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On the Performance of Indirect Encoding Across
the Continuum of Regularity

Jeff Clune, Kenneth O. Stanley, Robert T. Pennock, and Charles Ofria

Abstract—This paper investigates how an evolutionary al-
gorithm with an indirect encoding exploits the property of
phenotypic regularity, an important design principle found in
natural organisms and engineered designs. We present the first
comprehensive study showing that such phenotypic regularity
enables an indirect encoding to outperform direct encoding con-
trols as problem regularity increases. Such an ability to produce
regular solutions that can exploit the regularity of problems is
an important prerequisite if evolutionary algorithms are to scale
to high-dimensional real-world problems, which typically contain
many regularities, both known and unrecognized. The indirect
encoding in this case study is HyperNEAT, which evolves artificial
neural networks (ANNs) in a manner inspired by concepts
from biological development. We demonstrate that, in contrast
to two direct encoding controls, HyperNEAT produces both
regular behaviors and regular ANNs, which enables HyperNEAT
to significantly outperform the direct encodings as regularity
increases in three problem domains. We also show that the types
of regularities HyperNEAT produces can be biased, allowing
domain knowledge and preferences to be injected into the search.
Finally, we examine the downside of a bias toward regularity.
Even when a solution is mainly regular, some irregularity may
be needed to perfect its functionality. This insight is illustrated
by a new algorithm called HybrID that hybridizes indirect and
direct encodings, which matched HyperNEAT’s performance on
regular problems yet outperformed it on problems with some
irregularity. HybrID’s ability to improve upon the performance
of HyperNEAT raises the question of whether indirect encodings
may ultimately excel not as stand-alone algorithms, but by being
hybridized with a further process of refinement, wherein the
indirect encoding produces patterns that exploit problem regu-
larity and the refining process modifies that pattern to capture
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irregularities. This paper thus paints a more complete picture
of indirect encodings than prior studies because it analyzes the
impact of the continuum between irregularity and regularity on
the performance of such encodings, and ultimately suggests a
path forward that combines indirect encodings with a separate
process of refinement.

Index Terms—Artificial neural networks, developmental en-
codings, generative encodings, HyperNEAT, indirect encodings,
regularity.

I. Introduction and Motivation

ALONG-STANDING challenge for those who work with
evolutionary algorithms (EAs) is to synthetically evolve

entities that rival or surpass the complexity of both natural or-
ganisms and designs produced through human engineering. A
key design principle critical to the success of both is regularity.
Regularity refers to the compressibility of the information de-
scribing a structure, and typically involves symmetries and the
repetition of modules or other design motifs [1]. Regularities
allow solutions to sub-problems to be reused in a design, as
in the cells of a body or the wheels of a car.

The level of regularity that an EA tends to produce is
affected by the encoding, which is how information is stored
in the genome and the process by which that information
produces the phenotype. Regularity in evolved solutions is
less likely to emerge with direct encodings, wherein each
element in the genotype encodes an independent aspect of
the phenotype. In contrast, regularities are common with
indirect encodings (also known as generative or developmental
encodings), wherein information in the genome can be reused
to affect many parts of the phenotype [2]. Natural organisms
are regular largely because they are encoded indirectly [3]–[5].

Reusing genetic information also facilitates scalability. With
indirect encodings, evolution can search in a low-dimensional
space yet produce phenotypes with many more dimensions.
For example, only about 25 000 genes encode the information
that produces the trillions of cells that make up a human [6].

Many prior studies have shown that indirect encodings
often outperform direct encodings [2], [7]–[14]. However,
in each case the problem domain is highly regular, or the
regularity of the problem is unspecified and ambiguous. To
date, no systematic study has been performed on how indirect
encodings perform across a continuum from regular problems
to irregular problems. This gap in our knowledge raises the
question of whether indirect encodings achieve their increased
performance on regular problems at the expense of performing
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poorly on problems with intermediate or low regularity. To fill
that gap, this paper provides a systematic comparison of an
indirect encoding and two direct encoding controls on multiple
problems as problem regularity is varied from high to low.

The indirect encoding in this paper is motivated by a key
concept from developmental biology. Nature builds complex
organisms by producing increasingly complex geometric co-
ordinate frames, and then determining the fate of pheno-
typic elements as a function of their location within such
frames [3]. This process produces phenotypes with regularity,
modularity, and hierarchy [3], [15], which are beneficial design
principles [1]. Yet the exploitation of geometric information
in natural organisms is challenging because each phenotypic
element (e.g., a cell) does not have access to its global
geometric position. Developing organisms therefore first have
to generate such positional information via chemical gradients
before exploiting it. In synthetic evolution, however, we can
skip this first step by assigning geometric coordinates to
phenotypic elements and allowing a genome to determine
the fates of phenotypic elements as a function of these
coordinates [16]. This technique allows evolution to start with
geometric information and immediately exploit it, instead of
first needing to discover how to produce geometric information
before exploiting it.

One encoding that harnesses this idea is hypercube-
based neuroevolution of augmenting topologies (HyperNEAT).
HyperNEAT’s explicit incorporation of geometry enables it
to exploit geometric relationships in a problem domain [14],
[17]–[19]. HyperNEAT has performed well on a wide range
of problems, such as generating gaits for legged robots [20],
pattern recognition [14], controlling multiagent teams [21],
[22], and evaluating checkers boards [18], [19]. Additionally,
on a soccer keepaway task that is a common benchmark for
reinforcement learning algorithms, HyperNEAT produced the
highest score to date for any type of algorithm [23]. Because
HyperNEAT abstracts a key geometric ingredient that drives
the success of natural development, and because empirically
it has been shown to be a promising encoding, it is interesting
to observe the regularities that HyperNEAT produces. Specific
questions can be addressed, such as what types of regularities
HyperNEAT generates (e.g., repeating, symmetric, and so on),
whether it can create variations on repeated themes instead
of being restricted to identical repetitions, and what kinds of
irregular exceptions it can make to the patterns it generates.
An additional question of interest is whether the experimenter
can bias the regularities that HyperNEAT produces to inject
domain knowledge into the algorithm. All of these questions
are addressed in this paper.

Results in this paper show that HyperNEAT exploits even
intermediate problem regularity, and thus increasingly outcom-
petes direct encoding controls as problem regularity increases.
HyperNEAT achieves this success by producing regular ar-
tificial neural networks (ANNs) that in turn produce regular
behaviors. HyperNEAT also proves more evolvable than direct
encoding controls and its solutions generalize better.

However, an important accompanying result is that Hyper-
NEAT’s performance decreases on irregular problems, partly
because of its bias toward producing regularities. To investi-

gate this effect further, we introduce a new algorithm called
HybrID that allows the HyperNEAT indirect encoding to
produce regular patterns in concert with a direct encoding that
can modify these patterns to produce irregularities. HybrID
matches HyperNEAT’s performance on regular problems, but
outperforms HyperNEAT on problems with irregularity, which
demonstrates that HyperNEAT struggles to generate certain
kinds of irregularity on its own. The success of HybrID raises
the interesting question of whether indirect encodings may
truly excel not as stand-alone algorithms, but in combination
with a further process that refines their regular patterns.
Intriguingly, this further process in nature could be lifetime
adaptation via learning.

In the following sections, we introduce HyperNEAT, two
direct encoding controls, and the three problem domains. We
then relate the experimental results and discuss them before
offering concluding remarks.

II. HyperNEAT and the Direct Encoding Controls

In this section, we describe the indirect encoding Hyper-
NEAT and two direct encodings that serve as controls.

A. HyperNEAT

In 2007 an encoding was introduced called compositional
pattern producing networks (CPPNs), which abstracts the
process of natural development without requiring the sim-
ulation of diffusing chemicals [16]. When CPPNs encode
ANNs, the algorithm is called HyperNEAT [14], which is
described in detail below. A key idea behind CPPNs is that
complex patterns can be produced by determining attributes of
their phenotypic components as a function of their geometric
location. This idea is based on the belief that cells (or
higher-level modules) in nature often differentiate into their
possible types (e.g., kidney, liver, and so on) as a function of
where they are situated in geometric space. For example, for
some insects, a segment at the anterior pole should produce
antennae and a segment at the posterior pole should produce
a stinger.

Components of natural organisms cannot directly deter-
mine their location in space, so organisms have evolved
developmental processes that create chemical gradients that
organismal components use to figure out where they are and,
thus, what to become [3]. For example, early in the develop-
ment of embryos, different axes (e.g., anterior-posterior) are
indicated by chemical gradients. Additional gradients signaled
by different proteins can exist in the same area to represent a
different pattern, such as a repeating motif. Downstream genes,
such as Hox genes, can then combine repeated and asymmetric
information to govern segmental differentiation [3]. Further
coordinate frames can then be set up within segments to govern
intra-module patterns.

1) CPPNs: One of the key insights behind CPPNs is
that cells in silico can be directly given their geometric
coordinates. The CPPN genome is a function that takes
geometric coordinates as inputs and outputs the fate of an
organismal component. When CPPNs encode 2-D pictures, the
coordinates of each pixel on the canvas (e.g., x = 2, y = 4)
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Fig. 1. Compositional pattern producing networks. CPPNs compose math-
ematical functions to generate regularities, such as symmetries and repeated
modules, with and without variation. This figure is adapted from Stanley [16].

Fig. 2. Images evolved with CPPNs. Displayed are pictures from
picbreeder.org [24], a website where visitors select images from a population
evolved with the CPPN indirect encoding, which is also used in HyperNEAT.
The bottom row shows images from a single lineage. Arrows represent
intermediate forms that are not pictured.

are iteratively passed to the CPPN genome, and the output of
the function is the color or shade of the pixel (Fig. 1).

Each CPPN is a directed graph in which every node is
itself a single function, such as sine or Gaussian. The na-
ture of the functions can create a wide variety of desirable
properties, such as symmetry (e.g., a Gaussian function) and
repetition (e.g., a sine function) that evolution can exploit.
Because the genome allows functions to be made of other
functions, coordinate frames can be combined and hierarchies
can develop. For instance, a sine function early in the network
can create a repeating theme that, when passed into the
symmetrical Gaussian function, creates a repeating series of
symmetrical motifs (Fig. 1). This procedure is similar to the
natural developmental processes described above [3].

The links that connect and allow information to flow be-
tween nodes in a CPPN have a weight that can magnify or di-
minish the values that pass along them. Mutations that change
these weights may, for example, give a stronger influence to a
symmetry-generating part of a network while diminishing the
contribution from another part.

When CPPNs are evolved artificially with humans perform-
ing the selection, the evolved shapes look complex and natural
(Fig. 2) [24]. Moreover, these images display the features in
natural organisms that indirect encodings were designed to
produce, namely, symmetries and the repetition of themes,
with and without variation.

Fig. 3. HyperNEAT produces ANNs from CPPNs. Weights are specified as
a function of the geometric coordinates of the source node and the target node
for each connection. The coordinates of these nodes and a constant bias are
iteratively passed to the CPPN to determine each connection weight. If there
is no hidden layer, the CPPN has only one output, which specifies the weight
between the source node in the input layer and the target node in the output
layer. If there is a hidden layer in the ANN, the CPPN has two output values,
which specify the weights for each connection layer as shown. This figure is
adapted from Gauci and Stanley [18].

2) Encoding ANNs with CPPNs: In the HyperNEAT algo-
rithm, CPPNs encode ANNs instead of pictures, and evolution
modifies the population of CPPNs [14], [19]. HyperNEAT
evolves the weighs for ANNs with a fixed topology. The ANNs
in the experiments in this paper feature a 2-D, m×n Cartesian
grid of inputs and a corresponding m×n grid of outputs. If an
experiment uses an ANN with hidden nodes, the hidden nodes
are placed in their own 2-D layer between the input and output
grids. Recurrence is disabled, so each of the m×n nodes in a
layer has a link of a given weight to each of the m × n nodes
in the proximate layer, excepting output nodes, which have no
outgoing connections. Link weights can be zero, functionally
eliminating a link.

The inputs to the CPPNs are a constant bias value and
the coordinates of both a source node (e.g., x1 = 0, y1 = 0)
and a target node (e.g., x2 = 1, y2 = 1) (Fig. 3). The CPPN
takes these five values as inputs and produces one or two
output values, depending on the ANN topology. If there is
no hidden layer in the ANN, the single output is the weight
of the link between a source node on the input layer and a
target node on the output layer. If there is a hidden layer, the
first output value determines the weight of the link between
the associated input (source) node and hidden-layer (target)
node, and the second output value determines the weight of
the link between the associated hidden-layer (source) node
and output-layer (target) node. All pairwise combinations of
source and target node coordinates are iteratively passed as
inputs to the CPPN to determine the weight of each ANN
link. HyperNEAT can thus produce patterns in weight space
similar to the patterns it produces in 2-D pictures (Fig. 2).

An additional novel aspect of HyperNEAT is that it is
one of the first neuroevolutionary algorithms capable of ex-
ploiting the geometry of a problem [14], [17]–[19]. Because
the connection weights between nodes are a function of
the geometric positions of those nodes, if those geometric
positions represent aspects of the problem that are relevant
to its solution, HyperNEAT can exploit such information. For
example, when playing checkers, the concept of adjacency
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(on the diagonals) is important. Connection weights between
neighboring squares may need to be different than weights
between distant squares. HyperNEAT can create this kind of
connectivity motif and repeat it across the board [18], [19].
Producing such a regularity would be more difficult with an
encoding that does not include geometric information, because
there would be no easy way for such an algorithm to identify
which nodes are adjacent.

Variation in HyperNEAT occurs when mutations or
crossover change the CPPNs. Mutations can add a node, which
results in the addition of a function to the network, or change
its link weights. The allowable functions for CPPNs in this
paper are sine, sigmoid, Gaussian, and linear. The evolution
of the population of CPPN networks in HyperNEAT occurs ac-
cording to the principles of the widely used neuroevolution of
augmenting topologies (NEAT) algorithm [25]. NEAT, which
was originally designed to evolve ANNs, can be fruitfully
applied to CPPNs because a population of CPPNs is similar
in structure to a population of ANNs.

The NEAT algorithm contains three major components [25],
[26]. First, it starts with small genomes that encode simple
networks and slowly complexifies them via mutations that add
nodes and links to the network. This complexification enables
the algorithm to evolve the network topology in addition to
its weights. Second, NEAT uses a fitness-sharing mechanism
that preserves diversity in the population and allows new
innovations time to be tuned by evolution before forcing them
to compete against rivals that have had more time to mature.
Finally, historical information stored in genes helps to perform
crossover in a way that is effective, yet avoids the need for
expensive topological analysis. A full explanation of NEAT
can be found in Stanley and Miikkulainen [25].

B. FT-NEAT, a Direct Encoding Control for HyperNEAT

A common direct encoding control for HyperNEAT is fixed-
topology NEAT (FT-NEAT, also called perceptron NEAT or
P-NEAT when it does not have hidden nodes) [14], [17],
[20], [27]–[29]. FT-NEAT is similar to HyperNEAT in all
ways, except it directly evolves each weight in the ANN
independently instead of determining link weights via an
indirect CPPN. In other words, for FT-NEAT there is no
distinction between the genotype and phenotype, in contrast to
HyperNEAT (where the CPPN genome network encodes a dif-
ferent ANN phenotype). All other elements from NEAT (e.g.,
its crossover and diversity preservation mechanisms) remain
the same between HyperNEAT and FT-NEAT. Additionally,
the number of nodes in the ANN phenotype is the same
between HyperNEAT and FT-NEAT. Mutations in FT-NEAT
cannot add nodes, making FT-NEAT a degenerate version
of NEAT. Recall that the complexification in HyperNEAT is
performed on the CPPN genome, but that the number of nodes
in the resultant ANN is fixed. The end product of HyperNEAT
and FT-NEAT are thus ANNs with the same number of nodes,
whose weights are determined in different ways.

C. NEAT, a Second Direct Encoding Control for HyperNEAT

While FT-NEAT is a good control for HyperNEAT be-
cause it holds the number of nodes in the ANN constant,

HyperNEAT should also be compared against a cutting-edge
direct encoding neuroevolution algorithm, such as regular
NEAT [25]. The only difference between FT-NEAT and NEAT
is that in NEAT hidden nodes and connections can be added
during evolution. In those experiments in this paper where the
optimal number of hidden nodes is not known a priori, we
compare HyperNEAT to NEAT in addition to FT-NEAT.

D. Parameter Settings

The parameters for all of the experiments below
follow standard HyperNEAT and FT-NEAT conventions
[14], [17], [20], [27]–[29] and can be found online at
http://devolab.msu.edu/SupportDocs/Regularity. The results in
this paper were found to be robust to moderate variations of
these parameters.

III. The Three Experimental Problem Domains

The first two problem domains are diagnostic problems
that are designed to determine how the algorithms perform as
regularity is varied from low to high. The first problem, called
target weights, enables regularity to be scaled from zero to
complete. However, this problem has no interactions between
the different problem components. The second problem, bit
mirroring, adds such interactions between problem compo-
nents, making it a challenging problem with different types of
regularity that can each be adjusted, yet the optimal solution in
each case is known. The third problem, called the quadruped
controller problem, is a challenging, real-world problem in
which the regularity can be scaled and the optimal solution is
not known. While we have previously reported some results in
these domains [17], [20], [28], [29], this paper provides a more
extensive investigation of the performance of HyperNEAT and
direct encoding controls on these problems, including addi-
tional experiments, analyses, controls, and alternate versions
of the problems.

A. Target Weights Problem

One way to create a completely irregular problem is to
challenge evolution to evolve an ANN phenotype (P) that is
identical to a target neural network (T ), where T is completely
irregular. Regularity can then be scaled by increasing the
regularity of T (Fig. 4). We call this the target weights
problem because evolution is attempting to match a target
vector of weights (recall that the number of nodes is constant,
so the vector of weights in T fully describes T ). Fitness is
a function of the difference between each weight in P and
the corresponding weight in T , summed across all weights.
The lower this summed error is, the higher the fitness value.
Specifically, the proximity to the target is calculated as

proximity to target =
N∑

i=1

M − |Pi − Ti| (1)

where N is the number of weights, M is the maximum error
possible per weight (which is 6 because weights could range
from −3 to 3), Pi is the value of the ith weight in the
phenotype, and Ti is the value of the ith weight in the target
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Fig. 4. Scaling regularity in the target weights problem. Regularity is scaled by changing the percentage of weights S (which increases from right to left) that
are set to Q, a single randomly-chosen value (shown as dark/blue lines). The remaining weights are each set to a random number (shown as light/orange lines).

ANN. To amplify the importance of small improvements,
fitness is then calculated as

fitness = 2proximity to target . (2)

To scale the regularity of this problem, some randomly
chosen subset of the target weight values, S, are assigned Q,
a single randomly-chosen value. All remaining weight values
are independently assigned a random value. Changing the
number of weights in S scales the regularity of the problem.
When S is set to 0%, all of the target weight values are
chosen independently at random. When S is set to 50%,
half the weights have the value Q and the rest have values
independently chosen at random. In the most regular version
of the problem, S is set to 100% and all weights have the value
Q. There are 11 treatments, with S values of 0, 10, 20...100,
and ten runs per treatment. Target vectors are constant for
each evolutionary run, but are different between runs (due
to differences in randomly-generated weight values, including
Q). Trials last 1000 generations with a population size of
1000. The ANNs have 3×3 grids of input and output neurons.
Because the number of nodes in this problem does not change,
only FT-NEAT is tested as a direct encoding control.

The target weights problem is useful because it allows
regularity to be scaled from zero to complete, and because
the regularity of the solution is known a priori. It is also a
simplistic problem because it has no interactions (epistasis)
between weight elements (i.e., changing a given weight will
not affect the optimal value of other weights). While this
property makes it a good starting point for investigating
regularity, other more epistatic problems are also required to
understand performance in more realistic scenarios.

B. The Bit Mirroring Problem

The bit mirroring problem is intuitively easy to understand,
yet provides multiple types of regularities, each of which can
be scaled independently. For each input, a target output is
assigned [e.g., the input x1 = −1, y1 = −1 could be paired with
output x2 = 0, y2 = 1, Fig. 5(a)]. A value of one or negative
one is randomly provided to each input, and the fitness of an
organism is incremented if that one or negative one is reflected
in the target output. Outputs greater than zero are considered
1, and values less than or equal to zero are considered −1.
The correct wiring is to create a positive weight between each
input node and its target output and, importantly, to set to zero
all weights between each input node and its non-target output
nodes [Fig. 5(a)]. To reduce the effect of randomness in the
inputs, in every generation each organism is evaluated on ten
different sets of random inputs and these scores are summed to
produce the fitness for that organism. The max fitness is thus
10n2, where n is the number of nodes in the input sheet. Each

Fig. 5. Bit mirroring problem. (a) The correct wiring motif for the links pro-
jecting from each input node is to create an excitatory connection (light/green)
to the correct target output node, and to turn off all other links (dark/gray).
(b) Within-column regularity (Type 1) is highest when all targets are in the
same column, and can be lowered by decreasing the number of targets in
the same column (by assigning unconstrained targets to columns at random).
For the experiments in this paper, within-column regularity is scaled while
keeping within-row regularity at its highest possible level, with all targets
in the same row. Within-row regularity (Type 2) is reduced by constraining
fewer targets to be in the same row. By first reducing within-column regularity,
then further reducing within-row regularity, the overall regularity of the bit
mirroring problem can be smoothly scaled from high to low. Note that the
treatment with the lowest Type 1 regularity and the highest Type 2 regularity
have identical constraints.

run lasted 2000 generations and had a population size of 500.
As in target weights, the number of nodes does not change on
this problem (additional nodes would only hurt performance),
so only FT-NEAT is tested as a control.

The first type of regularity in the problem is within-column
regularity. This regularity is high when targets are in the same
column, and low when there is no expectation about which col-
umn a target will be in [Type 1 in Fig. 5(b)]. The second type
of regularity is within-row regularity, which is the likelihood
that a target is in the same row [Type 2 in Fig. 5(b)]. While
these two regularities are intuitively related, evolutionary algo-
rithms must compute them independently, which means they
are distinct. Each of these types of regularity can be scaled
by constraining a certain percent of targets to be in the same
column or row, and assigning the remaining targets randomly.

The third type of regularity, called inherent regularity, arises
from the fact that, for each node, the same pattern needs to
be repeated: turning one link on and all other links off. This
type of regularity can be reduced by decreasing the number
of nodes in the network, and hence the number of times that
pattern needs to be repeated.

While the bit mirroring problem is easy to conceptualize,
it is challenging for evolutionary algorithms. It requires most
links to be turned off, and only a few specific links to be turned
on. Moreover, links between input nodes and non-target nodes,
which are likely to exist in initial random configurations and
to be created by mutations, can complicate fitness landscapes.
Imagine, for example, that a mutation switches the weight
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on a link between an input node and its target output from
zero to a positive number. The organism is now closer to the
ideal wiring, but it may not receive a fitness boost if other
incorrect links to that output node result in the wrong net
output. The bit mirroring problem is useful, therefore, because
it is challenging, yet its three main regularities are known, and
can be independently adjusted.

C. Quadruped Controller Problem

The quadruped controller problem is to evolve fast gaits
for simulated four-legged robots. This problem is challeng-
ing because creating dynamic gaits for legged robots is a
complicated non-linear problem that is infeasible to compute
mathematically; for example, effective gaits are difficult and
time-consuming for human engineers to program [30], [31].
Given how sensitive gait controllers are to slight changes in
the configuration of a robot, a new gait must be created each
time a robot is changed, which can lead to substantial delays
in the prototyping stage of robotic development [32]. It would
therefore be beneficial to automate the process of gait creation.

The problem of legged locomotion also contains many
regularities; each leg is a repeated module and various gaits
have different regularities, such as left-right or front-back
symmetry. The regularity of this problem can also be scaled by
changing the number of legs that are slightly different, as can
happen due to inconsistencies in manufacturing processes. The
quadruped controller problem is thus a challenging real-world
problem that has regularities that can be varied. It will help val-
idate whether conclusions drawn from target weights and bit
mirroring generalize to more challenging real-world problems.

Before describing the specific implementation of the
quadruped controller problem in this paper, we will review
previous work in this area. Many researchers have successfully
evolved controllers for legged robots, typically by evolving
neural network controllers [32]–[39]. Evolved gaits are often
better than those produced by human designers; one was even
included on the commercial release of Sony’s AIBO robotic
dog [32], [39]. However, many researchers have found that
evolutionary algorithms cannot handle the entire problem be-
cause the number of parameters that need to be simultaneously
tuned to achieve success is large [32], [38]–[43]. Many of
these scientists report that while it is possible to evolve a
controller to manage the inputs and outputs for a single leg,
once evolution is challenged with the inputs and outputs of
many legs, it fails to make progress.

One solution that has worked repeatedly is to help the
evolutionary algorithm “see” that there are regularities and
symmetries to the problem. This approach involves manually
decomposing the problem by, for example, evolving a con-
troller for one leg and then copying that controller to every
other leg, with some variation in phase. Unfortunately, this
tactic imposes a specific type of regularity on the network
instead of allowing evolution to produce different regularities.
It would be better to completely automate the process and
thereby remove the need for human engineers to spend time
decomposing the problem. Furthermore, such manual de-
composition potentially introduces constraints and biases that
could preclude the attainment of better solutions [44]. Finally,

Fig. 6. The simulated robot in the quadruped controller problem. (a) Two
joints (HipFB and HipIO, see the text) approximate a universal hip joint
that can move in any direction. (b) The knee joint can swing forward and
backward.

if we can employ algorithms that can automatically discover
and exploit the regularities in a problem, such algorithms may
be able to do the same for complex problems with regularities
humans are not aware of. Indirect encodings should be well-
suited to this task of automatically discovering regularities, so
it is worthwhile to study their capabilities on this front.

While it has not been the norm, indirect encodings have
occasionally been used to evolve the gaits of legged creatures.
In at least two cases, an indirect encoding evolved both the
gaits and the morphologies of creatures [11], [37]. In both
cases, the morphologies and behaviors were regular. While
the regularity of these ANNs was not systematically studied,
one of these papers contained an anecdotal report of a regular
ANN [11]. However, the regularity of the problem was not
scaled in either of these works. In another study, an indirect
encoding and a direct encoding were compared for their
ability to evolve a gait for a legged creature in an attempt
to determine whether the indirect encoding can exploit the
regularity of the domain without the problem being simplified
or manually decomposed [34]. However, this project used a
simple model of a six-legged insect that had only two degrees
of freedom per leg. Nevertheless, the work showed that the
indirect encoding could automatically discover the regularity
of the problem and decompose it by encoding a neural
submodule once and expressing it repeatedly. The indirect
encoding also outperformed a direct encoding by solving the
problem faster. Unfortunately, computational limits at the time
meant that such results were anecdotal and not statistically
significant because so few trials could be performed.

The quadruped controller problem is a challenging engi-
neering problem with scalable regularity. Investigating the
performance of HyperNEAT and direct encoding controls will
therefore illuminate how an indirect encoding handles problem
regularities differently than direct encodings. We next describe
the implementation details of the specific quadruped controller
problem in this paper.

The robots (Fig. 6) are evaluated in the open dynamics en-
gine (ODE) physics simulator (www.ode.org). The rectangular
torso of the organism is (in arbitrary ODE units) 0.15 wide,
0.3 long, and 0.05 tall. For a point of reference, the right
side of the robot from the viewer’s perspective in Fig. 6 is
designated as the robot’s front. Each of four legs is composed
of three cylinders (length 0.075, radius 0.02) and three hinge
joints. The first cylinder functions as a hip bone. It is parallel to
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the proximal-distal axis of the torso and barely sticks out from
it. The second cylinder is the upper leg and the last cylinder is
the lower leg. There are two hip joints and one knee joint. The
first hip joint (HipFB) allows the legs to swing forward and
backward (anterior-posterior) and is constrained to 180° such
that at maximum extension it is parallel with the torso. The
second hip joint (HipIO) allows the leg to swing in and out
(proximal-distal). Together, the two hip joints approximate a
universal joint. The knee joint swings forward and backward.
The HipIO and knee joints are unconstrained.

Each quadruped is simulated for 6 seconds (6000 time
steps). Trials are cut short if any part of the robot save its
lower leg touches the ground or if the number of direction
changes in joints exceeds 960. The latter condition is an
attempt to roughly reflect that servo motors cannot be vibrated
incessantly without breaking. The fitness of a controller is

fitness = 2d2
(3)

where d is the maximum distance traveled during the allotted
time. An exponential fitness function is used so that even small
increases in the distance traveled result in a sizable selective
advantage.

For HyperNEAT and FT-NEAT, the ANN configuration
on this problem features three 2-D, 5 × 4 Cartesian grids
forming input, hidden, and output layers (Fig. 7). The NEAT
control has the same number of inputs and outputs, but the
number of hidden nodes can evolve. There are no recurrent
connections. All possible connections between adjacent layers
exist (although weights can be zero, functionally eliminating
the link). There are thus 800 links in the ANN of each
individual for HyperNEAT and FT-NEAT. The number of links
in NEAT can evolve. Link weights are in the range of [−3, 3].

The inputs to the ANN are the current angles (from −π to
π) of each of the 12 joints of the robot, a touch sensor that
provides a 1 if the lower leg is touching the ground and a 0 if
it is not, the pitch, roll and yaw of the torso, and a modified
sine wave (which facilitates periodic behavior). The sine wave
function is

sin(t/120)π (4)

where t is the number of milliseconds that have passed
since the start of the experiment. Multiplying by π produces
numbers between −π and π, which is the range of the uncon-
strained joints. The constant 120 was chosen because it was
experimentally found to produce fast yet natural gaits. While
changing this constant can affect the types of gaits produced,
doing so never altered any of the qualitative conclusions of this
paper. Preliminary tests determined that the touch, pitch, roll,
yaw, and sine inputs all improved the ability to evolve fit gaits.

The outputs of the ANNs are the desired joint angles for
each joint, which are fed into a PID controller that simulates
a servo. The controller subtracts the current joint angle from
the desired joint angle. This difference is then multiplied by a
constant force (2.0), and a force of that magnitude is applied
to the joint such that the joint moves toward the desired
angle. Such PID-based control systems have been shown to
be effective in robot control [32], [36], [45].

Fig. 7. ANN configuration for HyperNEAT and FT-NEAT treatments. The
first four columns of each row of the input layer receive information about
a single leg (the current angle of each of its three joints, and a 1 or 0
depending on whether the lower leg is touching the ground). The final column
provides the pitch, roll, and yaw of the torso as well as a sine wave. Evolution
determines how to use the hidden-layer nodes. The nodes in the first three
columns of each of the rows in the output layer specify the desired new joint
angle. The joints move toward that desired angle in the next time step as
described in the text. The outputs of the nodes in the rightmost two columns
of the output layer are ignored.

Regularity in the quadruped controller problem can be
scaled by changing the number of faulty joints. A faulty joint
is one in which, if an angle A is requested, the actual desired
angle sent to the PID controller is A + E, where E is an
error value in degrees within the range [−2.5, 2.5]. The value
of E is chosen from a uniform random distribution in this
range for each faulty joint at the beginning of a run, and is
constant throughout the run. Such errors are analogous to the
inconsistencies of robotic joints produced by manufacturing
processes. The more faulty joints, the less regularity there is in
the problem because fewer legs behave identically. The default
version of this problem [20] is the most regular version with
zero faulty joints, which is the version referred to throughout
the rest of the paper unless the regularity is specified. Each
algorithm was run 50 times for experiments with 0, 1, 4, 8,
and 12 faulty joints. Runs lasted 1000 generations and had a
population size of 150.

IV. Results

The following sections describe experiments and analyses
that investigate how the HyperNEAT indirect encoding com-
pares to direct encodings with respect to exploiting problem
regularities and producing phenotypic regularities.

A. HyperNEAT Outcompetes Direct Encodings as Problem
Regularity Increases

1) Target Weights: The results from the target weights
experiments (Fig. 8) reveal that HyperNEAT performs better
as the regularity of the problem increases, especially in early
generations, where mean performance perfectly correlates with
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Fig. 8. Mean performance of HyperNEAT and FT-NEAT on a range of
problem regularities for the target weights problem. HyperNEAT lines are
colored for each regularity level, and in early generations are perfectly ordered
according to the regularity of the problem (i.e., regular treatments have
less error). The performance of FT-NEAT (black lines) is unaffected by the
regularity of the problem, which is why the lines are overlaid and mostly
indistinguishable.

problem regularity. Interestingly, after 1000 generations of
evolution, the performance of HyperNEAT is statistically in-
distinguishable below a certain regularity threshold (p > 0.051

comparing the final performance of the S = 0% treatment to
treatments with S ≤ 30%). Above that regularity threshold,
however, HyperNEAT performed significantly better at each
increased level of regularity (p < 0.01 comparing treatment
with values of S > 30% to the treatment with a value of
S 10% higher). FT-NEAT, on the other hand, is blind to the
regularity of the problem: the results from different treatments
are visually and statistically indistinguishable (p > 0.05).
Early on HyperNEAT outperformed FT-NEAT on regular
versions of the problem (p < 0.01 comparing treatments
of S ≥ 60% at generation 100), but at 1000 generations
FT-NEAT outperforms HyperNEAT on all but the two most
regular versions of the problem (p < 0.001). HyperNEAT
outperforms FT-NEAT on the most regular version of the
problem at generation 1000 (p < 0.001), and the algo-
rithms are statistically indistinguishable on the S = 90%
treatment (p > 0.05).

Overall, this experiment provides evidence for several inter-
esting observations. While this evidence comes from only the
target weights problem, which is a simple diagnostic problem,
we highlight them here because they will also be supported by
data from the bit mirroring and quadruped controller problems.
They are given as follows.

1) FT-NEAT outcompetes HyperNEAT when problem reg-
ularity is low.

2) As problem regularity increases, HyperNEAT’s perfor-
mance rises to, and then surpasses, that of FT-NEAT,
demonstrating that HyperNEAT can exploit problem
regularity.

3) FT-NEAT is blind to problem regularity.
4) HyperNEAT exploits problem regularity only above a

certain regularity threshold.
A final result of interest from this experiment is the lack of

progress HyperNEAT makes after the early generations on the

1This p value and all others in this paper were generated with MATLAB’s
non-parametric Mann-Whitney U-test, unless otherwise specified.

problems that are mostly regular, but have some irregularity
(e.g., S = 90%). HyperNEAT is easily able to produce
weights similar to the repeated weight Q, and thus exploits
the regularity of the problem, but over hundreds of generations
HyperNEAT did not discover how to make exceptions to the
pattern to produce the irregular link values. This evidence sug-
gests HyperNEAT is biased toward producing regular solutions
and has difficulty producing certain irregular patterns, a subject
we will revisit later in the paper.

2) Bit Mirroring: The first two bit mirroring experiments
have 7 × 7 grids of input and output nodes. In the first exper-
iment, both within-column and within-row regularity start at
100%, and within-column regularity decreases per treatment
by constraining fewer targets to be in the same column
as their respective inputs [Type I in Fig. 5(b)]. The most
irregular treatment in this experiment features zero within-
column regularity, but has 100% within-row regularity. The
second experiment picks up where the first left off by lowering
within-row regularity per treatment [Type II in Fig. 5(b)].
The least regular treatment in experiment two has no within-
column or within-row regularity. For each treatment, ten runs
of evolution are performed.

The results from the bit mirroring experiment support
many of the conclusions from the target weights experiment.
Initially, FT-NEAT is blind to both within-column and within-
row regularity (Fig. 9, right two columns, p > 0.05 com-
paring all within-column and within-row treatments to the
treatments with no column or row constraints, respectively).
The performance of HyperNEAT, however, increases with
the regularity of the problem (Fig. 9, left two columns).
HyperNEAT perfectly solves the problem in all but two runs
on the most regular version of the problem, where targets are
in the same column and row. Once again, the performance of
HyperNEAT within a type of regularity does not increase until
that type of regularity is above a threshold. For both within-
column and within-row regularity, HyperNEAT’s performance
advantage is statistically significant only once that type of
regularity is above 50% (only treatments with more than 50%
of targets column-constrained or row-constrained statistically
outperform treatments with 0% of targets column-constrained
or row-constrained, respectively: p < 0.05).

It is also interesting that the magnitude of the range of
fitness values is correlated with the regularity of the problem
for HyperNEAT. This phenomenon might occur because, when
regularity is present, the indirect representation either discov-
ers and exploits it, which would result in high fitness values,
or it fails to fully discover the regularity, at which point its
fitness more closely resembles lower-performing, less-regular
treatments.

HyperNEAT outperforms FT-NEAT in all versions of this
problem (p < 0.05). This result is likely due to the inherent
regularity of the problem, which arises because the same
pattern (turning one link on and the rest off) must be repeated
for each of the 49 input nodes. Inherent regularity should
decrease with the number of nodes in the network, a hypothesis
we test in experiment three, where experiments are performed
on grid sizes from 8 × 8 down to 3 × 3 (Fig. 10). For all grid
sizes, both within-column and within-row regularity levels are
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Fig. 9. HyperNEAT and FT-NEAT on versions of the bit mirroring problem with different levels of regularity. For each treatment, from left to right, within-
column regularity is first decreased (left panel) and then within-row regularity is further decreased (right panel). The data plotted are collected from populations
at the end of evolutionary runs, but plots over time (not shown) reveal the same qualitative story: HyperNEAT’s performance is consistently higher on more
regular problems and the performance of FT-NEAT is unaffected by the regularity of the problem. For HyperNEAT, the performance gaps between more and
less regular treatments are evident early and increase across evolutionary time.

Fig. 10. HyperNEAT versus FT-NEAT as the inherent regularity of the bit
mirroring problem is decreased. Reducing the grid size reduces the amount of
inherent regularity in the problem. Error bars show one standard error of the
mean. Ratios are used instead of absolute differences because the allowable
fitness ranges change with grid size.

0%, leaving only the inherent regularity of the problem. Due
to the high variance between runs, 40 runs are conducted per
treatment.

As the grid size is lowered, the relative performance of Hy-
perNEAT degrades to and then falls below that of FT-NEAT.
The general trend is significant (p < 0.05 comparing the ratios
on the 3×3 problem versus those with 6×6 and larger grids).
It is not clear why HyperNEAT performed relatively better on
the 3 × 3 grid than the 4 × 4 grid. This experiment reinforces
the conclusion that once problems become irregular enough,
FT-NEAT can outperform HyperNEAT. It also provides a

further demonstration that HyperNEAT can exploit increasing
problem regularity to gain a relative edge over FT-NEAT.

3) Quadruped Controller: The data from the quadruped
controller problem also generally support the conclusions from
target weights and bit mirroring. HyperNEAT outperforms
both FT-NEAT and NEAT on the two most regular versions
of this problem, where there are 0 or 1 faulty joints (Fig. 11,
p < 0.001). That HyperNEAT outperforms NEAT is note-
worthy, given that NEAT is one of the most successful direct
encoding neuroevolution algorithms.

As with target weights and bit mirroring, HyperNEAT’s
performance increases with the regularity of the problem, but
only above a certain threshold: the 0 faulty joint treatment
significantly outperforms the 1 faulty joint treatment (p <

0.001) which, in turn, outperforms the 4 faulty joint treatment
(p < 0.001) which, in turn, outperforms the 8 faulty joint
treatment (p < 0.001). However, the 8 and the 12 faulty joint
treatments are statistically indistinguishable (p > 0.05). In
contrast to target weights and bit mirroring, FT-NEAT is not
blind to the regularity of this problem, although it is less
sensitive to the regularity than HyperNEAT. The treatment
with 0 faulty joints is statistically indistinguishable from the 1
faulty joint treatment (p > 0.05), but performance on both of
these treatments is higher than on the 4 faulty joint treatment
(p < 0.001) which is, in turn, higher than the 8 faulty
joint treatment. As is the case for HyperNEAT, performances
for FT-NEAT on the treatments with 8 and 12 faulty joints
are statistically indistinguishable (p > 0.05). The statistical
comparisons for NEAT are the same as those for FT-NEAT.

One reason that regularity may affect the direct encod-
ings on this problem is because weights tend to be near
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Fig. 11. Performance of HyperNEAT, FT-NEAT, and NEAT on the
quadruped controller problem with 0, 1, 4, 8, and 12 faulty joints.

the maximum or minimum allowable value, which is partly
because mutations that create links outside of this range are
set to the maximum or minimum value. This method makes
extreme values more likely, which can facilitate coordination
in the joints because different joints are controlled by links
with similar weights. If normal joints are controlled by links
with the maximum or minimum link value, to have faulty
joints behave the same as normal joints, link values would
either have to be outside the allowable range, or inside the
range at non-extreme (and thus harder to set) values. Faulty
joints thus increase the difficulty of the problem for both
indirect and direct encodings, and can help explain why the
problem regularity appears to benefit the direct encodings.
Exploring ways to reduce this bias is an interesting avenue
for future work.

As with bit mirroring and target weights, FT-NEAT is
able to outperform HyperNEAT on the quadruped controller
problem once the regularity of the problem is sufficiently low.
FT-NEAT and NEAT outperformed HyperNEAT on both the 8
and 12 faulty joint treatments. On the treatment with 8 faulty
joints, the difference is significant for FT-NEAT (p < 0.05),
but not for NEAT. On the treatment with 12 faulty joints, the
difference for FT-NEAT is almost significant (p = 0.066), but
the difference for NEAT is highly significant (p < 0.01).

The difference in fitness in the first generation of randomly-
generated organisms is interesting. HyperNEAT begins with
an advantage over FT-NEAT because even randomly-generated
CPPNs are sometimes able to produce the coordination of legs
that facilitates movement. Some of these randomly-generated
organisms in HyperNEAT display impressive coordination and
appear to be on the road toward rudimentary locomotion.
Randomly-generated FT-NEAT and NEAT organisms do not
provide this impression.

Overall, the results from the target weights, bit mirroring,
and quadruped controller problems show that the direct en-
codings outperform HyperNEAT when problem regularity is
low. They also show that as problem regularity increases,
HyperNEAT can exploit that regularity whereas the direct
encodings mostly do not. This ability to exploit problem

Fig. 12. A time series of images from typical gaits produced by HyperNEAT
and FT-NEAT. HyperNEAT robots typically coordinate all of their legs,
whether all legs are in phase (as with this robot) or with one leg in anti-
phase. A short sequence involving a bound or gallop is repeated over and
over in a stable, natural gait. FT-NEAT robots display far less coordination
among legs, are less stable, and do not typically repeat the same basic motion.
NEAT gaits are qualitatively similar to FT-NEAT gaits.

regularity means that HyperNEAT increasingly outperforms
direct encoding controls as problem regularity increases. We
now investigate further how HyperNEAT is able to exploit
regularity.

B. HyperNEAT Produces More Regular Behaviors

We focus our analysis of regularity in ANNs and behaviors
on the quadruped controller problem because target weights
and bit mirroring are diagnostic problems wherein regularity is
explicitly built into the problem (i.e., any phenotypic regularity
in fit solutions is unsurprising). Moreover, there is no mean-
ingful behavior associated with the two diagnostic problems.
The quadruped controller problem, on the other hand, does
have interesting behaviors with different levels of regularity.
Moreover, the problem does not explicitly require or reward
regularity, which means that any regularities that develop do so
because of the encoding and because such regularities happen
to produce fast gaits.

The first method we employ to analyze the behaviors
produced by the different algorithms is based on videos of
the highest performing gaits from all 50 runs in the treat-
ment with 0 faulty joints (available at http://devolab.msu.edu/
SupportDocs/Regularity). The HyperNEAT gaits are all regu-
lar. They feature two separate types of regularity: coordination
between legs, and repetition of the same movement pattern
across time. Generally, the gaits are one of two types. The
first type has four-way symmetry, wherein each leg moves in
unison and the creature bounds forward repeatedly (Fig. 12,
top row). This gait implies that HyperNEAT is reusing neural
information in a regular way to control all of the robot’s legs.
The second gait resembles a horse gallop and features the back
three legs moving in unison, with the fourth leg moving in
opposite phase. This 3-1 gait demonstrates that HyperNEAT
can reuse neural information with some variation, because the
same behavioral pattern exists in each leg, but is inverted in
one leg. The ability to produce repetition with variation is a
desirable feature in genetic encodings [2].

Overall, the HyperNEAT gaits resemble those of running
natural organisms because they are coordinated and graceful.
These observations are noteworthy because they indicate that
HyperNEAT is automatically exploiting the regularities of
a challenging, real-world problem. This accomplishment is
significant given that researchers have previously needed to
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Fig. 13. HipFB joint angles observed in robots evolved with HyperNEAT, FT-NEAT, and NEAT. The possible range for this joint is −0.5π to 0.5π. The
y-axis shows radians from the initial down (0) position. For clarity, only the first 2 s are depicted. For HyperNEAT, the best gait is an example of the 3-1
gait, where three legs are in phase and one leg is in opposite phase, which resembles the four-beat gallop gait. The other two HyperNEAT gaits are four-way
symmetric, with all legs coordinated in a bounding motion (Fig. 12). The best direct encoding gaits are mostly regular. However, the median and worst gaits,
which are representative of most direct encoding gaits, are irregular: while some legs are synchronized, other legs prevent the coordinated repetition of a
pattern.

manually decompose legged locomotion tasks for evolutionary
algorithms to perform well [32], [38]–[43].

The gaits of FT-NEAT and NEAT, on the other hand, are
mostly uncoordinated and erratic, with legs often appearing to
operate independently of one another (Fig. 12, bottom row).
A few of the best-performing gaits do exhibit coordination be-
tween the legs, and the repetition of a basic movement pattern,
but most of the gaits are irregular. Even the regular gaits are
not as natural and impressive as the HyperNEAT gaits, which
is reflected in their lower objective fitness values. For most
gaits, some legs flail about, others trip the organism, and some
work against each other by pushing in opposite directions. The
robots frequently cartwheel and trip in unstable positions until
they finally fall over. There is much less repetition of a basic
movement pattern across time. Coordination between legs is
often rare and temporary.

The few examples of regular gaits produced by FT-NEAT
and NEAT show that it is sometimes possible for direct en-
codings to produce regularities. Overall, however, HyperNEAT
is much more consistent at producing regular gaits. All of
the HyperNEAT gaits are regular, whereas only a few FT-
NEAT and NEAT gaits are. It is important for algorithms to
be consistent, especially when computational costs are high, so
that high-quality results can be obtained without performing
many runs. A test of the reliability of each encoding is to
watch the median- and least-fit gaits of the 50 champions for
each encoding: for HyperNEAT these gaits are coordinated

and effective, whereas for FT-NEAT and NEAT they are
discombobulated.

In general, the gaits reveal a greater gap in performance
between HyperNEAT and the direct encodings than is sug-
gested by the fitness scores, especially for all but the best runs
for each algorithm. Most of the direct encoding gaits do not
resemble stable solutions to quadruped locomotion, whereas
HyperNEAT produces a natural gait in all trials with a small
variety of different solutions.

A second method for investigating how HyperNEAT is able
to outperform the direct encodings is to look at the angles of
the leg joints during locomotion. This technique is a different
way of estimating the coordination, or lack thereof, of the
different legs for each encoding. Plots of each leg’s HipFB
joint from the best, median, and worst runs for each algorithm
corroborate the descriptive evidence (Fig. 13). The legs in
all HyperNEAT organisms exhibit a high degree of both of
the two main regularities: at any point in time most legs
are in similar positions (except the out-of-phase leg in the
3-1 gait, which is opposite), and a basic movement pattern
is repeated across time. The direct encoding gaits are less
regular in both ways, except for the highest-performing gaits.
The median and worst gaits are representative of most of
the direct encoding gaits: there is little coordination between
legs or across time (Fig. 13). While only the HipFB joint is
shown, plots of the other two joints are consistent with these
results.
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Fig. 14. Gait generalization. HyperNEAT gaits generalize better than FT-
NEAT and NEAT gaits, which means that they run for longer before
falling over. The allotted time during evolution experiments is 6 s (dashed
horizontal line). Only the HyperNEAT gaits exceed that amount of time in
the generalization tests. For clarity, outliers are not shown.

C. HyperNEAT Behaviors are More General

One of the benefits of regularity is generalization. On the
quadruped controller problem, for example, repeating the same
basic pattern of motion is a type of regularity that is likely to
generalize, because its success in one cycle makes it probable
that it will be successful in the next cycle. A non-repeating
sequence of moves, however, may be less likely to generalize
because its past is less likely to predict its future. Generality,
then, can be a test of regularity. It is also a desirable property
in its own right.

During the evolution experiment, the robots are evaluated
for six simulated seconds. One test of generality is to remove
the time limit of 6 s and measure how long the evolved robots
are able to move before they fall. Fig. 14 reports that Hyper-
NEAT champion gaits are significantly more general than FT-
NEAT and NEAT champion gaits (p < 0.001). HyperNEAT
gaits are the only ones on average that keep moving beyond
the number of seconds simulated during evolution.

D. HyperNEAT Regularities can be Influenced, Allowing
Domain Knowledge to be Injected

HyperNEAT genomes create regularities in geometric space
that affect phenotypic elements based on the geometric coor-
dinates of those elements. Changing the geometric arrange-
ment of these elements may make it easier for HyperNEAT
to produce one type of behavior versus another [17]. For
example, it might be easier to group two elements together if
those elements are close to each other, whereas this grouping
may be more difficult if the elements are far away from each
other, especially if elements that should not be included in the
group lie in-between. If this hypothesis is correct, arranging
phenotypic elements such as sensors or outputs in different
geometric configurations may be a way for the experimenter
to influence the types of regularities HyperNEAT produces.

The ordering of the legs in HyperNEAT for the quadruped
controller problem offers a way to test this hypothesis. In
the default configuration (Fig. 7) the legs are ordered, from
lowest to highest Y coordinate value, FL-BL-BR-FR, where

TABLE I

Resultant Gait Types for Different Leg Orderings

4way Sym L-R Sym F-B Sym One Leg Out of Phase
FL BL BR FR

FL-BL-BR-FR
(default)

36 4 9

FL-BR-FR-BL 47 2 1
FL-FR-BL-BR 44 3 1
FL-FR-BR-BL 36 4 9 1

Gaits are placed into the following categories: 4way Sym(metry) (all legs
in synchrony), L-R Sym (the left legs are in phase and the right legs out of
phase), F-B Sym (the front legs are in phase and the back legs are out of
phase), and one leg out of phase (three legs moved in synchrony and one
is out of phase, which resembles a gallop). If two legs are motionless, they
are considered in synchrony. Two gaits do not fit into these categories and
are not tabulated. FL: front left, BL: back left, BR: back right, and FR:
front right.

F = front, B = back, L = left, and R = right. This ordering
may make it easier to group the left legs into one group and
the right legs into another, since they are closer to each other.
To test this hypothesis, we performed experiments with the
following alternate orderings: FL-FR-BL-BR and FL-FR-BR-
BL, which may encourage front-back symmetry, and FL-BR-
FR-BL, which may encourage diagonal symmetry. For each
of these four orderings, we performed 50 runs, each with a
population size of 150 that lasted 1000 generations. Table I
reports the classifications of the highest performing gait at the
end of each run.

The most common gait in all runs exhibits four-way sym-
metry, which is not expected to be biased by leg ordering. The
other gaits, however, do tend to reflect the geometric ordering
of the legs in each treatment. For example, all four examples
of left-right symmetry evolved in the *L*L*R*R treatment
(where * stands for any symbol), and all seven cases of front-
back symmetry evolved in the treatments that ordered the legs
F*F*B*B*. It appears it is easier for HyperNEAT to bisect
the Y dimension once to group neighboring legs, instead of
creating the more complex pattern required to group legs with
non-adjacent Y coordinate values.

It is interesting to observe which is the exception leg in the
gaits that had three legs in synchrony and one leg in opposite
phase. In 23 out of 25 cases, the exception leg is the one
with the highest Y coordinate value, although which leg that
is changes based on the geometric ordering (Table I). Different
geometric representations, therefore, can probabilistically bias
evolution to make different legs be the exception leg, which is
an example of how a HyperNEAT user can inject a preference
into the algorithm. It is not clear why exceptions are typically
made for the leg with the highest Y coordinate value. This
result may be due to the nature of the mathematical functions
in the CPPNs.

E. HyperNEAT ANNs are More Regular, Which is Visually
Apparent

Beyond behavioral regularities, it is also interesting to
examine the ANNs produced by HyperNEAT and FT-NEAT.
NEAT ANNs are not visualized because their variable num-
ber of hidden-node layers make such visualization difficult.
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Fig. 17. Correlating ANN regularities to different behaviors. It is possible to recognize ANN patterns that produce different robotic gaits. The ANNs in the
top row all generate a four-way symmetric gait. The weight patterns in these ANNs appear similar for all rows (legs are controlled by separate rows of nodes).
The ANNs in the bottom row have three legs moving together and one leg in anti-phase. That exception leg is controlled by the nodes in the top row, which
have a different pattern of weights than the other three rows. These views are from the back (looking at the outputs), as indicated by the color/shade scheme
described in the caption of Fig. 15.

number of links in NEAT ANNs can vary, which means
that compressibility alone is not isolated. This analysis is
performed on the quadruped controller problem because it
does not have regularity explicitly built in, as opposed to target
weights and bit mirroring, where fitness scores already indicate
ANN regularity.

The gzip algorithm is a conservative test of regularity
because it looks for repeated symbols, but does not compress
all mathematical regularities (e.g., each link weight increasing
by a constant amount). Nevertheless, gzip is able to compress
HyperNEAT ANNs on the regular quadruped controller prob-
lem significantly more than FT-NEAT ANNs: p < 0.001,
comparing the difference between each uncompressed and
compressed HyperNEAT file (mean 4488 bytes ±710 SD)
and each FT-NEAT file (mean 3349 bytes ±37 SD). This
quantifiable result confirms the clear yet subjective observation
from visually inspecting HyperNEAT and FT-NEAT ANNs
(Fig. 15), namely, that HyperNEAT ANNs are more regular.

G. Regularity of HyperNEAT ANNs Correlates with the
Regularity of the Problem

Another measure of the regularity of HyperNEAT ANNs
is the number of nodes or links in the CPPN genome. Some
of the HyperNEAT end-of-run champions on the quadruped
controller problem, for example, have as few as 9 nodes and
26 links in their genome. Given that this genome encodes an
ANN with 60 nodes and 800 links, the compression in this
case is 6.6-fold and 30.8-fold, respectively. Unfortunately, this

measure of regularity cannot be used for comparisons between
HyperNEAT and direct encodings. It is unfair to compare
genome sizes between HyperNEAT and FT-NEAT, given that
the FT-NEAT genome is the same size as the final ANN. A
comparison to NEAT is similarly unfair, because its genomes
at least need to contain one node for every input and output
node in the final ANN.

It is interesting, however, to investigate whether Hyper-
NEAT genomes are smaller on more regular problems. As
expected, the number of CPPN nodes in end-of-run champions
tends to increase with the irregularity of the problem, meaning
there is more compression (i.e., smaller genomes) on more
regular problems. We focused this analysis on genomic nodes
only, because the number of genomic links is correlated with
the number of nodes. In target weights, the correlation between
problem irregularity and number of CPPN nodes is positive
(r = 0.54), although the trend is slightly insignificant (p = 0.08,
using MATLAB’s corrcoef correlation coefficients test). In bit
mirroring, the correlation is more dramatic (Fig. 18). For both
the experiment that reduces column regularity, and the exper-
iment that further reduces row regularity, the trend is positive
(r = 0.91) and highly significant (p < 0.001, using MATLAB’s
corrcoef correlation coefficients test). On the quadruped con-
troller problem the trend is also positive (r = 0.58), although
insignificant (p > 0.05, using MATLAB’s corrcoef correlation
coefficients test).

We also performed this same analysis on data from a
previous publication that created irregularity in the quadruped
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Fig. 18. Genome size increases with problem irregularity. The number of
nodes in the CPPN genomes for HyperNEAT on the bit mirroring problem as
irregularity is scaled from low (left) to high (right). The number of genomic
nodes increases as the problem becomes more irregular.

controller problem in a different way, by randomizing the
geometric locations of each of the input and output nodes [17].
In the regular version of the problem, the nodes are laid out
in a configuration that appears regular to a human engineer
(e.g., the representation in Fig. 7). In the irregular version,
the geometric locations of the nodes are randomized in each
trial. We analyze data from three different experiments, where
the nodes are represented with geometric coordinates in one,
two, and three dimensions, respectively [17]. We previously
reported that the performance of HyperNEAT is significantly
higher in all three experiments on the regular version of
the problem [17]. An analysis of the number of nodes in
the CPPN genomes reveals that, for all three experiments,
genome sizes are significantly smaller in the regular treatment
than the irregular treatment (p < 0.05).

H. HyperNEAT is More Evolvable

One of the touted benefits of indirect encodings is that
the reuse of genetic information that produces regularity also
enables coordinated mutational effects, which can be beneficial
[20], [35]. It has previously been shown that a different indi-
rect encoding based on L-systems produces more beneficial
mutations than a direct encoding control [35]. This section
investigates whether HyperNEAT similarly tends to produce a
higher distribution of fitness values in mutated offspring than
its direct encoding controls.

We analyzed the difference in fitness between organisms and
their offspring in the quadruped controller problem in all cases
where offspring were produced solely by mutation. While the
majority of organisms were produced by crossover and mu-
tation, this analysis isolates the impact of mutational effects.
Over 1.3 million, 1.7 million, and 1.5 million organisms were
produced solely via mutation for HyperNEAT, FT-NEAT, and
NEAT treatments, respectively, providing a substantial sample
size.

Overall, the indirect encoding HyperNEAT produces a wider
range of fitness changes than the direct encodings (Fig. 19).
HyperNEAT also has a distribution of fitness values with a
higher median than both FT-NEAT and NEAT (p < 0.001).
While HyperNEAT also produces more extreme negative
fitness changes, they are balanced by more extreme positive
fitness changes. For example, with respect to the ratio of parent

Fig. 19. Fitness changes caused by mutations with different encodings. Each
circle represents the ratio of parent fitness over offspring fitness. Positive
values indicate an offspring that is more fit than its parents, and higher
numbers indicate larger fitness improvements. The inverse is true for negative
numbers.

fitness to offspring fitness, 5.8% of HyperNEAT offspring
have a positive value greater than 20, whereas for FT-NEAT
and NEAT only 0.35% and 0.21% do, respectively (Fig. 19).
Despite the many extreme negative fitness changes, it appears
that the continuous production of organisms that are much
more fit than their parents fuels the success of HyperNEAT
over FT-NEAT and NEAT on this problem.

I. HyperNEAT’s Bias Toward Regularity Hurts its Perfor-
mance on Problems with Irregularity, as Demonstrated by a
New Algorithm Called HybrID

The previous sections have documented that HyperNEAT’s
performance decreases as the irregularity of a problem in-
creases. One explanation is that HyperNEAT’s bias toward
producing regular solutions makes it less likely to create the
phenotypic irregularities necessary to account for problem-
irregularities. The clearest example of this phenomenon is on
the target weights problem in the treatment in which 90%
of the weights had the same value, but 10% of the weights
had different randomly-assigned values (Fig. 8). In a few
generations, HyperNEAT discovers and exploits the regularity
of the problem by setting 100% of its weights to the value
that is correct for 90% of them. For the remaining hundreds
of generations in the experiment, however, HyperNEAT fails
to make exceptions to that regular pattern to account for the
10% of irregular link values. While the patterns observed in
visualizations of the ANNs produced by HyperNEAT demon-
strate that HyperNEAT can in fact produce some variation
on overall patterns, many of those exceptions are themselves
regular and affect whole geometric regions (Section IV-E). The
target weights problem shows that changing specific weights
to match an irregular target is challenging for HyperNEAT.
However, such fine-tuning of neural connections may be
required for real-world problems that have some degree of
irregularity.

That HyperNEAT’s performance generally decreases with
problem irregularity suggests the hypothesis that HyperNEAT
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Fig. 20. Hybridizing indirect and direct encodings in the HybrID algorithm.
The HybrID implementation in this paper evolves with HyperNEAT in the
first phase until a switch is made to FT-NEAT. The idea is that the indirect
encoding phase can produce regular weight patterns that can exploit problem
regularity, and the direct encoding phase can fine tune that pattern to account
for problem irregularities. In this hypothetical example, large fitness gains are
initially made by the indirect encoding because it exploits problem regularity,
but improvement slows because the indirect encoding cannot adjust its regular
patterns to handle irregularities in the problem. Fitness increases again,
however, once the direct encoding begins to fine-tune the regular structure
produced by the indirect encoding.

would perform better on such problems if it were able to both
generate regularities and irregularities. An alternate explana-
tion for the performance drop is that the less-regular problems
are simply harder. One way to test whether the first hypothesis
is correct is to create an algorithm that can generate regularities
and then adjust those regularities to create irregularities.

Because indirect encodings excel at producing regular
patterns, and direct encodings excel at producing irregular
patterns, the combination of the two may produce both.
The hybridization of indirect and direct encodings (HybrID)
algorithm [28] is based on this idea (Fig. 20).

While we are not aware of any prior work that specifi-
cally combines direct and indirect encodings, researchers have
previously altered representations during evolutionary search,
primarily to change the precision of values being evolved by
genetic algorithms [47]. Other researchers have employed non-
evolutionary optimization techniques to fine-tune the details
of evolved solutions [48]. However, such techniques do not
leverage the benefits of indirect encodings.

While the name HybrID applies to any combination of
indirect and direct encodings, this paper reports results for
one specific implementation called a switch-HybrID [28],
wherein an indirect encoding is run first and then a switch
is made to a direct encoding. Specifically, HyperNEAT is
the encoding for each generation until the switch point,
when each HyperNEAT ANN phenotype is converted into an
FT-NEAT genome. Evolution then continues as normal with
FT-NEAT until the end of the experiment. HyperNEAT
and FT-NEAT serve as the indirect and direct encodings
in the HybrID implementation in this paper to provide fair
comparisons to the results from previous sections. For each of
the HybrID experiments in this paper, a different switch point
is chosen for illustrative purposes. In future applications of
the HybrID algorithm, it may be more effective to choose a
separate switch point for each run automatically based on the
rate of fitness improvement (or lack thereof).

1) Target Weights: HybrID’s performance on the target
weights problem reveals that it does combine the regularity-

Fig. 21. Comparison of HyperNEAT, FT-NEAT, and HybrID on a range of
problem regularities for the target weights problem. For each regularity level,
a HybrID line (dashed gray) departs from the corresponding HyperNEAT line
(colored) at the switch point (generation 100). The performance of FT-NEAT
(black lines) is unaffected by the regularity of the problem, which is why
the lines are overlaid and indistinguishable. HybrID outperforms HyperNEAT
and FT-NEAT in early generations on versions of the problem that are mostly
regular but have some irregularities.

generating attribute of indirect encodings with the irregularity-
generating attribute of direct encodings (Fig. 21). At the
switch point of 100 generations, HybrID immediately makes
noticeable gains over HyperNEAT, and 150 generations later
these gains are significant on all treatments except the perfectly
regular one (p < 0.001). This result confirms the hypothesis
that HyperNEAT can do better on some irregular problems
if a further process of refinement creates some irregularity
within its regular patterns. It is additionally interesting that Hy-
brID significantly outperforms the direct encoding FT-NEAT
on regular versions of the problem early in the experiment
(p < 0.01 at generation 250 on the 70%, 80% and 90% regular
problems); The HyperNEAT phase of HybrID first discovers
the regularity of the problem, giving the FT-NEAT phase
of HybrID a head start over FT-NEAT on these problems.
While the performance of HybrID and FT-NEAT is similar by
the end of the experiment, that result is likely because this
problem is simple and has no interactions (epistasis) between
individual link weight values. Direct encodings are expected
to perform well on problems without epistasis, but most real
world problems are highly epistatic.

2) Bit Mirroring: On the bit mirroring problem, which
does have epistasis, HybrID’s performance ties HyperNEAT’s
performance on regular versions of the problem, and signifi-
cantly outperforms HyperNEAT on problems with a certain
level of irregularity (Fig. 22, see figure for statistical sig-
nificance per treatment). This result further highlights that
HyperNEAT produces regular patterns that can benefit from
a refining process that generates irregularity. The performance
gap between HybrID and HyperNEAT is largest on problems
with intermediate levels of regularity. The gap in performance
narrows on the most irregular treatments because such config-
urations are difficult and both algorithms perform poorly.

These data are pooled across ten runs per treatment on a
7 × 7 grid. Each experiment lasted 5000 generations with a
switch point at 2500 generations. A comparison to FT-NEAT
is not shown because HyperNEAT outperforms FT-NEAT on
all versions of this problem (Section IV-A2).
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Fig. 22. Performance of HybrID versus HyperNEAT on the bit mirroring
problem. Regularity decreases from left to right. Plotted are median values ±
the 25th and 75th quartiles. Asterisks indicate p < 0.05.

Fig. 23. Performance of HybrID versus HyperNEAT on the quadruped
controller problem. Error bars show one standard error of the median. HybrID
outperforms HyperNEAT on all versions of the quadruped controller problem.
The increase generally correlates with the number of faulty joints.

3) Quadruped Controller: HybrID outperforms Hyper-
NEAT on every version of the quadruped controller prob-
lem (Fig. 23), although the difference is significant only on
problems with a certain amount of irregularity (p < 0.01 on
treatments with four or more faulty joints). HybrID increases
performance over HyperNEAT by 5%, 10%, 27%, 64%, and
44%, respectively, for the treatments with 0, 1, 4, 8, and
12 faulty joints. These substantial performance improvements
on the quadruped controller problem, which is a challenging
engineering problem, highlight the degree to which Hyper-
NEAT’s inability to produce irregularity on its own can harm
its performance.

HybrID also outperforms both direct encodings on all treat-
ments of the problem (p < 0.05). HyperNEAT significantly
outperforms both direct encodings only on the two most
regular versions of the problem (p < 0.01). That HybrID
outperforms the direct encodings on irregular problems un-
derscores that it does not just act like a direct encoding
on irregular problems, but instead first leverages the indirect
encoding’s ability to exploit available regularities and then

improves upon those by accounting for problem irregularities
via the direct encoding.

It is instructive to examine how the FT-NEAT phase of
HybrID changes the patterns provided to it by the Hyper-
NEAT phase. Visualizations of ANNs at the end of each
HyperNEAT phase and the ANN for that same run after the
FT-NEAT phase can provide clues to how HybrID generates
its performance improvements. Examples from runs in the
treatment with one faulty joint are shown in Fig. 24. In
all cases, the FT-NEAT phase of HybrID makes no major
changes to the overall regular pattern produced by the Hyper-
NEAT phase (visualizations of ANNs after the HyperNEAT
and FT-NEAT phases for each HybrID run are available
at http://devolab.msu.edu/SupportDocs/Regularity). Evolution
thus maintains the regular pattern HyperNEAT generates
even while that pattern is being fine-tuned by the direct
encoding.

The types of exceptions HybrID produces are different from
those seen by HyperNEAT alone. In many cases, only a few
weights are noticeably changed by the FT-NEAT phase of
HybrID, and these changes occur in an irregular distribution.
For example, in the run depicted in the left column of
Fig. 24, HyperNEAT produces the regular pattern of inhibitory
connections to all of the output nodes. FT-NEAT switches
some of those to excitatory connections, which may have
been difficult for HyperNEAT to do without changing many
other weights. In another example run, depicted in the middle
column of Fig. 24, the only noticeable change FT-NEAT
made is the creation of a single, strong, excitatory connection.
Of course, in both cases there are subtle changes in many
of the link weights that do not stand out to the human
eye.

In the third example run, changes were made during the FT-
NEAT phase to many different weights, yet the overall patterns
remained (Fig. 24, right column). Many of these changes are
irregular, such as the weights switched from excitatory to
inhibitory and vice versa in the top-left node, and the few
links that switch to excitatory in the bottom row. What is
unusual and fascinating about this example run, however, is
that the direct encoding makes many regular changes. For
example, most of the links in the top row proportionally in-
crease in strength, which preserves the regular patterns. These
visualizations demonstrate a rare case of a direct encoding
producing coordinated phenotypic changes. It might be the
case that the indirect encoding discovered regularities that put
this organism on the side of a hill in a fitness landscape,
but climbing that hill is difficult for the indirect encoding
because mutations to the genome that increase the strength
of connections in these nodes may change other weights and
thus decrease fitness overall. The direct encoding does not
have such constraints, and thus can increase the magnitude
of all of these links. This hypothetical explanation illustrates
how evolution can produce coordinated change through direct
encodings if it starts in a place in the fitness landscape where
there is a positive fitness gradient in the same direction for
many link values. Interestingly, it is unlikely that the direct
encoding would have discovered this starting point without
the indirect encoding.
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Fig. 24. Visualizations of the ANNs produced at the end of the HyperNEAT phase and FT-NEAT phase of HybrID for three example runs.

V. Discussion
While it is well-established that indirect encodings can

outperform direct encodings on regular problems [2], [7]–
[14], no prior studies have investigated how indirect encodings
compare to direct encodings on problems as regularity scales
from high to low. Given that most realistic problems will not
be at the extreme regular end of this continuum, it is important
to understand how indirect encodings perform on problems
with different levels of regularity.

On three different problems we have shown that indirect en-
codings are able to automatically exploit intermediate amounts
of problem regularity, and that their performance improves
as the regularity of the problem increases. Moreover, the
indirect encodings outperform direct encoding controls on
regular problems. We have also shed light on why indirect
encodings perform better, which is because they produce both
regular ANNs and regular behaviors that exploit problem
regularity. These results suggests that indirect encodings may
be an attractive alternative to direct encodings as evolutionary
algorithms are applied to increasingly complicated engineering
problems, because such problems are likely to contain regu-
larities. The results from the bit mirroring problem also reveal
that HyperNEAT is able to independently exploit different
types of regularity within the same problem; scaling three
different regularities (within-row, within-column, and inherent)
independently contributes to overall performance [29]. One
interesting caveat we discovered on all three problems, how-
ever, is that HyperNEAT does not exploit a particular type of
regularity until the level of regularity within that type is above
a threshold. Tests on additional problems and with different
indirect encodings are required to discover how general this
finding is. Additionally, further quantitative analyses of regu-
larity in both evolved solutions and in the problems themselves
would shed additional light on how general the findings in this
paper are.

It is particularly noteworthy that HyperNEAT is able to au-
tomatically exploit the regularity of the challenging quadruped

controller problem. This result is important because evolu-
tionary algorithms have previously performed poorly when
evolving gaits for legged robots because they could not
automatically exploit the problem’s regularities: to perform
well, researchers needed to manually identify such regularities
and force the encoding to exploit them [32], [38]–[43]. This
manual approach is time consuming, restrictive, and may fail
to identify helpful regularities.

Because indirect encodings are biased toward producing
regular patterns in solutions, it is important to understand
the degree to which they can vary and make exceptions to
these patterns. Two separate lines of evidence confirm that
HyperNEAT has difficulty making certain types of exceptions.
Initially, its performance decreases as a problem becomes more
irregular. Second, the HybrID algorithm boosts performance
over HyperNEAT on intermediately regular problems, con-
firming that HyperNEAT is not creating some irregularities
that would aid performance. On the other hand, visualizations
of HyperNEAT ANNs reveal that HyperNEAT can create vari-
ations on patterns, and even exceptions for single nodes. How-
ever, these variations and exceptions themselves are regular,
suggesting that HyperNEAT creates its exceptions by adding
one regularity to another, with the result being an overall
regularity with a regular variation within it. The HyperNEAT
visualizations rarely demonstrate cases where single weights
violate the prevailing pattern. HybrID, on the other hand,
does provide examples of such single-link exceptions. The
significant boost in performance by HybrID implies that the
ability to make such radical exceptions at the single-link level
is sometimes important.

HybrID’s performance increase over HyperNEAT, combined
with investigations into the different types of exceptions Hy-
brID and HyperNEAT make, suggest that HyperNEAT can
benefit from a process of refinement that adjusts individual
link patterns in an irregular way. While a direct encoding pro-
vides such refinement in this paper, there are other candidate
refinement processes. One intriguing possibility is that lifetime
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adaptation via learning can play a similar role [44], [49]–
[51]. Lifetime learning algorithms could adjust the overall
regular patterns produced by HyperNEAT to account for
necessary irregularities. Having a learning algorithm serve as
the refining process may be superior to a direct encoding,
especially as ANNs scale closer to the size of brains in nature.
While HybrID works well on the problems in this paper,
its direct encoding component may ultimately encounter the
same scaling challenges that all direct encodings face on high-
dimensional problems.

The ANN weight patterns produced by HyperNEAT alone
are also interesting because they demonstrate the types of
regularities that can be produced by an indirect encoding that
incorporates geometric concepts from developmental biology.
The pictures evolved with CPPNs reveal that CPPNs can
encode many features observed in natural animal bodies,
such as symmetry and serial repetition, with and without
variation (Fig. 2) [24]. The visualizations presented here of
ANNs evolved with CPPNs demonstrate that HyperNEAT can
generate these same properties in ANNs. It is clear by looking
at the different visualizations that different geometric patterns
are being created and combined to produce complex neural
patterns, which is reminiscent of how nature produces complex
brains and bodies [3].

Outside the field of neuroevolution, other techniques have
improved performance by biasing neural networks toward
regular weight patterns, such as weight sharing [52], [53] and
convolutional networks [54]. However, such methods typically
involve the researcher imposing a certain regularity on the
ANN (such as a subset of weights all being identical). The fact
that these techniques were successful demonstrates that regular
patterns in neural connections can be beneficial. However,
these methods typically do not automatically discover which
regularities to create. HyperNEAT is novel because it explores
a large space of possible geometric regularities to find those
that enhance performance. This ability to discover and encode
different regularities suggests that HyperNEAT can potentially
adapt the regularities it produces to different domains, instead
of needing to be manually tuned for each domain.

VI. Conclusion

This paper contains the first extensive study in the field of
evolutionary computation comparing an indirect encoding to
direct encoding controls across a continuum of problems with
different levels of regularity. On three different problems the
performance of the indirect encoding improved with the regu-
larity of the problem, and the indirect encoding outperformed
the direct encodings on more regular versions of problems.
The indirect encoding was able to exploit problem regularity
by generating regular neural networks that produced regular
behaviors. The specific indirect encoding studied is based
on concepts from developmental biology involving geometric
patterning, which enabled domain knowledge and preferences
to be injected into the algorithm. Moreover, this generation and
combination of geometric coordinate frames created regular
weight patterns in neural networks that are visually complex
and resemble regularities seen in natural brains.

The indirect encoding’s bias toward regularity hurt its
performance on problems that contained some irregularity. A
new algorithm that first evolves with an indirect encoding and
then switches to a direct encoding was able to outperform the
indirect encoding alone. This HybrID algorithm outperformed
the indirect encoding because it made subtle adjustments to
regular patterns to account for problem irregularities. The
success of this approach suggests that indirect encodings
may be most effective not as stand-alone algorithms, but
in combination with a refining process that adjusts regular
patterns in irregular ways to account for problem irregularities.

Overall, this paper provides a more comprehensive picture
of how indirect encodings compare to direct encodings by
evaluating them across a continuum from high to low problem
regularity. This paper also suggests a path forward that com-
bines the pattern-producing power of indirect encodings with
a process of refinement to account for the irregularities that
are likely to exist in challenging problems.
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