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ABSTRACT
Malware detectors require a specification of malicious behav-
ior. Typically, these specifications are manually constructed
by investigating known malware. We present an automatic
technique to overcome this laborious manual process. Our
technique derives such a specification by comparing the ex-
ecution behavior of a known malware against the execution
behaviors of a set of benign programs. In other words, we
mine the malicious behavior present in a known malware
that is not present in a set of benign programs. The output
of our algorithm can be used by malware detectors to detect
malware variants. Since our algorithm provides a succinct
description of malicious behavior present in a malware, it
can also be used by security analysts for understanding the
malware. We have implemented a prototype based on our
algorithm and tested it on several malware programs. Ex-
perimental results obtained from our prototype indicate that
our algorithm is effective in extracting malicious behaviors
that can be used to detect malware variants.
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1. INTRODUCTION
Malicious software (malware) is code that achieves the

harmful intent of an attacker. Typical examples include
viruses, worms, trojans, and spyware. Although the history
of malware reaches back more than two decades, the ad-
vent of large-scale computer worm epidemics and waves of
email viruses have elevated the problem to a major security
threat. Recently, this threat has also acquired an economic
dimension as attackers benefit financially from compromised
machines (e.g., by selling hosts as email relays to spammers).

Historically, detection tools such as virus scanners have
performed poorly, particularly when facing previously un-
known malware programs or novel variants of existing ones.
The fundamental cause is the disconnect between the mal-
ware specification used for detection and the actual mal-
ware behavior (which is the attacker’s goal). Certain mali-
cious behavior desired by an attacker (e.g., virus self replica-
tion through mass-mailing) can be realized in many different
ways. However, current detectors focus only on the specific
characteristics of individual malware instances, e.g., on the
presence of particular instruction sequences. Therefore, they
fail to detect different manifestations of the same malicious
behavior. Attackers are quick to exploit this weakness by us-
ing program obfuscation techniques such as polymorphism
and metamorphism [19, 22, 25, 29]. Recent research results
have highlighted how shortcomings in both network-based
and host-based detection techniques can be effectively ex-
ploited by attackers to evade detection [6, 14].

Advanced detection techniques such as semantics-aware
malware detection [7, 16] and malicious-code model check-
ing [12] counter the obfuscation techniques of attackers by
using higher-level specifications of malicious behavior. In-
stead of focusing on individual characteristics of particular
malware instances, these detectors specify general behav-
ior exhibited by an entire family of malicious code. Exam-
ples of such specifications include self-unpacking and self-
propagation via email. The power of these approaches re-
sides in the use of high-level specifications that abstract de-
tails specific to a malware instance. Thus, obfuscation trans-
formations, which preserve the behavior of the malware but
may change its form, are no longer effective techniques for
evading detection.

Unfortunately, the high-level specifications of malicious
behavior used by these advanced malware detectors are cur-
rently manually developed. Creating specifications manu-
ally is a time-consuming task that requires expert knowl-
edge, which reduces the appeal and deployment of these new
detection techniques. To address this limitation, this paper
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introduces a technique to automatically derive specifications
of malicious behavior from a given malware sample. Such a
specification can then be used by a malware detector, allow-
ing for the creation of an end-to-end tool-chain to update
malware detectors when a new malware appears. Since our
technique provides a succinct description of the malicious
intent of a malware, it can also be used by security analysts
for malware understanding.

We cast malicious-specification mining as the problem of
finding differences between a malware sample and a set of
benign programs. This approach supports the requirement
that the specification of malicious behavior must capture as-
pects that are specific to the malware and absent from any
benign programs. The software-engineering research com-
munity has put a lot of effort in analyzing commonalities and
differences between programs and many techniques for clone
detection [3,11,13,30] and program differencing [2,9,10,17]
have been proposed. The differencing techniques are clos-
est to our goal of mining specifications of malicious behav-
ior, but they fall short because they generally require ac-
cess to source code and because they produce differences
between low-level elements of the program (e.g., individual
statements) or between structural elements (e.g., type hier-
archy, procedures). Since we do not have the malware source
code and since the malware writer controls the structure of
the program, mining malicious specifications requires a new
approach.

Our mining technique takes into account an adversarial
setting in which the malware writer tries to make his soft-
ware hard to analyze and detect. We define a new graph
representation of program behavior and a mining algorithm
that constructs a malicious specification. The representa-
tion explicitly captures the system calls made by the pro-
gram and summarizes all other program code, because sys-
tem calls are the primary interaction with the operating
system. Our algorithm infers the system-call graphs from
execution traces, then derives a specification by computing
the minimal differences between the system-call graphs of
malicious and benign programs.

This paper makes the following contributions:

• A language for specifying malicious behavior in terms of
dependences between system calls (Section 3).

• An algorithm, called MiniMal1 that mines specifications
of malicious behavior from dependence graphs (Section 4).

• An experimental evaluation that shows that specifications
extracted MiniMal are qualitatively equivalent to those
manually developed by Symantec’s expert virus analysts
and can be used with a malware detector to identify sub-
sequent malware variants (Section 5).

2. OVERVIEW
The goal of our specification language is to describe ma-

licious behavior. In general, the behavior of a program can
be described as its observable effect on the execution envi-
ronment. Depending on what is considered the program’s
environment, behavior can be specified at different levels of
granularity.

One approach is to define behavior as the effect of a se-
quence of instructions on the state of a process. For this

1MiniMal is a technique for mining minimally mal icious
behavior.

1 push ebp
2 mov ebp , esp
3 add esp , 0FFFFFFFCh
4 push offset aSo f twareDate t ime
5 push 80000001h
6 call RegDeleteKeyA
7 lea eax , [ebp+hKey]
8 push eax
9 push offset SubKey

10 push 80000001h
11 call RegCreateKeyA
12 push offset ValueName
13 push [ebp+hKey]
14 call RegDeleteValueA
15 push [ebp+hKey]
16 call RegCloseKey

Figure 1: Bagle.J code fragment performing registry
cleanup, one of its “administrative” tasks.

purpose, the state of a process is defined as the content of
the memory address space. The effect on this state are mod-
ifications to the contents of the address space. Another ap-
proach to specify program behavior is to view the running
program as a black-box and only focus on its interaction
with the operating system. In this case, a particularly con-
venient interface to monitor is the set of operating system
calls that this process invokes. Every action that involves
communication with the process’ environment (e.g., access-
ing the file system, sending a packet over the network, or
launching another program) requires the process to make
use of an appropriate operating system service.

For this work, we choose the second approach and use
system calls as the basic building blocks of our specification
language. We only consider the actions of the program at
the operating system interface, thus making our technique
robust to any code-obfuscation techniques employed by mal-
ware authors. The end result is a specification of malicious
behavior that captures the intent of the malware writer in
terms of its effect on the host operating system. Such a
specification can then be used to detect the original mal-
ware as well as obfuscated variants that exhibit the same
system-call footprint.

At a high level, the mining algorithm works in three steps:
Algorithm MiniMal

1. Collect execution traces from malware and benign
programs. (Section 4, Step 1, and Section 5)

2. Construct the corresponding dependence graphs.
(Section 4, Step 2)

3. Compute specification of malicious behavior as dif-
ference of dependence graphs. (Section 4, Step 3)

We will walk through the application of the mining al-
gorithm on the email worm Bagle.J, the tenth variant in a
long line of malware known as the Bagle malware family.
According to the Symantec Security Response [24], Bagle.J
exhibits the following high-level functionality:

• It spreads through email, sending copies of itself using a
built-in SMTP engine.

• It opens a backdoor on the infected system, allowing the
attacker to access and control the victim system remotely.

• It self-propagates through several file-sharing networks
(Kazaa and iMesh).

• It performs multiple “administrative” tasks that include
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1 RegDeleteKeyA( 0x80000001 ,"SOFTWARE\DateTime" ) ==
0

2 RegCreateKeyA( 0x80000001 , "SOFTWARE\Microsoft\...\
Run", 0x0007FFC4 ) == 0

3 RegDeleteValueA ( 0x0007FFC4 , "ssate.exe" ) == 0
4 RegCloseKey( 0x0007FFC4 ) == 0

(a) Execution trace corresponding to Figure 1.

n1 : T1 = 80000001

n2 : X1 = 80000001

n2 : X2 = "SOFTWARE\Microsoft\...\Run"

n2 → n3 : X3 = Y1

n2 → n4 : X3 = Z
n3 : Y2 = NameOfSelf ()

(b) List of dependences.

RegCreateKeyA(X1, X2, X3)
X1 = 80000001
X2 = "SOFTWARE\Microsoft\...\Run"

RegDeleteValueA(Y1, Y2)
Y2 = NameOfSelf ()

RegCloseKey(Z)

RegDeleteKeyA(T1, T2)
T1 = 80000001

Y1 = X3

Z = X3

(c) Dependence graph.

RegCreateKeyA(X1, X2, X3)
X1 = 80000001
X2 = "SOFTWARE\Microsoft\...\Run"

RegDeleteValueA(Y1, Y2)
Y2 = NameOfSelf ()

RegCloseKey(Z)

Y1 = X3

Z = X3

(d) Specification.

Figure 2: Mining a specification of malicious behav-
ior starts from an execution trace (a) and produces
a subgraph of dependences (d).

installing itself to run every time the system boots, ter-
minating processes of known anti-virus and security soft-
ware, and announcing the IP of the victim system by post-
ing it on several web sites.

In Figure 1, a code fragment of the Bagle.J worm modi-
fies several Windows registry keys to remove traces of itself.
The code is interesting from a security perspective in that it
both unregisters the worm from execution at the next system
boot and it deletes a flag marking the presence of infection.
Such operations often appear before the worm code “up-
grades” itself to a new version. The calls to RegDeleteKeyA,

RegCreateKeyA, RegDeleteValueA, and RegCloseKey (lines 6,
11, 14, and 16, respectively) describe the interesting and rel-
evant interactions between the malware and the operating
system (although the calls in Figure 1 are to library func-
tions, they map directly to corresponding system calls). A
specification for this code fragment must include these calls.
The rest of the code in Figure 1 sets up the call arguments
and passes values from one call to the next. Such code does
not directly affect the operating system and can be obfus-
cated in many ways. For example, the hexadecimal constant
80000001 on line 10 (the first argument to RegCreateKeyA)
could be computed by evaluating various equivalent expres-
sions. It is thus important to abstract away such interme-
diary code that, if included in the behavior specification,
would make the specification restricted to a particular mal-
ware variant.

The mining algorithm starts, at Step 1, by executing the
malware (in a contained environment, of course) and one or
more benign programs. We collect system-call traces during
each execution. Each trace provides the system calls occur-
ring on a particular path through the program code. For
example, any execution of Bagle.J that reaches the code in
Figure 1 produces a trace that includes a sequence of system
calls similar to that shown in Figure 2(a). Unfortunately, we
do lose information about the dependences between system
call arguments.

Step 2 of the algorithm recovers some of the depen-
dences present in the trace by using the actual argument
values together with the corresponding type information.
For example, in the trace of Figure 2(a), the third argu-
ment of RegCreateKeyA is a value returned by the system
call (i.e., an out-argument). This argument has the same
type (HANDLE) and the same value as the first argument of
the subsequent call to RegDeleteValueA, which is a regular
function argument (also called an in-argument). Thus, a def-
use dependence [21] can be inferred between RegCreateKeyA
on line 2 and RegDeleteValueA on line 3 (see Figure 2(b)).
The process of inferring dependences between system call
arguments is explained in more detail in Section 4.

The result of inferring dependences between system calls
in Step 2 is a dependence graph, part of which is illustrated
in Figure 2(c). This graph characterizes the relationships be-
tween the system calls observed during malware execution
and was constructed without any disassembly, decompila-
tion, or static analysis of the binary code. Each node rep-
resents one system call together with its arguments. Each
edge represents dependences between arguments of different
system calls. For example, the edge labeled Y1 = X3 denotes
the fact that the first argument of RegDeleteValueA has the
same value as the third argument of RegCreateKeyA.

Note that the actual argument values that appear in the
trace have been removed from the dependence graph, both
for constrained arguments (i.e., part of a dependence) and
for unconstrained arguments. The values of constrained ar-
guments are removed because, fundamentally, the fact that
an argument is constrained is more important than its ac-
tual value, which can vary between executions and between
variants. The values of unconstrained arguments are not
significant because the arguments themselves are not signif-
icant.

We know that the obtained dependence graph is unique
as it describes the operations performed by a given malware
sample. Any program with the same dependence graph must
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be as malicious as our malware sample because its interac-
tion with the operating system cannot be distinguished from
the malware sample. While we could use the dependence
graph as a specification of malware behavior, this graph can
be extremely large, with millions of system calls and with
many operations that are not malicious per se. We would
like to obtain a smaller specification of malicious behavior.
To this end, in Step 3 we trim the malware dependence
graph by contrasting it with dependence graphs of benign
programs. The result is a subgraph of the malware depen-
dence graph that is not a subgraph of any one benign de-
pendence graph. The graph obtained in this fashion is a
specification of malicious behavior that one can use for mal-
ware detection.

3. SPECIFYING MALICIOUS BEHAVIOR
Based on our example from Section 2, we have the fol-

lowing three requirements of our specification language for
describing malicious behavior.

Requirement 1: A specification must not constrain truly in-
dependent operations in any way. We observe that some
high-level operations that constitute the malware behavior
can be performed in any order. For example, in Figure 1 the
call to RegDeleteKeyA and its associated argument-setup in-
structions on lines 4 and 5 can be performed at any point
in the code sequence. This is due to the fact that this op-
eration is independent from the other calls and thus any
permutation of these operations will lead to the same end
goal. Thus, the order in which any operations appear in
a particular malware instance is not indicative of the true
dependences between these operations and should not be
reflected in the specification.

Requirement 2: A specification must relate dependent opera-
tions. The second requirement for a model of malicious be-
havior is to reflect correctly the true dependences that con-
strain the ordering of program operations. Simply eliminat-
ing all dependences between system calls in a specification
would make the specification so generic that it would match
both malicious and benign programs. Some dependences
are due to data-flow and API-usage rules. For example, in
Figure 1 two dependences relate the registry key handle de-
fined by RegCreateKeyA with the registry key handles used
by RegDeleteValueA and RegCloseKey, respectively. Other
dependences are derived from the protocols that control in-
teractions with other processes and systems external to the
malware. For example, Bagle.J worm uses the SMTP pro-
tocol to send email. As a result, the arguments to network
system calls such as send have to follow the rules of SMTP.

Requirement 3: A specification must capture only security-
relevant operations. A specification of malicious behavior
should not depend on operations that do not affect the
trusted computing base (TCB), which is the operating sys-
tem in our case. As a result, we want the specification to
include only the security-relevant operations (i.e., system
calls). The malicious behavior we capture describes the set
of operations the malware performs on the TCB. For ex-
ample, the Bagle.J backdoor communicates over the net-
work using multiple system calls. The model for this back-
door functionality would include only the network-related
system calls with dependences relating the values of their
arguments, but with no additional constraints on how these
values are computed internally by the malware.

Type Description
HANDLE Handle to an OS object.
int Integer value.
string C-style string value.
〈L1 : τ1, . . . , Ln : τn〉 Labeled n-tuple.
〈τ1| . . . |τn〉 Union.
dir τ Direction, i.e., in, out, or inout.

Table 1: Type system for system-call arguments.

Here, we equate security-relevant operations with system
calls. While not all system calls are security-sensitive, any
system call can be part of a security-relevant behavior. For
example, querying the name of the executable file for the
current process is innocuous by itself, but can be used to
implement self-replicating behavior. Thus, we do not re-
strict ourselves from the outset to particular system calls.
Only after applying the mining algorithm we eliminate sys-
tem calls that are not relevant in a security context.

We define a specification of malicious behavior as a de-
pendence graph of system calls. Let Σ be the set of system
calls. A system call S ∈ Σ is a function of N variables,
S : τ1×· · ·× τN → τR, where τi is the type of the i-th argu-
ment of the operation, and τR is the return type. The type
system consists of an opaque handle type (for referencing
various kinds of OS objects), an integer type, and a string
type, together with a type constructor for creating labeled-
tuple types, a type constructor for argument-direction type
qualifiers, and a type constructor for unions (see Table 1).

Dependences between system calls are encoded as logi-
cal formulas constraining the values of the system-call argu-
ments, e.g., Y1 = X3 in Figure 2(d). Additionally, system
calls in the dependence graph can be constrained using local
argument constraints. For example, the node RegDeleteKeyA
in Figure 2(d) has two local constraints. Any logic with
support for modular and bit-vector arithmetic, arrays, and
existential and universal quantifiers is sufficient to represent
our constraints on system calls. Let LDep be such a logic and
let Vars denote the set of variables that appear in formulas
of this logic. The set Σ×2Vars represents the set of symbolic
system calls, i.e., system calls that have as arguments the
uninterpreted variables from Vars.

Definition 1 (Malspec). A malicious specification is
a directed acyclic graph (DAG) with nodes labeled using sys-
tem calls from an alphabet Σ and edges labeled using logic
formulas in a logic LDep . Formally, the malicious specifica-
tion (malspec) M is written M = (V, E, γ, ρ), where:
• V is vertex-set and E is edge-set, E ⊆ V × V ,

• γ associates vertices with symbolic system calls, γ : V →
Σ× 2Vars ,

• ρ associates constraints with nodes and edges, ρ : V ∪E →
LDep .

For a node in v ∈ V with label S = γ(v), let us denote by
S both the node and its system-call label when the context
allows it unambiguously. We write 〈n1, n2〉 ∈ E for an edge
from node n1 to node n2 in the malspec and n1 →∗ n2 for
a path from n1 to n2.

We note that our malspec language satisfies the require-
ments described earlier. Independent system calls (Require-
ment 1) can be represented in a malspec as disconnected
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nodes, with no particular execution order. Dependent oper-
ations (Requirement 2), on the other hand, are represented
as nodes connected via constraints in the graph. The third
requirement is satisfied simply by the fact that vertices in
the graph are system calls. No other syntactic elements of
a binary program (e.g., instructions or offsets) are part of a
malspec, thus rendering any malspec-based detector resilient
to obfuscation attacks.

Expressive Power of Malspecs. Our design choice for the
malspec language leads to several restrictions. Fundamen-
tally, this malspec definition allows us to describe any ma-
licious behavior that can be expressed as a safety property
(i.e., a program is malicious if it performs a particular se-
quence of operations). As a result, this type of malspec
cannot encode malicious behavior that results in the viola-
tion of some liveness property of the system (e.g., a denial
of service attack). Currently, such a limitation might be
of purely theoretical interest, because in our experience all
current malware classes can be described in terms of safety
violations.

A second limitation arises from our envisioned use of such
malspecs. A program would match a malspec if at least one
of its paths invokes the system calls of the malspec with ar-
guments that satisfy the constraints of the malspec. Thus,
a malspec is not designed to represent malicious behavior
that encompasses multiple distinct executions of the pro-
gram and in particular the use of covert channels, which
consist of observable differences between multiple program
executions. While a detector could interpret malspecs as de-
scribing constraints over multiple executions, this specifica-
tion language might not be the best tool for such a purpose.
We note that a malspec can still represent explicit informa-
tion flows, which should cover most spyware in existence.

Finally, there is the question of whether all malicious be-
haviors can be described in terms of system calls. We note
that system calls are the basic units of interaction between a
program and its execution environment, the operating sys-
tem. There are certainly other ways for a malicious pro-
gram to impact a host, e.g., by influencing another program
through shared memory, and we plan to investigate these
behaviors in the future.

4. MALSPEC-MINING ALGORITHM
We now describe in detail the malspec-mining algorithm

introduced in Section 2, with emphasis on the dependence-
graph construction and the graph differencing steps.

The algorithm is based on dynamic analysis techniques
that use execution traces obtained by running malware and
benign programs in identical environments. The inputs to
the algorithm are a malicious program and a set of benign
programs. No additional information about the malicious
program is necessary.

Pseudo-code for MiniMal is given in Algorithm 1. Lines 3
and 4 correspond to the first step introduced in Section 2,
the collection of execution traces for both the malware vari-
ant and a set of benign programs. The second step of con-
structing the dependence graphs for each collected trace is
implemented in the loop at line 6, while the malspec com-
putation takes place inside the loop at line 11. We describe
each of these steps in more detail in the rest of the section.

Step 1: Collect Execution Traces.
A representative trace must exhibit some malicious behav-

ior for our algorithm to function. If there are no distinctions
between the executions of the malicious program and of the
benign programs, then no malicious behavior can be iden-
tified. In practice, getting the malware to be malicious is
not difficult, as most malware tries to infect and spread in
as many environments as possible.

The traces are collected by passively monitoring the exe-
cution of each program in a contained environment that is
similar to a computer fully connected to the Internet. We
describe the trace-collection environment and procedures in
detail in Section 5.

Step 2: Construct Dependence Graphs.
There are three types of dependences that relate system

calls to each other in a dependence graph. A def-use depen-
dence expresses that a value output by one system call is
used as input to another system call and is similar to the
concept of def-use dependence from program analysis [21].
An ordering dependence between two system calls states
that the first system call must precede the second system
call. Ordering dependences can be rooted in API specifica-
tions (e.g., no calls to write after a call to close ) or protocol
specifications, where the commands sent and received over a
communication channel must follow a prescribed sequence.
Because inferring ordering dependences requires the avail-
ability of external specifications, our mining algorithm does
not produce such dependences at this time. A value depen-
dence is a logic formula expressing the conditions placed on
the argument values of one or more system calls. Value de-
pendences describe any non-trivial data manipulations the
program performs in between system calls.

From the perspective of a malware writer that tries to
create code variations with the same observable behavior,
the only constraints on the code he writes arise from depen-
dences directly related to the system calls implementing the
observable behavior. This observation supports our intu-
ition that argument values are not relevant unless part of a
dependence. Any gap between the dependences envisioned
by the malware writer and the dependences for which a mal-
ware detector searches represents an opportunity for obfus-
cation (if the dependences used in detection are stronger
than those of the malicious behavior) or for false positives
(if weaker).

The algorithm we present here computes an underapprox-
imation of the dependence graph. The algorithm produces
only a subset of def-use dependences, ignores all ordering de-
pendences, and produces a limited set of value dependences.
By underapproximating the malware dependence graph, we
run the risk of not finding any differences between a partic-
ular malware instance and a benign program. This problem
can be fixed by adding relevant dependences to the malware
dependence graph, under the guidance of a human expert.
On the other hand, the benefit of underapproximating the
dependence graph is that any difference we find between
the malware and any benign program is characteristic of all
possible malware variants that share observable behaviors.

Def-Use Dependences. To discover def-use dependences be-
tween events (system calls) in an execution trace, we use
argument values together with type information. Each ar-
gument of a system call has its type enhanced with a three-
valued type qualifier that specifies whether the argument is
an in argument, an out argument, or an inout argument.

MiniMal creates a dependence edge between two system
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Input: A malware M and a set of benign programs
{B1, . . . , BK}.

Output: A set of malspecs {. . . ,Mj , . . . }.

begin
/* Collect execution traces. */
tM ← ExecutionTrace(M) ;3

for i=1 to K do ti ← ExecutionTrace(Bi) ;

/* Create dependence graphs, one per trace. */
foreach tx ∈ {tM , t1, . . . , tK} do6

V ← Events(tx) ;
E ← InferDependences(tx) ;
Gx ← (V, E) ;

/* Compute malspecs from components of GM. */
foreach Hj ∈ UniqueComponents(GM ) do11

if IsTrivialComponent(Hj) then continue;

Mj ← (∅, ∅) ;

/*
⊎

= maximal union, 	 = minimal contrast
subgraph. */

for i← 1 to K do Mj ←Mj
⊎

(Hj 	Gi)15

return {. . . ,Mj , . . . } ;
end

Algorithm 1: MiniMal

calls when the later system call (in execution-trace order)
has an in (or inout) argument with the same type and the
same value as the out (or inout) argument of the earlier
system call.

The direct application of this rule to an execution trace
leads to the creation of a large number of false def-use de-
pences, because the majority of system calls have arguments
with integer values. A integer value will often appear as an
argument to unrelated system calls, although no such depen-
dence was intended. To prevent this problem, we restrict the
type of variables on which we check for def-use dependences
to resource identifiers (HANDLEs in Microsoft Windows).
Because the lifetime and state of resources are managed by
the OS through well-defined APIs, we can correctly deter-
mine when two arguments identify the same resource. Even
when the OS reuses a resource handle, we can disambiguate
the use of the first handle from those of the second handle
because they are separated by a call to deallocate or release
the first handle (e.g., a call to NtClose).

Aggregation. As part of the def-use dependence computa-
tion, we also combine consecutive system calls that operate
similarly on the same resource. Intuitively, one read of 1000
consecutive bytes from a file is equivalent to one thousand
consecutive reads of 1 byte each. In particular, consecutive
file operations of the same type (all reads or all writes) and
network operations (all sends or all receives) are collapsed
into one aggregate graph node.

The gain from aggregation is twofold. First, the vertex
count of the dependence graph (initially the same as the
size of the execution trace) can drop dramatically, reducing
memory requirements and speeding up the later steps. Sec-
ond, this aggregation of identical operations affords us some
simple form of equivalence between system-call sequences
(e.g., when a malware sample sends one byte at a time over
the network, while most benign programs send information

in larger chunks). The virus MyDoom.E is an example of
such behavior, as it sends and receives network data one
byte at a time.
Formally, we combine malspec nodes n1 and n2 if:
• n1 and n2 share an def-use predecessor, i.e.,
∃n.ρ(〈n, n1〉) = (X = X1) ∧ ρ(〈n, n2〉) = (X = X2),

• n1 and n2 are labeled with the same system call, i.e.,
γ(n1) = γ(n2), and

• there is no node in the trace between n1 and n2 that
performs a different system call on the same resource, i.e.,
@n′ ∈ V.n1 →∗ n′ →∗ n2∧ρ(〈n, n′〉) = (X = X ′)∧γ(n′) 6=
γ(n1).

Substring Dependences. We address the issue of recovering
dependences between system call events when their argu-
ments are related through some computation, without being
equal in value. We choose to focus on strings because, first,
the vast majority of system calls have at least one string
argument. There is a large amount of data that is passed
between a program and the operating system in the form of
strings or byte arrays. Second, in many cases the manipu-
lation of a string preserves part of its original value.

We apply the following heuristic to discover string depen-
dences. For each string-valued out (or inout) argument, we
compare its value with the string-valued in (or inout) argu-
ments of all its trace successors. If the two values share a
substring of length greater than a threshold, then a depen-
dence edge is added from the first system call to the second.
The threshold can be customized. In our experiments, the
threshold was set to 12, which was useful in minimizing any
false dependences.

Self-Referential and Other Local Dependences. We notice
that malware often reads from its own executable file dur-
ing self propagation, while benign programs only read from
other files. To capture this difference in behavior, we need
to be able to classify file operations based on the file they
affect (access to own executable file vs. access to any other
file). Given the name of the executable image of the current
process, we add self-referential dependences to all system
calls that refer to that file.

We also recover a limited amount of dependences when the
values of system call arguments are well-defined constants
(e.g., HKEY CURRENT USER and HKEY LOCAL MACHINE
denote roots of particular Microsoft Windows registry hives).

Step 3: Compute Contrast Subgraph.
The previous two steps transform the execution traces of

malware and benign programs into corresponding depen-
dence graphs. The malspec we wish to identify is a subgraph
of the malware dependence graph that does not appear in
any of the benign dependence graphs. The simplest solution
would be to choose the whole malware dependence graph,
but the resulting malspec would be too large and too spe-
cific to the malware sample. Thus, we need to generalize the
malspec by making it as small as possible.

In data mining a minimal contrast subgraph of two graphs
is a smallest subgraph of the first graph that does not ap-
pear in the second. Formally, a contrast subgraph of two
graphs G1 and G2 is a subgraph of G1 that is not subgraph-
isomorphic to G2. A contrast subgraph is minimal if none
of its subgraphs is a contrast subgraph. Then we can com-
pute a minimal malspec as a minimal contrast subgraph of a
malware dependence graph and a benign dependence graph.
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An algorithm for minimal contrast subgraphs has been pro-
posed Ting and Bailey [26] and is denoted by the 	 operator
in the pseudo-code of Algorithm 1.

Before we apply the Ting-Bailey algorithm, we make the
observation that we are only interested in malspecs that
are connected. This is because any disconnected malspec,
i.e., any disconnected minimal contrast subgraph, is com-
posed of a set of actions repeated many times (for a for-
mal proof, please see the appendix at http://www.cs.wisc.edu/
∼mihai/publications/minimal-appendix.pdf). For example, if a
malware opens and reads 10 files, while a benign program
opens and read 5 files, then a malspec could consist of open-
ing and reading 6 files. Because the repetition count is under
the control of the attacker, we are not interested in discon-
nected malspecs.

A malspec then has to be connected, allowing us to opti-
mize the search for minimal contrast subgraphs by limiting it
to individual components of the malware dependence graph.
We apply the minimal contrast-subgraph mining algorithm
to each component of the malware dependence graph and
a benign dependence graph. The result is a collection of
malspecs, one per component of malware depedence graph,
where each malspec characterizes a unique malicious behav-
ior.

Furthermore, not all components of the malware depen-
dence graph are of interest. For example, a set of queries
about system parameters do not signal malicious intent,
even though such queries might only appear in malicious
programs. We eliminate such components from further anal-
ysis using the function IsTrivialComponent , which identi-
fies graphs that are not interesting from a security perspec-
tive. Only interesting graph components are processed by
the minimal contrast subgraph algorithm.

The contrast-mining algorithm needs to determine when
nodes are equivalent and when edges are equivalent. We
use the following definitions of node equivalence and edge
equivalence. For two nodes, n1 from the malware depen-
dence graph and n2 from a benign dependence graph, we
say that they are equivalent, written n1 ≡ n2, when they
have the same system-call label and the constraint associ-
ated with the benign node implies the constraint associated
with the malicious node, n1 ≡ n2 ⇐⇒ (γ(n1) = γ(n2)) ∧
(ρ(n2) ⇒ ρ(n1)) . Similarly, for two edges, e1 from the mal-
ware dependence graph and e2 from the benign dependence
graph, we say that they are equivalent, written e1 ≡ e2 if
the constraint associated with the benign edge implies the
constraint associated with the malicious edge, e1 ≡ e2 ⇐⇒
(ρ(e2) ⇒ ρ(e1)) . Note that these notions of equivalence, al-
though not reflexive or symmetric, suit us nonetheless be-
cause of the asymmetry of the contrast subgraph operation.

To ensure that a malspec does not lead to false positives,
we compare a malware dependence-graph component with
a set of more than one benign dependence graphs. Because
two different benign programs might produce different min-
imal contrast subgraphs, the resulting malspec must be the
union of all minimal contrast subgraphs. If we use

⊎
to

denote maximal union, i.e., the union without any graphs
which are subgraphs of others in the set, then we can com-
pute the malspec as shown in line 15 of Algorithm 1.

5. EMPIRICAL EVALUATION
In a series of experiments we performed to validate our

algorithm, we mined malspecs for 16 well-known malware

samples. In each case, the algorithm successfully discovered
the same behavioral features as those independently pro-
vided by human experts. We compared MiniMal’s results
with specifications created by Symantec’s virus analysts to
determine how descriptive the mined malspecs were in com-
parison. Additionally, we explored the use the mined mal-
specs for the semantics-aware malware detector of Christo-
dorescu et al. [7], to establish the applicability of our mining
technique to existing detection techniques.

Experimental Setup. The evaluation environment consisted
of one computer acting as the victim machine and a sec-
ond computer acting as any number of machines on the In-
ternet. The victim machine, where the malware was run,
used Microsoft Windows 2000 Professional as the operat-
ing system. Several common applications were additionally
installed (Mozilla Firefox, Mozilla Thunderbird, Adobe Ac-
robat Reader, Microsoft Outlook Express), together with
the software for collecting system-call traces (an updated
version of BindView’s strace for Windows [5]). This config-
uration formed the baseline for our experiments–every pro-
gram whose system-call trace we collected was started in
this environment.

The malicious programs we considered in our experiments
propagate over the Internet and require an Internet connec-
tion to activate their payloads. We used the second machine
in our evaluation environment as “the rest of the Internet”
from the point of view of the victim machine. This ma-
chine was configured to respond to packets sent from the
victim machine to any IP address and also to simulate sev-
eral common Internet services (web server, SMTP, POP, and
CIFS/Samba), similar to the Internet-inna-box work [28].

Malware Sample Set. We evaluated 16 malware samples, as
follows: Netsky variants A through J, Bagle variants A, C,
and J, and MyDoom A, E, and G. These malware samples
were chosen because they exhibited the malicious behavior
described on anti-virus web sites inside our evaluation envi-
ronment. This way we ensured that each of these samples
produced malicious behavior relevant for mining. For each
sample we obtained execution traces of 1, 2, and 4 minutes in
duration. Statistics for some of the program traces and the
dependence graphs derived from them are listed in Table 2.

Benign Program Set. The following programs were part
of the benign program collection: Mozilla Firefox 1.5.0.6,
Mozilla Thunderbird 1.5.0.5, Microsoft Outlook Express 5,
and the installation programs for Mozilla Firefox 1.5.0.6,
Mozilla Thunderbird 1.5.0.5, and MikTeX 2.5. These pro-
grams were chosen for their behavioral similarity with the
malware samples used. Firefox, Thunderbird, and Outlook
Express generated network communications, Thunderbird
and Outlook Express sent email messages, and the installa-
tion programs accessed Windows registry keys and installed
files in system directories.

Each benign program was executed for 1 and 2 minutes
(or until completion), enough to perform tasks common to
each program. We manually provided input to the programs
where appropriate (e.g., by pointing Firefox to the CNN
website and then clicking on story links). Statistics for be-
nign traces were listed in Table 2.

5.1 Quality of Mined Malspecs
We conducted an empirical evaluation of the malspecs

obtained from MiniMal by comparing them with the be-
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Sample
Trace Dep. Graph

Time Size Node # Edge #
Netsky.A 60 s 256710 162174 12578
Netsky.F 60 s 507536 427681 1182
Netsky.F 120 s 982986 780870 2184
Netsky.F 240 s 1903315 1513600 6136
Firefox 60 s 47502 45875 1692
Thunderbird 60 s 112415 78040 3001
Outlook Ex. 60 s 151023 141992 2184
MikTeX inst. 60 s 17253 17253 348

Table 2: Test set statistics.

Expert Description Malspecs
of Features Description Syscalls
Create a mutex. same 2
Copy self to system dir. Write file to system dir. 192
Set registry key to run
self at boot.

Set registry key to run
file from sysdir at boot.

3

Delete registry keys for
AV tools.

same 7

Copy self to system
directory as ZIP file.

- -

Search for email
addresses and email self.

Communicate via email. 143272

Copy self to net drives. - -
- Query net-related

registry keys.
11272

Table 3: Comparison of expert-provided behavioral
descriptions and mined malspecs from Netsky.A.

havioral features described by human experts. For domain
expertise we relied on the malware descriptions that appear
on anti-virus websites such as the Symantec Antivirus Re-
search Center [24]. Such descriptions serve our purpose well
as they reflect the results of manual analysis by a human
expert and are given in terms of high-level features.

Tables 3 and 4 summarize our results. In Table 3, we ex-
amine in detail the results of malspec-mining one malware
sample, Netsky.A. Symantec’s description of Netsky.A con-
tains seven high-level behaviors specific to the virus. Table 3
lists, in the left column, these high-level behaviors. On the
right hand side we show the malspecs mined by MiniMal.
For each malspecs we also show the number of system calls
implementing it. MiniMal isolated five of the seven behav-
ioral features identified by the human expert in Netsky.A.
Additionally, the results contained 95 other malspecs spe-
cific to Netsky.A (including the one listed at the bottom of
Table 3), encompassing various queries to system parame-
ters and the Windows registry. These queries were identified
as unique to Netsky.A because no benign program from our
sample set performed such an exhaustive set of queries. The
results show that our malspec-mining algorithm performs
quite well in comparison to a human expert.

Two malspecs stood out as missing from the results mined
out of Netsky.A. First, the virus copied itself to the system
directory in ZIP-compressed form. MiniMal did not iden-
tify this behavior as suspicious because it could not connect
the read from self with the write to the system directory.
The missing link was the ZIP compression that transforms
the input data (from the virus itself) into the output file
(in the system directory). Since we did not recover the data
dependences through this particular transformation, this be-
havioral feature was not captured in a malspec. The other
missing feature was the self propagation through network

Malware
Sample

Expert-Provided
Malspecs

Mined Malspecs
Matching Total

Netsky.A 7 5 100
Netsky.B 10 8 113
Netsky.C 10 8 65
Netsky.D 7 7 66
Netsky.E 6 5 48
Netsky.F 6 5 73
Netsky.G 6 4 91
Netsky.H 6 5 106
Netsky.I 5 4 66
Netsky.J 8 7 105
Bagle.A 8 6 89
Bagle.C 12 7 80
Bagle.J 8 7 102
MyDoom.A 7 5 115
MyDoom.E 10 7 110
MyDoom.G 12 7 88

Table 4: Summary of the malspec-mining results.
The Matching column lists the number of mined
malspecs that matched those from human experts.

drives. In this execution trace, the virus did not propagate
through network drives, and thus MiniMal could not iden-
tify a malspec for this behavior.

Our automated algorithm obtained similar results for the
other samples. A summary of the malspec-mining data is
shown in Table 4, which lists for each malware sample the
number of expert-provided malspecs, the number of match-
ing mined malspecs, and the total number of malspecs.

We noted a large number of additional malspecs mined
from each malware sample. Analyzing these, we determined
that they were of no particular interest from a security per-
spective, as these malspecs fit into one of two categories.
First, many of these malspecs captured information queries
(e.g., reads from registry or from particular files). Sec-
ond, the remaining malspecs encoded a basic operation re-
peated multiple times (e.g., multiple reads from distinct
files), where the basic operation (i.e., reads from a file) also
appeared in benign programs but not as many times as in
the malware. Both these classes of malspec could be safely
eliminated from further analysis and from use in detection.

5.2 Malware Detection Using Malspecs
The preceding results supported our hypothesis that dis-

tinctions between malicious and benign programs can be
captured as differences in system-call depedences, inferred
from execution traces. We were also interested in determin-
ing how easy it was to use a mined malspec in an existing
detector and how many malware variants matched a mal-
spec.

We chose the semantics-aware malware detector [7] as
testbed for our experiments. This detector employs a com-
bination of static analyses and decision procedures to decide
whether a program matches a specification of malicious be-
havior called a template. This template of malicious activ-
ity was a graph of machine instructions with uninterpreted
variables as arguments, together with equality constraints
on these variables.

We used a enhanced version of the semantics-aware mal-
ware detection prototype that can analyze a program to-
gether with its supporting dynamically linked libraries and
can check arbitrary constraints on uninterpreted variables.
A malspec is then mapped to a semantics-aware template:
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1. We converted system-call identifiers to corresponding in-
struction sequences. For example, on Microsoft Windows
XP with Service Pack 2, the system call NtCreateFile was
translated to the sequence (X is an uninterpreted vari-
able):

1 mov eax , 25h
2 mov X, 7FFE0300h
3 call dword ptr [X]

2. We converted malspec constraints to corresponding tem-
plate constraints. In particular, due to calling conven-
tions, system-call arguments from the malspec were re-
placed with stack locations.

The end result was one semantics-aware template for each
malspec we mined.

Our testing strategy had two steps. We used MiniMal
to derive malspecs from early variants of several malware
families (Netsky, Beagle, MyDoom). Then, we tested subse-
quent malware variants against the corresponding malspecs
using the semantics-aware detector. Because of limitations
in the current version of the detector, related to the static
analysis of indirect call targets, we were unable to test all
variants in our test set successfully. Nonetheless, four vari-
ants of Netsky matched the self-installation malspec mined
from Netsky.A. This indicates that mined malspecs could
provide forward detection. We plan to further evaluate this
approach as soon as the detection prototype stabilizes.

5.3 Discussion
The evaluation showed that our malspec-mining algorithm

was successful in identifying behaviors unique to malware
samples. It did so without any a priori security policy that
defined malicious or benign behaviors. Furthermore, these
malspecs could then be used to provide forward detection of
later malware variants.

There were several aspects to address when considering
the validity of our experiments. The most important one
was the internal validity, i.e., the factors that could influence
the observed behavior of the test programs (both benign and
malicious). We considered two sources of threats to internal
validity: (1) impact of execution monitoring, and (2) rel-
evance of execution traces. The execution monitor simply
collected system-call traces for a fixed time period. Since the
monitored program could not observe the execution moni-
tor, which was present only in protected kernel space, we
expected the monitored program to execute normally, with-
out biasing our results.

The threat of execution relevance arose from differences
between our “emulated Internet” environment and the real
Internet. If the malware attempted, for example, to down-
load additional components or commands from a remote
server, it would fail without executing any malicious be-
haviors. Similarly, the malware might not execute any mali-
cious behaviors during the monitoring period if it was time-
dependent. In such cases, MiniMal would not discover any
differences between malicious and benign programs. We op-
erated under the assumption that most malware tries to
execute in as many environments as possible. In future, we
will explore ways to eliminate this assumption, for exam-
ple by allowing limited interaction with the Internet and by
analyzing multiple execution paths [20].

A second aspect was that of external validity, the lack
of which could limit our ability to generalize our malspec-

mining technique to other classes of malicious programs.
While our experiments focused on mass-mailing worms, the
technique was general enough to apply to any class of mal-
ware behaviors. In particular, we note that the variants
in our test set exhibited behaviors above and beyond those
traditionally characteristic of a mass-mailing worm.

Finally, the third aspect of concern was that of construct
validity. This relates to how expressive the malspec lan-
guage is and how powerful the dependence graph construc-
tion is. We discussed the malspec language in Section 3. As
noted in the results above, the dependence inference failed
when the information flow between system-call arguments
was complex. We plan to address this limitation in future
work, possibly using dynamic information-flow tracing.

6. RELATED WORK
There is a large body of work in the area of learning pro-

gram features and program understanding using dynamic
traces. We focus on two areas most related to our work,
specification mining for software engineering and specifica-
tion mining for software security.

Mining of specifications has received considerable atten-
tion for a variety of program-related aspects, including API-
usage and general programming rules [1, 18, 27]. In con-
trast, we mine specifications of malicious behavior, with
no a priori definition of “malicious,” by comparing ma-
licious and benign programs. Clone-detection techniques
compare programs [3,11,13,30], but they target similarities,
not distinctions, between and within programs. Program-
differencing techniques have goals similar to ours, but are
limited to distinctions at the statement level or at the struc-
tural level [2, 9, 10, 17]. The execution-history matching in-
troduced by Zhang and Gupta [30] is closest to our tech-
nique in that it analyzes dynamic data-dependence graphs,
albeit with the goal of finding similar programs. Execution-
history matching also operates at the instruction level and
requires precise information about data and control depen-
dences, and thus it is not directly applicable to our problem.

In computer security, the area of host-based intrusion de-
tection has applied specification mining techniques to derive
models of program behavior, which can be used to contain
execution. These program models of “good” behavior can
be derived through static analysis [8] or learned from dy-
namic traces [23]. Recent work has looked at the use of con-
straints over system-call arguments for host-based intrusion
detection. Kruegel et al. proposed a system for learning
models for the string values of individual system-call ar-
guments without taking into account dependences between
system calls [15]. Their models could be used as local con-
straints in the malspecs we extract. Bhatkar et al. intro-
duced a technique for deriving a dataflow model to be used
for intrusion detection [4]. They derived both local con-
straints and dependences for system-call arguments, using
a fine-grained set of relations over strings (e.g., isWithinDir,
hasExtension, hasSameDirAs). These types of constraints fit
into our malspec language and we will research extending
our dependence-graph construction to discover such string
constraints.

7. CONCLUSION
We introduced a language for specifying malicious behav-

ior and an algorithm for mining such specifications (mal-
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specs) from dynamic traces of malware samples and benign
programs. Our prototype, MiniMal, infers malspecs by dif-
ferencing the dependence graphs of a malware sample and
of multiple benign programs. Experimental results showed
that the malspecs mined by our algorithm compare favor-
ably with behavioral specifications manually constructed by
human experts. Malspecs can also be used to detect multiple
malware variants.

The current work computed the behavioral difference as a
subgraph of the malicious dependence graph, without taking
into account the constraints of any similar benign subgraph.
One possibility is to define the difference to consider both
the malicious constraints and the (negation of) benign con-
straints — we plan to explore this in future research.

The choice of test programs is an important element of our
mining approach. For malicious program we would like to
know whether certain classes of malware are more amenable
to mining. For benign programs we want to ensure that
a broad selection of behaviors are represented in the test
set. Thus a goal for future work is to determine the impact
the choice of test programs has on the quality of the mined
malspecs. A related problem is the incompleteness of the
dependence graph built from a finite set of execution traces.
Combining dynamic and static analysis could provide tech-
niques to derive a better dependence graph.
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