
Inference and Analysis of Formal Models of Botnet
Command and Control Protocols

Chia Yuan Cho Domagoj Babić Eui Chul Richard Shin Dawn Song

University of California, Berkeley

{chiayuan@cs,babic@cs,ricshin,dawnsong@cs}.berkeley.edu

ABSTRACT

We propose a novel approach to infer protocol state machines in the
realistic high-latency network setting, and apply it to the analysis
of botnet Command and Control (C&C) protocols. Our proposed
techniques enable an order of magnitude reduction in the number
of queries and time needed to learn a botnet C&C protocol com-
pared to classic algorithms (from days to hours for inferring the
MegaD C&C protocol). We also show that the computed protocol
state machines enable formal analysis for botnet defense, includ-
ing finding the weakest links in a protocol, uncovering protocol
design flaws, inferring the existence of unobservable communica-
tion back-channels among botnet servers, and finding deviations of
protocol implementations which can be used for fingerprinting. We
validate our technique by inferring the protocol state-machine from
Postfix’s SMTP implementation and comparing the inferred state-
machine to the SMTP standard. Further, our experimental results
offer new insights into MegaD’s C&C, showing our technique can
be used as a powerful tool for defense against botnets.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation—automata; I.2.6 [Artificial Intelligence]: Learning—con-

cept learning; C.2.2 [Computer-Communication Networks]: Net-
work Protocols—applications, protocol verification; D.4.6 [Ope-

rating Systems]: Security and Protection—invasive software

General Terms

Security, Algorithms, Experimentation, Performance

This material is based upon work partially supported by the
National Science Foundation under Grants No. 0311808, No.
0448452, No. 0627511, and CCF-0424422, by the Air Force Of-
fice of Scientific Research under Grant No. 22178970-4170, by the
Army Research Office under grant DAAD19-02-1-0389, and by the
Office of Naval Research under MURI Grant No. N000140911081.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation, the Air
Force Office of Scientific Research, the Army Research Office, or
the Office of Naval Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

Keywords

Protocol Model Inference and Analysis, Response Prediction

1. INTRODUCTION
Protocol inference is a process of learning the inner workings

of a protocol through passive observation of the exchanged mes-
sages or through active probing of the agents involved in the mes-
sage exchange. Even for small simple protocols, manual protocol
inference (a.k.a. reverse-engineering) is tedious, error-prone, and
time-consuming. Automatic protocol inference sounds attractive,
but poses a number of technical challenges, for some of which we
propose novel solutions in this paper.

The applications of protocol inference are numerous. The main
application we are interested in is the inference of botnet protocols.
Botnets are the primary means through which denial of service at-
tacks, theft of personal data, and spamming are committed, causing
billions of dollars of damage annually [1]. Defeating such botnets
requires the understanding of their inner workings, i.e., their com-
munication protocols. The second application we are interested in
is inferring models of implementations of frequently used proto-
cols. While public standards are often available for such proto-
cols, implementations rarely strictly follow the standard, either due
to bugs in the implementation, pitfalls in understanding the stan-
dard, or ambiguities in the standard itself. In this setting, automatic
protocol inference technology can be used for fingerprinting and
checking adherence to the standard. Other possible applications of
protocol inference include: automatic abstraction of agents partici-
pating in message exchange for assume-guarantee-style verification
of protocols, fuzz testing of protocol implementations (e.g., [10]),
and reverse-engineering of proprietary and classified protocols.

Our main motivation is to provide the security community with
new techniques and tools to fight botnets. The technology we have
developed is a powerful weapon against botnets, enabling auto-
matic inference of protocol models that can be used by both human
analysts and automatic tools. After presenting our main technical
contribution, we propose a number of analyses of inferred models:
identification of protocol components most susceptible to disrup-
tive attacks (e.g., for the purpose of finding the most efficient way
of bringing down a botnet), identification of protocol design flaws,
detection of back-channel communication to which the analyst has
no direct access, and detection of differences among protocol im-
plementations.

1.1 A Brief Overview of Protocol Inference
The inner workings of a protocol can be modelled in a number

of ways, but state-machine models are by far the most standard.
Thus, the problem of protocol inference is isomorphic to the prob-
lem of learning a state-machine describing the protocol. Modelling
protocols with finite and infinite state-machines is a complex topic,

(a)

1 a/y

2

b/w

3

c/x

c/y

a/w

b/x

b/y

c/w

a/x

(b)

1 a/y

2

b/w

a/w

3

b/x

b/y

a/x

(c)

1 a/y

2

b/w

3

b/x

a/x

Figure 1: Illustration of the difference between a complete

model with respect to the entire protocol alphabet (on the left),

complete state-machine with respect to a given subset of mes-

sages (in the middle), and an incomplete state-machine (on the

right).

but only two dimensions of the problem are relevant to this paper.
The first dimension is the finiteness of the state-machine. In this
paper, we focus on inferring finite state-machine models, both in
terms of the number of states and the size of the input (resp. output)
alphabet. The second dimension is the completeness of the state-

machine, a concept originating in the theory of automata. A com-
plete state-machine has transitions (resp. outputs) defined for every
input alphabet symbol and from every state. An incomplete state-
machine might be missing some transitions, i.e., for some state-
input pairs, the next state (resp. output) is undefined.

It is important to distinguish the automata-theoretic concept of
state-machine completeness from the model completeness. Con-
sider a simple protocol Π with input messages {a,b,c} and out-
put messages {w,x,y}, specified by the state-machine in Figure 1a.
Suppose we have to reverse-engineer the protocol from an imple-
mentation of Π while treating it as a black-box. The first step in the
inference is to discover the valid input messages. To our knowl-
edge, there exists no automatic approach guaranteeing to discover
all the input messages. Suppose a subset M of input messages is
discovered during the inference, e.g., M = {a,b}. An automatic
protocol inference approach learns a complete state-machine (Fig-
ure 1b) with respect to M if from every state of the learned state-
machine and for every message from M, the next state and output
are known. Otherwise, the inferred state-machine is incomplete
(Figure 1c). The completeness of state-machine models is critical
for aforementioned applications, because the more transitions are
missing from the model, the higher the uncertainty of the analy-
sis. In this paper, we focus on inferring complete state-machines
through interactive on-line inference, in contrast to the previous
work [10, 21], which focused on passive off-line inference of in-
complete models. Given a complete alphabet (i.e., set of input
messages), our approach infers complete finite-state protocol mod-
els with desired accuracy and confidence (the higher the accuracy
and confidence, the higher the computational cost).

Passive off-line inference techniques can only learn from a se-
quence of observed messages. Off-line inference of a minimal
(or within a polynomial size of minimal) state-machine from ob-
served network communication is a computationally difficult prob-
lem (NP-complete [16], [34, p. 98–99]). Heuristic best-effort infer-
ence algorithms are polynomial in the number and size of observed
message sequences, as in work of Hsu et al. [21], but there are no
guarantees that the inferred model will be minimal, or even at most
polynomially larger than the minimal. While off-line techniques
can infer models from a relatively small number of observed mes-
sage sequences, such models are inherently incomplete, rendering
any further analysis imprecise.

In contrast, on-line inference techniques are allowed to query the
agents involved in the message exchange proactively. On-line tech-
niques, like Angluin’s L∗ algorithm [3], have a polynomial worst-
case complexity and produce complete models. Despite polyno-
mial complexity, a number of challenges, especially in the con-
text of botnet protocol inference, remain: (1) Automatic inference
of complete protocol state-machines in the real-world network set-
ting requires solving a number of subtle technical challenges, rang-
ing from theoretical ones, like choosing the right formal model, to
technical ones, like reverse-engineering message formats. (2) Even
a simple protocol with twenty states might require tens of thou-
sands of message sequences to be generated. (3) In order to avoid
synchronized attacks by a large botnet on the university infrastruc-
ture, the experiments had to be anonymized by tunneling all the
traffic through Tor [15]. (4) Exacerbated by the usage of Tor and
likely overloading of botnet servers, the network delay averaged
6.8 seconds per message in our experiments, dramatically reducing
the number of probing sequences feasible in reasonable amount of
time.

1.2 Main Contributions
On the inference side, the most important contribution of this

paper is a novel approach for complete state-machine inference in
the realistic high-latency network setting. Three innovations ren-
dered such inference possible: First, our formulation of the proto-
col inference problem as a Mealy machine inference problem re-
sults in more compact models and provides a simple, broadly un-
derstood formal underpinnings for our work. Second, we propose a
highly effective prediction technique for minimizing the number of
queries generated during the inference process. Third, we propose
two optimizations to the basic L∗: parallelization and caching.

On the analysis side, we show how the computed complete mod-
els can be used as a formal basis to study and defeat botnets: First,
we show how to identify the weakest links in a protocol, especially
in the context where multiple pools of bots partially share the same
resources. Such weakest links are critical for normal functioning
of one or more agents participating in the protocol. Second, we
show that the inferred model can be used to uncover protocol design
flaws. Third, we demonstrate how inferred models can be used to
prove the existence of unobservable communication back-channels
among botnet servers, although we have no access to those commu-
nication channels. Besides proving the existence of such channels,
the analysis we propose can actually construct a state-machine rep-
resenting the model of the back-channel communication. Fourth,
we demonstrate how complete models can be used for detecting
differences between distinctive implementations of the same proto-
col.

On the experimental side, we show how to design an effective
protocol inference system and provide empirical evidence that our
optimizations — query response prediction, parallelization, and
caching — speed up the inference process by over an order of mag-
nitude compared to the basic L∗ algorithm. For instance, our pre-
diction technique alone reduces the time required for the MegaD
model inference from an estimated 4.46 days to 12 hours. Ap-
plying formal analysis to inferred complete models, we uncover
previously unknown facts about the MegaD botnet. Analyzing crit-
ical links, we identify the critical components of the botnet shared
among multiple pools of bots. Analyzing the properties of the in-
ferred model, we discover a design flaw in MegaD. More precisely,
we find a way to bypass MegaD’s master server authorization and
gain unlimited access to fresh spam templates, which can be used
to train spam filters even before a significant percentage of bots
starts sending spam based on those templates. Analyzing the back-
channels, we prove that MegaD’s servers communicate with each

other, and we even construct a formal model of such communi-
cation. Analyzing differences among Postfix and MegaD’s SMTP
implementations, we discover a number of interesting differences,
useful for detection and fingerprinting. We validate our technique
by inferring the complete protocol state-machine from Postfix’s
SMTP implementation, checking its equivalence against the stan-
dard.

2. PROBLEM DEFINITION
A communication protocol is a set of rules for exchanging infor-

mation over some medium (e.g., the Internet). These rules regulate
data representation (i.e., the message format), encryption, and the
state-machine of the communication. Any automatic technique for
reverse-engineering of real-world protocols has to deduce message
formats, handle encryption, and infer state-machines. The first two
components of the problem have received significant attention of
the research community [5, 7, 12, 13, 36]. The third component —
protocol state-machine inference — has received far less attention,
and is the focus of this paper.

In the first part of this section, we define the model inference
problem informally, and leave a more formal treatment for the sub-
sequent sections. In the second part of this section, we go further to
propose several automatic analyses of the model. We define several
related problems, which can be solved precisely only if a complete
state-machine of the protocol is known. In the third part of this
section, we outline our assumptions.

2.1 Model Inference
The goal of protocol model inference is to learn a state-machine

describing the protocol composed of a finite set of states and a tran-
sition relation over a finite alphabet. In general, it is not possible
to learn a completely accurate model, without having access to a
source of counterexamples that show when the learned model dif-
fers from the actual system [3]. Thus, every protocol inference
approach is necessarily an ε-approximation, i.e., the inference cost
is proportional to the desired accuracy ε and confidence γ .1 When
counterexamples are available, L∗ can make at most a polynomial
number of queries, but in the approximation setting, the number of
queries depends on the desired accuracy and confidence.

There are two basic types of finite state-machines: the Moore
machine [28] and the Mealy machine [26]. Informally, the for-
mer distinguishes states according to whether they are accepting
or not, while the latter has no accepting states and distinguishes
states according to the sequence of outputs produced from a se-
quence of transitions. Since protocols are reactive systems2, the
Mealy machine is a more appropriate model. The problem this pa-
per addresses is how to learn the Mealy machine describing the
studied protocol in the realistic network setting, treating the proto-
col implementation as a black-box and learning the state-machine
from active probing. We actually set the bar higher: The problem
we want to solve is to learn the minimal (the fewest states) com-
plete (transitions defined for all inputs and states) Mealy machine
describing the protocol.

2.2 Model Analysis
Once the protocol model is constructed, we wish to perform four

types of analysis: identification of the critical links in the proto-
col, identification of protocol design flaws, proving the existence
of the background communication over unobservable channels, and

1The ε accuracy should not be confused with the empty string, also
denoted ε .
2Reactive systems maintain an ongoing interaction with their envi-
ronment rather than produce some final value upon termination.

(dis)proving equivalence of different implementations of the same
protocol (a.k.a. equivalence checking [24]).

Identification of the critical links in a protocol is important for
optimizing the attacks on the botnet. We define the problem as fol-
lows: Given an initial state of the protocol and some set of bad
actions (e.g., spamming), represented with output responses,3 that
we want to prevent from happening, what is the minimal set of tran-
sition edges that need to be disrupted in order to prevent the bots
from executing those actions? The bad actions can be disrupted
either by making it impossible for the bots to reach the state from
which the bad action is executed, or by disrupting the bad actions
themselves.

Identification of protocol design flaws can be done through man-
ual inspection of the model or automatic model checking (e.g., [9]).
In either case, the analyst needs to come up with a set of properties
and then check whether the model satisfies them. For instance, one
of the properties we checked was: “Bot cannot obtain spam tem-
plates before (1) being authenticated by the master server and (2)
getting a command to download spam templates.”

Proving the existence of background communication among ser-
vers whose communication we cannot eavesdrop is important for
gaining knowledge about the communication over channels we have
no access to. The knowledge of existence of such channels can
help security researchers in detecting infiltration traps. We define
the problem as follows: Given a client (a bot) communicating with
a certain number of servers (three in the MegaD case: the mas-
ter, SMTP [23], and template server), can we prove existence and
build a model of inter-server communication, only from the ob-
served communication between the client and servers?

Equivalence checking (e.g., [24]) is an automatic analysis that
takes two formal models and either proves that models are equiva-
lent, or finds counterexamples showing the differences. In our set-
ting, we were especially interested in finding differences between
MegaD’s custom SMTP implementation and the standard SMTP
to detect the features that could be used for fingerprinting. In a
broader setting, equivalence checking can be used for detecting de-
viations from the standard, differences among different implemen-
tations of the same protocol, and uncovering implementation flaws.

2.3 Assumptions
Determinism. We assume that the protocol to be learned is de-

terministic, i.e., that the same sequence of inputs from the initial
state always produces the same sequence of outputs and ends in the
same state. Among all the protocols we studied, we found only one
minor easy-to-handle source of non-determinism in the MegaD bot-
net protocol. We explain later how we handle that specific source
of non-determinism. Some limited amount of non-determinism can
be handled by extending the alphabet. For example, if a protocol
implementation in state s responds to message m either immedi-
ately with r or waits for ten seconds and responds with t, one can
split m into two messages, m0 and m10, such that the response to m0

(resp. m10) is r (resp. t). Each of the two messages can transition
from s into different states.

Resettability. State-machine inference algorithms require the
means of resetting the machine to a fixed start state. The sequence
of inputs that reset the state-machine into its start state is known
as a homing sequence and every finite state-machine has such a
sequence [32]. Network protocol state-machines are often easily
reset by initiating a new connection or session. Thanks to the prior
work on the message format reverse-engineering [6, 12, 13], we
know the messages that reset the state-machines of the protocols
we study.

3Bad output responses in a Mealy machine correspond to bad states
of an equivalent Moore machine.

(a)

1 1/2

2

2/3

3

3/1

3/2

1/3

2/1

2/2

3/3

1/1

(b)

E
1 2 3

S

ε 2 3 1
2 3 1 2
3 1 2 3

S
·Σ

I

1 2 3 1
2 ·1 3 1 2
2 ·2 1 2 3
2 ·3 2 3 1
3 ·1 1 2 3
3 ·2 2 3 1
3 ·3 3 1 2

Figure 2: A Mealy Machine and the Corresponding Observa-

tion Table. The initial state is denoted by an incoming edge with

no source. Edges are labeled with input/output symbols. In this

paper, all three set of labels — state, input, and output labels

— are unrelated sets of integers.

Finiteness. We are interested in inferring finite-state protocols
(or finite abstractions of infinite-state ones) with finite input and
output alphabets. We leave the inference of more expressive models
for the future work.

Known Message Format Semantics. To abstract input and out-
put messages with a finite alphabet, we rely upon the previous work
on automatic message format reverse-engineering [7]. Another in-
teresting option is the automatic message clustering and abstraction
proposed by Comparetti et al. [10].

Known Encryption. Many botnet protocols encrypt messages,
complicating protocol inference. If protocol messages are encrypted,
our approach needs to know the protocol encryption and decryption
functions. We leverage the previous work of Caballero et al. [5] to
automatically extract and circumvent encryption functions.

3. BACKGROUND MATERIAL
This section briefly surveys prior work required for understand-

ing this paper. In the first half, we provide a brief overview of the
main definitions and results in the automata theory and inference.
In the second half, we briefly describe botnets, which are our main
targets. Even though the targets that we study are highly specific,
the results of our research are applicable to a broad range of proto-
cols in the realistic network setting.

3.1 Inference of Mealy Machines
Protocol inference is a special case of the grammatical inference

problem [14], because the problem of the finite state-machine infer-
ence is isomorphic to the problem of learning a regular language.
In this paper, we solely use Mealy machines, as they are a more ap-
propriate model for reactive systems, which have neither accepting
nor rejecting states, and are more compact than Moore machines
[28] by a linear factor equal to the size of the output alphabet.

DEFINITION 1 (MEALY MACHINE [26]). A Mealy machine

is a six-tuple (Q,ΣI ,ΣO,δ ,λ ,q0), where Q is a finite non-empty

set of states, q0 ∈ Q is the initial state, ΣI is a finite set of input

symbols, ΣO is a finite set of output symbols, δ : Q×ΣI −→ Q is

the transition relation, and λ : Q×ΣI −→ ΣO is the output relation.

In this paper, we focus on inferring complete protocol state ma-
chines. A complete Mealy Machine is defined as follows:

DEFINITION 2 (COMPLETE MEALY MACHINE).
A Mealy machine (Q,ΣI ,ΣO,δ ,λ ,q0) is complete if and only if δ
and λ are defined ∀m ∈ ΣI and ∀q ∈Q.

We rely upon prior work [6] for reverse-engineering of the al-
phabet and claim no contribution on that front. We are not aware of
any automatic technique capable of reverse-engineering the com-
plete alphabet, so we necessarily have to work with a subset. Given
a subset of the alphabet, our technique infers a complete state-
machine (Definition 2), in contrast to prior work on protocol infer-
ence that learns incomplete state-machines [10, 21]. To the best of
our knowledge, our work is the first to demonstrate a technique for
complete protocol state-machine inference in the realistic network
setting.

In this paper, input symbols will be denoted with letters from
the beginning of the alphabet a,b,c, output symbols with letters
from the end of the alphabet x,y, and strings of input symbols
with letters r,s,t,u. The set of all symbols in a given string is
denoted as [], e.g., [a ·b ·b] = {a,b}, where ‘·’ is the concatena-
tion operator. We extend the δ and λ relations to strings of char-
acters from ΣI , for example, δ ∗ (q,a ·b · c) = δ (δ (δ (q,a) ,b) ,c)
and λ ∗ (q,a ·b · c) = λ (q,a) ·λ (δ ∗ (q,a) ,b)·λ (δ ∗ (q,a ·b) ,c). We
shall frequently use a more intuitive term response for a string of
output symbols returned by λ ∗.

Angluin [3] proposed the first polynomial algorithm, called L∗,
for learning Moore machines. Shahbaz and Groz [33] adapted the
algorithm for Mealy machines and proposed several optimizations.
In this section, we briefly describe Shahbaz and Groz’s algorithm,
while in the following section, we describe our improvements and
optimizations of their algorithm. The L∗ algorithm maintains an
observation table:

DEFINITION 3 (OBSERVATION TABLE [3]). An observation

table is a triple (S,E,T), where S is a prefix-closed4 set of strings of

input symbols from Σ∗I and set E is a suffix-closed set of strings from

Σ+
I . Let set S ·ΣI be defined as a concatenation of all strings in S

with every alphabet symbol in ΣI , i.e.: S ·ΣI = {s ·a | s ∈ S,a ∈ ΣI}.
Then map T : (S∪S ·ΣI)×E −→ Σ+

O
is a map from S∪ S ·ΣI and

E to a non-empty sequence of output symbols. Map T has an ad-

ditional property: ∀s ∈ S∪ S ·ΣI ,r ∈ E,x ∈ Σ+
O . (T (s,e) = x)⇒

|r|= |x|.

Intuitively, S and S ·ΣI can be seen as two sets of rows, E as a
set of columns, and T as a map that maps input strings obtained
by concatenation of rows (S∪ S · ΣI) and columns (E) to output
strings of the same length as the column part of the input string.
For example, from Table 2b, it follows that T (2 ·1,3) = 2, where
2 ·1 ∈ S ·ΣI is a row and 3 ∈ E is a column.

Angluin introduced two observation table properties: closure and
consistency. Only the first property is important for understanding
this paper, while the second is always satisfied if T is computed in
a specific way [33].

DEFINITION 4 (CLOSED OBSERVATION TABLE [3]). We say

that an observation table is closed if and only if ∀s ∈ S ·ΣI . ∃ t ∈
S . ∀r ∈ E . T (s,r) = T (t,r).

Intuitively, a table is closed if for every row s in the S ·ΣI set of
rows, there is a row t in S having exactly the same responses, i.e.,
∀r ∈ E . T (s,r) = T (t,r). For example, Table 2b is closed. Table
T is usually computed in such a way that no two rows in S are
equivalent, i.e., there is always only one representative in S of each
class of equivalent rows. For example, rows ε and 2 · 3 in Table
2b are equivalent, so only one representative (ε) is in S. Further,
the representative put in S is minimal, according to the following
ordering.

4Let Pref be a function that returns a set of all prefixes of a string.
Set S is prefix-closed if and only if ∀s ∈ S . Pref (s)⊆ S. Note that
an empty string ε is a prefix of every string. The definition of a
suffix-closed set is similar.

DEFINITION 5 (LEXICOGRAPHIC ORDERING). Let lexicogra-

phic ordering relation <: Σ∗I ×Σ∗I −→Bool be a total order relation

over two strings of input symbols, say s = a0 · · ·an and t = b0 · · ·bm,

defined as follows.

s < t =







|s|< |t| if |s| 6= |t|
a j <a b j if s 6= ε ∧a j 6= b j ∧∀0≤ i < j < |s|.ai = bi

false otherwise

Define s ≤ t as s < t ∨ s = t. The alphabet symbols are ordered

according to some arbitrary total ordering <a.

Intuitively, the definition imposes a total ordering on strings,
given a total order of the alphabet symbols, e.g., if a <a b <a c,
then b ·a < b · c. We use this ordering in our implementation of the
L∗ algorithm (Algorithm 1) to choose the minimal representative
of a class of equivalent rows.

Algorithm 1 The L∗ Algorithm: Closing the Observation Table.

1: S = /0,S ·ΣI = {ε} ,E = ΣI

2: while ∃s ∈ S ·ΣI . (∀t ∈ S ·ΣI . s ≤ t)∧
(∀ t ∈ S . ∃r ∈ E . T (s,r) 6= T (t,r)) do

3: Move s to S

4: for all a ∈ ΣI do

5: S ·ΣI = S ·ΣI ∪ s ·a
6: for all u ∈ E do

7: Compute response to s ·a ·u
8: Take suffix x of the response (last |u| symbols)
9: Update table T (s ·a,u) = x

10: Run sampling and Algorithm 2 if there is a counterexample

Next, we give a high-level description of the L∗ algorithm. L∗
has two steps. In the first step, L∗ initializes S to a set containing an
empty string, S ·ΣI to an empty string ε , the columns E to the input
alphabet5 , and T to the responses of the system under study to in-
puts constructed from concatenating the rows (i.e., an empty string
at this point) with columns (individual alphabet symbols at this
point). The algorithm then iteratively keeps closing the table and
re-computing the responses to all S ·ΣI ·E sequences of messages.
Each sequence has to be generated, transmitted on the network,
response recorded, and stored into table T . The S ·ΣI ·E queries
generated in the first step of L∗ are called membership queries.

In the second step, L∗ constructs a complete minimal conjecture
automaton from a closed table. This construction is performed as
follows: The rows in S represent the minimal set of states, rows in
S ·ΣI represent transitions for every symbol in ΣI , and the range of
T (i.e., the elements of the table) represent the output relation. The
conjectured automaton is then, in the original algorithm [3], passed
to a teacher, which either confirms that the machine has been cor-
rectly learned, or returns a counterexample. The counterexample is
a sequence of inputs and corresponding outputs that does not match
the conjectured machine. Of course, we cannot ask the bot master
to tell us whether our conjectured state-machine is correct or not,
so we use a sampling-based approach [3], which randomly gener-
ates uniformly distributed sequences of messages used to sample
the protocol’s state-machine and discover mismatches. If the re-
sponse of the agents involved in the message exchange does not
match those predicted by the conjectured state-machine, we have
a counterexample. Based on the number of sampling sequences
and the number of conjectures, one can compute the accuracy and
confidence that the conjectured machine is correct, as proposed by

5The algorithm can also trivially handle monotonically increasing
alphabets, useful when new messages are discovered during the in-
ference, but we abstracted that away for clarity.

Angluin [3]. The sampling queries generated in the second step of
L∗ are called equivalence queries, for they check the equivalence
between the conjectured and to-be-learned machine.

Algorithm 2 The L∗ Algorithm: Handling Counterexamples.

1: Let r,x be a counterexample input (r) and its response (x)
2: Let r = p · s, s.t. p ∈ S∪S ·ΣI and p is the longest such prefix
3: for all u suffixes of s do

4: E = E ∪u

5: for all t ∈ S∪S ·ΣI do

6: Compute response to t ·u ⊲ If t ·u = r, response is x

7: Take suffix y of the response (last |u| symbols)
8: T (t,u) = y

9: Run the inner loop of Algorithm 1 if T changed

Algorithm 2 illustrates Shahbaz and Groz’s algorithm for han-
dling counterexamples. When a counterexample, an input (r) and
the corresponding response (x), is found, the algorithm finds the
longest prefix of r existing in S∪ S ·ΣI , and trims that prefix. The
remaining suffix and all its suffixes are added to the columns (set E)
of the observation table, and the responses for all the rows extended
with newly added suffixes are computed.

The number of required membership queries depends on the size
of the state-machine to be inferred. Even a twenty-state machine
could require tens of thousands of queries. To reduce the number
of membership queries, we developed a novel response prediction
heuristic, which exploits redundancy in inferred models. Any mis-
predictions are guaranteed to be detected by the sampling queries
with the desired accuracy and confidence. Since the number of
sampling queries is computed solely from the accuracy, confidence,
and the number of conjectures [3], detecting mispredictions does
not require any additional sampling queries.

Our response prediction heuristic exploits the abundance of self-
loop transitions, defined as follows.

DEFINITION 6 (SELF-LOOP TRANSITIONS). Let q be some

state and a some input symbol. Transitions for which δ (q,a) = q

are called self-loop transitions.

3.2 Botnets
A botnet is a network of compromised hosts controlled remotely

by botmasters to carry out nefarious activities such as denial of
service, theft of personal information, and spamming. Botmasters
control their botnets through a system of Command and Control
(C&C) servers. MegaD is a mass spamming botnet first observed
2007, and was responsible for one-third of the world’s spam at its
peak6. The main MegaD C&C server used by each pool of bots is
the Master server, which points bots to a set of auxiliary (Template,
SMTP, and Drop) servers. A spamming MegaD bot contacts only
the Template and SMTP servers [8].

MegaD has been the target of multiple takedown attempts. The
most recent attempt occurred in Nov. 2009, but MegaD bounced
back after the takedown. The common practice to botnet takedowns
is to identify as many C&C servers as possible, and attempt to crip-
ple the entire botnet by sending abuse notifications to all ISPs in-
volved simultaneously.7 This is an expensive exercise requiring
careful co-ordination among all parties involved. In this paper, we
show through protocol inference that MegaD’s SMTP servers are
actually the critical link in the C&C, and taking just SMTP servers
down would be a cheaper and simpler option.

6http://www.m86security.com/trace/i/Mega-D,spambot.896∼.asp
7http://blog.fireeye.com/research/2009/11/smashing-the-
ozdok.html

N
e
tw
o
r
k

T
o
r

Bot
Emulator

Bot
Emulator

Bot
Emulator

Bot
Emulator

Bot
Emulator

Bot
Emulator

Bot
Emulator

Bot
Emulator

M
e
m
b
e
rs
h
ip
 Q
u
e
ry
 R
e
s
p
o
n
s
e
 P
re
d
ic
ti
o
n

Q
u
e
ry
 C
a
c
h
e

Bot Master Server

Spam Template Server

Botnet SMTP Server

L*

Figure 3: Architecture of Our Protocol Inference Engine. Our

inference system is encircled with a dashed line.

4. INFERENCE OF PROTOCOL MODELS
This section presents our technique for inference of complete

protocol state-machines in the realistic network setting. The high-
level architecture of our implementation is shown in Figure 3. Our
implementation is composed of several components: a bot emula-
tor, a query cache, a membership query predictor, and L∗.

The bot emulator is a script we wrote that receives queries (strings
of symbols from the input alphabet) from L∗ and concretizes them
into valid protocol messages sent to botnet servers. Once the bot
emulator receives a response, it abstracts the response into strings
of symbols from the output alphabet and sends such abstracted
strings to L∗. We describe abstraction and concretization in Sec-
tion 4.1.

We built our bot emulator from scratch, to assure it cannot per-
form any of the malicious activities (spamming and infection) of
the real bot. In addition, we carefully crafted our experiments not
to cause any harm to any party involved (infected users, ISPs, C&C
servers, and botmasters). For example, our bot emulator is careful
not to construct corrupted messages intentionally, minimizing the
impact even on the C&C servers.

The query cache acts as a concentrator of parallel query responses
and caches the results, so that each sequence of messages has to
be sent over the network only once. Through parallelization, we
achieved 4.85X reduction in the time required for the inference us-
ing eight machines, each running one bot emulator. We describe
both parallelization and caching in Section 4.2.

The membership query predictor attempts to predict what is the
most likely response to membership queries. Learning even a state-
machine of a medium size can require a significant number of que-
ries (c.f. Section 3.1). As queries can be long strings of input mes-
sages, and getting a response to each message can take a long time
due to network delay (6.8 sec on average in our experiments), ac-
curate prediction of responses is important to infer protocol state-
machines in reasonable amount of time. Erroneous predictions are
guaranteed to be detected (with desired accuracy and confidence)
using sampling queries and fixed by backtracking to the first mis-
take made by the predictor. We present our prediction heuristic in
Section 4.3.

In Section 4.4, we explain how we handled the only discovered
source of non-determinism in the MegaD protocol, state-machine
resetting, and generation of sampling queries.

4.1 Message Abstraction and Concretization
L∗ constructs queries over the abstract input alphabet and passes

them to our bot emulator, which concretizes the alphabet sym-
bols into valid network messages and sends them to botnet servers.

When responses are received, our emulator does the opposite — it
abstracts the response messages into the output alphabet and passes
them to L∗. Construction of the input and output alphabets is a par-
tially automatic and partially manual process. We reverse-engineer
the message formats and their semantic content using automatic
protocol reverse engineering [6] and encryption/decryption mod-
ules extracted from the bot binary [5]. Once we learn the message
formats, we perform abstraction manually. The manual abstraction
is a straight-forward process, but requires intelligence in deciding
which message fields are important. In particular, the most impor-
tant field, not surprisingly, turns out to be the message type field.

Besides abstraction, another important aspect of automatic pro-
tocol inference is concretization of messages, i.e., generation of
valid network messages. If messages are invalid or have invalid
session tokens, the server will simply reject them. To generate
valid messages, the bot emulator uses the automatically reverse-
engineered message format grammar, rewrites the message fields
as needed, and encrypts the messages before transmission. The bot
emulator rewrites the tokens of server-bound messages using to-
kens issued by the server in the same session. If the token has not
been issued, the emulator rewrites tokens with a random value, to
learn how servers handle invalid tokens.

To assure our experiments are reproducible, we include MegaD’s
C&C message format tree in Figure 4 and a list of all abstracted
messages used in this paper in Table 1. MegaD uses a propri-
etary C&C protocol for communication with its master and tem-
plate servers, and a non-standard SMTP protocol for communica-
tion with its SMTP server. To model the C&C protocol messages,
we use three fields: the MsgType field found in all messages, the
SubType field in the INIT and GETCMD messages, and the Config

element found only in the spam template messages. We define a
unique symbol for each unique {MsgType, SubType, Config} com-
bination as described in Table 1. To model the bot’s communica-
tion with the SMTP server, we abstract MegaD’s SMTP dialogs at
two different levels of abstraction. When we model the role of the
SMTP server in the overall C&C protocol, we abstract MegaD’s
spam capability test dialog and pre-spam notification dialog each
with two symbols, one in either direction (IDs 14 and 15 in upper
half and IDs 12 and 13 in lower half of Table 1 respectively). When
we analyze the details of MegaD’s SMTP protocol implementation,
we abstract each individual SMTP message within a TCP connec-
tion into individual symbols.

4.2 Query Cache
In our implementation, the query cache is just a file that stores

pairs of input message sequences and the corresponding responses
(i.e., sequences of output messages). The cache acts primarily as a
concentrator of parallel query responses. This architecture (Figure
3) simplifies the implementation of L∗, for only the queries have to
be issued in parallel, but responses can be processed sequentially.
More precisely, the membership query loop starting on Line 4 of
Algorithm 1 and the column extension loop starting on Line 3 of
Algorithm 2 both execute a number of independent membership
queries, which can all be either predicted or run on the network in
parallel. Our implementation of L∗ emits all these queries in paral-
lel. The queries are partitioned among a number of machines (eight,
in our case) and independently run on the network. In addition, the
cache has a more traditional role of caching the responses that have
been tested on the network — such responses can be reused at any
point, because of the determinism assumption (Section 2.3).

4.3 Response Prediction
Studying the membership queries that L∗ makes while learn-

ing protocol models, we came to realize that there is a significant

ID MsgTy SubTy Template Semantic Label Direct.

- 0x00 0x00 - INIT →MS
1 0x00 0x01 - GETCMD →MS

2 0x03 - - DLSUCCESS →MS

3 0x05 - - DLERROR →MS

4 0x06 - - DL1 →MS

5 0x09 - - DL2 →MS

6 0x16 - - HOSTINFO →MS

7 0x22 - - CAP_TESTPASS →MS

8 0x23 - - CAP_TESTFAIL →MS
9 0x25 - - TS_RECVED →MS

10 0x09 - - PONG →MS

11 0x1c - - TEMPLATE_ACK → TS

12 0x1d - - GET_TEMPLATE → TS

13 0x1e - - SPAM_STATUS → TS

14 - - - TEST → SS

15 - - - NOTIFY → SS

- 0x01 - - INFO ←MS

1 - - - TCP_CLOSE(-) ←MS
← TS

2 0x04 - - ACK_DLRESULT ←MS

3 0x07 - - ACK_DL1 ←MS

4 0x0a - - ACK_DL2 ←MS

5 0x0e - - WAIT2 ←MS
6 0x15 - - GETHOSTINFO ←MS

7 0x18 - - WAIT1 ←MS

8 0x1c - None TEMPLATE ← TS

9 0x21 - - TESTSPAMCAP ←MS

10 0x24 - - DLTEMPLATE ←MS

11 0x1c - RENEW RENEW ← TS

12 - - - TESTPASS ← SS

13 - - - NOTIFY_RECVED ← SS

Table 1: Abstraction of MegaD’s Communication with its Mas-

ter and Template Servers. The upper half of the table shows the

input alphabet (sent by our bot emulator to various servers),

and the lower half the output alphabet (responses sent by

servers to our bot). We use the MsgType, SubType and Tem-

plate config fields for abstraction. Messages sent to and re-

ceived from C&C servers are abstracted as input and output

alphabet symbols (the ID column) respectively, where MS is the

Master Server, TS is the Template Server and SS is the SMTP

Server. The no-response message is denoted as TCP_CLOSE(-

). The INIT message is sent to reset each session. The INFO

message is always followed by another message, and that sec-

ond message is used for abstraction. The SMTP messages are

abstracted according to the standard [23].

1 2/24/36/110/112/1113/115/12

17

7/1 9/18/1

4/36/19/111/113/115/122/2

amount of redundancy in the
inference process. Namely,
many states have many self-
loops (Definition 6). The fig-
ure on the left illustrates this
phenomenon on a small piece
of the MegaD state-machine.
Such self-loops increase the

number of membership queries, without helping L∗ to distinguish
states. We believe that there are two major factors contributing to
the abundance of self-loops: (1) Our goal is to learn complete mod-
els, which means we need to determine the response to all input
alphabet symbols (i.e., messages) from every state. Most protocols
use each message for a single, well-defined purpose, which means
that most often sending an unexpected message from some state
causes that message to be ignored, either at that state or in an er-
ror state. (2) We need to abstract conservatively the messages into
the input and output alphabets before the protocol state-machine is
known. The conservative overestimation frequently increases the

Figure 4: MegaD’s C&C Message Format Tree. Message type

fields used for abstraction are shown in bold. We elide the tails

of messages not relevant to our abstraction process. Abstracted

messages are shown on the right in italics.

redundancy in the model, e.g., increasing the number of self-loops,
which cannot be eliminated before the state-machine is known —
a chicken and egg problem. On the other hand, reducing the size of
the alphabet oversimplifies the inferred state-machine. Thus, it is
important to be conservative in choosing the alphabet and develop
effective techniques for improving the performance of the inference
process.

To understand the intuition behind response prediction, consider
the running example shown in Figure 2a. There are three self-loops,
and we shall focus on the self-loop incident to state 2. Since self-
loops return back to the same state, the response to 2 · 1 · u (with
self-loop) and 2 · u (without self-loop) will be the same for every
input string u. Accordingly, the table entries for 2 ·1 ·u (row 5) and
2 · u (row 2) in Table 2b are the same. Recall from Algorithm 1
that the length of membership queries increases with each outer-
for-loop iteration. Thus, the 2 · u query must preceede the 2 · 1 · u
query, and the response to the former can be used to predict the
response to the latter at the end of each outer-for-loop iteration.

We exploit the redundancy with a two-level heuristic. The first
level, called restriction-based prediction, exploits the abundance of
self-loops, for guessing responses to membership queries with high
accuracy. The second level, called probability-based prediction,
exploits the fact that the same input messages often leads to the
same output message. Any possible prediction errors are detected
using random sampling (Section 3.1). If an error was made predict-
ing the responses to membership queries, our algorithm backtracks
to the first erroneously predicted membership query, fixes the error
(according to responses from sampling queries), and continues run-
ning L∗. Importantly, the same sampling queries can be used both
to detect missing states (as in the classical Angluin probabilistic
sampling [3]) and mispredictions.

We begin the formal presentation of our prediction techniques by
showing that entries in the S set have no self-loops, and therefore
can be used for prediction of responses that have self-loops.

THEOREM 1. Let s∈ S,s = c0 ·c1 · · ·cn be a string of n charac-

ters from ΣI . Let q0,q1, · · · ,qn,qn+1 be a sequence of states visited

by δ ∗ (q0,s). For 0 ≤ i < n+1, every two adjacent states are dif-

ferent, i.e., qi 6= qi+1.

PROOF. Proof is by induction on the string length. The ε string
trivially satisfies the condition, as there is only one state in the se-
quence of visited states. Let s = c0 · · ·ck and s ∈ S. Algorithm 1
on Line 5 appends a ∈ ΣI to s, and then in the loop that follows
computes responses to membership queries s ·a ·u, where u∈ E are
the columns of T . Without loss of generality, let s · a be the small-
est string, according to our lexicographic ordering (Definition 5).
String s ·a is moved to S (Line 3) only if ∀ t ∈ S . ∃u∈ E . T (t,u) 6=
T (s ·a,u). Every s · a string is obtained by extending strings from
S, so we know that s ∈ S. Thus, we conclude: ∃u ∈ E . T (s,u) 6=
T (s ·a,u), which implies that δ ∗ (q0,s ·u) 6= δ ∗ (q0,s ·a ·u), be-
cause s and s · a are (eventually) both in S and they denote dif-
ferent states. Since s · a · u and s · u have the same prefix and suf-
fix, symbol a must explain the difference in the response of the
state-machine. By induction hypothesis ∀0≤ i < k . ci 6= ci+1. So
we have: δ ∗ (q0,s ·a) = c0 · · ·ck · ck+1. Assume ck = ck+1. Thus,
δ ∗ (q0,s ·a) = δ ∗ (q0,s), a contradiction. So, we have proved that
in δ ∗ (q0,s ·a), the last two visited states are different, which proves
the theorem.

COROLLARY 1. From Definition 6, it follows that δ ∗ (q0,s) for

s ∈ S has no self-loop transitions.

Intuitively, Theorem 1 suggests that strings from S, which are
loop-free, could be used to predict responses to input strings that
are similar to strings from S, but have additional symbols producing
self-loop transitions sprinkled around. We formalize that intuition
using the following two definitions.

DEFINITION 7 (DIFFERENTIATING SET). Let D⊆ΣI be a set

of all symbols in S, more precisely, D = {c | c ∈ [s] ,s ∈ S}. As

S grows during the execution of Algorithm 1, D is going to be a

monotonically increasing set.

DEFINITION 8 (RESTRICTION FUNCTION). Let a ∈ ΣI , s ∈
Σ∗I , and D⊆ ΣI . The restriction function ρ : Σ∗I ×D−→ Σ∗I is then

defined recursively as follows:

ρ (s,D) =







ε if s = ε
ρ (r,D) if s = a · r ∧ r ∈ Σ∗I ∧ a 6∈D

a ·ρ (r,D) if s = a · r ∧ r ∈ Σ∗I ∧ a ∈D

Intuitively, the restriction function just deletes the symbols that
are not in a given set from a string. For example, ρ(a · b · b · a · c ·
d,{b,d}) = b ·b ·d.

Now, our restriction-based prediction rule can be simply stated
as: Given any membership query s · a · u, compute s′ = ρ (s ·a,D),
and if s′ already exists in S∪ S ·ΣI , use the values in the s′ row of
table T to predict the values for the s · a · u row. More formally:
T (s ·a,u) = T (ρ (s ·a,D) ,u), if the ρ (s ·a,D) entry exists in T .
With this simple rule, we get highly accurate prediction, with few
errors.

The restriction-based prediction saves around 73% of member-
ship queries in our experiments with MegaD. Analyzing the results,
we identified one missed prediction opportunity. If the restricted in-
put string does not exist in the table, the previously presented tech-
nique is helpless. To improve the performance of the restriction-
based prediction even further, we track the set of observed response
messages for every input symbol. When the restriction-based ap-
proach fails, we apply a simple probability-based prediction: If a
particular input message produces the same output message for all

previous queries, we predict that response will be the same. If mul-
tiple different responses were observed for the same input, we do
not predict it. It would certainly be possible to lower the prediction
threshold — say, by picking the response that happens in at least
90% of cases — at the cost of increasing the number of erroneous
predictions and the cost of backtracking. We leave this fine-tuning
for future work. Even with the simple probability-based prediction
currently implemented, we gain an additional 13% reduction in the
number of membership queries on MegaD, in addition to savings
achieved by the restriction-based prediction.

Mispredictions can produce erroneous state-machine conjectures.
However, we exploit the same random sampling equivalence check-
ing mechanism in L∗ (Section 3.1) to detect mispredictions. Thus,
mispredictions are guaranteed to be found with desired accuracy
ε and confidence γ . Once an error is detected, L∗ backtracks to
the first erroneously predicted query, fixes it using the sampling
query response, removes all subsequently predicted entries from
the observation table, and continues the inference process. All the
prediction savings, both in the prior discussion and in the experi-
mental evaluation, take the cost of backtracking into account. So,
it is obvious that our prediction is very effective (86% total reduc-
tion in the number of queries) and accurate (inaccurate prediction
would require more frequent backtracking, reducing the savings).

4.4 Determinism, Resettability, and Sampling
This section describes the non-standard and non-obvious aspects

of using L∗ in our setting. More precisely, we discuss the impact
of the determinism and resettability assumptions (Section 2.3) and
the role of the sampling process in achieving the desired accuracy
of the model.

Both the determinism and resettability assumptions were rela-
tively easy to satisfy in our setting. In our experiments, the ex-
change of messages was deterministic, except for one corner case:
Sometimes master servers respond with an arbitrarily long sequence
of INFO messages, which are always terminated with a non-INFO
message. Our inference infrastructure discards all the INFO mes-
sages, and treats the first non-INFO message as the response. This
was the only source of non-determinism we encountered. To re-
set the state-machine, we begin both membership and sampling
queries with an INIT message (c.f. Table 1), which initiates a new
session. Once the session is started, every input message produces
a response — an output message.

As discussed in Section 3.1, we use a sampling-based approach
for equivalence queries. We generate uniformly distributed random
sequences of input messages, the number of which is determined
by the desired model accuracy and confidence [3]. Once our im-
plementation of L∗ closes the table, it conjectures a state-machine,
which is then tested through sampling. The responses to sampling
queries are never predicted, for the purpose of sampling queries is
to discover new states that do not exist in the currently conjectured
model and to discover prediction errors.

5. ANALYSIS OF INFERRED MODELS
In this section, we analyze the complete protocol models ob-

tained from our inference technique with the goal of gaining deeper
understanding of MegaD. We present techniques to analyze the
protocol models to identify the critical links in botnet C&Cs, de-
sign flaws, the existence of background communication channels
between C&C servers, and to identify implementation differences
for fingerprinting and flaw detection.

5.1 Identifying the Critical Links
Transitions in our Mealy machine models represent actions. Cer-

tain actions might be considered as bad, in the sense that they rep-

resent a malicious or undesirable activity. When Mealy machines
are used, such activities are represented with transitions (more pre-
cisely, output responses).8 Once the bad transitions are identified,
we wish to find a way to prevent such transitions from ever being
executed.

More formally, given a protocol state-machine M = (Q,ΣI ,ΣO,δ ,

λ ,q0) and a set of bad output symbols B⊆ ΣO representing bad ac-
tions, we wish to identify the minimal number of transitions we
have to disrupt to prevent the bots from executing transitions that
would produce output symbols from B. There are two ways (not
mutually exclusive) of achieving this. The first option is to make it
impossible for bots to reach the states from which bad actions could
be performed by cutting a set of transitions in the state-machine,
i.e., we wish to assure that ∀s ∈ Σ∗I ,a ∈ ΣI . λ (δ ∗ (q0,s) ,a) 6∈ B.
The second option is to disrupt the bad transitions themselves, i.e.,
to remove the transitions so as to assure that the following property
holds: ∀s ∈ Σ∗I . [λ ∗ (q0,s)]∩B = /0.

Such an analysis can be done using max-flow min-cut algorithms
[11], such that the initial state is a source, and the state at which
the bad transition originates is a sink. We performed this analysis
on the MegaD state-machine and arrived at a trivial conclusion for
a single pool of bots: since MegaD is a spamming botnet and a
single spamming edge is the only bad edge, taking down any one
of the botnet servers and the corresponding transitions in the state-
machine would prevent a pool of bots from spamming. However,
since different pools of bots talk to different sets of servers, it does
not stop other pools of MegaD bots from spamming. Unsatisfied
with this outcome, we attempt to develop an approach that works
across multiple pools of bots.

We extended the encoding of messages into alphabet symbols
shown in Table 1 by partitioning the set of messages into disjoint
sets, one set per server, so as to include the IP addresses of the
servers as an additional field. We shall refer to this extended alpha-
bet as IP-extended. We ran our inference technique independently
on both master servers we have access to (each pool of bots talks
to a different master server), and computed a projection (defined
below) of one state-machine onto the IP-extended alphabet of the
other.

DEFINITION 9 (STATE-MACHINE PROJECTION). The projec-

tion of a finite state-machine M = (Q,ΣI ,ΣO,δ ,λ ,q0) onto alpha-

bet ΣA is defined as a non-deterministic finite state-machine M′ =
(Q,ΣI ∩ΣA,ΣO,δ ′,λ ′,q0), such that the following holds for ∀a ∈
ΣI ,x ∈ ΣO,qi,q j ∈Q:

(qi,ε,q j) ∈ δ ′ iff (qi,a,q j) ∈ δ ∧a 6∈ ΣA

(qi,a,q j) ∈ δ ′ iff (qi,a,q j) ∈ δ ∧a ∈ ΣA

(qi,ε,ε) ∈ λ ′ iff (qi,a,x) ∈ λ ∧a 6∈ ΣA

(qi,a,x) ∈ λ ′ iff (qi,a,x) ∈ λ ∧a ∈ ΣA

Intuitively, all transitions of M on alphabet symbols not in ΣA

are replaced with non-deterministic transitions (ε), and the corre-
sponding outputs are replaced with empty outputs (ε). The result-
ing state-machine may be non-deterministic.

Computing a projection of a state-machine inferred from com-
munication of our bot emulator with one master server onto the al-
phabet of the machine inferred from communication with another
master server, we identified the key components shared among mul-
tiple pools of bots. The results are presented in Section 6.2.

8The conversion of Mealy to Moore machines introduces addi-
tional states, usually one extra state per transition. Hence the
two concepts, bad transitions in Mealy machines and bad states in
Moore machines are, as a matter of fact, equivalent concepts. Thus,
talking about bad transitions, as opposed to bad states, makes more
sense in our setting.

5.2 Identifying Design Flaws
We identified a design flaw in the MegaD protocol, thanks to the

fact that our inference approach infers complete state-machines.
Given a complete state-machine and a specification (i.e., a set of
properties expressed in a suitable formal logic), it is possible to au-
tomatically determine whether the properties hold using automatic
model checkers (e.g., [9]). In our case, the state-machines were
simple enough that we could manually check a number of inter-
esting properties. We explain the flaw we found later in Section
6.3.

5.3 Identifying Background-Channels
In situations when a client (a bot, in our case) talks to multiple

servers, it might be interesting to prove whether there exists any
background communication between the servers. Such background
communication channels can indicate infiltration traps, which se-
curity researchers need to be aware of before attempting to bring
a botnet down, or simply reveal interesting information about the
protocol.

To detect the background-channels, we devised the following
analysis: We restrict our bot emulator to communicate only with
a single server at the time, and infer the protocol model MT (for
the template server), MS (for the SMTP server), and MM (for the
master server). Then, we allow our bot emulator to communicate
with all the servers and compute the model M. We compute the
projection (Definition 9) of M onto input alphabets used for build-
ing individual server communication models (MT , MS, and MM),
and compare the obtained projection with the model of communi-
cation with the individual servers. Any differences imply that there
exist background communication channels. We prove existence of
communication between MegaD’s servers in Section 6.4.

5.4 Identifying Implementation Differences
Once the complete models of two different implementations of

the same protocol are computed, comparison of the models can re-
veal interesting deviations useful for fingerprinting and flaw detec-
tion. While it is possible to perform automatic equivalence check-
ing of large finite-state models (e.g., [24]), our models were simple
enough that we can do such an analysis manually. We discuss the
differences between Postfix SMTP 2.5.5 and MegaD’s implemen-
tation in Section 6.5.

6. EXPERIMENTAL EVALUATION
We implemented our version of L∗ in ∼ 1.7 KLOC of C++ and

the bot emulator and experimental infrastructure in∼ 2.3 KLOC of
Python and Bash scripts. Our prototype performs up to eight par-
allel queries (as shown in Figure 3) concurrently tunneled through
Tor [15]. We conducted the experiments over a period of three
weeks starting March 27th, 2010. Figure 5 illustrates the inferred
MegaD protocol state-machine.

In the rest of this section, we evaluate our protocol inference
approach on the MegaD botnet C&C distributed system, MegaD’s
non-standard implementation of SMTP, and the standard SMTP as
implemented in Postfix 2.5.5. We present the results of our analysis
of inferred complete models, and validate our inference approach
by comparing the inferred SMTP models against the SMTP stan-
dard.

6.1 Performance and Accuracy
In this section, we present the experimental evidence of the ef-

fectiveness of our response prediction technique and discuss the
model accuracy.

0 1
1 2 / 1 1

2

1 / 6

1 6

7 / -9 / -

4

1 / 6

1 7

7 / -9 / -

3

1 / 7

1 2 / 1 1

1 4

7 / - 9 / -

5
1 2 / 1 1

6

1 / 5

8

7 / -9 / -

1 / 7

1 5

7 / - 9 / -

7

1 / 5

9

7 / - 9 / -
1 2 / 1 1

1 0

7 / - 9 / -

1 1

7 / -9 / -

8 / -

1 2 / 1 1

1 2

1 / 5

8 / -

1 3

1 / 5

8 / -

1 2 / 1 1

1 / 9

8 / -

1 / 9

8 / -

1 / 1 0

1 2 / 1 1

8 / -

 1 / 1 0 1 2 / 8 1 1 / - 1 5 / 1 3

8 / -

1 / 7

1 2 / 1 1

8 / -

1 / 7

8 / -

1 / 6

1 2 / 1 1

8 / -

1 / 6

Figure 5: Protocol State-Machine of MegaD’s distributed Command and Control system. Self-transition edges are removed for

clarity. The state-machine transitions are labeled according to the alphabet in Table 1. For example, 15/13 denotes NOTIFY /

NOTIFY_RECVED. The process of spamming is triggered in state 13, through self-edges 1/10, 12/8, 11/-, 15/13.

The prediction results are shown in Table 2. The overall reduc-
tion in the number of queries that have to be sent over the network
is between 24.5% (for MegaD’s SMTP) and 86.1% (for MegaD’s
C&C). We believe there are two main reasons our prediction is
much more effective on the MegaD C&C than on SMTP: First,
C&C is a more complex protocol that involves three different types
of servers, two of which use proprietary protocols. Second, our
understanding of the two protocols when we were designing mes-
sage abstractions was very different — we knew nothing about the
C&C state-machine, while the SMTP state-machine is well known
[23]. We believe this inherent lack of knowledge about an unknown
protocol model, yet to be inferred, results in some amount of redun-
dancy. However, it is important to be conservative when abstracting
messages, as otherwise it is easy to miss important states and tran-
sitions. This inherent tradeoff between accuracy and redundancy
makes our prediction technique even more valuable, as we can in-
fer larger protocols, without sacrificing accuracy. As a matter of
fact, since sending and receiving a single message through Tor took
around 6.8 seconds on average, 86.1% prediction accuracy means

that our response predictor saved
(56,716−6,406)×6.8

3600×24 = 3.95 days of
computation, reducing the total amount of time required to infer the
MegaD C&C to around 12 hours.

Parallelization of the experiment improved the performance even
further. While a single bot emulator would return a response mes-
sage every 6.8 seconds, on average, eight parallel bots would return
a message every 1.4 seconds, a 4.85X improvement on average in
addition to improvements obtained by response prediction. The ex-

periment does not parallelize perfectly, because of the increased
load on the same Tor servers. We envision that a more powerful,
perhaps even highly-distributed, protocol inference infrastructure
would parallelize even better.

To check the accuracy of our models, we used ε = 10−2 error
probability and γ = 10−6 confidence factors [3]. Achieving that
accuracy required us to generate at least 1,798 uniformly random
sampling queries for the MegaD C&C and 1,451 for MegaD and
Postfix’s SMTP upon L∗ termination. Equivalence queries were
ran in parallel and cached, but not predicted, as predicting those
queries would defeat the purpose of such queries (detecting missed
states and prediction errors).

6.2 Analysis of Critical Links
Attempts to bring down large botnets are frequent, but are costly

and ineffective. The common practice is to run as many pools of
bots as possible to obtain a wide coverage of C&C servers, and then
attempt to cripple the entire botnet by sending abuse notifications to
all ISPs involved simultaneously. This is an expensive exercise re-
quiring careful co-ordination among all parties involved. Based on
our analysis of critical links in the MegaD protocol, we discovered
a less expensive alternative.

Using the technique explained in Section 5.1, we inferred com-
plete models of communication with MegaD’s two different master
servers, and computed a projection of one model onto the alpha-
bet of the other model as shown in Figure 6. The figure shows the
states and links shared by two different pools of bots talking to dif-

ferent master servers and the servers that the master server points

MegaD C&C MegaD SMTP STD SMTP
Q. Msgs Q. Msgs Q. Msgs

Basic L∗ 10,978 56,716 1,190 4,522 1,386 5,894

RESTR -8,024 -42,872 -294 -980 -476 -1764

STAT -1,456 -7,514 -22 -88 -0 -0

BCKT +24 +76 +24 +90 +56 +252

Total 1,522 6,406 898 3,544 966 4,382

Reduct. -86.1% -88.7% -24.5% -21.6% -30.3% -25.7%
Accur. 99.7% 99.9% 92.4% 97.8% 88.2% 96.8%

Table 2: Results of Membership Queries Prediction. The

Queries (Q.) column shows the number of queries and the Msgs

column shows the number of messages. The first row represents

the results obtained in the standard L∗ algorithm [33] without

any response prediction. The RESTR row shows the reduction

in the number of queries and messages by using restriction-

based prediction. The following row (STAT) shows additional

reductions obtained by using the statistics-based approach a

top of RESTR. The BCKT row shows the increase in the num-

ber of queries and messages sent due to backtracking, caused

by prediction errors. The Total row shows the total numbers of

queries and messages after prediction reductions and increases

due to backtracking. The total reduction in the number of

queries and messages and the accuracy of the prediction are

shown in the last two rows.

0 1

12/ 1 1

2

1/ 6

16

7/ -9/ -

4

1/ 6

17

7/ -9/ -

3

1/ 7

12/ 1 1

14

7/ - 9/ -

5

12/ 1 1

6

1/ 5

8

7/ -9/ -

1/ 7

15

7/ - 9/ -

7

1/ 5

9

7/ - 9/ -
12/ 1 1

10

7/ - 9/ -

11

7/ -9/ -

8/ -

12/ 1 1

12

1/ 5

8/ -

13

1/ 5

8/ -

12/ 1 1

1/ 9

8/ -

1/ 9

8/ -

1/ 10

12/ 1 1

8/ -

8/ -

1/ 7

12/ 1 1

8/ -

1/ 7

8/ -

1/ 6

12/ 1 1

8/ -

1/ 6

0 1

12/ 1 1

2

1/ 6

16

7/ -9/ -

4

1/ 6

17

7/ -9/ -

3

1/ 7

12/ 1 1

14

7/ - 9/ -

5

12/ 1 1

6

1/ 5

8

7/ -9/ -

1/ 7

15

7/ - 9/ -

7

1/ 5

9

7/ - 9/ -
12/ 1 1

10

7/ - 9/ -

11

7/ -9/ -

8/ -

12/ 1 1

12

1/ 5

8/ -

13

1/ 5

8/ -

12/ 1 1

1/ 9

8/ -

1/ 9

8/ -

1/ 10

12/ 1 1

8/ -

8/ -

1/ 7

12/ 1 1

8/ -

1/ 7

8/ -

1/ 6

12/ 1 1

8/ -

1/ 6

0'
TEST:SS /

 SS:TESTPASS

NOTIFY:SS /

 SS:NOTIFY_RECVED

Figure 6: Intersection of Models of Communication with Two

Different Master Servers. The resulting state-machine shows

that the SMTP server is shared among two pools of bots com-

municating with two different master servers.

to. The projection shows that the SMTP server is shared across two
pools of bots belonging to different master servers. Furthermore,
the existence of the SMTP server is critical to MegaD’s ability to
spam. In particular, a successful pre-spam notification dialog with
the shared SMTP server (the NOTIFY:SS/SS:NOTIFY_RECVED
edge) always signals to the bot to start spamming. We experimen-
tally confirmed that MegaD bots do not start spamming without
this notification. Thus, the analysis clearly shows that taking down
the SMTP server would disable spamming in all the pools of bots
sharing that SMTP server. However, without actually attempting
to execute an attack on the SMTP part of MegaD’s infrastructure,
it is difficult to evaluate how useful our insight is in practice. For
example, the botmasters could replace the SMTP servers and use
master servers to update bots on the new SMTP server locations.

6.3 Analysis of Design Flaws
Having a complete model of MegaD’s C&C enabled us to check

a number of properties on the inferred state-machine. In particular,
we found that there is an unexpectedly short path through the state-
machine to getting the templates from the template sever.

During a normal spam cycle, a MegaD bot would take the fol-

(a)

0

1

GET_TEMPLATE:TS/

TS:RENEW

GET_TEMPLATE:TS/

TS:TEMPLATE

(b)

0’
GET_TEMPLATE:TS/

TS:TEMPLATE

1’

GET_TEMPLATE:TS/

TS:RENEW

GET_TEMPLATE:TS/

TS:TEMPLATE

Figure 7: A Proof of the Existence of Background-Channel

Communication. (a) A Model Obtained Only from the Com-

munication with the Template Server. (b) The Projection of

the C&C State-Machine onto the Template Server Alphabet.

States {0,2,3,6,7,8,10,11,12,13,14,16} and {1,4,5,9,15,17} of the

C&C in Figure 5 are projected onto states 0’ and 1’ respec-

tively. Notice the state-machine is non-deterministic.

lowing path 0→ 16→ 14→ 8→ 12→ 13 to the spamming state
13. Upon reaching state 13, the bot sends the GET_COMMAND
message, to which the master server responds with the location of a
chosen template server. The bot then sends the GET_TEMPLATE
request to the template server together with a 16-byte bot identifier
issued by the master server, and receives templates as a response.

Our inferred C&C protocol model reveals the existence of mul-
tiple shorter paths to obtaining spam templates. In particular, the
shortest path is 0→ 1, along which the bot emulator bypasses the
master server, directly contacts the template server with a random
16-byte identifier, and obtains the templates while bypassing the
master server. We successfully exploited this protocol design flaw,
regularly obtaining fresh spam templates.

Without knowing the botnet developer’s intentions, one may ar-
gue that what we discover may be a “feature” instead of a “flaw”.
For instance, the “feature” might facilitate reconfiguration of the
template server location. However, we rule out such a possibility
because the protocol uses an encryption-protected 16-byte identi-
fier issued by the master server in the GET_TEMPLATE request.
Since this identifier can be spoofed, it is clearly a flaw.

6.4 Analysis of Background-Channels
Our analysis discovered that the template server behaves differ-

ently depending on whether the bot communicated with the master
server or not. If the bot talks only to the template server (Figure
7a) by sending a GET_TEMPLATE request, the template server re-
sponds with RENEW, and sends the templates only after the second
request. On the other hand, if the bot talks to the template server
after the regular message exchange with the master server, the tem-
plate responds to the first GET_TEMPLATE request immediately
with spam templates. This difference proves that there exists com-
munication between the master and template servers. The model of
this communication is shown in Figure 7b.

6.5 Analysis of Implementation Differences
We cross-checked the results of our inference with the SMTP

standard [23], and compared the inferred model with the MegaD’s
non-standard SMTP implementation. To test the standard SMTP
inference, we set up a Postfix SMTP 2.5.5 server on Mac OS X
10.6.3 and ran our inference technique against the server, using
the standard set of 14 SMTP commands and input types from the
SMTP specification [23], shown in Figure 8c. Figure 8a shows
the inferred protocol model. For clarity, we removed all self-loop
transition edges in the figure. As discussed in Section 6.1, the dis-
crepancy is at most ε = 10−2 with confidence γ = 10−6.

Our evaluation on standard SMTP shows that the protocol model
obtained from our inference technique is equivalent to the SMTP

standard, with one implementation-specific deviation. We found
and confirmed that the Postfix SMTP 2.5.5 implementation devi-
ates from the SMTP standard by terminating a connection with re-
sponse code ‘221’ when it receives email contents sent without a
prior DATA command; the standard specifies keeping the connec-
tion open while returning ‘500’ to indicate an unrecognized com-
mand. We further evaluated our model by comparing it against the
SMTP model inferred by Prospex [10]. We manually translated our
inferred Mealy machine into Prospex’s representation (Moore ma-
chine). The comparison reveals that a number of edges are missing
from the SMTP model that Prospex inferred. On inter-state transi-
tions alone, our complete SMTP model specifies the behavior of ten
edges that Prospex missed. For example, the behavior of sending
email contents without prior HELO or EHLO is described in our
model, but not in [10]. We bold these missing edges in Figure 8a.
Clearly, our technology is able to infer complete models, unlike the
prior work.

Our model completely captures the protocol and is smaller (5
states) than the incomplete Prospex model (10 states). There are
two reasons for this. First, we use Mealy machines, which are more
compact. Second, since we infer complete minimal machines, min-
imization of the state-machine can be done completely and thor-
oughly. For example, sending either HELO or EHLO from the
initial state transits to a single state in our model instead of two
different states.

We also compared MegaD’s non-standard SMTP using the same
standard set of 14 SMTP commands and input types that we used to
infer the standard SMTP protocol model. The inferred MegaD non-
standard SMTP protocol model is shown in Figure 8b. A compari-
son of Figures 8a and 8b yields a high degree of resemblance, with
two major differences: (1) States 0 and 1 in Figure 8a are merged
into a single state in Figure 8b, which indicates that the usual SMTP
dialog with MegaD’s SMTP server may take place without a prior
HELO or EHLO. (2) The server abruptly closes the connection
once it receives a data terminator ‘.’ without a prior DATA com-
mand. This result suggests that our protocol model inference tech-
nique may be applied to fingerprint and identify MegaD’s SMTP
masquerading servers.

7. LIMITATIONS
In this section, we highlight the limitations of our protocol model

inference and analysis techniques, and discuss possible directions
for future work.

Currently, we make no effort to obfuscate and hide our probing
traffic from the botmaster’s possible detection. Since our protocol
inference approach generates a large number of probing queries to
the botnet C&C servers, the botmaster could potentially detect our
queries. The botmaster may react by changing the locations or pro-
tocol configurations of the C&C servers, thwarting our inference
effort. Hiding our traffic in the background noise would be an in-
teresting area for future research.

We also note that our protocol state-machine inference approach
would not work if any assumptions laid out in Section 2.3 are vi-
olated. The determinism and finiteness assumptions are the most
limiting.

A protocol that behaves non-deterministically (e.g., a date/time
triggered behavior) is more challenging to infer. As discussed in
Section 2.3, one option is to discretize time and encode it directly
into the alphabet. Despite obvious limitations, our conjecture is
that such an approach could be sufficient for inferring a majority of
existing protocols. Only future research can (dis)prove our conjec-
ture.

While infinite-state protocols can be abstracted with finite-state
machines (c.f. Mohri-Nederhof algorithm for abstracting context-

free with regular ones [27]), such abstractions might not be pre-
cise enough for all potential applications. To make things worse,
many protocols have mildly-context-sensitive features, like buffer
lengths. The grammatical inference techniques [14] for such more
expressive languages are still in their infancy. Inference of more
expressive models is a promising research direction, not only in the
context of protocol inference.

The focus of our work is the model inference technique itself,
and we relied upon prior work [6] and manual abstraction to come
up with the alphabet, which might be incomplete, i.e., it might not
contain all messages that can cause a state-change in the protocol.
The clustering of messages in a single direction for abstraction can
be automatic [10], but cannot guarantee the completeness of the
alphabet either. To our knowledge, automatic reverse-engineering
of the complete alphabet is an open problem.

8. RELATED WORK
The work presented in this paper is in the intersection of protocol

model inference and grammatical inference, and also contributes to
the previous work in the area of analysis of botnets (e.g., [2, 17, 18,
19, 22]).

The most closely related work, to our knowledge, is the work of
Comparetti et al. [10] on the Prospex system. The automatic clus-
tering and abstraction feature in Prospex is more advanced than
the manual abstraction that we did, so our future work is likely
going to focus on improving that aspect of our system. Unlike
our approach, Prospex adopts passive off-line inference and models
protocols with Moore machines. These choices have a number of
consequences: (1) Inferred models are incomplete state-machines,
which means that any subsequent analysis is bound to be impre-
cise. In contrast, our approach infers complete state machines. (2)
Since protocols are reactive systems, there are no accepting or re-
jecting states. To work around that problem, Prospex differenti-
ates states using regular expressions describing messages received
before each state is reached. The regular expression labels pre-
vent the incomplete state-machine minimization algorithms, like
Exbar [25], to merge all the states into a single state. We avoid this
problem altogether by using a model more appropriate for reactive
systems — Mealy machines and L∗ algorithm guarantee that the
inferred machine is minimal. (3) The minimization of incomplete
state-machines is a known NP-complete problem [30], so it is ques-
tionable whether Prospex would scale to large complex protocols.
Our approach dodges the NP-completeness using proactive infer-
ence, at the cost of a small probability of error (ε = 10−2) with
high confidence (γ = 10−6) [3].

Earlier work on protocol inference by Hsu et al. [21] does use
Mealy machines, but also adopts off-line inference, which means
that the inferred models will be incomplete and minimization is
NP-complete. Their solution is an approximate algorithm. Unfor-
tunately, even computing a model that is within a polynomial size
of the minimal one is NP-complete [34, p. 98–99], meaning that
their polynomial-time approximation algorithm will compute very
large models in some cases. In contrast, we developed a version
of L∗ optimized for on-line protocol inference, with known advan-
tages over the off-line approaches (polynomial computational com-
plexity, completeness).

The results presented in this paper would not have been possible
without the prior research on automatic message format reverse-
engineering by Cui et al. [12, 13] and the work of Caballero et
al. [7], which we used in this paper. All these techniques are cru-
cial for both manual and automatic message abstraction into finite
alphabets, so we are looking forward to the further progress in re-
search on automatic message format reverse-engineering.

Another aspect important in general protocol model inference

(a)

0

1

 1 / 1 2 / 1

2

 9 / 3 1 4 / 3

 1 4 / 3 9 / 3

3

 3 / 1 4 / 1 5 / 1 1 / 1 2 / 1 1 3 / 1

 9 / 3 1 4 / 3 4

 6 / 1 7 / 1

 1 / 1 2 / 1 1 3 / 1

 9 / 3 1 4 / 3

5

 8 / 2

 1 0 / 1

(b)

0 1

3

 3 / 1 4 / 1 5 / 1

2

 9 / - 1 0 / - 1 4 / 3

 1 3 / 1 1 / 1 2 / 1

 9 / - 1 0 / - 1 4 / 3 4

 7 / 1 6 / 1

 1 / 1 2 / 1 1 3 / 1

 9 / - 1 0 / - 1 4 / 3

5

 8 / 2

 1 0 / 1

(c)

ID Semantics Direction

1 HELO 1 → SS

2 EHLO 1 → SS

3 MAIL FROM:<addr> → SS
4 MAIL FROM:<> → SS

5 MAIL FROM:<@a,@b:addr> → SS

6 RCPT TO:<addr> → SS

ID Semantics Direction

7 RCPT TO:<@a,@b:addr> → SS

8 DATA → SS

9 content → SS
10 \r\n.\r\n → SS

11 EXPN all → SS

12 VRFY usr → SS

ID Semantics Direction

13 RSET → SS

14 QUIT → SS

1 250 ← SS
2 354 ← SS

3 221 ← SS

Figure 8: Inferred SMTP State Machines: (a) Postfix SMTP 2.5.5, (b) MegaD non-Standard SMTP and (c) Abstraction Table.

is dealing with encryption. Caballero et al. [6] recently proposed
an automatic technique for extracting encryption routines from bi-
nary. Similarly, Wang et al. [36] deals with reverse-engineering of
encrypted messages.

Once the protocol model is known, it can be used to incorporate
into stateful protocol analyzers, like Bro [29] and GAPA [4], and
firewalls, like Shield [35]. All these systems require protocol spec-
ifications to analyze traffic, detect intrusions, and improve security.
The technology we developed can provide such specifications.

Our contributions to the field of grammatical inference (more
precisely, regular language inference) extend the previous work of
Shahbaz and Groz [33], by specializing their approach to proto-
col inference, and by a number of optimizations for decreasing the
number of membership queries, which are expensive in the real
network setting. While parallelization of L∗ and introduction of a
cache for concentrating results of parallel probes came as natural
optimizations suitable for our setting, the output symbol prediction
required more intellectual effort. Our inspiration came from the
recent work of Gupta and McMillan [20]. They applied decision-
trees [31], a standard machine-learning technique, to complete in-
complete state-machines learned in the hardware verification set-
ting for the purpose of abstracting hardware modules and achieving
compositional verification.

9. CONCLUSIONS
We have proposed, to the best of our knowledge, the first tech-

nique to infer complete protocol state machines in the realistic high-
latency network setting, and applied it to the analysis of botnet
C&C protocols. While the classic L∗ algorithm would have taken
4.46 days to infer the protocol model of the MegaD C&C dis-
tributed system, we introduced a novel and effective prediction
technique to minimize the number of queries generated during the
inference process, reducing the amount of time required to just 12
hours. This is further optimized through parallelization.

By analyzing the complete protocol models inferred by our tech-
nique, we offer novel insights to existing problems on botnet C&Cs.
We hope that our new insights, gained through our protocol infer-

ence technique and novel analyses, will render future attacks on
MegaD and other botnets cheaper and more effective. With the
new technology to fight botnets we developed, we hope to see a
decrease in the amount of spam and denial of service attacks, and
an increase of everyone’s productivity and security.

10. ACKNOWLEDGMENTS
We would like to thank Greg Bronevetsky, Vern Paxson, Nishant

Sinha, and the anonymous reviewers for insightful comments to
improve this manuscript.

11. REFERENCES

[1] 2007 malware report: The economic impact of viruses,
spyware, adware, botnets, and other malicious code.
Technical report, Computer Economics Inc., 2007.

[2] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and
Andreas Terzis. A multifaceted approach to understanding
the botnet phenomenon. In IMC ’06: Proceedings of the 6th

ACM SIGCOMM conference on Internet measurement, pages
41–52, New York, NY, USA, 2006. ACM.

[3] Dana Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75(2):87–106, 1987.

[4] Nikita Borisov, David Brumley, Helen J. Wang, John
Dunagan, Pallavi Joshi, and Chuanxiong Guo. Generic
application-level protocol analyzer and its language. In
NDSS’07: Proceedings of the 2007 Network and Distributed

System Security Symposium. The Internet Society, Feb 2007.

[5] Juan Caballero, Noah M. Johnson, Stephen McCamant, and
Dawn Song. Binary code extraction and interface
identification for security applications. In NDSS’10:

Proceedings of the 17th Annual Network and Distributed

System Security Symposium, Feb 2010.

[6] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and
Dawn Song. Dispatcher: Enabling active botnet infiltration
using automatic protocol reverse-engineering. In CCS’09:

Proceedings of the 16th ACM conference on Computer and

communications security, pages 621–634, New York, NY,
USA, 2009. ACM.

[7] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song.
Polyglot: Automatic extraction of protocol message format
using dynamic binary analysis. In CCS’07: Proceedings of

the 14th ACM Conference on Computer and

Communications Security, pages 317–329, New York, NY,
USA, 2007. ACM.

[8] Chia Yuan Cho, Juan Caballero, Chris Grier, Vern Paxson,
and Dawn Song. Insights from the inside: A view of botnet
management from infiltration. In LEET’10: Proceedings of

the 3rd USENIX Workshop on Large-Scale Exploits and

Emergent Threats, pages 1–1, Berkeley, CA, USA, 2010.
USENIX Association.

[9] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model checking. MIT Press, Cambridge, MA, USA, 1999.

[10] Paolo Milani Comparetti, Gilbert Wondracek, Christopher
Kruegel, and Engin Kirda. Prospex: Protocol specification
extraction. In SP’09: Proceedings of the 2009 30th IEEE

Symposium on Security and Privacy, pages 110–125,
Washington, DC, USA, 2009. IEEE Computer Society.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms. The MIT
Press, 2nd edition, 2001.

[12] Weidong Cui, Jayanthkumar Kannan, and Helen J. Wang.
Discoverer: Automatic protocol reverse engineering from
network traces. In SS’07: Proceedings of 16th USENIX

Security Symposium, pages 1–14, Berkeley, CA, USA, 2007.
USENIX Association.

[13] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang,
and Luis Irún-Briz. Tupni: Automatic reverse engineering of
input formats. In CCS’08: Proceedings of the 15th ACM

Conference on Computer and Communications Security,
pages 391–402. ACM, Oct 2008.

[14] Colin de la Higuera. Grammatical Inference: Learning

Automata and Grammars. Cambridge University Press,
2010.

[15] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
the second-generation onion router. In SSYM’04:

Proceedings of the 13th conference on USENIX Security

Symposium, pages 21–21, Berkeley, CA, USA, 2004.
USENIX Association.

[16] E. Mark Gold. Complexity of automaton identification from
given data. Information and Control, 37(3):302–320, 1978.

[17] Julian B. Grizzard, Vikram Sharma, Chris Nunnery,
Brent ByungHoon Kang, and David Dagon. Peer-to-peer
botnets: overview and case study. In HotBots’07:

Proceedings of the 1st Workshop on Hot Topics in

Understanding Botnets, pages 1–1, Berkeley, CA, USA,
2007. USENIX Association.

[18] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee.
Botminer: clustering analysis of network traffic for protocol-
and structure-independent botnet detection. In SS’08:

Proceedings of the 17th conference on Security symposium,
pages 139–154, Berkeley, CA, USA, 2008. USENIX
Association.

[19] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong,
and Wenke Lee. Bothunter: detecting malware infection
through IDS-driven dialog correlation. In SS’07:

Proceedings of 16th USENIX Security Symposium on

USENIX Security Symposium, pages 1–16, Berkeley, CA,
USA, 2007. USENIX Association.

[20] Anubhav Gupta, K. L. McMillan, and Zhaohui Fu.
Automated assumption generation for compositional
verification. Form. Methods Syst. Des., 32(3):285–301, 2008.

[21] Tating Hsu, Guoqiang Shu, and David Lee. A model-based
approach to security flaw detection of network protocol
implementation. In ICNP’08: Proceedings of the 15th IEEE

International Conference on Network Protocols, pages
114–123, Oct 2008.

[22] Anestis Karasaridis, Brian Rexroad, and David Hoeflin.
Wide-scale botnet detection and characterization. In
HotBots’07: Proceedings of the 1st Workshop on Hot Topics

in Understanding Botnets, pages 7–7, Berkeley, CA, USA,
2007. USENIX Association.

[23] J. Klensin. RFC 5321: Simple Mail Transfer Protocol, Oct
2008.

[24] Andreas Kuehlmann and Florian Krohm. Equivalence
checking using cuts and heaps. In DAC’97: Proceedings of

the 34th annual Design Automation Conference, pages
263–268, New York, NY, USA, 1997. ACM.

[25] Kevin J. Lang. Faster algorithms for finding minimal
consistent DFAs. Technical report, NEC, 1999.

[26] George H. Mealy. A method for synthesizing sequential
circuits. Bell System Technical Journal, 34(5):1045–1079,
1955.

[27] Mehryar Mohri and Mark-Jan Nederhof. Regular
approximation of context-free grammars through
transformation. In Robustness in Language and Speech

Technology, pages 153–163. Kluwer Academic Publishers,
Dordrecht, 2001.

[28] E. F. Moore. Gedanken Experiments On Sequential
Machines. In Automata Studies, Annals of Mathematical

Studies, volume 34, pages 129–153, Princeton, NJ, USA,
1956. Princeton University Press.

[29] Vern Paxson. Bro: a system for detecting network intruders
in real-time. In SSYM’98: Proceedings of the 7th conference

on USENIX Security Symposium, pages 3–3, Berkeley, CA,
USA, 1998. USENIX Association.

[30] C. P. Pfleeger. State reduction in incompletely specified
finite-state machines. IEEE Transactions on Computers,
22(12):1099–1102, 1973.

[31] J. R. Quinlan. Induction of decision trees. Machine Learning,
1(1):81–106, 1986.

[32] R. L. Rivest and R. E. Schapire. Inference of finite automata
using homing sequences. In STOC’89: Proceedings of the

21st annual ACM symposium on Theory of computing, pages
411–420, New York, NY, USA, 1989. ACM.

[33] Muzammil Shahbaz and Roland Groz. Inferring Mealy
machines. In FM’09: Proceedings of the 2nd World

Congress on Formal Methods, pages 207–222, Berlin,
Heidelberg, 2009. Springer.

[34] B. A. Trakhtenbrot and Ya. M. Barzdin. Finite Automata,

Behavior and Synthesis. North Holland, Amsterdam, 1973.

[35] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf
Zugenmaier. Shield: vulnerability-driven network filters for
preventing known vulnerability exploits. SIGCOMM

Computer Communication Review, 34(4):193–204, 2004.

[36] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and
Mike Grace. ReFormat: Automatic Reverse Engineering of
Encrypted Messages. In ESORICS’09: Proceedings of the

14th European Symposium on Research in Computer

Security, volume 5789 of Lecture Notes in Computer

Science, pages 200–215. Springer, Sep 2009.

