
ABSTRACT
Sampling has been successfully used to identify performance
optimization opportunities. We would like to apply similar
techniques to check program correctness. Unfortunately, sampling
provides poor coverage of infrequently executed code, where bugs
often lurk. We describe an adaptive profiling scheme that addresses
this by sampling executions of code segments at a rate inversely
proportional to their execution frequency.

To validate our ideas, we have implemented SWAT, a novel
memory leak detection tool. SWAT traces program allocations/
frees to construct a heap model and uses our adaptive profiling
infrastructure to monitor loads/stores to these objects with low
overhead. SWAT reports ‘stale’ objects that have not been accessed
for a ‘long’ time as leaks. This allows it to find all leaks that
manifest during the current program execution. Since SWAT has
low runtime overhead (< 5%), and low space overhead (< 10% in
most cases and often less than 5%), it can be used to track leaks in
production code that take days to manifest. In addition to
identifying the allocations that leak memory, SWAT exposes where
the program last accessed the leaked data, which facilitates
debugging and fixing the leak. SWAT has been used by several
product groups at Microsoft for the past 18 months and has proved
effective at detecting leaks with a low false positive rate (<10%). 

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
reliability, statistical methods.

General Terms
Reliability, Verification, Performance, Measurement.

Keywords
Low-overhead monitoring, runtime analysis, memory leaks.

1.  INTRODUCTION
The complexity of current software and machine architectures has
made application profiling an important part of many performance
analysis and optimization frameworks. Coarse-grain program pro-
files are easily obtained by tracing events of interest, while fine-

grain profiles often require sampling techniques to reduce runtime
overhead.

With the growing interest in program correctness, researchers have
developed a variety of static analysis and runtime tools to detect
program errors. Many tools for runtime program checking, such as
Eraser (a data race detector) [19], and Purify (a memory leak tool)
[10], require monitoring program events of interest at a very fine
granularity. Consequently, these tools have high runtime overhead
(5–30X), which limits their use. 

We would like to use sampling to reduce the overhead of runtime
program checking tools. Unfortunately, while sampling provides
good coverage of events in frequently executed code segments,
bugs often lurk in rarely executed portions of a program. We
describe an adaptive profiling scheme that addresses this shortcom-
ing by sampling executions of code segments at a rate inversely
proportional to their execution frequency. Thus, rarely executed
code segments are effectively traced whereas frequently executed
code segments are sampled at a very low rate. This approach trades
the ability to collect more samples from frequently executed code
segments for more comprehensive code coverage, while maintain-
ing similar runtime overhead.

We informally characterize the types of program bugs most suited
to detection by a sampling approach using two criteria. If B is a pro-
gram bug that is associated with program event E, then sampling
event E is effective at detecting B if (1) when bug B occurs, then
event E does not occur, ensuring that sampling does not produce
any false negatives, and (2) if bug B is not present, then the number
of occurrences of event E should exceed the reciprocal of the sam-
pling rate, ensuring that the number of false positives reported is
low.

To validate our ideas, we have implemented SWAT, a novel mem-
ory leak detection tool. Memory is leaked when an allocated object
is not freed, but is never used again. SWAT predicts whether an
object is still going to be accessed in the future given its past history
of accesses. An object o, that is predicted not to be accessed any-
more until the end of the program, is called stale and identified as a
leak. SWAT traces program allocations/frees and samples data
accesses to heap objects using our low-overhead adaptive profiling
infrastructure. It reports ‘stale’ heap objects that have not been
accessed for a (user definable) ‘long’ time as leaks. SWAT has three
main advantages over the widely used Purify tool from Rational
[10]. It uses a unique strategy of identifying leaks based on object
staleness and is consequently able to find all leaks that Purify would
report, plus additional leaks (the amount of false positives reported
are low). In fact, SWAT’s strategy is guaranteed to find all leaks that
manifest during the given program execution. Next, since it uses
sampling, the overhead is significantly lower than Purify (5% Vs.
3–5X). This makes it possible to use SWAT to track leaks in pro-
duction code that take days to manifest. Finally, SWAT provides an
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indication of which program instruction last accessed the leaked
object, which often enables faster debugging and leak fixing.
SWAT has been used by several product groups at Microsoft for
the past 18 months and has proved effective at detecting leaks with
a low false positive rate (<10%). 

The three main contributions of this paper are:

• design and implementation of a sample-based adaptive profiling
scheme suitable for program checking. In addition, we informally
characterize the type of program errors that can be effectively
detected using sampling (Section 2).

• design and implementation of a novel memory leak detector,
SWAT, that uses our adaptive profiling framework to achieve low
overhead and has several advantages over state-of-the-art runtime
leak detectors (Section 3). 

• evaluation results, including real-use case studies, that demon-
strate that SWAT is effective at finding memory leaks with a low
false positive rate (< 10%), despite using a low enough sampling
rate to incur a runtime overhead of around 5% (Section 4).

2.  ADAPTIVE PROFILING
This section describes an implementation of adaptive profiling that
extends the bursty tracing infrastructure described by Hirzel and
Chilimbi [14]. Bursty tracing is a sampling infrastructure that can
switch between no program monitoring and complete event tracing
with very low overhead and is an extension of a sampling
framework described by Arnold and Ryder [2]. The frequency of
transitions between these two modes and the length of time spent
in complete tracing is controlled by two user specified sampling
counters. One of the drawbacks of bursty tracing is that its
sampling methodology may miss infrequently executed code
segments that are nevertheless important for identifying program
errors. Adaptive bursty tracing addresses this shortcoming by
starting out with full program tracing and adaptively tuning the
sampling rate for individual code segments, such that frequently
executed code regions are sampled at a progressively lower rate.
We first provide a brief overview of bursty tracing and then
describe adaptive bursty tracing.

2.1  Bursty Tracing
Bursty tracing is a sampling-based technology for low-overhead,
continuous program monitoring. Unlike traditional sampling,
bursty tracing can periodically capture complete program
execution detail (i.e., a ‘trace sample’) for short timeframes. Two
adjustable sampling counters control sample frequency—how
often a trace sample is collected—and sample size—and how big it
is. The primary advantage of bursty tracing over conventional
sampling is the temporal execution detail it provides that can be
invaluable for debugging and fixing detected program defects.
Further, bursty tracing permits additional control and flexibility by
allowing the trace sample extent to be adjusted in addition to
collection frequency.

We provide a brief overview of bursty tracing, which is described
in further detail elsewhere [14]. In the bursty tracing framework,
the code of each procedure is duplicated (see Figure 1). Both
versions of the code contain the original instructions, but only one
version is instrumented to also profile events of interest. Both
versions of the code periodically transfer control to dispatch
checks at procedure entries or loop back-edges. The dispatch
checks use a pair of counters, nCheck and nInstr, to decide in
which version of the code execution should continue.

At startup, nCheck is nCheck0 and nInstr is zero. Most of the time,
the checking code is executed, and nCheck is decremented at every
check. When it reaches zero, nInstr is initialized with nInstr0
(where nInstr0<<nCheck0) and the dispatch check transfers
control to the instrumented code. While in the instrumented code,
nInstr is decremented at every check. When it reaches zero,
nCheck is initialized with nCheck0 and control returns back to the
checking code.

The bursty tracing profiling framework does not require operating
system or hardware support and is deterministic. We implemented
it using Vulcan [20], which is a binary rewriting system for the
x86, and hence it does not require access to program source code
or recompilation. The profiling overhead is easy to control: there is
a basic overhead for the dispatch checks, and beyond that the
overhead is proportional to the sampling rate r = nInstr0/
(nCheck0+nInstr0). Via nCheck0 and nInstr0, we can freely chose
the burst length and the sampling rate. In our experience, the basic
runtime overhead of the dispatch checks is less than 5% and at a
sampling rate of 0.1% the instrumentation overhead is negligible.

2.2  Adaptive Bursty Tracing (ABT)
While bursty tracing captures temporal execution detail of
frequently executed code segments, many program defects only
manifest on rarely visited code regions that sampling is likely to
miss. Adaptive bursty tracing (ABT) addresses this shortcoming
by sampling executions of code segments at a rate inversely
proportional to their execution frequency. Thus rarely executed
code segments are essentially traced whereas frequently executed
code regions are sampled at a very low rate.

ABT maintains a per-dispatch check sampling rate rather than a
global sampling rate for all dispatch check points. Initially all
dispatch checks are sampled at a rate of 100% (i.e., full tracing).
Each time a dispatch check is executed its sampling rate is reduced
by an adjustable fractional amount (Decr) until a chosen lower
bound sampling rate is reached (Min). The formula we use is:
nCheck0(n) = (Decr(n - 1) - 1)*nInstr0 

If Decr = 10, and Min = 0.1%, this gives us sampling rates of
100% (nCheck0(1) = 0), 10% (nCheck0(2) = 9*nInstr0), 1%
(nCheck0(3) = 99*nInstr0), and 0.1% (nCheck0(4) = 999*nInstr0)
(as our sampling rate r = (nInstr0)/(nCheck0+nInstr0)). In the
steady state, rarely executed code segments are virtually traced
(sampled at close to 100%) while frequently executed code
segments are sampled at the lower bound sampling rate. This
approach trades the ability to collect more samples from frequently
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Figure 1.  Instrumentation for low-overhead temporal profiling
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executed code segments for more comprehensive code coverage. It
maintains similar runtime overhead by keeping the total number of
trace samples collected, roughly the same.

The counters nCheck0 and nInstr0 of the bursty tracing profiling
framework (and nCheck0, nInstr0, Decr, Min, for the ABT
framework) control its overhead and the amount of profiling
information it generates. For example, setting nCheck0 to 9900 and
nInstr0 to 100 results in a sampling rate of 100/10000=1% and a
burst length of 100 dynamic checks. 

The ABT framework is illustrated in Figure 2. Infrequent program
events, such as dynamic heap allocations and lock acquisitions, are
traced with conventional instrumentation (Record_Rare_Evnt()).
Frequent events that are too expensive to trace, such as data
references and branch executions, are monitored using ABT
(Sample_Freq_Evnt_i()). All these events are communicated to a
custom dll (Foo.dll) that either emits these to a log file for further
processing or analyzes them online and reports errors.

2.3  Discussion
Sampling techniques, such as the ABT technique, are well-suited
to detect many program errors, but not all. We can informally
characterize the class of program bugs amenable to detection by a
sampled approach with two criteria. If B is a bug that is associated
with program event E, then sampling event E is effective at
detecting B if:

Soundness condition: 

This condition says that if bug B occurs, then event E should not
occur, ensuring that sampling does not produce any false
negatives.

Preciseness condition: 

This states that if bug B is not present, then the number of
occurrences of event E should exceed the reciprocal of the
sampling rate, ensuring that the number of false positives reported
is low.

Many liveness properties meet both conditions. Detecting
uninitialized variables by sampling stores satisfies soundness but
not preciseness. Detecting data races using Eraser’s lockset

algorithm and sampling shared accesses does not satisfy soundness
and may or may not satisfy preciseness. Detecting buffer overruns
by sampling and checking memory accesses satisfies neither
condition.

3.  SWAT: DETECTING MEMORY LEAKS
To validate our ideas, we have implemented SWAT, a novel
memory leak detection tool that uses our ABT framework. We first
provide some background information on leak detection and then
describe SWAT.

3.1  Background
Memory is leaked when an allocated object is not freed, but is
never used again. The central question for a memory leak detector
is: Given a time t in the run of a program, and an object o, has o
been leaked? It is generally impossible to determine, at time t,
whether object o has been leaked or not. To answer this question,
we need to know whether the object will be used in the future or
freed before the program completes.

The question can only be definitely answered at the end of a pro-
gram run. At that point, any object that has not been freed (immor-
tal) is necessarily a leak. This approach has the drawback that
objects often are intentionally not freed at the end of a program
run, because the operating system will anyway reclaim the entire
heap of the terminating process. Thus a leak detector based on
immortal object identification will identify many uninteresting
leaks. In addition, for server programs that need to run 24x7,
objects that are not used but only freed at program termination
should probably be classified as leaks.

It is also possible to give a conservative answer to the question at
any point during program execution. One can distinguish between
objects that are guaranteed to be leaked, and objects that might be
leaked. Theoretically, the most precise conservative answer is to
determine whether an object o is dead at time t. An object o is
dead, if the program cannot reach any future state in which o is
going to be accessed. However, an object that is not dead, may or
may not be leaked. This is because for the object to be alive there
only needs to be one possible future program path with an access,
but the actual execution might take another path that does not
access the object.

A practical, but less precise (it will find fewer leaks) approach to
conservatively answer the question is to determine whether an
object o is unreachable at time t. An object o is unreachable, if
there is no reference chain to it from the root set (it is not reachable
starting from global and stack variables). At time t, any unreach-
able object o necessarily is also leaked (and dead). But a reachable
object may or may not be leaked.

Note that at a given time t, the set of leaked objects always
includes the set of dead objects, and the set of dead objects always
includes the set of unreachable objects.

The sample-based approach to memory leak detection described in
this paper does not always provide the correct answer to the ques-
tion whether object o is leaked at time t. It only provides an edu-
cated guess. But that guess can sometimes be even more useful
than a correct conservative answer that often would be ‘unknown’.

3.2  Overview
SWAT uses the following simple insight to detect memory leaks: if
a heap object has not been accessed for a ‘long’ time, then it is a
memory leak. This simple invariant ensures that SWAT detects all
leaks that manifest during the given runtime execution. However,

Figure 2.  Adaptive Bursty Tracing Framework
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there are two significant obstacles to implementing this staleness
policy within a practical memory leak tool. First, the overhead of
monitoring all heap data accesses can be prohibitive. Next, the
leaks reported could include a large number of false positives.
Perhaps, for these reasons, no existing memory leak tool uses this
‘staleness’ approach. 

SWAT uses our adaptive profiling infrastructure to monitor heap
accesses with low overhead. It uses a sampling rate of 0.1%, which
entails a runtime overhead of less than 5% on average. Regarding
false positives, our experience with SWAT indicates that tuning the
‘time elapsed1’ before an unaccessed heap object is reported as a
leak is sufficient. In addition, many of the remaining false positives
are of interest to developers since objects that have not been
accessed for a very long time often indicate inefficient use of
memory. Sampling the heap data accesses appears to have no
noticeable impact on the number of false positives. This is because
most heap objects are accessed multiple times and the sampling
will have to miss all of these accesses for an active object to be
mistakenly classified as a leak. We present supporting empirical
evidence later.

In more detail, SWAT operates as shown in Figure 3. swatinstr.exe
creates an instrumented version of the application, which is used in
place of the original. A mapping file is also created to help
associate program counter values with source code in the original
copy. The instrumented application communicates all heap
allocations/frees (Record_Alloc()) and a sampled set of heap
accesses (Sample_Load/Store()) obtained via our adaptive
profiling framework to a runtime dynamically loaded library
(swat.dll) as shown in Figure 4. The runtime DLL uses the heap
allocation/free information to maintain a model of the heap, which
it updates with the heap access information. Periodically, swat.dll
takes a snapshot, where it visits all objects in its heap models and
reports all objects that satisfy its staleness predicate as leaks. It is
able to associate the responsible heap allocation, all heap frees that
freed objects created at that allocation site, and most importantly
the ‘last access’, with each heap object reported as a leak. Our

experience indicates that this last access information is invaluable
for quickly debugging and fixing detected leaks. In addition, the
last access information enables quick determination of false
positives. The leak snapshots are postprocessed and visualized
through a GUI. The GUI includes a source code browser that
highlights the last access to a leaked object.

3.3  Heap Model
The purpose of the heap model is to keep track of information
about all allocated objects. The information maintained for an
object is called an object descriptor. An object descriptor contains
the object’s allocation site, last access time, and last access site.
The heap model has to implement the following interface in order
to maintain and provide access to this information:

AllocateObject(ip, startAddress, size)
FreeObject(ip, startAddress)
FindObject(ip, address)
GetObjectIterator()

The instrumentations invoke the first two functions whenever an
object is allocated or freed. Whenever AllocateObject is called, the
heap model stores the allocation information in the object
descriptor. The instrumentations of all the memory accessing
instructions invoke the FindObject function. The address they
provide to that function does not necessarily have to be the object’s
start address, but may point anywhere inside the object. The heap
model updates the last access site (ip) and time each time
FindObject is called. Since this function is invoked frequently, it is
crucial for it to have minimal overhead. Finally, the
GetObjectIterator provides a means to iterate over all currently
allocated objects, retrieving all the available information for each
object.

Various implementations of this interface are possible, but most of
them are not practical. The most straightforward would be an
inline-implementation, where the object descriptor is maintained in
the object’s header. A key issue with this approach would be how
to find the object’s start address, given a pointer pointing inside the
object. Another approach would be maintaining a hash table of
each possible address to the descriptor of the object spanning the
given address. This table would have one entry for each allocated
object, a considerable space overhead. A more advanced approach
would be to keep such a hash table for only the start addresses of
each object, maintaining a separate compact data structure that
maps from any address to the start address. Since many objects are
small, such a structure could encode the difference from an address
to the corresponding object’s start address in one or two bytes.1 time elapsed is measured in number of heap accesses.

Figure 3.  SWAT Infrastructure
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Our concrete implementation of the heap model uses a different
approach. We maintain a binary tree structure called an address
tree (see Figure 5). Each level in this tree of depth 32 represents
one bit in the 32 bits of an address. The root node represents the
most significant bit. Its two children represent the two sets of
addresses where the first bit is 0 or 1 respectively. To find the
descriptor for an object spanning a given address, the FindObject
function starts at the root of the tree and follows the path to the leaf
describing the given address.

Maintaining a complete binary tree with a leaf node for every used
heap address would require a large amount of memory. To reduce
this space overhead we allow an interior node whose addresses all
reference the same object to directly point to the descriptor of that
object (see Figure 6). This eliminates a large amount of leaf nodes
and their ancestors. The space savings are particularly big for large
and for well aligned objects. Since allocators often align objects to
4 byte boundaries (and thus objects’ start addresses and sizes often
are a multiple of 4) we essentially save all nodes on the lowest two
layers. But in contrast to other approaches that might exploit the 4
byte object alignment, our approach is flexible and still works in
the presence of unaligned objects.

The time overhead of the FindObject function is constant, given a
32 bit address and the resulting 32 bit address tree. In the worst
case we have to traverse 32 address tree nodes to reach the object
descriptor. Note that the top level of the address tree, and the most
frequently traversed address tree nodes are likely to reside in the
data cache, which keeps memory access costs down. In addition,
we batch and present tree operations in address sorted order to
exploit locality. Finally, we use a low sampling rate of 0.1% for our
experiments, which mitigates the impact of the FindObject
operation on overall program execution time.

3.4  Staleness Predicates
Our leak detector periodically traverses the heap model, trying to
identify leaked objects. The exact interval between traversals is
user-configurable. While not currently implemented, interactive
applications would probably benefit from scheduling these
traversals when the program is idle waiting for user input. In
addition, a leak report is always generated at application shutdown.
We use accesses rather than wall clock time to measure staleness.
This avoids labelling objects of an interactive application that is

left idle overnight as stale. As described in the previous subsection,
the heap model maintains information in the descriptor of each
heap object. Given this information, a staleness predicate guesses
whether the object is leaked or not. Figure 7 gives an overview of
three different staleness predicates.

The Never Accessed staleness predicate considers every object that
has never been accessed a leak. The Constant Time staleness
predicate bases its guess on the length of time (measured in terms
of observed data accesses) since the last access of an object. If that
time is above a constant threshold the object is considered to be
leaked. The Active Time predicate is similar to the constant time
predicate. The difference is that the threshold is not a constant, but
n times the active time of the object. The active time of an object is
the time between its first and its last access so far. The intuition
behind this predicate is that an object that has been active for a
long time is allowed to be inactive for a long time, before it is
considered a leak. 

3.5  Leak Reporting
A central question for any practical memory leak detector is what
to report to a user. The detector identifies leaked objects but these
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are caused by missing deallocation sites in the program. Since
these deallocation sites are absent, the detector cannot pinpoint
source code locations responsible for the leaked objects.
Consequently, most leak detectors only report the allocation site of
a leaked object. Insure++ also reports the point where the leaked
object became unreachable [17]. Our statistical leak detector
provides even more aggressive information with respect to where
an object was leaked. Since we sample object accesses and keep
track of the last access for staleness prediction, we are able to
report the last observed access site in addition to the allocation site
for each leaked object. Further, we report all deallocation sites of
objects that were allocated at the same site as the leaked object, if
any exist. This can further narrow down the region of code where
the leaked object should have been deallocated. 

3.6  Ordering Leaks
Our leak detector is not always correct. Sometimes it reports an
object as leaked even though it is still going to be accessed in the
future. In addition, it aggressively classifies unused objects as
leaked (unlike previous detectors that only classify unreachable or
immortal objects as leaked). This leads to the problem of false
positives, which we address by ordering the list of reported leaks.

Leaks are identified at the level of individual objects with which
we associate a last access site. They are grouped by allocation site.
We support three different leak list sorting orders—by number of
objects, by number of bytes, and by drag. An allocation site that
leaks many objects is likelier to include real leaks. Ordering by
number of leaked bytes ranks the more problematic leaks higher.
Finally, the true cost of a leak is not just how many bytes it leaked,
but the space-time product of leaked bytes multiplied by the time
the leaked objects used up space. This product, which represents
the opportunity cost of not reusing the leaked memory, is called the
leak’s drag. Ordering the leak list by drag ranks the most expensive
leaks at the top. Our experience indicates that first sorting the
allocation sites by number of leaked objects and then focusing on
high ranking leaks with the largest drag yields the best results.

3.7  Discussion
While collecting bursts rather than point samples provides little
advantage for detecting leaks, it provides contextual information
that can be useful while debugging leaks. SWAT has an option that
records program burst history at the last access site for leaked
objects.

The adaptive tracking of rarely executed code segments is critical
to SWAT. Without this, data objects that are not accessed in
frequently executed code segments would be erroneously reported
as leaks. Our first attempt at a staleness-based leak predictor used
bursty tracing and suffered from a large number of false positives.

4.  EXPERIMENTS
We evaluated SWAT across several dimensions. We performed
four sets of experiments to evaluate SWAT’s runtime and space
overhead, the impact of sampling on leak detection, and to evaluate
our staleness predicates. Finally we present case studies that
indicate that SWAT is effective at detecting memory leaks with low
false positives.

4.1  Benchmarks
We used the SPECInt2000 benchmarks for our experiments.
Measurements were performed by running the benchmarks on one
processor of a dual processor 2.7 GHz Pentium 4 PC with 2 GB
RAM running Windows XP. The SPEC benchmarks were run with
their largest data set (ref). All timing runs were performed five
times and the results were averaged. The observed variation across
runs was less than 2% unless otherwise noted. We performed three
sets of experiments to evaluate SWAT’s runtime overhead, the
impact of sampling on leak detection, and to evaluate our staleness
predicates.

4.1.1  Runtime Overhead
We measured the runtime overhead of SWAT using our adaptive
profiling scheme with a Decr value of 10 and Min values set to
0.01% and 0.1% respectively. nInstr0 was set to 10 to produce
bursts of length 10. The results are shown in Figure 8. In both
cases the runtime overhead was less than 5% for most of the
benchmarks. For these runs SWAT was configured to produce only
produced one leak report at the end, which was not included in the
execution time. As a result, the numbers reflect only the access
monitoring and heap model construction time.

4.1.2  Space Overhead
Figure 9 shows the space overhead incurred by running SWAT.
The data was obtained by taking multiple heap snapshots during
program execution and computing their average. Part of this
overhead is attributable to the address tree data structure used to
model the heap and the rest to the data associated with each heap
object to identify leaked objects as well as their last access site.
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With the sole exception of twolf, which has an extremely large
number of very small objects, the total space overhead is quite
small, averaging less than 10%. For many of the benchmarks (gap,
mcf, gcc, parser) the space overhead is lower than 0.1%.

4.1.3  Impact of Adaptive Profiling on Leak Detection
We ran the following experiment to evaluate false positives
introduced by sampling. First, we injected leaks into the
benchmarks by randomly removing 10% of all dynamic
deallocations. Next, we set the sampling rate to 100% and counted
the leaks that were detected using an IdleGt100Million references
staleness predicate. Then we measured the additional leaks
reported (false positives) at different adaptive sampling rates. The
results are shown in Figure 10. For sampling rates of 1% and 0.1%
the false positive rate is reasonably low. This is not completely
surprising given our observation in Section 2.3 that sampling is
well suited for errors that are associated with events that occur
frequently enough to be detected despite sampling. So as long as
non-leaked objects are accessed more often than 100 and 1000
times respectively, these are unlikely to be reported as false
positives.

4.1.4  Staleness Predicate Evaluation
To evaluate the different staleness predicates, we used the same
methodology of randomly removing 10% of all dynamic
deallocations and comparing the false positive rate against the
leaks reported by full tracing. The results are shown in Figure 11.
While the IdleGt1Billion predicate performs well, it may miss
leaks in programs that do not run for a long enough time. The
IdleGt100Million predicate performs almost as well and the
IdleGt10*active is comparable being slightly worse in most cases
but better in a few.

4.2  Case Studies
SWAT has been used by several product groups at Microsoft for
the past 18 months and has been effective at finding leaks with a
low false positive rate. We report on four representative case
studies—a large, interactive web software application, a
multimedia application, and two PC games.

4.2.1  Large Interactive Web Application
First, to test SWAT, we artificially injected 34 leaks in a large
interactive web application by randomly skipping frees at runtime
and ran the app for a couple of hours. SWAT correctly identified all
34 injected leaks with only one ‘potential’ false positive (this
turned out to be a real leak). Next, we applied SWAT to the original
application and gave this version to members of our research group
to use on a daily basis as a replacement. Since we lacked a
mechanism to capture and replay external inputs, we were unable
to report the runtime overhead incurred. However, the overhead of
running this version of the application was sufficiently low that it
was indistinguishable from the original version. In addition, as
reported in Table 1 the space overhead was extremely low. To date,
over a period of 6 months, SWAT has detected around 20
‘potential’ leaks (‘potential’ as they have not been verified yet by
the developers). 

4.2.2  3rd Party PC Game (Strategy)
We were contacted a couple of months prior to its ship date and
asked to run SWAT to identify memory leaks. The overhead of the
SWAT instrumented version of the game was sufficiently low that
it was playable (< 5%). Since state-of-the-art PC games are very
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Figure 10.  False positives introduced by sampling.
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% Runtime Overhead % Space Overhead

Benchmark Adaptive 0.01% Adaptive 0.1% Address tree Heap object data Total

Interactive Web App NA NA 0.18 0.27 0.45

PC Game (Strategy) 4.3 4.71 8.2 2.21 10.41

Multimedia App 4.78 5.23 0.0 0.13 0.13

PC Game (Simulation) 4.42 4.97 3.25 0.78 4.03

Table 1: SWAT overhead for real-world applications.
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resource intensive and push the limits of desktop performance, this
was a very encouraging result. The total space overhead was
around 10%. The leak report was generated from around two hours
of actual gameplay. SWAT reported several memory leaks. While
many were ‘false positives1’, these corresponded to heap objects
that had not been accessed for a very long time, suggesting
memory inefficiency. For example, cached objects that were never
subsequently accessed. After looking at the SWAT leak report, the
lead developer decide to rewrite the memory management routines
to track heap allocation better, despite being so close to the ship
date.

4.2.3  Multimedia Application
We applied SWAT to the latest beta version of a multimedia
application, one month before its scheduled release. As before, the
SWAT instrumented version of the application was
indistinguishable from the original version permitting long testing
scenarios that reflected actual use. SWAT detected 6 leaks in the
visual browser component of the application with no false
positives. These were reported to the developers and fixed prior to
shipping. 

4.2.4  First Party PC Game (Simulation)
We were asked to run SWAT as part of a code quality review. The
test scenario involved almost two hours of actual gameplay. We
captured and replayed the scenario to measure the runtime
overhead incurred and report this in Table 1. Both runtime and
space overhead were less than 5%. SWAT detected 5 ‘potential’
leaks (not yet verified by developers). We manually inspected the
relevant code and believe that these include no false positives.

4.2.5  Discussion
In all cases the overhead of running the SWAT instrumented binary
was low enough to permit monitoring real usage rather than using
short, contrived scenarios. Our experience with SWAT suggests
that it can be viably run all the time. Sampling is often criticized
for missing information. However, we believe such objections are
shortsighted as the total information gathered is the product of
sampling rate and the number of program instructions monitored.
Since lower sampling rates imply lower overhead, they encourage
more people to run monitored applications longer, possibly
producing more information overall. 

The ‘last access’ information included in the leak reports was
invaluable for fixing leaks as well as separating leaks from false
positives. For three of the applications, the number of false
positives was very low. However, as the case of the PC game
(Strategy) indicates, even false positives can be interesting. In this
case the SWAT data was used to re-architect and rewrite the
memory management routines rather than fix the leaks.

5.  RELATED WORK
The two closest areas of related work are bursty tracing and
memory leak detection.

5.1  Bursty Tracing
The idea of reducing the cost of potentially high-overhead
instrumentations by sampling was introduced by Arnold and Ryder

[2]. Chilimbi and Hirzel [14] improved upon this infrastructure to
allow the sampling of bursts of instrumentations, allowing for
temporal profiles. They applied their bursty tracing framework to
dynamic detection and prefetching of hot data streams [6]. We
extend their framework by dynamically increasing the coverage of
instrumentation in rarely executed code, while still achieving low
overhead.

Liblit et al. [15] extend the Arnold-Ryder framework in a different
dimension. Instead of uniformly spacing samples, they introduce a
mechanism to trigger samples based on a geometric distribution.
Their resulting data is a statistically rigorous fair random sample,
and thus amenable to a large domain of statistical analyses. They
too apply their framework to detect program errors. However, their
focus is on detecting the cause of errors from multiple runs of a
program, while our focus is on low-overhead program checkers
that detect specific types of bugs on individual program runs.

5.2  Memory Leak Detection
There exist three approaches to memory leak detection. First, static
analysis tools [11, 5] provide a way to identify leaking sites before
actually running the program. They can find leaks before the
program is deployed and do not cause any runtime overhead, but
their lack of dynamic information leads to conservative results that
include false positives and they cannot find all possible leaks.

Second, some dynamic tools [4,8,16,18] take, compare and inspect
snapshots of the heap and allow the interactive analysis of memory
consumption. They provide statistics about the amount of memory
allocated at various sites, and for various types or object sizes, and
they visualize the connectivity of heap objects, supporting the
search for the causes of leaked objects, particularly in runtime
environments with a garbage collector. 

And third, automatic dynamic tools provide a list of leaked objects
and leak sites at the end of the program run. Some of those tools
[1,21] only capture immortal objects. Thus they only need to
instrument the allocation functions. Others [10,9,7] capture
unreachable objects. They do this by instrumenting the allocation
functions, and by using a mark and sweep garbage collection
approach [3] to garbage detection. Insure++ [17] uses runtime
pointer tracking, a reference counting garbage collection approach,
to detect the point at which the last reference to an object
disappears. These tools either miss many leaks and/or incur high
overhead, which limits their applicability.

As Hirzel et al. [12, 13] show, the quality of the results of a
reachability-based leak detector largely depends on the type and
liveness accuracy of its reachability traversal. They find that the
liveness accuracy is more important. Our approach circumvents
the problem of a precise liveness analysis by dynamically
assessing the liveness of objects by observing accesses to those
objects. We are not aware of any other automatic dynamic memory
leak detection tool that captures leaks based on object accesses.
Our approach can potentially capture leaked objects that are still
reachable, and it does that with low enough overhead to be used in
a deployed system.

6.  FUTURE WORK
We plan on exploring applications of our adaptive profiling
framework to other program bugs. For some types of bugs, it may
only involve implementing a well known solution within our
adaptive profiling framework, to take advantage of the low
overhead monitoring capability. In other cases, such as SWAT, it
may involve attacking a problem with a completely new approach
that our adaptive profiling framework has made possible.

1 Many of the false positives would be considered real leaks if the
game is played only once, rather than multiple times in succession
without shutdown. In the test scenario, the game was played just
once.
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With respect to SWAT, we would like to evaluate the impact of
using an imperfect but more compact heap model. For programs
with many small objects, our current heap model still contains a
considerable number of address tree nodes. We could use a
compact encoding to map from an arbitrary address to the start
address of the object spanning that address, giving up precision
where that offset cannot be stored in the small constant amount of
space (e.g. a fraction of a byte) available per object.

Further, it would be interesting to compare our adaptive bursty
tracing approach to Liblit’s random sampling approach [15] within
our leak detector.

It would be interesting to empirically compare the usability of our
approach of identifying the site the leaked object was last accessed
to the more conservative Insure++ [17] approach of identifying the
site the object became unreachable. Our approach can identify the
earliest possible location where the object could be deallocated
(right after accessing it for the last time) for the given run. The
Insure++ approach identifies the latest possible location where the
object could be deallocated (right before loosing the last reference
to it). It would be interesting to combine both approaches, so, for
each leak, the user could see the allocation site, the site of the last
access, and the site the object became unreachable. Further, the
user could see all deallocation sites of other objects allocated at the
same allocation site. An extension to this would be to produce a
trace of the program path taken between the last access site and the
site the object became unreachable, giving the user the complete
set of program points where the deallocation could be placed to
prevent the leak.

7.  CONCLUSIONS
We have described an adaptive profiling framework for
implementing low-overhead runtime program checking tools. With
sufficiently low-overhead, such program checkers could ship with
production code and detect errors that occur during real use. We
informally characterize the types of program errors that can be
effectively detected using our framework. To validate our ideas,
we have implemented SWAT, a novel memory leak detection tool.
SWAT has been used by several product groups at Microsoft for
the past 18 months and has proved effective at detecting leaks with
a low false positive rate. 
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