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ond gait type resembled a horse gallop and featured the back three legs moving in unison,

with the fourth leg moving in opposite phase. This 3-1 gait demonstrates that HyperNEAT

can reuse neural information with variation, since the same behavioral pattern existed in

each leg, but was inverted in one leg. The ability to produce repetition with variation is a

desirable feature in genetic encodings [48].

Figure 4.4: A Time Series of Images from Typical Gaits Produced by HyperNEAT and
FT-NEAT. HyperNEAT robots typically coordinate all of their legs, whether all legs are
in phase (as with this robot) or with one leg in anti-phase. A short sequence involving a
bound or gallop is repeated over and over in a stable, natural gait. FT-NEAT robots display
far less coordination among legs, are less stable, and do not typically repeat the same basic
motion. NEAT gaits are qualitatively similar to FT-NEAT gaits.

Overall, the HyperNEAT gaits resemble those of running natural organisms in that they

were coordinated and graceful. These observations are noteworthy because they indicate

that HyperNEAT is automatically exploiting regularities on a challenging, real-world prob-

lem. This accomplishment is especially impressive given that researchers have previously

needed to manually decompose legged locomotion tasks in order for evolutionary algo-

rithms to perform well [1, 13, 27, 30, 39, 52].

The gaits of FT-NEAT and NEAT, on the other hand, were mostly uncoordinated and

erratic, with legs often appearing to operate independently of one another (Figure 4.4, bot-

tom row). A few of the best-performing gaits did exhibit coordination between the legs,

and the repetition of a basic movement pattern, but most of the legs were irregular. Even
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the regular gaits were not as natural and impressive as the HyperNEAT gaits, which was

reflected in their lower objective fitness values. For most direct-encoding gaits, some legs

flailed about, others tripped the organism, and legs often worked against each other by

pushing in opposite directions. The robots frequently cartwheeled and tripped in unstable

positions until they finally fell over. There was less repetition of a basic movement pattern

across time, and coordination between legs tended to be infrequent and transitory.

It is interesting that there were a few examples of regular gaits produced by FT-NEAT

and NEAT, which shows that it is possible for direct encodings to produce regularities.

However, HyperNEAT was more consistent at producing regular gaits. All of the Hy-

perNEAT gaits were regular, whereas only a few FT-NEAT and NEAT gaits were. It is

important for algorithms to be consistent, especially when computational costs are high, so

that high-quality results can be obtained without performing many runs. A test of the reli-

ability of each encoding is to watch the median and least fit gaits of the 50 trial champions

for each encoding: for HyperNEAT these gaits were coordinated and effective, whereas for

FT-NEAT and NEAT they were discombobulated. In general, the videos reveal a greater

gap in performance between HyperNEAT and the direct encodings than is suggested by the

fitness scores, especially for all but the best runs per algorithm. Most of the direct encod-

ing gaits do not resemble stable solutions to quadruped locomotion, whereas HyperNEAT

produced a natural gait in all trials with a small variety of different solutions.

A second method for investigating how HyperNEAT was able to outperform the direct

encodings is to look at the angles of the leg joints during locomotion. This technique is

a different way of estimating the coordination, or lack thereof, of the different legs under

each encoding. Plots of each leg’s HipFB joint from the best, median, and worst runs for

each algorithm corroborate the subjective opinions formed by watching videos (Figure 4.5).

The legs in all HyperNEAT organisms showed a high degree of both of the two regularities

mentioned above: at any point in time most legs were in similar positions (except the

exception leg in the 3-1 gait, which was opposite), and a basic movement pattern was
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repeated across time. The direct encoding gaits were less regular on both fronts, except

for the highest-performing gaits. The median and worst gaits are representative of most

of the direct encoding gaits in that there was little coordination between legs or across

time (Figure 4.5). While only the HipFB joint is shown, plots of the other two joints are

consistent with these results.

Figure 4.5: HipFB Joint Angles Observed in Robots Evolved with HyperNEAT, FT-NEAT,
and NEAT. The possible range for this joint is -0.5π to 0.5π. The Y axis shows radians
from the initial down (0) position. For clarity, only the first 2 seconds are depicted. For
HyperNEAT, the best gait is an example of the 3-1 gait, where three legs are in phase and
one leg is in opposite phase, which resembles the four-beat gallop gait. The other two
HyperNEAT gaits are four-way symmetric, with all legs coordinated in a bounding motion
(Figure 4.4). The best direct encoding gaits are mostly regular. However, the median
and worst gaits, which are representative of most of the direct encoding gaits, are irregular:
while some legs are synchronized, other legs prevent the coordinated repetition of a pattern.

One of the benefits of regularity can be generalization. Repeating the same basic pattern

of motion is a type of regularity that is likely to generalize, because its success in one cycle

makes it probable that it will be successful in the next cycle. A non-repeating sequence of
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moves, however, may be less likely to generalize because its past is less likely to predict

its future. The videos and joint angles suggest that the HyperNEAT gaits should generalize

better than the direct encoding controls.

To test this hypothesis, I removed the time limit of 6 seconds and measured how long the

evolved robots were able to move before they fell over. This analysis was conducted with

the highest performing robot from all 50 runs for each encoding. Figure 4.6 reports that Hy-

perNEAT gaits were significantly more general than FT-NEAT and NEAT gaits (p< 0.001).

HyperNEAT gaits were the only ones, on average, that kept moving beyond the number of

seconds simulated during evolution.

Figure 4.6: Gait Generalization. HyperNEAT gaits generalize better than FT-NEAT and
NEAT gaits, which means that they run for longer before falling over. The allotted time
during evolution experiments was 6 seconds (dashed horizontal line). Only the Hyper-
NEAT gaits exceed that amount of time in these generalization tests. For clarity, outliers
not shown.
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4.5.2 HyperNEAT brains are more regular

I have so far focused on behavioral regularities. It is also interesting to look at the different

brains (ANNs) produced by HyperNEAT and FT-NEAT. NEAT brains are not visualized

because their varying numbers of hidden-node layers make comparisons difficult.

Figure 4.7 shows an example brain produced by HyperNEAT and FT-NEAT

(all 50 visualizations for HyperNEAT and FT-NEAT brains can be viewed at

http://devolab.msu.edu/SupportDocs/HyperNEAT). The FT-NEAT brain has no obvious

regularity, and is hard to visually distinguish from an ANN with randomly generated link

weights. Such irregularity existed even when the behavior produced by the brain was

somewhat regular (e.g., the FT-NEAT brain depicted in Figure 4.7 was from the highest-

performing FT-NEAT run, yet is irregular despite producing the relatively regular gait seen

in Figure 4.5). In contrast, the HyperNEAT brain is highly regular and displays multiple

different regularities. Initially, looking from the front, the links emanating from each input

node repeat a pattern with inhibitory (red) links on top and excitatory (green) links below.

Additionally, a clear distinction is made between the different layers of connections, at

least on the top of the brain, where the input-to-hidden layer is inhibitory and the hidden-

to-output layer is excitatory. An additional regularity is observable when viewing from the

back in the links emanating from the outputs, where the nodes towards the bottom-left cor-

ner have a pattern of a few inhibitory links surrounded by excitatory links. Interestingly,

this pattern is repeated in nearby nodes, but the strength of the pattern diffuses roughly

with the distance from the bottom-left corner, such that eventually there are no remaining

inhibitory links. The diffusion is faster in the y (height) dimension, and weaker in the x

(width) dimension. This pattern shows that HyperNEAT is capable of producing complex

geometric regularities.

A diverse set of regularities are observable in the 50 HyperNEAT champion ANNs.

Some of this diversity is shown in Figure 4.8 and Figure 4.9. Left-right, top-bottom, and

diagonal symmetries are produced. Additionally, exceptions (different patterns) are made
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Figure 4.7: Example ANNs Produced by HyperNEAT and FT-NEAT. Views from the front
(looking at the inputs) are shown in the top row, and from the back (looking at the outputs)
are shown in the bottom row. The thickness of the link represents the magnitude of its
weight.

for single columns, rows, and individual nodes. Some networks appear completely regular,

with every viewable link having a similar value, and others feature complicated, yet still

regular, patterns. Some networks have predominantly large weights (e.g., the top-left ANN

in Figure 4.8), others have mainly small weights (e.g., the top-center ANN in Figure 4.8),

and some have a broad range of weights. Importantly, many of these regularities include

some variation. For example, the top-left ANN in Figure 4.8 has a motif that is repeated for

each node, but that motif varies in regular ways (e.g., the number and strength of excitatory

links emanating from nodes in the second column increases from bottom to top). Other

variation is less regular, such as the exception made for a single node (Figure 4.8, bottom

left), but even in this case the node itself contains a regular pattern.

This diversity of regularities demonstrates that HyperNEAT can explore many different

types of regularities to solve a problem. It is also interesting that, while HyperNEAT is

able to find many different regular solutions that perform and behave similarly, FT-NEAT is

43



Figure 4.8: A Diverse Set of ANN Regularities Produced by HyperNEAT, with and without
Variation. Figure 4.7 explains what different colors and line thicknesses represent.

unable to consistently discover any of these regular patterns. In other words, there are many

solutions in the search space, but the regularity of those solutions means that a generative

encoding frequently encounters them while the direct encoding rarely does.

As mentioned previously, HyperNEAT predominantly produces two different gaits on

the Quadruped Controller problem: one with all legs in synchrony and the other with three

legs in synchrony and the exception leg in opposite phase. It is sometimes possible to

infer the behavior of a robot just by viewing a visualization of the regularities in its neural

wiring. For example, ANNs that produce four-way symmetric gaits display similar wiring

patterns for each row of outputs (Figure 4.9, top). Recall that each row of outputs controls

a separate leg (Figure 4.2). For the 3-1 gaits in this experiment, the exception leg is always

the front right leg, which is controlled by outputs in the top row. ANNs that produce 3-1

gaits frequently have a different pattern of weights for the top row of outputs than for the

other outputs (Figure 4.9, bottom). There are no obvious differences in patterns emanating

from input side of the ANNs (not shown). It is not always possible to classify gaits by
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viewing ANNs alone, but in an informal experiment I made a correct prediction for most

runs.

Figure 4.9: Correlating ANN Regularities to Different Behaviors. It is possible to recognize
ANN patterns that produce different robotic gaits. The ANNs in the top row all generate
a four-way symmetric gait. The weight patterns in these ANNs appear similar for all rows
(legs are controlled by separate rows of nodes). The ANNs in the bottom row have three
legs moving together and one leg in anti-phase. That exception leg is controlled by the
nodes in the top row, which have a different pattern of weights than the other three rows.

It is interesting to note that in most output rows, patterns generalize to output nodes

that do not control any aspect of the robot, and are therefore irrelevant to selection. Recall

that in the output layer, only nodes in the first three columns (counting from the right when

viewing from the back) control joints in the robot. The outputs in the last two columns are

ignored (Figure 4.2). This design decision enables us to investigate whether the patterns

that HyperNEAT evolves generalize to geometric areas that are not under selective pressure.

In a direct encoding, one would expect that weights connected to nodes that are not under

selective pressure would be random. Accordingly, these unused columns do appear random

in the FT-NEAT ANN visualizations, but so do all of the columns (Figure 4.7). The patterns
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for unused HyperNEAT output nodes, on the other hand, generally exhibit extensions of

the patterns displayed across the entire network. This phenomenon occurrs in nearly every

case, although a few networks had a different pattern in unused nodes than in other nodes

within the same row (e.g., the bottom-right ANN in Figure 4.9).

This result suggests that if joints or legs were added to an evolved HyperNEAT ANN,

HyperNEAT would likely produce similar behaviors in those new joints and legs as else-

where in the robot. If this hypothesis is correct, HyperNEAT would also succeed more

consistently than a direct encoding when evolving a pre-evolved ANN further to control

additional legs or joints, provided that it is beneficial to have behavioral similarities be-

tween the original and newly added components. This prediction assumes that the new

components are placed at geometric coordinates such that an appropriate regularity applies.

This general idea has already been demonstrated to work in a domain where HyperNEAT

evolved ANNs to control multiple agents of a team [9]. Such an ability to transfer skills

from one task to a new task is an important goal of machine learning [50] that a gener-

ative encoding like HyperNEAT can potentially perform well at [53], but where a direct

encoding is likely to perform poorly.

The previous visualizations demonstrate that HyperNEAT ANNs are regular, but that

conclusion remains a subjective one. It would be better to also quantify the increased

regularity in HyperNEAT ANNs versus those of FT-NEAT. Because the more regular a

structure is, the less information is needed to describe it, regularity can be measured by

compression [33]. One test of the regularity of a structure, then, is how much it can be

compressed. I applied the standard unix gzip compression program (version 1.3.5) to text

files that contained only the link values of each ANN phenotype for HyperNEAT and FT-

NEAT. NEAT ANNs were not compared because the number of links in NEAT ANNs can

vary, meaning that compressibility alone is not isolated. I performed this analysis only on

the Quadruped Controller problem because it did not have regularity explicitly built in, as

opposed to Target Weights and Bit Mirroring, where fitness scores already indicate ANN
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regularity.

The gzip algorithm is a conservative test of regularity because it looks for repeated

symbols, but does not compress some mathematical regularities (e.g., each link weight

increasing by a constant amount). Nevertheless, gzip was able to compress HyperNEAT

ANNs on the regular Quadruped Controller problem significantly more than FT-NEAT

ANNs: p < 0.001, comparing the difference between each uncompressed and compressed

HyperNEAT file, mean 4488 bytes ±710 SD, and each FT-NEAT file, mean 3349 bytes

±37 SD. This quantifiable result confirms the clear yet subjective observation from visually

inspecting HyperNEAT and FT-NEAT brains, namely, that HyperNEAT brains are more

regular.

4.5.3 HyperNEAT is more evolvable

One of the touted benefits of generative encodings is that the reuse of genetic information

that produces regularity also enables coordinated mutational effects, which can be bene-

ficial [4, 25]. It has previously been shown that a different generative encoding based on

L-systems produces more beneficial mutations than a direct encoding control [25]. This

section investigates whether HyperNEAT similarly tends to produce a higher distribution

of fitness values in mutated offspring than direct encoding controls.

I analyzed the difference in fitness between organisms and their offspring in all cases

where offspring were produced solely by mutation. While the majority of organisms were

produced by crossover and mutation, this analysis isolates the impact of mutational effects.

Over 1.3 million, 1.7 million, and 1.5 million organisms were produced solely via mutation

for HyperNEAT, FT-NEAT, and NEAT treatments, respectively, providing a substantial

sample size.

Overall, the generative encoding HyperNEAT produced a wider range of fitness

changes than direct encoding controls (Figure 4.10). HyperNEAT also had a distribution

of fitness values with a higher median than both FT-NEAT and NEAT (p < 0.001). While
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Figure 4.10: The Fitness Changes Due to Mutation in Different Encodings. Each circle rep-
resents the ratio of parent fitness over offspring fitness. Positive values indicate an offspring
that is more fit than its parents, and higher numbers indicate larger fitness improvements.
The inverse is true for negative numbers.

HyperNEAT had more extreme negative fitness changes, it also had more extreme positive

fitness changes. For example, looking at the ratio of parent fitness over offspring fitness,

5.8% of HyperNEAT offspring had a positive value greater than 20, whereas for FT-NEAT

and NEAT only 0.35% and 0.21% did, respectively (Figure 4.10). It should be noted,

however, that many of these large mutational effects could be the result of a high-fitness

organism suffering a mutation that makes it immobile one generation and then a compen-

satory mutation that approximately restores its original fitness in the next generation.

Despite the many extreme negative fitness changes, it appears that the continuous pro-

duction of organisms that were much more fit than their parents fueled the success of Hyper-
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NEAT over the direct encodings on this problem. That the distribution of mutations alone

contributed to the success of HyperNEAT over FT-NEAT is supported by the fact that in an

alternate experiment where only mutations generated offspring, HyperNEAT still outper-

formed FT-NEAT, and a plot of mutational effect scores looked similar to Figure 4.10 (data

not shown). The magnitude of mutational effects in Figure 4.10 does change with time in

both treatments because those mutant offspring that barely move from the starting place

will count as a smaller fraction of the more fit parents of later generations.

4.6 Discussion and conclusions

Both objective and subjective analyses reveal that the HyperNEAT generative encoding is

better at evolving quadruped controllers than direct encoding controls when the regularity

of the problem is high. I demonstrated that the success of HyperNEAT arises because it

produces regular brains (ANNs) and behaviors (gaits). HyperNEAT also produces a diverse

set of neural wiring patterns, showing the algorithm’s ability to generate many different,

yet complex, patterns. Mutations to these regular patterns tended to produce more extreme

fitness effects, presumably due to the coordinated and holistic nature of the mutational

effects, allowing evolution to spend more time testing coordinated gaits. Additionally, the

gaits produced by the generative encoding generalized better due to their increased amount

of regularity. These results, along with those in Chapter 3, serve as another demonstration

that generative encodings can outperform direct encodings on regular problems [19,25,46].

A second reason for HyperNEAT’s success may be its unique ability to exploit geo-

metric aspects of the problem, such as symmetry [16, 17, 46]. During this research, many

symmetries were observed in HyperNEAT gaits, including four-way symmetry (all legs in

unison), left-right symmetry, and front-back symmetry. Chapter 6 investigates this issue in

more depth.

The results from the Quadruped Controller problem also reaffirmed conclusions drawn
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from Target Weights and Bit Mirroring regarding how generative encodings compare to

direct encodings as problem regularity decreases. As the regularity of the Quadruped Con-

troller problem lessened, the performance of the generative encoding dropped to, and then

fell below, the direct encoding controls. This result demonstrates that generative encodings

can exploit intermediate amounts of problem regularity, and may not be the correct choice

when a problem is sufficiently irregular. Additionally, the regularity of the problem did not

impact HyperNEAT once it was below a certain level.

HyperNEAT has yet to be tested on a wide range of problems. To date, however, it

has performed well on tasks as diverse as visual recognition [46], controlling simple multi-

agent systems [11], and evaluating checkers boards [16, 17]. Additionally, the CPPNs

underlying HyperNEAT produce complex, elegant, natural-looking images with symmetry

and repetition [42, 45]. All of these accomplishments suggested that HyperNEAT would

excel at evolving controllers for legged robots. The results in this chapter confirm that abil-

ity. HyperNEAT’s success at evolving gaits for legged controllers is all the more impressive

because it was able do so without the problem being manually decomposed or simplified.

The encoding could handle the complexities of the entire problem because it discovered

how to exploit the regularities of the problem. Based on the success reported here, which

comes despite naive geometric inputs, it is not unreasonable to predict that HyperNEAT,

and variations of it, will contribute significantly to the science of automating the creation of

controllers for complex, yet regular, devices, such as legged robots. Moreover, the results

from the Quadruped Controller problem suggest that HyperNEAT and future generative

encodings based on it will be able to automatically exploit the regularities of complex,

real-world engineering problems.

50



Chapter 5

A generative encoding can struggle to

make exceptions to the rules it discovers:

One remedy is an algorithm called

HybrID

Note:This Chapter is an expanded version of Clune, Beckmann, Pennock, and Ofria 2009.

5.1 Motivation, overview, and background

The Target Weights and Bit Mirroring experiments both demonstrate that the HyperNEAT

generative encoding performs worse as the regularity of the problem decreases. This out-

come is, in part, because it is challenging for HyperNEAT to create exceptions to the

rules it discovers. While we saw that HyperNEAT can make exceptions for columns or

nodes (Chapter 4), even these exceptions are regular in nature. The results from the Target

Weights problem (Chapter 3), however, clearly demonstrate that HyperNEAT has difficulty

making changes to specific links in an irregular way. The most glaring example of this
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deficit comes from the version of Target Weights where 90% of the target links were one

value, and the remaining 10% of the target links were each a different random number. Hy-

perNEAT discovered the regularity within a few generations, and then was unable to create

irregular exceptions that would have produced fitness gains during the remaining hundreds

of generations (Figure 3.5). The inability to make irregular exceptions to rules is likely a

general problem with generative encodings, because they are biased towards the produc-

tion of regular phenotypes. Direct encodings (also called indirect encodings), on the other

hand, excel at producing irregularities, but cannot easily create regularities.

In this section, I propose a new algorithm that is a Hybridization of Indirect and Direct

encodings (HybrID), which combines the benefits of both encodings. Although I present

one specific implementation of HybrID, the term applies to any combination of generative

and direct encodings. While I am not aware of any prior work that specifically combines

direct and generative encodings, researchers have previously altered representations during

evolutionary search, primarily to change the precision of values being evolved by genetic

algorithms [12]. Other researchers have employed non-evolutionary optimization tech-

niques to fine-tune the details of evolved solutions [18]. However, such techniques do not

leverage the benefits of generative encodings.

I compare HyperNEAT to HybrID on the Target Weights, Bit Mirroring and Quadruped

Controller problems, all of which have scalable regularity (see previous chapters for de-

scriptions of these problems). I find that HybrID can improve performance over Hyper-

NEAT by as much as 64%. These results recommend HybrID as a type of evolutionary

algorithm that can both exploit a problem’s regularities and account for its irregularities.

The results also further demonstrate that HyperNEAT has difficulty making exceptions,

since adding a process that adjusts the patterns HyperNEAT produces in irregular ways

leads to substantial fitness gains.
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5.2 The HybrID algorithm

The HybrID algorithm presented in this chapter runs HyperNEAT for a fixed number of

generations and then the encoding is changed to FT-NEAT at a switch point (Figure 5.1). To

switch, I transfer the ANN phenotypes of each individual in the HyperNEAT population to

FT-NEAT genomes that are then further evolved with FT-NEAT. In Section 4 of this chapter

I describe alternate HybrID instantiations. The motivation for the switch-HybrID algorithm

is that the generative encoding phase will generate patterns that the direct encoding phase

can then adjust to account for problem-irregularities.

Figure 5.1: Hybridizing Indirect and Direct Encodings in the HybrID Algorithm. The
HybrID implementation in this paper evolves with HyperNEAT in the first phase until a
switch is made to FT-NEAT. The idea is that the generative (indirect) encoding phase can
produce regular weight patterns that can exploit problem regularity, and the direct encoding
phase can fine tune that pattern to account for problem irregularities. In this hypothetical
example, large fitness gains are initially made by the generative encoding because it exploits
problem regularity, but improvement slows because the generative encoding cannot adjust
its regular patterns to handle irregularities in the problem. Fitness increases again, however,
once the direct encoding begins to fine-tune the regular structure produced by the generative
encoding.
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5.3 Comparing HyperNEAT to HybrID: Results from the

Target Weights, Bit Mirroring, and Quadruped Con-

troller problems

I conducted 50 runs of each experimental treatment in this section, and all data plotted are

averaged across them. The mutation rate per link was 0.08 for HyperNEAT and 0.0008

for FT-NEAT; preliminary experiments revealed these mutation rates to be effective for

each encoding. FT-NEAT has a lower per-link mutation rate because its genome has many

more mutational targets than HyperNEAT. Additional experiments showed no statistically

significant increase in HyperNEAT’s performance on all three problems when its mutation

rate was dropped to 0.0008 at the switch point.

5.3.1 The Target Weights problem

I begin my analysis with the diagnostic problem of evolving a specific target ANN (see

Chapter 3.2 for a full description). As previously discussed, HyperNEAT quickly discov-

ered the regularity in the more regular versions of this problem, but had difficulty making

exceptions to account for irregularities, even after hundreds of generations (Figure 3.5).

FT-NEAT, on the other hand, was slower, but eventually performed well, in part because

the problem has no epistatic interactions and thus coordinated mutational effects are not

required (Figure 3.5). HybrID combined the best attributes of both encodings: it quickly

discovered the regularity of the problem and, after the encoding switch at generation 100,

was able to further optimize solutions by accounting for irregularities (Figure 5.2). While

HybrID and FT-NEAT eventually evolved solutions of similar quality, early on HybrID did

better on more regular problems and less well on less regular problems. HybrID signifi-

cantly outperformed both HyperNEAT and FT-NEAT at generation 250 on the 70%, 80%,

and 90% regular problems (p < 0.01). Earlier switch points further improved the speed at
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which HybrID made progress on this problem (data not shown).

Figure 5.2: A Comparison of HyperNEAT, FT-NEAT, and HybrID on a Range of Problem
Regularities for the Target Weights Problem. For each regularity level, a HybrID line (gray)
departs from the corresponding HyperNEAT line (colored) at the switch point (generation
100). The performance of FT-NEAT (black lines) is unaffected by the regularity of the
problem, which is why the lines are overlaid and indistinguishable. HybrID outperforms
HyperNEAT and FT-NEAT in early generations on versions of the problem that are mostly
regular but have some irregularities.

5.3.2 The Bit Mirroring problem

The next problem, called Bit Mirroring (see Chapter 3.1 for a full description), is more

challenging and realistic since it has epistasis. Because I have already shown that Hyper-

NEAT outperforms FT-NEAT on all versions of this problem (Figure 3.2), here I compare

HybrID only to HyperNEAT. A population of size 500 was evolved for 5000 generations

and the switch point for HybrID was at generation 2500.

The results reveal that HybrID ties HyperNEAT on the most regular versions of this
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problem, and provides a significant fitness improvement over HyperNEAT on all versions

of the problem that have a certain amount of irregularity (Figure 5.3). HybrID’s advantage

over HyperNEAT was largest on problems of intermediate regularity. The reason the gap in

performance narrowed on the most irregular treatments is because the problem is difficult

and both algorithms performed poorly.

Figure 5.3: The Performance of HybrID Vs. HyperNEAT on the Bit Mirroring Problem.
Regularity decreases from left to right. Plotted are median values ± the 25th and 75th

quartiles. Asterisks indicate p < 0.05.

5.3.3 The Quadruped Controller problem

HyperNEAT was shown to evolve fast, natural gaits for simulated legged robots (Chapter

4). The evolved gaits, however, were extremely coordinated, with all legs often moving

in near perfect synchrony (either in phase or in opposite phase). I tested HybrID on this

problem to determine if it would improve fitness by facilitating the fine-tuning of aspects

of the controller, such as the movements of individual legs, especially on more irregular

versions of the problem (those with more faulty joints, see Chapter 4.3). I repeated the
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experiment from Chapter 4 with HyperNEAT and HybrID. Experiments had a population

of 150, lasted 1000 generations, and had a switch point at generation 500.

HybrID outperformed HyperNEAT on every version of the Quadruped Problem (Fig-

ure 5.4), although that difference was significant only on problems with a certain amount

of irregularity (p < 0.01 on treatments with four or more faulty joints). HybrID increased

performance over HyperNEAT by 5%, 10%, 27%, 64%, and 44%, respectively, for the

treatments with 0, 1, 4, 8, and 12 faulty joints. These substantial performance improve-

ments on the Quadruped Problem, which is a challenging engineering problem, highlight

the degree to which HyperNEAT’s inability to produce irregularity on its own can harm

its performance. The results also demonstrate the extent to which HybrID can increase

performance when it is allowed to fine-tune the regularities produced by HyperNEAT.

HybrID also outperformed both direct encoding controls on all treatments of the prob-

lem (p < 0.05). As reported in Chapter 4, HyperNEAT significantly outperformed both

direct encodings on only the two most regular versions of the problem (p < 0.01). That

HybrID beats the direct encodings on irregular problems underscores that it does not just

act like a direct encoding on irregular problems, but instead first leverages HyperNEAT’s

ability to exploit available regularities and then improves upon those by accounting for

problem irregularities via FT-NEAT.

It is instructive to look at how the FT-NEAT phase of HybrID changes the pat-

terns provided to it by the HyperNEAT phase. Visualizing ANNs at the end of each

HyperNEAT phase and the ANN for that same run after the FT-NEAT phase provides

clues as to how HybrID generates its performance improvements (Figure 5.5). Inter-

estingly, in all cases the FT-NEAT phase of HybrID made no major changes to the

overall regular pattern produced by the HyperNEAT phase (visualizations of ANNs

after the HyperNEAT and FT-NEAT phases for all 50 HybrID runs can be seen at

http://devolab.msu.edu/SupportDocs/HyperNEAT). Natural selection thus maintained the

regular pattern HyperNEAT generated even while that pattern was being fine-tuned by the
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Figure 5.4: The Performance of HybrID Vs. HyperNEAT on the Quadruped Controller
Problem. Error bars show one standard error of the median. HybrID outperforms Hy-
perNEAT on all versions of the Quadruped Controller problem. The increase generally
correlates with the number of faulty joints.

direct encoding.

The types of exceptions HybrID produces are different from those made by Hyper-

NEAT alone. In many cases, only a few weights are noticeably changed by the FT-NEAT

phase of HybrID, and these changes occur in an irregular distribution. For example, in the

run depicted in the left column of Figure 5.5, HyperNEAT produces the regular pattern of

inhibitory connections to all of the output nodes. FT-NEAT switches some of those to exci-

tatory connections, which may have been difficult for HyperNEAT to do without changing

many other weights. In another example run, depicted in the middle column of Figure 5.5,
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Figure 5.5: Visualizations of the ANNs Produced at the End of the HyperNEAT Phase and
the FT-NEAT Phase of HybrID for Three Example Runs.

the only noticeable change FT-NEAT made is the creation of a single, strong, excitatory

connection. Of course, in both cases there are subtle changes in many of the link weights

that do not stand out to the human eye.

In a third example run, changes were made during the FT-NEAT phase to many dif-

ferent link values, yet the overall pattern remained (Figure 5.5, right column). Many of

these changes were irregular, such as the links switched from excitatory to inhibitory and

vice versa in the top-left node, and the few links that were made excitatory in the bottom

row. What is unusual and fascinating about this run, however, is that the direct encoding

made many regular changes. For example, most of the links in the top row proportionally

increased in strength, which preserved the regular patterns. These visualizations show a

rare case of a direct encoding producing coordinated phenotypic changes. It might be the

case that the generative encoding discovered regularities that put this organism on the side

of a hill in a fitness landscape, but climbing that hill was made difficult because mutations

to the genome that increased the strength of connections in these nodes may have changed

other link values and had a net negative effect on fitness. The direct encoding control does

not have such constraints, and thus could increase the magnitude of all of these links. This
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hypothetical explanation illustrates how natural selection can produce coordinated changes

in direct encodings if it starts in a place in the fitness landscape where there is a positive fit-

ness gradient in the same direction for many link values. Interestingly, it is unlikely that the

direct encoding would have discovered this starting point without the generative encoding.

5.4 Alternate HybrID instantiations

I presented only one of many possible HybrID implementations. The HybrID in this sec-

tion evolves first with a generative encoding then switches to a direct encoding, and could

be called a switch-HybrID. Another candidate HybrID implementation would have the gen-

erative encoding produce a set of values (e.g., link weights) and the direct encoding evolve

a set of offsets that modify the individual values. This offset-Hybrid would allow excep-

tions to be made while the generative encoding is still evolving. Another possibility is a

chooseOne-HybrID, where a mutable bit can be flipped by evolution to determine whether

a link value is taken from a generative encoding or a direct encoding, both of which are

evolving in parallel. HybrIDs can also be made with other generative encodings, and in

domains besides neuroevolution. Additionally, instead of occurring at a predefined time,

the switch from generative to direct encodings, or the addition of offsets, could occur auto-

matically after fitness has stagnated. Future investigations are required to test the efficacy

of different HybrID implementations.

5.5 What HybrID teaches us about generative encodings

The work in this chapter suggests that it is difficult for generative encodings to simulta-

neously discover the regularity of problems and make exceptions to account for problem

idiosyncrasies. At a minimum, HyperNEAT exhibits this deficiency in its present form.

Theoretically, HyperNEAT should be able to make any exception required, but in practice

it frequently does not.
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Visualizations of the HyperNEAT ANNs revealed that HyperNEAT can create varia-

tions on patterns, and even exceptions for single nodes. However, these variations and

exceptions themselves were regular, suggesting that HyperNEAT creates its exceptions by

adding one regularity to another, with the result being an overall regularity with a regular

variation within it. The visualizations rarely demonstrate cases where single link values

were different from the prevailing pattern (Chapter 4.5.2). HybrID, on the other hand,

did provide examples of such single-link exceptions (Figure 5.5). The significant boost

in performance by HybrID implies that the ability to make such radical exceptions at the

single-link level is important.

HybrID’s performance increase over HyperNEAT, along with investigations into the

different type of exceptions HybrID and HyperNEAT make, suggest that HyperNEAT can

benefit from a process of refinement that adjusts individual link patterns in an irregular way.

The success of this approach suggests that generative encodings may be most effective not

as stand-alone algorithms, but in combination with a refining process that adjusts regular

patterns in an irregular way to account for problem irregularities. While a direct encoding

provides such refinement in this chapter, there are other candidate refinement processes.

One intriguing possibility is that lifetime adaptation via learning can play a similar role.

Lifetime learning algorithms could adjust the overall regular patterns produced by Hyper-

NEAT to account for necessary irregularities.

It is likely that other generative encodings have similar problems to HyperNEAT with

respect to accounting for problem irregularities, although additional research is required

to determine the degree to which that is the case. It is an open challenge for the field

to improve current generative encodings to enable the encoding of both regularities and

exceptions to those regularities.
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5.6 Conclusions

Many real world problems have regularities but also require exceptions to be made. It is im-

portant for evolutionary algorithms to both exploit such regularity in problems and account

for their irregularities. I have shown that HybrID, a combination of generative and direct

encodings, accomplishes this goal by first discovering the regularity inherent in a prob-

lem and then accounting for its irregularities. I validated the algorithm on two simpler test

problems and on a more challenging, real-world problem. HybrID frequently outperformed

HyperNEAT, sometimes by as much as 64%. While further research is needed to see how

HybrID works with other pairs of generative and direct encodings, alternate HybrID imple-

mentations, and on additional problems, these preliminary results suggest that HybrID is

an effective algorithm for evolving solutions to complex problems. The HybrID algorithm

also reveals current deficiencies with HyperNEAT, which, in turn, raises possible ways to

remedy HyperNEAT. The remedy this work recommends is a further process of refinement

that adjusts the regularities produced by HyperNEAT to account for problem irregularities.

This chapter therefore suggests a way forward for generative encodings wherein their main

contribution is as the regularity-generating engine within a larger algorithm.
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Chapter 6

A generative encoding can be sensitive to

different geometric representations of a

problem

Note: This chapter is an expanded version of Clune, Ofria, and Pennock 2009.

6.1 Motivation for studying a generative encoding’s geo-

metric sensitivity

Many problems tackled by the field of artificial intelligence have geometric regularities

that are intuitively obvious to a human observer. For example, in the game of checkers

the geometric concept of adjacency is important because pieces close together are likely

to constrain each other. The edge squares on the top and bottom of the board are different

because they can confer kingship, and all of the edge squares are important because a piece

on them cannot be jumped. There are also symmetries to the game (e.g., left-right, top-

bottom, and rotational). Many other AI problems, from machine vision to robotic control,

also contain a plethora of geometric information. Although geometric information could
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be helpful in solving these types of problems, most evolutionary algorithms do not make

such geometric information available to be exploited [46]. Instead, the norm is to provide

sensory information, such as whether a piece is present in a square, without also specifying

the geometric coordinates associated with that square. Stripping out such information is

akin to asking a human to learn to play checkers by cutting up the board into its constituent

pieces and scattering them randomly on the floor [46].

The HyperNEAT generative encoding does provide geometric information to an evolu-

tionary algorithm, and its ability to exploit the geometry of a problem has been repeatedly

demonstrated (Chapter 4, Chapter 3) [11, 16, 17, 46]. The ability to inject geometric infor-

mation into an evolutionary algorithm, however, necessitates that the experimenter choose

how to represent that information. This requirement raises the question of how sensitive

that EA is to different geometric representations of the same problem. There are aspects

of some problems that have obvious geometrical representations (e.g., the Cartesian co-

ordinate system of checkers), but other aspects of those problems may have no obvious

geometric location. For example, at what geometric coordinates should the input for the

current number of black pieces be placed? Other problems have many seemingly good

geometric representations. For example, there are multiple ways to order the legs of a

quadruped robot in two dimensions, and there are pluses and minuses for each alternative,

as we will see below.

One possibility is that encodings that exploit geometry, such as HyperNEAT, are mostly

immune to variation in the geometric representation. Such insensitivity would eliminate the

need to spend time trying to select the most advantageous representation. This possibility

would also be surprising, however, because preserving meaningful correlations in the prob-

lem’s representation should aid HyperNEAT’s performance. At the other extreme, it could

be the case that HyperNEAT exhibits vastly different performance levels in response to

even small changes in the geometric representation of a problem. If the location of such

information does matter in algorithms that incorporate geometric information like Hyper-
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NEAT, then users of these algorithms should be aware of that fact so they know to try a

variety of configurations.

This chapter will investigate HyperNEAT’s sensitivity to geometric representations by

performing repeated tests of the same problem (with the same inputs and outputs), but

with different representations of the geometric information. The investigation will use

the Quadruped Controller problem from Chapter 4, which is appropriate for this study

for two reasons. Initially, some aspects of the problem, such as the ordering of joints in

each leg, have clear geometric relationships, yet other aspects of the problem do not. For

example, each of the knee joints should be geometrically represented as further from the

torso than the hip joints, but other inputs (e.g., the sine wave) have no obvious geometric

location. Secondly, I have already shown that HyperNEAT is successful on this task with

one specific geometric representation (Chapter 4), providing a baseline performance that

can be compared to the performance of other geometric representations.

6.2 Previous work on this subject

I am aware of only one algorithm besides HyperNEAT that injects geometric information

into an evolutionary algorithm. The simple geometry-oriented cellular encoding (SGOCE)

is a generative encoding that evolves ANNs that control legged robots [30]. Controllers

were successfully evolved with SGOCE that could walk, follow gradients, and avoid ob-

stacles. Unfortunately, the benefit of the geometric information in the SGOCE system

was not isolated and investigated. While the system as a whole performed well on the

legged-robot problem, alternate geometric configurations were not tested. Additionally,

the cellular-encoding method that SGOCE was based on had been previously shown to

perform well on the problem of evolving controllers for legged robots without the addition

of geometry [19]. Finally, the robot model was relatively simple, having only two degrees

of freedom, the controller was manually decomposed into modules by the experimenter,
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and staged evolution was necessary achieve high level objectives, all of which simplify the

problem, but complicate analyses, compared to the robot model in the Quadruped Con-

troller problem.

HyperNEAT has been demonstrated to exploit geometric information on a variety of

tasks. It was shown to discover numerous different geometric motifs that it repeated to

solve a visual discrimination task [46]. Its ability to exploit geometry was also verified

in the checkers domain, where it evaluated board configurations [16, 17]. HyperNEAT

also exploited the geometric representation of a team of agents to produce herding strate-

gies [11]. For example, left-right symmetries were discovered wherein the left and right

groups of agents would perform strategies that were mirror images of each other. I have

also shown that HyperNEAT can exploit geometric information to produce symmetries on

the Quadruped Controller problem (Chapter 4).

Only one published experiment tested HyperNEAT’s sensitivity to alternate geometric

representations of the same problem [46]. A simulated circular robot was rewarded for

finding food. Eight food sensors and eight motor outputs were evenly distributed around

the robot’s center. The robot could move in the direction of any of those food sensors by

activating the corresponding motor output. Two geometric configurations were tested: a

parallel Cartesian coordinate configuration, where corresponding food sensors and motor

outputs were labeled with the same x coordinates, but different y coordinates (i.e., they

were in the same row, but in different columns), and a concentric configuration, with a

polar coordinate system where corresponding food and motor nodes shared the same angle

from 0 degrees. Unless extra information about the distance between nodes was provided,

the parallel configuration evolved strategies that collected food faster than the concentric

configuration. Even though only one experiment was conducted, and it compared only

two alternate geometric representations, the fact that the geometric representation made a

difference is interesting and invites a more rigorous study of HyperNEAT’s sensitivity to

geometric representations. Such a study is conducted in this chapter.
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6.3 Experiments, results and discussion

6.3.1 Engineered versus random configurations

A test of the importance of choosing an appropriate geometric representation is to compare

a human-engineered representation (Figure 4.2) to randomized representations. Such ran-

dom configurations represent configurations created without intuitions about how to repre-

sent the geometric information of a problem, and could be produced by a naive engineer or

algorithm. Each random configuration has the geometric locations of the inputs and outputs

scrambled within their layer. For each trial, the geometric representation was randomized

at the beginning of a trial and remained unchanged throughout the trial. For example, the

sine input, which is located at x = 5, y = 4 in the engineered treatment (Figure 4.2), may

be at (1, 1) in one randomized treatment and (3, 2) in another. An average was calculated

across 50 trials, each of which had a different randomized configuration.

In this case, the human-engineered configuration significantly outperformed the aver-

age of the random configurations (Figure 6.1, p < 0.05). This performance difference

shows that human intuitions about how to geometrically represent a problem can help Hy-

perNEAT. These results also underscore that the performance of HyperNEAT can be sig-

nificantly affected by the geometric representation. It is also instructive to compare the

randomized treatment to FT-NEAT. It has been previously shown that HyperNEAT (with

the engineered configuration) outperforms FT-NEAT (Chapter 4), so it is interesting to test

whether a naive geometric representation lowers the performance of HyperNEAT to the

level of FT-NEAT. It turns out that HyperNEAT still performs better than FT-NEAT (Fig-

ure 6.1), even with a randomized configuration (p < 0.001). This advantage could be due

to HyperNEAT’s generative ability to reuse link values, or to its ability to exploit geometric

correlations that arise by chance in randomized configurations. Regardless of the reason, it

is noteworthy that HyperNEAT outperforms FT-NEAT even with a naive representation of

the geometric information. Unsurprisingly, FT-NEAT is not affected by a randomization of
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the geometry, which for FT-NEAT changes only the ordering of the values in its encoding

(p > 0.05, data not shown).

Figure 6.1: The HyperNEAT Default Configuration Vs. an Average of Randomized Con-
figurations and Vs. a Direct Encoding Control. Thick lines show averages and thin lines
show one standard error of the mean.

6.3.2 Representations in different dimensions

To date, HyperNEAT has not been tested on the same problem with geometric representa-

tions in different dimensions. It is an open question as to whether the problem may be easier

or harder for the CPPN to solve as the dimensionality of its representation more closely ap-

proximates the true geometry of the problem, which is three-dimensional in this case. To

test this hypothesis, HyperNEAT was evaluated separately with a one-dimensional (1-d),

two-dimensional (2-d), and three-dimensional (3-d) representation. The 1-d treatment has
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only x coordinates, the 2-d treatment has only x and y coordinates, and the 3-d treatment

has x, y, and z coordinates. The coordinate values and geometric layout for each of these

three treatments are shown in Figure 6.2 (1-d), Figure 4.2 (2-d), and Figure 6.3 (3-d). The

number of CPPN inputs for each dimension is twice the number of dimensions, plus one

for a bias. There are thus 3, 5 and 7 inputs to the CPPN, respectively, for the 1-d, 2-d, and

3-d treatments.

Interestingly, the 1-d representation performed significantly better than the 2-d and 3-d

representations in the initial generations (p < 0.05 for generations 1-58, Figure 6.4), but

the 2-d and 3-d representations soon surpassed it (p < 0.05 for generations 170 on). It is

possible that the 1-d representation is simpler, but less powerful, making it easier to learn,

but harder to achieve high performance with. More tests are needed to reveal whether this

phenomenon is general to HyperNEAT on most problems, or is specific to this domain. It

could be the case that the 1-d representation was hampered because it is not very accurate

with respect to the actual geometry of the robot problem. For example, it is difficult to

represent all of the symmetries and repetitions of the robot in 1-d.

While the 2-d representation captures more of the geometric layout of the robot than

the 1-d representation, it still lacks fidelity. On the robot, the two hip joints are in the same

location and the knee is further away. However, the distance between these three joints

is the same in the 2-d representation. Furthermore, the 2-d representation inaccurately

represents the torso as a square instead of a rectangle. Finally, the 2-d representation does

not represent both the front-back and left-right symmetry of the robot. While these issues

could be creatively rectified in 2-d, they disappear when providing the true dimensions of

the robot in 3-d.

Even in 3-d there remain some arbitrary choices when assigning geometric coordinates

to inputs and outputs. Initially, even though the two hip joints occur in the same place on

the actual robot, the CPPN would be unable to distinguish them if they had the exact same

geometric coordinates. This problem was avoided by slightly separating these two joints
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Figure 6.3: The 3-d Geometric Representation. Only the input layer node coordinates are
depicted. The numbering system is the same for hidden and output layers. For three of the
legs, only the roll, yaw, or sine node has its respective x, y, and z coordinates shown. The x
and y coordinates for the other nodes in each of those three legs will be the same as for the
node shown for that leg, but the z coordinate will change in the same manner as for the leg
with all nodes shown.
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Figure 6.4: The Performance of Representations in Different Dimensions.

in the representational geometry: The HipIO joint was placed just below the HipFB joint

in the z dimension. Additionally, the geometric coordinates must be determined for some

information that has no meaningful geometric location. For example, where should the sine

wave input go? This type of issue will always arise with HyperNEAT when dealing with

information that does not belong to any geometric coordinate. The case of the pitch, roll,

and yaw sensors is a bit clearer. It would be intuitive to place them in the torso, because

that is what they provide feedback about, but it is not clear where in the torso they should

be placed. For the purposes of this chapter, placing the pitch, roll, and yaw sensors on the

torso would have made a comparison with the 2-d configuration less clean, since in the 2-d

setup the pitch, roll, yaw and sine (PRYS) inputs were placed just after the touch sensor on

each leg. For this reason, the PRYS inputs were kept at the distal end of each leg.
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The data reveal that the 2-d and 3-d treatments performed similarly throughout the

experiment, and ended up statistically indistinguishable (p > 0.05, Figure 6.4). Evidently,

moving to a more accurate representation did not improve performance, which is consistent

with a previous finding [11]. However, it is also interesting that the 3-d representation did

not hurt HyperNEAT’s performance. This result suggests that a user can select either a 2-d

or 3-d setup depending on which is easier to implement. It is premature to extrapolate from

one test in one problem domain, however, so more tests are needed to test the generality of

these findings.

Comparing the engineered performance in each dimension against a randomized con-

figuration from that dimension increases the sample size of the comparison between en-

gineered and random configurations from 1 to 3 (although all three samples are from the

same problem domain). The results, portrayed in Figure 6.5, are relatively consistent across

dimensions. In all cases, the engineered configuration outperformed the random configu-

rations (p < 0.001) and the random configurations outperformed FT-NEAT (p < 0.001).

Human intuitions provided a performance boost over the random treatments of 18.6%,

18.3%, and 11.7%, respectively, for the 1-d, 2-d, and 3-d representations.

It is also noteworthy that the 2-d randomized treatment statistically ties the 3-d ran-

domized treatment (p > 0.05), meaning that the CPPN does no better or worse in either

treatment due to the specific set of values fed to the CPPN. However, the 1-d-randomized

treatment is significantly worse (p <.01) compared to both the randomized 2-d and ran-

domized 3-d treatments. This result implies that one potential explanation for why the 1-d

treatment did worse than the 2-d and 3-d treatments is because the CPPN has a harder time

with the input numbers in the 1-d treatment (shown in Figure 6.2), and not because the 1-d

treatment is less geometrically accurate. The 1-d inputs could be harder to work with be-

cause of the specific numbers in that set, or because the numbers are close together, which

could make it difficult to differentiate between them.

The data in Figure 6.5 also reveal that HyperNEAT outperforms FT-NEAT, even with
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Figure 6.5: Comparing the Performances of an Engineered Configuration, Random Con-
figurations, and FT-NEAT in Different Dimensions.

a naive, randomly chosen geometric configuration, regardless of the dimension of the rep-

resentation (p < 0.001). It is unknown to what extent the performance difference is due

to HyperNEAT’s generative capabilities or to its ability to exploit even randomized ge-

ometries. Unfortunately, these two forces are intertwined and difficult to experimentally

isolate.

6.3.3 Repeatedly testing random representations

In the previous experiments, the randomized treatments featured one trial for each of 50

randomized configurations. The average across these configurations was worse than the

engineered configuration and better than FT-NEAT. However, in the 1-d treatment, one of
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the randomized configuration trials outperformed all of the 1-d engineered trials and an-

other randomized trial performed worse than many of the FT-NEAT trials. The variance

in the results highlights the need to explore whether these configurations are inherently

better or worse, or whether it was simply a stochastic idiosyncrasy during the individual

trials that caused their extreme performance. To test whether certain randomized configu-

rations might perform better than the engineered configuration or worse than FT-NEAT, 50

trials were conducted for the random configurations that performed best and worst, as well

as for 25 other randomly chosen randomized configurations from the earlier experiment

(Figure 6.6).

Figure 6.6: A Comparison of HyperNEAT 1-d and FT-NEAT to 27 Randomized 1-d Con-
figurations. Each line is an average of 50 trials. For clarity, standard error bars are not
shown for randomized configurations.

Averages across 50 trials for the configurations that originally performed the best and
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the worst were not as extreme as the original individual trial scores produced by them. The

idiosyncrasies of those single trials mattered more than any property of the configuration

itself. That said, there is a substantial amount of variation between the 27 configurations

tested, once again underscoring the effect that the geometric representation can have in Hy-

perNEAT. The difference can be significant (p < 0.001 comparing the highest and lowest

performing configurations). All of the variation in random configurations, however, was

confined between the performance of FT-NEAT and HyperNEAT: every randomized treat-

ment underperformed HyperNEAT (p < 0.01), and outperformed FT-NEAT (p < 0.01 for

all but the two lowest performing randomized treatments). These data strongly recommend

the selection of HyperNEAT over FT-NEAT on this problem. HyperNEAT’s advantage

may be because this problem is highly regular, since all legs can be correlated (Chapter

4), and because HyperNEAT increasingly outperforms FT-NEAT as problem-regularity in-

creases (Chapter 3). It seems difficult to produce a geometric representation that performs

worse than FT-NEAT. This result is surprising because it suggests that HyperNEAT can ex-

ploit regularities in any geometric representation. As such, HyperNEAT could outperform

its direct encoding alternatives even if a problem has no obvious geometry (provided the

problem is regular, cf. Chapter 3). Recall that NEAT and FT-NEAT performed similarly

on this problem (Chapter 4), so the comparisons made here to FT-NEAT hold for NEAT as

well.

No random representation outperformed an engineered representation (Figure 6.6).

This outcome reinforces the fact that human intuitions about the geometry of a problem

help us choose a rare subset of the possible space of geometric configurations that are high

performing. Clearly, if the number of samples were increased, then, eventually, represen-

tations would be found that are equal to, and possibly better than, the engineered approach.

However, those configurations may represent a tiny region of the search space that is hard

to algorithmically find. The results from this case suggest the interesting possibility that

human engineers may easily select high-performing representations because of our intu-
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itive grasp of geometry. It would be interesting in future work to evolve the geometric

locations of nodes and compare the results to human-designed configurations.

6.3.4 Comparing alternate engineered representations

In addition to comparing one engineered configuration to random configurations, it is illu-

minating to compare different engineered representations. Such tests are worthwhile be-

cause when arranging a configuration, some choices are difficult (because there seem to be

many good alternatives) and others are arbitrary (because multiple options are seemingly

equivalent). Whether it is important to investigate alternatives in both cases is addressed

by comparing alternate 2-d configurations. For example, the location of the PRYS infor-

mation is an arbitrary decision because, unlike the joints in each leg, the PRYS information

does not have any obvious geometric location. The engineered solution places the PRYS

information in the final column of a 5×4 ANN (Figure 4.2). However, it could also have

been placed as an additional row in a 4×5 ANN (hereafter referred to as the PRYS-as-row

setup).

Ideally, such arbitrary configuration details should not affect the CPPN. If it is the case

that arbitrary decisions have little impact on evolution, then the designer does not need to

spend time testing alternate configurations to find a better one. Unfortunately, the data show

that such configurations can make a difference (Figure 6.7). The PRYS-as-row treatment

does 9.7% worse than the default setup, which is statistically significant (p< 0.001). While

it would be interesting to test additional configurations (e.g., PRYS as the first column, or

as the first row), limited computational resources prevented such investigations.

Other configuration decisions within a dimension may a priori be expected to have a

larger impact. For example, the ordering of the legs may substantially affect the quality

and type of gaits evolved. If CPPNs have an easier time grouping nodes that are closer to

each other, then placing certain legs next to each other in the y dimension in the 2-d setup

may make it more likely for those legs to have similar neural controllers and hence have
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Figure 6.7: The Performance of Alternate 2-d Engineered Configurations.

coordinated movements. Thus, some leg orderings may be more likely to produce left-right

symmetry than front-back symmetry, for instance, which could affect fitness scores if one

type of symmetry tends to produce faster gaits.

Three alternate orderings were tested in addition to the default ordering (Figure 6.7).

The performance of the default setup (FL-BL-BR-FR) is statistically indistinguishable from

the FL-BR-FR-BL ordering (p > 0.05). However, the other two leg orderings (FL-FR-BR-

BL and FL-FR-BL-BR) performed worse than the default (p < 0.01). These data suggest

that evolution did worse when front-back symmetry was encouraged (by ordering the legs

F*F*B*B*, where * is a wildcard). A more exhaustive test of different configurations

is warranted, but was prevented by limited computational resources. Nevertheless, these

results do conclusively show that the order in which the legs are numbered for the CPPN
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can make a difference. Another way of investigating the effect of different leg orderings is

to classify the gaits produced by each representation. The gait of the best controller from all

50 trials in each of the four treatments was viewed and categorized (Table 6.1). In all of the

treatments, the overwhelming majority of gaits moved all four legs in synchrony. However,

the exceptions to this rule within each treatment are interesting because they reflect the

geometric biases of each configuration. For example, all four cases of left-right symmetry

evolved in the configuration that ordered the legs *L*L*R*R. Furthermore, all seven cases

of front-back symmetry were seen in the only two configurations that placed the legs in the

order F*F*B*B*. It seems that it is easier for the CPPN to bisect the y dimension than to

group legs 0 and 2 into one group and 1 and 3 into another. This ‘every-other’ grouping

requires a more complicated function, and did not evolve in any of the best controllers.

Interestingly, the configuration chosen to encourage a trot gait, where diagonal legs are in

sync (FL-BR-FR-BL), evolved neither a diagonally-symmetric gait nor a gait with front-

back or left-right symmetry. For some reason, possibly because the torso is inflexible, the

trot gait was not employed by evolution. That, plus the difficulty of grouping the left-right

legs or the front-back legs in this configuration, is probably the reason that no diagonal,

left-right or front-back symmetries evolved.

Further evidence of the influence of the geometric configuration on the resultant gait

can be seen by examining those gaits in which three of the legs moved in synchrony, and

one leg did something different. In 23 out of 25 (92%) of these gaits, the exception leg

was the last leg in the ordering. It is not surprising that it is easier for the CPPN to make

one distinction (e.g., all legs less than N) instead of the two distinctions that are required

to pick a leg out of the middle of a dimension. The two exceptions, however, prove that

it is possible for the CPPN to make an exception for a middle leg. It is not clear why the

CPPNs tended to single out the last leg and not the first, although this result likely occurred

because making that exception was easier for the specific mathematical functions used.

It appears that the ordering of components geometrically can bias HyperNEAT’s group-
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Table 6.1: The Resultant Gait Types for Different Leg Orderings. Gaits are placed into the
following categories. 4way Sym(metry) (all legs in synchrony), L-R Sym (the left legs are
in phase and the right legs out of phase), F-B Sym (the front legs are in phase and the back
legs are out of phase), One Leg Out of Phase (three legs moved in synchrony and one is
out of phase, which resembles a gallop). If two legs are motionless, they are considered in
synchrony. Two gaits do not fit into these categories and are not tabulated. FL=Front Left,
BL=Back Left, BR=Back Right and FR=Front Right.

ing of those components. This result, which has not been previously reported, means that

a user can inject biases (desired or not) into how HyperNEAT clusters subcomponents of a

problem. For example, if evolving a team of multiple agents, which HyperNEAT has been

shown to do well [11], the geometric ordering could influence the types of teams selected.

Imagine a game in which players have to create military units of either fast moving speed-

sters or slower, but more powerful, tanks. If players desired one homogenous squadron

of only speedsters and a separate homogenous squadron of only tanks, they could make

this outcome more likely by creating a geometric representation that ordered the pieces

speedster-speedster-tank-tank. If a player wanted two heterogeneous squadrons that each

had a speedster and a tank, they could make that outcome more likely with a speedster-

tank-speedster-tank ordering. Importantly, the bias of any configuration is also determined

by the CPPN function set, and changing it could alter the biases of any given representation.
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6.4 Conclusion

This chapter shows that when evolving controllers for simulated legged robots, Hyper-

NEAT can be sensitive to the way its geometric information is represented. HyperNEAT

outperformed a direct encoding control even with randomized geometric representations.

HyperNEAT’s success with random configurations suggests it can perform well even if one

does not know how to geometrically represent a problem. However, properly choosing a

geometric configuration, which may seem intuitive to a human engineer, can provide a per-

formance increase (10%-20% on this problem). Testing alternate engineered configurations

was shown to be important for two reasons: Initially, some seemingly arbitrary decisions

in the design of geometric representations can have large effects. Additionally, alternate

options that a priori seem good for different reasons can have significantly different per-

formance levels. In addition to quantitative fitness effects, the geometric configuration

can also affect the types of solutions evolved, enabling engineers to bias the products of

HyperNEAT evolution. HyperNEAT’s sensitivity to its geometric representation is both

detrimental, because work is required to optimize it, and powerful, because altering it can

yield performance increases and enable engineers to shape the solutions produced. It is

important to note, however, that all of the conclusions in this chapter are drawn from one

problem domain. Future work is required to see whether such conclusions hold more gen-

erally. Additionally, it will be interesting to see whether these results generalize to future

generative encodings that exploit geometry.
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Chapter 7

Investigating modularity in a

geometry-based generative encoding

Note: This chapter is an expanded version of Clune, Beckmann, McKinley, and Ofria 2010.

7.1 Motivation for studying modularity in evolved ANNs

A long-term goal in the fields of evolutionary computation, neuroevolution, and artificial

life is to synthetically evolve phenotypes as complicated as those seen in the natural world.

Many complex, natural organisms exhibit modularity, regularity, and hierarchy [23, 29, 38,

54,55], which are important design properties and can also increase the evolvability of these

organisms [27, 28, 33, 37]. Please see Chapter 2.1 for a definition of regularity, modularity,

and hierarchy.

Without the ability to evolve genotypes and phenotypes that possess these character-

istics, it may be difficult to synthetically evolve creatures as complicated as those found

in nature [2, 33, 38]. Modularity is especially important for neural networks, where it can

improve both evolvability and learning, because modular networks can more easily be rear-

ranged to produce new functions [28, 37]. These benefits likely explain why natural brains

display a high degree of modularity, regularity, and hierarchy [23, 29, 38, 54, 55]. Designs
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engineered by humans also possess these properties for the same reasons: they make it

easier to design and modify complex artifacts.

Modularity, regularity, and hierarchy arise in natural organisms as a result of complex

developmental processes [2, 38]. A desire to produce these design principles in synthetic

evolution has led many researchers to switch from direct encodings to generative encod-

ings (Chapter 2). It has been shown that generative encodings are capable of producing

modularity, regularity, and hierarchy in phenotypes [27], and specifically can create regu-

larity and modularity in evolved neural networks [19, 26]. These generative encodings are

based on rewriting symbols, such as Lindenmayer Systems [25–27, 32], or programs that

are recursively called at vertices in a graph [19]. These representations perform well in part

because they strongly and explicitly bias evolution towards phenotypes with modularity,

regularity, and hierarchy [27].

The HyperNEAT generative encoding (Chapter 2), which is the focus of this disser-

tation, was not designed to generate modularity, regularity, and hierarchy as explicitly as

previous generative encodings. It is therefore important to determine the degree to which

HyperNEAT produces these properties in its phenotypes. In Chapters 3-6, I demonstrated

that HyperNEAT produces regular ANNs that exploit the regularity of problems. This

chapter investigates the previously unstudied question of whether HyperNEAT produces

modular ANNs. In the future I will investigate whether HyperNEAT can produce hier-

archical ANNs. I would like to emphasize that in this chapter I focus on modularity in

evolved phenotypes. In future work I also plan to investigate the modularity, regularity, and

hierarchy of HyperNEAT genotypes.

To investigate modularity in HyperNEAT, I tested whether it and a direct encoding con-

trol (FT-NEAT) produced modular ANNs on a problem that has previously been shown by

Kashtan and Alon [28] to generate modular ANNs with a different direct encoding neu-

roevolution algorithm. In contrast to those results, this problem did not encourage modu-

larity in FT-NEAT, raising a question about the generality of Kashtan and Alon’s results. I
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also found that HyperNEAT did not produce modular ANNs on this problem and variants

of it. I then tested whether HyperNEAT would have done better had it produced a modular

ANN by imposing modularity on its ANN phenotypes. With this imposed modularity, Hy-

perNEAT’s performance improved. These results show that, irrespective of how the direct

encoding performed on this problem, HyperNEAT would have done better had it produced

modular ANNs. I next tested two techniques to encourage HyperNEAT to automatically

produce modularity, but did not observe an increase in either modularity or performance.

Finally, I conducted tests on a simplified version of the problem and found that HyperNEAT

quickly was able to produce modular solutions that solved the problem. I therefore present

the first documented case of HyperNEAT generating a modular phenotype, but my inability

to encourage modularity on harder problems where modularity would have increased per-

formance suggests that more work is needed to increase the likelihood that HyperNEAT and

similar algorithms will produce modular ANNs in response to challenging, decomposable

problems.

7.2 Motivation for, and description of, the Retina Problem

An informative test of whether HyperNEAT produces modular ANNs is to try it on a prob-

lem where modularity is known to be helpful, and in an environmental regime that has

been shown to encourage modularity in a neuroevolution algorithm. Fortunately, previ-

ous research has been conducted on such a problem [28]. Kashtan and Alon demonstrated

that environmental regimes that switch between problems with modularly varying goals

(MVG) increase the evolution of modular phenotypic networks. MVG environments switch

between tasks that have shared subproblems, but where the overall problem is solved by

combining answers to these subproblems in different ways. On two different problems,

Kashtan and Alon demonstrate that MVG environments produce highly modular networks.

They also show that fixed goal (FG) controls that evolve to solve a single unchanging prob-
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lem produce non-modular networks, even though the fixed goal was identical to one of the

goals from the MVG regime and thus had the same subproblems. The MVG treatments

also solved problems in an order of magnitude fewer generations. Moreover, the evolved

modules of the MVG networks solved the subproblems Kashtan and Alon had designed

into the overall problems. Over time, solutions evolved that allowed the modules to be

reconfigured via a single or small number of mutations, thereby enabling quick adaptations

from one environment to another. In subsequent work it was shown that, after an environ-

mental change, modular networks were faster at adapting both to previously seen and novel

environments: This ability to quickly adapt to new environments is made easier because

of the modularity that evolved in the networks [37]. Inspired by these findings, scientists

tested and confirmed that similar results hold for natural organisms: bacteria that live in

changing environments have more modular metabolic networks [31, 37].

Kashtan and Alon’s results are consistent with our expectations for when modularity

is useful. Modularity is not necessarily helpful, and may be harmful, when designing

a solution for a single, unchanging problem [33]. Modularity becomes beneficial when

designs need to be changed quickly, because modules that solve subproblems can be easily

reorganized [33].

Kashtan and Alon’s first problem involved evolving the connections of networks of

NAND gates to solve Boolean logic functions. Their second problem consisted of evolving

neural networks to perform pattern recognition. I chose their second problem as the test

problem in this chapter because HyperNEAT was designed to evolve neural networks.

The second problem, which I will call the Retina Problem, evolves a neural network to

separately recognize patterns, or ‘objects’, on the left and right sides of an artificial retina

(Figure 7.1a). The retina consists of eight pixels, four per side, which were the inputs to a

neural network with sigmoid activation functions. The left four pixels (the left pane) can

form 16 unique patterns, half of which are considered Left Objects. The same is true for

the right four pixels (the right pane). The goal is to have the single output of the network
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answer one of two Boolean logic questions: [L AND R] (true if there is a Left Object and a

Right Object), or [L OR R] (true if there is a Left Object, if there is a Right Object, or both).

This Retina Problem is challenging because the network must independently recognize and

identify low-level patterns before processing that information to determine if a higher-level

pattern is present [28]. The networks had four feed-forward layers in addition to an input

layer (Figure 7.1b-c). Layer 1, which received connections from the input layer, had eight

input neurons. Layers 2 and 3 were hidden layers with four and two neurons, respectively.

The output layer had a single neuron.

A human engineer immediately recognizes the modularity in the Retina Problem: The

left and right panes can be processed independently to determine if an object is present. The

information can then be combined in either a logical AND or OR. There are non-modular

ways that may be equally good at solving either problem, but such non-modularity will

likely make it more difficult to switch from a network that solves one problem to a network

that solves the other, where difficulty is measured by the number and magnitude of link

weight changes that need to be made.

Pixels on the retina were limited to ‘on’ and ‘off’ states, represented as input values

of 3.0 and −3.0, respectively. A bias neuron with a constant input of 3.0 had evolvable

connections to all neurons. This feature serves a similar function to the evolvable thresholds

in Kashtan and Alon’s setup [28]. Outputs were considered true if they were close to

1 and false if they were close to −1. The fitness function was inversely proportional to

the difference (the error) between the correct answer (1 or −1) and the network output.

Specifically, the fitness function summed the error across all 256 possible input patterns

and squared the result to magnify the importance of small improvements.

The specifics of the implementation in this chapter differ in certain ways from Kashtan

and Alon’s [28]. While the description of their model is not complete, it appears that

their inputs and outputs were binary, the activation functions of their neurons were step

functions with only three possible thresholds, and their link weights consisted of a small
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set of discrete values. They evolved their networks via a standard direct encoding genetic

algorithm with mutation and crossover. Their fitness was a function of the percent of correct

answers provided across 100 randomly chosen input patterns. These differences, while

seemingly minor, may explain the different qualitative results I observed from those of

Kashtan and Alon [28].

Kashtan and Alon evolved networks in an FG regime [L AND R] and an MVG regime,

wherein the rewarded task switched every 20 generations from [L AND R] to [L OR R].

They continued each evolutionary run until the networks output the correct answer for

95% of the input patterns, at which point they considered the problem solved. That took a

median of 21,000 generations in the FG regime, which was nearly an order of magnitude

slower than in the MVG regime, which took 2,800 generations. The MVG networks were

more modular, and could adapt to an environmental change from one goal to the other in

about 3 generations, often via a single mutation [28].

7.3 Experiments and results

7.3.1 Retina problem (standard setup)

I tested the performance of HyperNEAT and FT-NEAT on the Retina Problem for two MVG

regimes, one that alternated between tasks [L AND R] and [L OR R] every 20 generations

(MVG-20), which was the rate used by Kashtan and Alon, and another that alternated every

100 generations (MVG-100). I also conducted experiments with faster and slower rates of

change, but the results were not qualitatively different (data not shown). I tested two FG

regimes (FG-AND and FG-OR), one for each of the tasks. For each experimental treatment

discussed in this chapter I performed 20 runs of evolution with different random number

generator seeds, and report the median (bold lines) and 25th and 75th percentiles (thin

lines). To represent fitness values, I show the percent of test cases the best organism in

the population provided the correct answer for. The nature of the logic functions means
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that always outputting 1 (in the OR environment) or 0 (in the AND environment) achieves

a score of 75%. For this reason, it was rare to see the best organism in each generation

score below 75%. Each run had a population size of 500, which is large for HyperNEAT

experiments [46].

The results, presented in Figure 7.2a, reveal that HyperNEAT does not perform well

on this problem. Recall that Kashtan and Alon’s direct encoding achieved 95% accuracy

in both the FG and MVG regimes. FT-NEAT also performed poorly (Figure 7.3), and its

results were qualitatively the same as for HyperNEAT on the FG-AND, FG-OR, and MVG

treatments. While Kashtan and Alon did perform evolution for many more generations, ad-

ditional experiments up to 30,000 generations for both HyperNEAT and FT-NEAT revealed

that longer experiments do not change the qualitative results (data not shown). More likely,

the difference in absolute success has to do with the differences in the neural networks.

However, alternative experiments with different selective pressures produced networks that

perfectly solved the FG problems, suggesting that the difference between these results and

those of Kashtan and Alon is not due to any limitation in the capability of the networks

in these experiments, but is instead related to differing evolvability between the configura-

tions.

To better understand why HyperNEAT performed poorly, I ran the same experiment,

with the same number of nodes and potential links in the ANN, but where ANNs were re-

warded for correctly identifying only Left Objects in the FG-AND problem. The evaluated

output was taken from the left node of layer 3 (the layer just before the output layer). In

this easier version of the problem, which I call Retina Left Only, HyperNEAT performed

better, but still had difficulties (Figure 7.2a). These difficulties may have occurred because

HyperNEAT created too many links in its substrate and therefore did not ignore the inputs

from the right panel when identifying Left Objects. FT-NEAT, on the other hand, per-

formed significantly better, with 17 of 20 treatments surpassing 95% accuracy (p < 0.001,

Mann-Whitney U rank test, Figure 7.3).
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Figure 7.3: The Performance of FT-NEAT on the Standard Setup of the Retina Problem.
Medians are shown as bold lines surrounded by the 75th and 25th percentiles of the data.
Note that the y-axis scale is different than in Figure 7.2.

I conducted a similar experiment, but rewarded networks that could correctly report

whether there were Left Objects and Right Objects, respectively, in the left and right nodes

of layer 3. This experiment is particularly illuminating because a network must be able to

first solve this task before computing the logical AND or OR of these answers, which is

required for the optimal solution to the FG and MVG problems. The results of this exper-

iment, which I call Retina Left & Right, demonstrate that HyperNEAT did worse on this

task than all other versions of the problem (Figure 7.2a). That HyperNEAT was unable to

independently determine the presence or absence of Left Objects and Right Objects helps

explain why it did not do well on the harder tasks that require further processing this in-

formation. Of particular interest is how much better the FG-AND and FG-OR treatments

performed than the Left & Right treatment. Given that HyperNEAT had difficulty inde-

pendently identifying Left and Right Objects, we can infer that the strategy it employed on
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the FG treatments to perform better than the Left & Right treatment did not independently

process the left and right panels. HyperNEAT likely took advantage of the locally optimal

shortcut of always outputting 1s or 0s, which yields fitness values of 75%. It could then

have increased its performance up to the level it achieved by encoding some additional

information about the problem, such as certain situations in which to provide the other

output.

More important than the absolute difference between Kashtan & Alon’s results and

those of HyperNEAT and FT-NEAT is the qualitative difference: the MVG regimes per-

formed worse than the FG-AND regime, which was the opposite of what occurred in Kash-

tan and Alon’s study. This result raises questions as to the generality of Kashtan and Alon’s

discovery that environments with MVG will generate the evolution of modular networks.

While there are differences between Kashtan and Alon’s experimental setups and the one

used here, the differences are relatively small and should not preclude such a seemingly

general result. I will investigate what differences in the implementations led to the differ-

ing results in future work.

Despite the differences between these results and those of Kashtan and Alon, the Retina

Problem still serves as a diagnostic problem regarding the ability of an algorithm to produce

modularity. Because the problem can be decomposed on the left and right sides until the

final layer, networks that are more modular should perform better. The case is even clearer

for the Retina Left & Right problem, because the left problem is independent of the right

problem. For the remainder of this chapter, I utilize the Retina Problem and variants of it

to investigate HyperNEAT’s ability to generate modular ANNs.

I hypothesized that HyperNEAT may have performed poorly because it was not pro-

ducing modular ANNs. To test whether HyperNEAT’s ANNs were modular, I counted

the number of active (non-zero) links in the substrate. A modular design that processed

the left and right panels separately before combining them has at most 69 of the possible

121 links in the neural network, or 57%. This number is small because there are no links
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between the two modules. The degree to which the percent of links in a network is over

57% suggests the extent to which the ANN is interconnected instead of modular. This link-

counting measure is a crude estimation of modularity, but it is not accurate to simply count

the links between the nodes on the left and right side of the coordinate space, because it is

possible for evolution to create modules that are not correlated with geographic location. In

future work I plan to quantify the modularity of these networks with a more sophisticated

modularity metric.

The FG regimes had a median of 94% and 96% of links active (±6% SD), respectively,

for the FG-AND and FG-OR treatments. The MVG-100 and MVG-20 regimes had medi-

ans of 94% and 95% (±3%, ±7% SD). For many runs, 100% of the links in the champion

ANN were active, which is the lowest level of modularity possible. There were no statis-

tically significant differences in the link percentages between the FG and MVG treatments

(p > 0.05, Mann-Whitney U rank test). I conclude from these data that part of the reason

HyperNEAT performed poorly on both the FG and MVG tasks is because it has difficulty

turning off links and thus produced ANNs with low levels of modularity.

7.3.2 Retina problem with imposed modularity

I next investigated whether HyperNEAT would have done better had it discovered the left-

right modularity of the problem. To test this hypothesis, all connections were disabled

between the left and right sides of the network, except between layers 3 and 4. Disabling

of cross-links ensured that information from the left and right panels was processed inde-

pendently until it was combined in the final layer.

This Imposed Modularity treatment improved the performance of every treatment (Fig-

ure 7.2b, p < 0.001 comparing the fitnesses of the generation champions per treatment

from the final generation with a Mann-Whitney U rank test) except for FG-OR, which per-

formed worse (p < 0.05). The decline in FG-OR performance with imposed modularity,

while slight, is counterintuitive and was anomalous compared to the results from the other
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treatments. I hypothesized that this odd result may have occurred only because evolution

had not yet leveled off, which was more so the case for the FG-OR treatments than the oth-

ers. To test whether additional generations would make a difference, I extended the FG-OR

experiments to 3000 generations, at which point the Imposed Modularity treatment out-

performed the Standard Setup (the setup with results plotted in Figure 7.2a), although the

difference was not statistically significant (p > 0.05, Mann-Whitney U rank test). Four of

the extended FG-OR with Imposed Modularity runs reached at least 95% accuracy, further

demonstrating that HyperNEAT is capable of solving the Retina Problem with the neural

networks used in this chapter. None of the extended FG-OR runs without imposed modu-

larity reached a fitness level of greater than 90%. It is not obvious why Imposed Modularity

is less helpful on the FG-OR treatment than in the other treatments: It may be that the im-

posed modularity is interfering with the exploitation of a locally optimal strategy that is

being used in the Standard Setup. Kashtan and Alon did not report experimenting with

FG-OR, so I cannot compare my results to theirs [28].

These results confirm that HyperNEAT would have done better had it generated a modu-

lar network that independently processed the left and right panels. Interestingly, the largest

effects were in two non-MVG treatments. In the Retina Just Left treatment, HyperNEAT

scored nearly perfectly with imposed modularity (Figure 7.2b). This result demonstrates

that the subproblems of identifying Left and Right Objects are not impossible for Hyper-

NEAT to solve (experiments focusing just on the right side were qualitatively similar, data

not shown). The imposed modularity also substantially improved the performance of the

Retina Left & Right treatment. Four of these treatments achieved scores above 95%, with

one at 99%, and none scored below 86%. Both the Retina Left Only and Retina Left &

Right problems are thus demonstrations of problems where modularity is beneficial, but

where HyperNEAT did not discover such modularity on its own. These results emphasize

that HyperNEAT would perform better on some FG problems if it were better able to create

modular ANNs. This is not to say that modularity is necessary, but just that in this case it
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improves the likelihood of evolving a high quality solution. That four of the Left & Right

treatments scored above 95% also offers additional evidence that HyperNEAT is capable of

solving the Retina Problem with the neural networks used in this chapter, because putting

this information together into an AND or an OR function is possible in this setup.

That imposed modularity increased performance on the Left & Right problem may help

us infer why imposed modularity aided the performance of HyperNEAT on the FG-AND

problem. The similarity in fitness scores between the Left & Right treatment and the FG-

AND treatment with imposed modularity may indicate that the FG-AND treatment with

imposed modularity did implement the globally optimal strategy of independently process-

ing the left and right panels, albeit in an imperfect way. If so, this instance would be an

interesting demonstration of how modularity helped evolution switch from a locally opti-

mal strategy to a higher-performing and possibly globally optimal strategy. Unfortunately,

it is difficult to determine if these networks did indeed correctly process the left and right

panels by recording the values at the associated nodes in layer 3, because evolution can

internally represent information in different ways.

7.3.3 Retina problem with fewer links

One factor that may hamper HyperNEAT’s ability to create modular ANNs is that it pro-

duces too many substrate links. To test this hypothesis, the range of CPPN outputs that

were converted to an ANN link weight of zero was increased, which effectively elimi-

nates the link. For the previous experiments, CPPN outputs in the range of −0.1 to 0.1

resulted in ANN links of 0. Such a range was built into HyperNEAT to facilitate the elim-

ination links in its ANN phenotypes [46]. I call this parameter ZeroOutHalfWidth. As

the ZeroOutHalfWidth increases, a wider range of CPPN output values result in ANN link

weights of zero, decreasing the expected number of ANN links.

I tested ZeroOutHalfWidth values of 0.2, 0.4, 0.6, 0.8, 0.9, 0.95 and 0.99, and com-

pared the results to the default value of 0.1 (Figure 7.4). Altering the ZeroOutHalfWidth
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parameter had little effect on fitness and did not raise fitness up to the levels observed with

imposed modularity. All of the treatments with different ZeroOutHalfWidth values, but

without imposed modularity, were significantly worse than the Imposed Modularity treat-

ment on both the FG-AND and Left & Right problems (p < 0.001, Mann-Whitney U rank

test).

Figure 7.4: The Effect on Performance (Top Row) and the Number of ANN Links (Bottom
Row) of Varying the ZeroOutHalfWidth Parameter. Each column represents a treatment
with a different ZeroOutHalfWidth value (columns 1-8) or the Imposed Modularity (IM)
treatment (column 9), which is shown for comparison. The midline shows the mean, the
lower and upper box lines show the 25th and 75th percentiles, the whiskers enclose all
non-outliers, and outliers are shown as plus signs.

The data reveal that higher ZeroOutHalfWidth values did reduce the number of ANN

links in both problems (Figure 7.4, bottom row). Importantly, the number of ANN links for
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some of the different ZeroOutHalfWidth values were roughly similar to the number of links

in the Imposed Modularity treatment. Given that these treatments had similar numbers of

ANN links, but performed significantly worse than the Imposed Modularity treatment, it is

likely that the resulting networks were not very modular. This result suggests that it is not

merely the inability to eliminate ANN links that prevents HyperNEAT from discovering

modular solutions to these problems, but that HyperNEAT also has trouble controlling

which links to deactivate.

Independent of its effect on modularity or fitness, the tactic of reducing HyperNEAT

links by increasing the ZeroOutHalfWidth value did have the desired effect of lowering the

number of ANN links. This technique may be beneficial to future HyperNEAT users that

wish to reduce the number of links in HyperNEAT-generated ANNs.

7.3.4 Retina problem with increased geometric coordinate separation

Another technique that could facilitate the production of phenotypic modules in Hyper-

NEAT’s ANNs would be to make it easier for HyperNEAT’s CPPNs to discriminate be-

tween the nodes on the left and right sides of the ANN. This goal can be accomplished by

changing the geometric representation of the problem, which means changing the Carte-

sian coordinates assigned to different nodes in the ANN. Because each CPPN computes

the weights of links between nodes as a function of the geometric locations of those nodes,

changing these coordinate values can bias HyperNEAT toward different types of pheno-

types that perform significantly differently (Chapter 6). Moreover, the intuitions human

engineers have for how to geometrically represent problems can also aid the performance

of HyperNEAT (Chapter 6).

This method is not guaranteed to work, however, because there are ways to create modu-

larity that do not respect the left and right sides of the coordinate space, and this mechanism

might bias the CPPN away from producing them. Nevertheless, this technique of spreading

the nodes out in coordinate space could at least make it easier to adopt the left-right mod-
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ularity produced by the Imposed Modularity treatment. Such left-right modularity is also

likely to be the type a human engineer would apply to this problem.

This method was implemented by changing the coordinate values of the nodes from

a representation that had already been designed to encourage left-right modularity (Fig-

ure 7.1b) to one that separated the left and right nodes in geometric space even further

(Figure 7.1c). This geometric separation did not increase performance in any treatment

compared to the Standard Setup (compare Figure 7.2a to 7.2c). Performance actually

decreased slightly for the Left & Right problem, and decreased noticeably for the MVG

treatments (p < 0.05, Mann-Whitney U rank test). Although the effect was not dramatic,

this result confirms a previous finding that different geometric representations of a problem

can affect HyperNEAT’s performance (Chapter 6). Computational limits prevented us from

testing additional geometric representations, but it is not obvious how to create a geometric

layout that would substantially increase the left-right bias more than the representation I

tested. Based on these tests, I believe it is unlikely that changes to the geometric repre-

sentation alone will make a substantial improvement in HyperNEAT’s performance on the

Retina Problem.

7.3.5 Simplified Retina problem

The previous experiments in this chapter have failed to demonstrate that HyperNEAT is ca-

pable of producing modular ANNs. Instead, its ANNs tend to be more fully connected than

modular ANNs would be. One explanation for these results is that HyperNEAT is simply

incapable of generating modular ANNs. To test this hypothesis, I conducted experiments

on a simple task that explicitly requires modularity. In this Simplified Retina Problem,

there are eight inputs and two outputs (Figure 7.5). The goal of the network is to output

the sum of the left four inputs in the left output, and the sum of the right four inputs in the

right output. The output nodes had linear activation functions instead of sigmoid functions.

The correct wiring for this task is to eliminate all connections between the left inputs and
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the right output, and vice versa, creating two distinct modules. HyperNEAT was queried

for all possible links between inputs and outputs, so it had to learn across evolutionary time

to eliminate connections between the left and right sides. The fitness function rewarded

networks that had smaller errors between the actual and outputted sum for the left and right

sides.

y
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0.79 0.78 0.75 0.70 0.68 0.74 0.77 0.79
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Figure 7.5: A Modular ANN Solution to the Simplified Retina Problem. Nodes (squares)
are shown in their Cartesian locations. Links with a value of 0 are not shown. This cham-
pion from the end of a run has a nearly perfect fitness score because HyperNEAT created a
modular ANN by deactivating links between the left and right sides.

Within 500 generations, all 20 runs had achieved near-perfect fitness scores (>98% of

the maximum fitness). Additionally, in all but one run, the final champion had perfectly

discovered the modularity of the problem by eliminating all links between the left and right

sides. The sole run with imperfect modularity, which had the lowest fitness, had only one

incorrect connection with a small weight value. The results from the Simplified Retina

Problem allow us to reject the hypothesis that HyperNEAT is incapable of producing mod-

ular ANNs. This experiment provides the first documented case of HyperNEAT producing

modular neural networks, albeit on a simple problem.

7.4 Discussion and conclusion

In contrast to other generative encodings that were explicitly designed to produce modu-

larity, there is no a priori reason to expect HyperNEAT will produce modular networks.
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Nevertheless, it would be beneficial if HyperNEAT could generate modularity when do-

ing so would improve performance. In this chapter I tested whether HyperNEAT would

generate modular ANNs on a suite of problems where both reason and experimental evi-

dence suggest that modularity is helpful. HyperNEAT performed poorly on the problems

and did not generate modular networks. Imposing modularity improved HyperNEAT’s

performance, indicating that HyperNEAT would have performed better had it been able

to generate such modularity on its own. These results suggest that HyperNEAT has diffi-

culty generating modularity on complex problems, although more research is necessary to

determine if these results generalize to other problems.

Even with imposed modularity, HyperNEAT did not handle the MVG regime as effec-

tively as Kashtan and Alon’s direct encoding, where the MVG treatments outperformed the

FG treatments. However, FT-NEAT, a direct encoding control for HyperNEAT, also did

not generate modular and high-performing networks in MVG environments. These direct

encoding control experiments thus suggest that the reason the MVG environments do not

qualitatively differ from the FG environments for both HyperNEAT and FT-NEAT is likely

explained by differences between the experiment implementations. One candidate expla-

nation is that Kashtan and Alon’s experiments have a smaller search space. For example,

the link weights and thresholds seem to be discrete values with only a few options, instead

of the continuous values in the experiments presented here. Mutations between a few dis-

crete values may make it more likely that single mutations can switch between a solution to

FG-OR and FG-AND. Kasthan and Alon report that networks in the MVG regimes evolved

to switch between solutions to FG-OR and FG-AND with a single mutation [28]. If such

a switch requires multiple mutations in the implementation used in this chapter, or a single

rare mutation, evolution may be unlikely to benefit from modular phenotypes because it

cannot quickly rearrange modules. I will investigate this hypothesis in future work. How-

ever, even without the benefits of reorganization (e.g., in the unchanging Retina Left &

Right treatment), imposed modularity benefitted HyperNEAT, so we cannot conclude that
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HyperNEAT had no incentive to produce modularity.

Despite HyperNEAT’s difficulties with generating modularity on variants of the Retina

Problem, I showed that it is capable of producing modular ANNs on the Simplified Retina

Problem. While these results demonstrate for the first time that HyperNEAT can gener-

ate modular phenotypes, the results from variants of the more complicated Retina Problem

suggest that more research is needed to understand how to generate modular ANNs via Hy-

perNEAT on complex problems. One interesting possibility for future work is that making

long connections (connections between distant nodes) rare may be a general way to en-

courage modularity. In natural brains, largely due to physical constraints, most connections

between neurons are short, which may help explain why natural brains are so modular [49].

Given the promise of the HyperNEAT approach to evolving complex ANNs, it is worth-

while to investigate the degree to which it produces phenotypic regularity, modularity, and

hierarchy, which are traits that facilitate the evolution of complexity in natural organisms.

While HyperNEAT excels at producing regular phenotypes (Chapters 3-6) [16, 17], it was

unknown whether it produced modular and hierarchical phenotypes. This chapter contains

a preliminary study that demonstrates that HyperNEAT can generate modular phenotypes

on a simple problem, but may struggle to do so on more complex problems. In my future

work I will investigate how to increase HyperNEAT’s ability to evolve modular phenotypes

on complex problems. I will also study how HyperNEAT might be able to evolve artificial

neural networks that are hierarchical.
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Chapter 8

Conclusion

In this dissertation I illuminated some of the differences between generative encodings

and direct encodings for evolutionary algorithms (EAs). I investigated two key properties

of natural organisms that generative encodings were designed to produce in synthetically

evolved phenotypes: regularity and modularity. To do so, I compared a promising new

generative encoding to its direct encoding controls. This case study helps us understand

the general differences between generative and direct encodings, and also reveals certain

properties about a new class of generative encodings that follow nature in determining

attributes of phenotypic elements as a function of their geometric location.

It had previously been shown that generative encodings outperform direct encodings

on highly regular problems. It was not known, however, how generative encodings com-

pare to direct encodings on problems with different levels of regularity. On three different

problems, I showed that a generative encoding exploited intermediate amounts of problem

regularity, which enabled it to increasingly outperform direct encoding controls as prob-

lem regularity increased. One of these problems was a challenging engineering problem

(producing gaits for legged robots). Analyses revealed that the generative encoding out-

performed the direct encoding controls on regular problems by producing regular brains

(ANNs) that produced regular behaviors (gaits). The brains evolved with the generative
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encoding contained a diverse array of complicated, regular neural wiring patterns, whereas

the brains produced by a direct encoding control were irregular. Furthermore, all of the

gaits produced by the generative encoding were coordinated, whereas those created by the

direct encoding controls were mostly uncoordinated.

I also documented that the bias towards regularity can hurt a generative encoding on

problems that have some amount of irregularity. I proposed a new algorithm, called Hy-

brID, which combines the best attributes of generative and direct encodings: the generative

encoding produced regularities that the direct encoding then adjusted in irregular ways to

account for problem irregularities. HybrID outperformed a generative encoding alone on

three problems for nearly all levels of regularity, and its performance advantage tended to

be greatest on problems with some irregularity. The performance of HybrID shows that a

generative encoding alone can struggle to adjust the regular patterns it produces to handle

problem irregularities. HybrID further demonstrates that adding a process of refinement

that fine-tunes the regular patterns produced by a generative encoding in an irregular way

can substantially boost the performance of a generative encoding. HybrID’s ability to im-

prove upon the performance of a generative encoding alone raises the question of whether

generative encodings may ultimately excel not as stand-alone algorithms, but by being

combined with a further process of refinement. In this dissertation, that further process of

refinement was a direct encoding. In future work, it would be interesting to study whether

an intralife-learning algorithm could serve as this refinement process.

The results described so far in this conclusion show that a generative encoding can pro-

duce regular solutions. One interesting question is whether engineers who use generative

encodings can bias the types of regularities evolution produces. I showed that, at least for

the generative encoding in this case study, it is possible to influence the types of regular-

ities produced, which allows domain knowledge and preferences to be injected into the

algorithm.

In the final chapter, I turned to the question of whether this generative encoding can pro-
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duce modular solutions. On a challenging problem, I found that the generative encoding

struggled to produce modularity, even though it would have been beneficial to do so. On a

simpler problem, however, the generative encoding frequently produced modular solutions.

This work thus contains the first documented case of this generative encoding producing a

modular phenotype, but its inability to create modularity on harder problems where mod-

ularity would have been beneficial reveals that more work is needed to increase the likeli-

hood that this encoding produces modular ANNs in response to challenging, decomposable

problems. In future work I plan to test different ways to encourage such modularity in this

encoding. For example, I predict that making it unlikely for distant nodes to be connected

should increase the likelihood of modular networks.

This dissertation contains an extensive case study focusing on one generative encod-

ing, HyperNEAT, and its direct encoding controls. The benefit of this approach is that

it allows a deep study of this particular generative encoding. The cost of this approach,

however, is that it is not yet known whether similar conclusions generalize to other gen-

erative encodings. I hypothesize that many of the conclusions regarding the property of

regularity will generalize. Specifically, I think that, generally, direct encodings are blind

to the regularity of problems and that generative encodings can exploit problem regularity.

I therefore predict that direct encoding controls will outperform generative encodings on

irregular problems, and that generative encodings will increasingly outperform direct en-

coding controls as problem regularity increases. I am unsure whether it will be generally

common that generative encodings can exploit a type of regularity only once the degree of

regularity within that type is above a threshold. I also predict that engineers will be able

to bias the types of regularities produced by generative encodings, but how to do that will

depend on the particular encoding. The method described here, for example, will work

only for those encodings that explicitly include geometric information in the algorithm.

Similarly, I believe that different generative encodings will have different propensities to

generate modular phenotypes. The troubles HyperNEAT had with producing modularity,
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however, should apply to other algorithms that similarly make neural connections a func-

tion of geometry, unless additional constraints are added to encourage modularity. It would

be worthwhile in future work to test all of these hypotheses on as many pairings of gener-

ative encodings and direct encoding controls as possible. Unfortunately, however, it is rare

for a generative encoding to have a good direct encoding control.

Overall, this dissertation paints a more complete picture of generative encodings than

prior studies. Initially, it analyzes the impact of the continuum between irregularity and

regularity on the performance of generative versus direct encodings. This dissertation also

provides an extensive analysis of a main reason generative encodings outperform direct en-

codings, which is their ability to exploit problem regularity. Specifically, I show that neural

controllers evolved with generative encodings exploit problem regularity by creating regu-

lar brains that produce regular behaviors. This dissertation also contains the first extensive

study documenting that a bias towards regularity can harm the performance of direct en-

codings when problems contain irregularities. A path forward is suggested, however, by

the HybrID algorithm, which reveals that a process of refinement that can adjust the reg-

ular patterns produced by a generative encoding can boost performance by accounting for

problem irregularities. I also showed that the types of regularities produced by a generative

encoding can be biased to incorporate user preferences. Finally, this dissertation documents

that the generative encoding studied can produce modular networks, but that more work is

necessary to make modularity-production occur on anything but simple problems. At the

highest level, this dissertation supports the idea that generative encodings are likely to play

an important role in our long-term goal of synthetically evolving complex phenotypes that

approach the complexity of phenotypes in the natural world.
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