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Chapter 1

Some applications of first-passage ideas to finance

Rémy Chicheportiche, Jean-Philippe Bouchaud

Capital Fund Management,

23–25, rue de l’Université, 75 007 Paris

Many problems in finance are related to first passage times. Among all
of them, we chose three on which we contributed personally. Our first
example relates Kolmogorov-Smirnov like goodness-of-fit tests, modified
in such a way that tail events and core events contribute equally to
the test (in the standard Kolmogorov-Smirnov, the tails contribute very
little to the measure of goodness-of-fit). We show that this problem can
be mapped onto that of a random walk inside moving walls. The second
example is the optimal time to sell an asset (modelled as a random walk
with drift) such that the sell time is as close as possible to the time at
which the asset reaches its maximum value. The last example concerns
optimal trading in the presence of transaction costs. In this case, the
optimal strategy is to wait until the predictor reaches (plus or minus) a
threshold value before buying or selling. The value of this threshold is
found by mapping the problem onto that of a random walk between two
walls.
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1. Introduction

Quantitative finance is the bounty land of statistics and probabilities.

Bachelier proposed to model price paths as random walks in 1900, but

his amazingly creative work was forgotten until the sixties, when Samuel-

son, Black & Scholes revived the Brownian motion framework, which is now

the cornerstone of modern mathematical finance. This is probably unfortu-

nate, because the continuous time, Gaussian random walk misses most of

the important “stylized facts” of financial markets — fat (power-law) tails,

intermittency and long memory, etc. Many of the results that hold true for

a Gaussian process go awry in reality — for example, the well-known per-

fect hedge of Black-Scholes, that would enable one to sell option contracts

without any risk, is a figment of the very specific assumptions of the model.

It is all too easy to get carried away with the beauty of a mathematical

model, and forget that it does not bear any relation with reality. This is of

special concern in the case of financial markets, where inadequate models

can contribute (and have contributed) to systemic risks [1].

This is however not to say that probabilistic methods are useless in this

context. Quite on the contrary, empirically motivated, faithful models do

help in controlling risks better and pricing derivative contracts more ac-

curately. Many questions that are relevant in practice can be addressed.

Some of them are directly related to first passage time problems, which is

our topic here. For example, one might be interested to invest in financial

markets with a profit objective, that would allow another project to be

financed. What is the distribution of the time one should wait until this

profit is reached? Conversely, one might be worried about the default of a

company or a bank. This is often modeled as the first passage time when

a random walk (the value of the asset) goes below a certain threshold (the

equity) [2]. Another example is that of “barrier options”, which disappear

when the price of the underlying hits a certain predefined value (the bar-

rier); a related issue is the early exercise of so-called American options,

when the option first reaches a value where it is optimal to exercise and

cash the current pay-off rather than let the option run to maturity [3].

We review here three examples of the use of first passage ideas in finance:

the design of a goodness-of-fit test whose law is the survival probability of

a process before hitting a barrier, the optimal time to sell an asset, and the

optimal value of the price threshold at which the expected benefit outweighs

linear transaction costs. Extensions and open questions related to these

three problems are briefly discussed in the conclusion.
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2. Weighted Kolmogorov-Smirnov tests and first pas-

sages [4]

Our first example concerns goodness-of-fit (GoF) testing, which is ubiqui-

tous in all fields of science and engineering. This is the problem of testing

whether a null-hypothesis theoretical probability distribution is compati-

ble with the empirical probability distribution of a sample of observations.

GoF tests are designed to assess quantitatively whether a sample of N ob-

servations can statistically be seen as a collection of N realizations of a

given probability law, or whether two such samples are drawn from the

same hypothetical distribution.

The best known theoretical result is due to Kolmogorov and Smirnov

(KS) [5, 6], and has led to the eponymous statistical test for an univari-

ate sample of independent draws. The major strength of this test lies in

the fact that the asymptotic distribution of its test statistics is completely

independent of the null-hypothesis cdf.

Several specific extensions have been studied (and/or are still under

scrutiny), including: different choices of distance measures, multivariate

samples, investigation of different parts of the distribution domain, depen-

dence in the successive draws (which is particularly important for financial

applications), etc.

This class of problems has a particular appeal for physicists since the

works of Doob [7] and Khmaladze [8], who showed how GoF testing is

related to stochastic processes. Finding the law of a test amounts to com-

puting a survival probability in a diffusion system. In a Markovian setting,

this is often achieved by treating a Fokker-Planck problem, which in turn

maps into a Schrödinger equation for a particle in a certain potential con-

fined by walls.

2.1. Empirical cumulative distribution and its fluctuations

Let X be a random vector of N independent and identically distributed

variables, with marginal cumulative distribution function (cdf) F . One

realization of X consists of a time series {x1, . . . , xn, . . . , xN} that exhibits

no persistence (see Ref. [9] when some non trivial dependence is present).

The empirical cumulative distribution function

FN (x) =
1

N

N∑

n=1

1{Xn≤x} (1)
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converges to the true CDF F as the sample size N tends to infinity. For

finite N , the expected value and fluctuations of FN (x) are

E[FN (x)] = F (x),

Cov(FN (x), FN (x′)) =
1

N
[F (min(x, x′))− F (x)F (x′)] .

The rescaled empirical CDF

YN (u) =
√
N

[
FN (F−1(u))− u

]
(2)

measures, for a given u ∈ [0, 1], the difference between the empirically

determined cdf of the X ’s and the theoretical one, evaluated at the u-th

quantile. It does not shrink to zero as N → ∞, and is therefore the quantity

on which any statistics for GoF testing is built.

Limit properties

One now defines the process Y (u) as the limit of YN (u) when N → ∞.

According to the Central Limit Theorem, it is Gaussian and its covariance

function is given by:

I(u, v) = min(u, v)− uv, (3)

which characterizes the so-called Brownian bridge, i.e. a Brownian motion

Y (u) such that Y (u=0) = Y (u=1) = 0. Interestingly, the function F does

not appear in Eq. (3) anymore, so the law of any functional of the limit

process Y is independent of the law of the underlying finite size sample.

This property is important for the design of universal GoF tests.

Norms over processes

In order to measure a limit distance between distributions, a norm ||.|| over
the space of continuous bridges needs to be chosen. Typical such norms are

the norm-2 (or ‘Cramer-von Mises’ distance)

||Y ||2 =

∫ 1

0

Y (u)2du,

as the bridge is always integrable, or the norm-sup (also called the Kol-

mogorov distance)

||Y ||∞ = sup
u∈[0,1]

|Y (u)|,

as the bridge always reaches an extremal value.
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Unfortunately, both these norms mechanically overweight the core val-

ues u ≈ 1/2 and disfavor the tails u ≈ 0, 1: since the variance of Y (u) is zero

at both extremes and maximal in the central value, the major contribution

to ||Y || indeed comes from the central region and not from the tails. To

alleviate this effect, in particular when the GoF test is intended to investi-

gate a specific region of the domain, it is preferable to introduce additional

weights and study ||Y√
ψ|| rather than ||Y || itself. Anderson and Darling

show in Ref. [10] that the solution to the problem with the Cramer-von

Mises norm and arbitrary weights ψ is obtained by spectral decomposi-

tion of the covariance kernel. They design an eponymous test [11] with

the specific choice of ψ(u) = 1/I(u, u) equal to the inverse variance, which

equi-weights all quantiles of the distribution to be tested. We analyze here

the case of the same weights but with the Kolmogorov distance.

So again Y (u) is a Brownian bridge, i.e. a centered Gaussian process on

u ∈ [0, 1] with covariance function I(u, v) given in Eq. (3). In particular,

Y (0) = Y (1) = 0 with probability equal to 1, no matter how distant F is

from the sample cdf around the core values. In order to put more emphasis

on specific regions of the domain, let us weight the Brownian bridge as

follows: for given a ∈]0, 1[ and b ∈ [a, 1[, we define

ỹ(u) = y(u) ·
{√

ψ(u) , a ≤ u ≤ b

0 , otherwise.
(4)

We will characterize the law of the supremum K(a, b) ≡ supu∈[a,b] |ỹ(u)|:

P<(k|a, b) ≡ P[K(a, b) ≤ k] = P[|ỹ(u)| ≤ k, ∀u ∈ [a, b]] .

2.2. The equi-weighted Brownian bridge:

Kolmogorov-Smirnov

In the case of a constant weight, corresponding to the classical KS test, the

probability P<(k; 0, 1) is well defined and has the well known KS form [5]:

P<(k; 0, 1) = 1− 2

∞∑

n=1

(−1)n−1e−2n2k2

, (5)

which, as expected, grows from 0 to 1 as k increases. The value k∗ such

that this probability is 95% is k∗ ≈ 1.358 [6]. This can be interpreted as

follows: if, for a data set of size N , the maximum value of |YN (u)| is larger
than ≈ 1.358, then the hypothesis that the proposed distribution is a “good

fit” can be rejected with 95% confidence.
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Diffusion in a cage with fixed walls

The Brownian bridge Y is nothing else than a Brownian motion with im-

posed terminal condition, and can be written as Y (u) = X(u) − uX(1)

where X is a Brownian motion. The survival probability of Y in a cage

with absorbing walls can be found by counting the number of Brownian

paths that go from Y (0) = 0 to Y (1) = 0 without ever hitting the barriers.

More precisely, the survival probability of the Brownian bridge in the same

stripe can be computed as f1(0; k)/f1(0;∞), where fu(y; k) is the transi-

tion kernel of the Brownian motion within the allowed region [−k, k]. It

satisfies the simple Fokker-Planck equation
{
∂ufu(y; k) =

1

2
∂2yfu(y; k)

fu(±k; k) = 0
, ∀u ∈ [0, 1].

By spectral decomposition of the Laplacian, the solution is found to be

fu(y; k) =
1

k

∑

n∈Z

e−Enu cos
(√

2En y
)
, where En =

1

2

(
(2n−1)π

2k

)2

and the free propagator in the limit k → ∞ is the usual

fu(y;∞) =
1√
2πu

e−
y2

2u ,

so that the survival probability of the constrained Brownian bridge is

P<(k; 0, 1) =

√
2π

k

∑

n∈Z

exp

(
− (2n−1)2π2

8k2

)
. (6)

Although it looks different from Eq. (5), the two expressions can be shown

to be exactly identical. But the above proof looks to us way easier than

the canonical ones [10].

Diffusion in a cage with moving walls

The problem can be looked at differently. Under the following change of

variable and time

W (t) = (1 + t)Y

(
t

1 + t

)
, t =

u

1− u
∈
[

a

1− a
,

b

1− b

]
, (7)

the problem can be transformed into that of a Brownian diffusion inside a

box with walls moving at constant velocity. Indeed, one can check that

Cov
(
W (t),W (t′)

)
= min(t, t′),
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and that P<(k|0, 1) can be now written as

P<(k|0, ) = P[|W (t)| ≤ k (1 + t), ∀t ∈ [0,∞[] .

Since the walls expand as ∼ t faster than the diffusive particle can move

(∼
√
t), the survival probability converges to a positive value, which is again

given by the usual Kolmogorov distribution (5) [12–14].

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

y(
u)

 
ψ

(u
)

+ k

− k

t

w
(t)

=
(1

+
t) 

y 
 

t

1
+

t 
+ k (1 + t)

− k (1 + t)

0

0 ∞

Fig. 1. The equi-weighted Brownian bridge, ψ(u) = 1. The time-changed rescaled
process lives in a geometry with boundaries receding at constant speed.

2.3. The variance-weighted Brownian bridge:

Accounting for the tails

As mentioned above, the classical KS test is only weakly sensitive to the

quality of the fit in the tails of the distribution, when it is often these

tail events (corresponding to centennial floods, devastating earthquakes,

financial crashes, etc.) that one is most concerned with (see, e.g., Ref. [15]).

A simple and elegant GoF test for the tails only can be designed starting

with digital weights in the form ψ(u; a) = 1{u≥a} or ψ(u; b) = 1{u≤b} for

upper and lower tail, respectively. The corresponding test laws can be

read off Eq. (5.9) in Ref. [10].a Investigation of both tails is attained with

ψ(u; q) = 1{u≤1−q} + 1{u≥q} (where q > 1
2 ).

aThe quantity M appearing there is the volume under the normal bivariate surface
between specific bounds, and it takes a very convenient form in the unilateral cases
1

2
≤ a ≤ u ≤ 1 and 0 ≤ u ≤ b ≤ 1

2
. Mind the missing j exponentiating the alternating

(−1) factor.
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Here we rather focus on a GoF test for a univariate sample of sizeN ≫ 1,

with the Kolmogorov distance but equi-weighted quantiles, which is equally

sensitive to all regions of the distribution.b We unify two earlier attempts

at finding asymptotic solutions, one by Anderson and Darling in 1952 [10]

and a more recent, seemingly unrelated one that deals with “life and death

of a particle in an expanding cage” by Krapivsky and Redner [12, 16]. We

present here the exact asymptotic solution of the corresponding stochastic

problem, and deduce from it the precise formulation of the GoF test, which

is of a fundamentally different nature than the KS test.

So in order to zoom on the tiny differences in the tails of the Brownian

bridge, we weight it as explained earlier, with its variance

ψ(u) =
1

u (1− u)
.

Solutions for the distributions of such variance-weighted Kolmogorov-

Smirnov statistics were studied by Noé, leading to the laws of the one-

sided [17] and two-sided [18] finite sample tests. They were later generalized

and tabulated numerically by Niederhausen [19, 20]. However, although

exact and appropriate for small samples, these solutions rely on recursive

relations and are not in closed form. We instead come up with an analytic

closed-form solution for large samples that relies on an elegant analogy from

statistical physics.

Diffusion in a cage with moving walls

After performing the above change of variable (7) that converts a Brownian

bridge into a Brownian motion, P<(k|a, b) can be written as

P<(k|a, b) = P

[
|W (t)| ≤ k

√
t, ∀t ∈ [ a

1−a ,
b

1−b ]
]
.

The problem with initial time a
1−a = 0 and horizon time b

1−b = T

has been treated by Krapivsky and Redner in Ref. [12] as the survival

probability S(T ; k =
√

A
2D ) of a Brownian particle diffusing with constant

D in a cage with walls expanding as
√
At. Their result is that for large T ,

S(T ; k) ≡ P<(k|0, T
1+T ) ∝ T−θ(k).

They obtain analytical expressions for θ(k) in both limits k → 0 and

k → ∞. The limit solutions of the very same differential problem were

bOther choices of ψ generally result in much harder problems.
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found earlier by Turban for the critical behavior of the directed self-avoiding

walk in parabolic geometries [21].

We take here a slightly different route, suggested (but not finalized) by

Anderson and Darling in Ref. [10]. Our specific contributions are: (i) we

treat the general case a > 0 for any k; (ii) we explicitly compute the k-

dependence of both the exponent and the prefactor of the power-law decay;

and (iii) we provide the link with the theory of GoF tests and compute the

pre-asymptotic distribution when ]a, b[→]0, 1[ of the weighted Kolmogorov-

Smirnov test statistics.
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Fig. 2. The variance-weighted Brownian bridge, ψ(u) = 1/[u(1−u)]. The time-changed
rescaled process lives in a geometry with boundaries receding as ∼

√
t.

Mean-reversion in a cage with fixed walls

Introducing now the new time change τ = ln
√

1−a
a t, the variable Z(τ) =

W (t)/
√
t is a stationary Ornstein-Uhlenbeck process on [0, T ] where

T = ln

√
b (1− a)

a (1− b)
, (8)

and

Cov
(
Z(τ), Z(τ ′)

)
= e−|τ−τ ′|.

Its dynamics is described by the stochastic differential equation

dZ(T ) = −Z(T )dT +
√
2 dB(T ), (9)
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with B(T ) an independent Wiener process. The initial condition for T = 0

(corresponding to b = a) is Z(0) = Y (a)/
√
V[Y (a)], a random Gaussian

variable of zero mean and unit variance. The distribution P<(k|a, b) can

now be understood as the unconditional survival probability of a mean-

reverting particle in a cage with fixed absorbing walls:

P<(k|T ) = P[−k ≤ Z(τ) ≤ k, ∀τ ∈ [0, T ]]

=

∫ k

−k

fT (z; k) dz,

where

fT (z; k) dz = P
[
Z(T ) ∈ [z, z + dz[| {Z(τ)}τ<T

]

is the density probability of the particle being at z at time T , when walls

are in ±k. Its dependence on k, although not explicit on the right hand

side, is due to the boundary condition associated with the absorbing walls

(it will be dropped in the following for the sake of readability)c.

The Fokker-Planck equation governing the evolution of the density fT (z)

reads

∂τfτ (z) = ∂z [z fτ (z)] + ∂2z [fτ (z)] , 0 < τ ≤ T.

Calling HFP the second order differential operator −
[
1+ z∂z + ∂2z

]
, the

full problem thus amounts to finding the general solution of
{−∂τfτ (z) = HFP(z)fτ (z)

fτ (±k) = 0, ∀τ ∈ [0, T ]
.

We have explicitly introduced a minus sign since we expect that the density

decays with time in an absorption problem. Because of the term z∂z, HFP is

not hermitian and thus cannot be diagonalized. However, as is well known,

one can define fτ (z) = e−
z2

4 φτ (z) and the Fokker-Planck equation becomes

{−∂τφτ (z) =
[
−∂2z + 1

4z
2 − 1

21
]
φτ (z)

φτ (±k) = 0, ∀τ ∈ [0, T ]
,

Its Green’s function, i.e. the (separable) solution conditionally on the initial

position (zi, Ti), is the superposition of all modes

Gφ(z, T | zi, Ti) =
∑

ν

e−θν(T−Ti)ϕ̂ν(z)ϕ̂ν(zi),

cIn particular, P<(k|0) = erf
(

k√
2

)
.
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where ϕ̂ν are the normalized solutions of the stationary Schrödinger equa-

tion
{[

−∂2z + 1
4z

2
]
ϕν(z) =

(
θν +

1
2

)
ϕν(z)

ϕν(±k) = 0
,

each decaying with its own energy θν , where ν labels the different solutions

with increasing eigenvalues, and the set of eigenfunctions {ϕ̂ν} defines an

orthonormal basis of the Hilbert space on which HS(z) =
[
−∂2z + 1

4z
2
]
acts.

In particular,
∑

ν

ϕ̂ν(z)ϕ̂ν(z
′) = δ(z − z′), (10)

so that indeed Gφ(z, Ti | zi, Ti) = δ(z − zi), and the general solution writes

fT (zT ; k) =

∫ k

−k

e
z2
i
−z2

T
4 Gφ(zT , T | zi, Ti) f0(zi) dzi,

where Ti = 0, which corresponds to the case b = a in Eq. (4), and f0 is the

distribution of the initial value zi which is here, as noted above, Gaussian

with unit variance.

HS figures out an harmonic oscillator of mass 1
2 and frequency ω = 1√

2
within an infinitely deep well of width 2k: its eigenfunctions are parabolic

cylinder functions [22, 23]

y+(θ; z) = e−
z2

4 1F1

(
− θ

2 ,
1
2 ,

z2

2

)

y−(θ; z) = z e−
z2

4 1F1

(
1−θ
2 , 32 ,

z2

2

)

properly normalized. The only acceptable solutions for a given problem

are the linear combinations of y+ and y− which satisfy orthonormality (10)

and the boundary conditions: for periodic boundary conditions, only the

integer values of θ would be allowed, whereas with our Dirichlet boundaries

|ϕ̂ν(k)| = −|ϕ̂ν(−k)| = 0, real non-integer eigenvalues θ are allowed.For in-

stance, the fundamental level ν = 0 is expected to be the symmetric solution

ϕ̂0(z) ∝ y+(θ0; z) with θ0 the smallest possible value compatible with the

boundary condition:

θ0(k) = inf
θ>0

{
θ : y+(θ; k) = 0

}
. (11)

In what follows, it will be more convenient to make the k-dependence ex-

plicit, and a hat will denote the solution with the normalization relevant to
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our problem, namely ϕ̂0(z; k) = y+(θ0(k); z)/||y+||k, with the norm

||y+||2k ≡
∫ k

−k

y+(θ0(k); z)
2 dz,

so that
∫ k

−k
ϕ̂ν(z; k)

2 dz = 1.

Asymptotic survival rate

Denoting by ∆ν(k) ≡ [θν(k) − θ0(k)] the gap between the excited levels

and the fundamental, the higher energy modes ϕ̂ν cease to contribute to

the Green’s function when ∆νT ≫ 1, and their contributions to the above

sum die out exponentially as T grows. Eventually, only the lowest energy

mode θ0(k) remains, and the solution tends to

fT (z; k) = A(k) e−
z2

4 ϕ̂0(z; k) e
−θ0(k)T ,

when T ≫ (∆1)
−1, with

A(k) =

∫ k

−k

e
z2
i
4 ϕ̂0(zi; k)f0(zi) dzi. (12)

Let us come back to the initial problem of the weighted Brownian bridge

reaching its extremal value in [a, b]. If we are interested in the limit case

where a is arbitrarily close to 0 and b close to 1, then T → ∞ and the

solution is thus given by

P<(k|T ) = A(k) e−θ0(k)T

∫ k

−k

e−
z2

4 ϕ̂0(z; k) dz

= Ã(k) e−θ0(k)T ,

with Ã(k) ≡
√
2πA(k)2.

We now compute explicitly the limit behavior of both θ0(k) and Ã(k).

k → ∞ As k goes to infinity, the absorption rate θ0(k) is expected

to converge toward 0: intuitively, an infinitely far barrier will not absorb

anything. At the same time, P<(k|T ) must tend to 1 in that limit. So Ã(k)

necessarily tends to unity. Indeed,

θ0(k)
k→∞−−−−→

√
2

π
k e−

k2

2 → 0, (13)

Ã(k)
k→∞−−−−→

(∫ ∞

−∞
ϕ̂0(z;∞)2 dz

)2

= 1.
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In principle, we see from Eq. (12) that corrections to the latter arise

both (and jointly) from the functional relative difference of the solution

ǫ(z; k) = y+(θ0(k); z)/y+(0; z)− 1, and from the finite integration limits

(±k instead of ±∞). However, it turns out that the correction of the first

kind is of second order in ǫ, see [4]. The correction to A(k) is thus domi-

nated by the finite integration limits ±k, so that

Ã(k → ∞) ≈ erf

(
k√
2

)2

. (14)

k → 0 For small k, the system behaves like a free particle in a sharp

and infinitely deep well, since the quadratic potential is almost flat around

0. The fundamental mode becomes then

ϕ̂0(z; k → 0) =
1√
k
cos

(πz
2k

)
,

and consequently

θ0(k)
k→0−−−→ π2

4k2
− 1

2
, (15)

Ã(k)
k→0−−−→ 16

π2
√
2π
k. (16)

We show in Fig. 3 the functions θ0(k) and Ã(k) computed numerically

from the exact solution, together with their asymptotic analytic expres-

sions. In intermediate values of k (roughly between 0.5 and 3) these limit

expressions fail to reproduce the exact solution.

Higher modes and validity of the asymptotic (N ≫ 1) solution

Higher modes ν > 0 with energy gaps ∆ν . 1/T must in principle be kept

in the pre-asymptotic computation. This, however, is irrelevant in practice

since the gap θ1 − θ0 is never small. Indeed, ϕ̂1(z; k) is proportional to the

asymmetric solution y−(θ1(k); z) and its energy

θ1(k) = inf
θ>θ0(k)

{
θ : y−(θ; k) = 0

}

is found numerically to be very close to 1 + 4θ0(k). In particular, ∆1 > 1

(as we illustrate in Fig. 4) and thus T∆1 ≫ 1 will always be satisfied in

cases of interest.
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2.3.1. Back to GoF testing

Let us now come back to GoF testing. In order to convert the above

calculations into a meaningful test, one must specify values of a and b. The

natural choice would be a = 1/N , corresponding to the min of the sample

series since F (min xn) ≈ FN (min xn) = 1
N . Eq. (8) above motivates a

slightly different value of a = 1/(N +1) and b = 1 − a, such that the

relevant value of T is given correspondingly by

T = ln

√
b (1− a)

a (1− b)
= lnN.

This leads to our central result for the cdf of the weighted maximal Kol-

mogorov distance K( 1
N+1 ,

N
N+1 ) under the hypothesis that the tested and

the true distributions coincide:

S(N ; k) = P<(k| lnN) = Ã(k)N−θ0(k) , (17)

which is valid whenever N ≫ 1 since, as we discussed above, the energy

gap ∆1 is greater than unity.

The final cumulative distribution function (the test law) is depicted in

Fig. 5 for different values of the sample size N . Contrarily to the standard

KS case, this distribution still depends on N : as N grows toward infinity,

the curve is shifted to the right, and eventually S(∞; k) is zero for any k. In

particular, the threshold value k∗ corresponding to a 95% confidence level

(represented as a horizontal grey line) increases with N . Since for large N ,

k∗ ≫ 1 one can use the asymptotic expansion above, which soon becomes

quite accurate, as shown in Fig. 5. This leads to:

θ0(k
∗) ≈ − ln 0.95

lnN
≈

√
2

π
k∗ e−

k∗2

2 ,

which gives k∗ ≈ 3.439, 3.529, 3.597, 3.651 for, respectively, N =

103, 104, 105, 106. For exponentially large N and to logarithmic accuracy,

one has: k∗ ∼
√
2 ln(lnN). This variation is very slow, but one sees that

as a matter of principle, the “acceptable” maximal value of the weighted

distance is much larger (for large N) than in the KS case.
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Fig. 3. Left: Dependence of the exponent θ0 on k; similar to Fig. 2 in Ref. [12], but
in lin-log scale; see in particular Eqs. (9b) and (12) there. Right: Dependence of the
prefactor Ã on k. The red solid lines illustrate the analytical behavior in the limiting
cases k → 0 and k → ∞.
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Fig. 4. 1/∆1(k) saturates to 1, so
that the condition N ≫ exp[1/∆1(k)]
is virtually always satisfied.
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Fig. 5. Dependence of S(N ; k) on k
for N = 103, 104, 105, 106 (from left
to right). The red solid lines illustrate
the analytical behavior in the limiting
cases k → 0 and k → ∞.
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3. Optimal time to sell a stockd

Consider the problem of holding a stock at an initial date t = 0, and hoping

to sell it back at a time t = τ before a deadline t = T . The goal is to find

the ex ante optimal selling time τ , i.e. take a decision at t = 0 as of when

to sell it in the future for optimal profit. If the (log-)price can be modelled

as a stationary random walk, this is not a restriction of generality, since at

any later time the problem is identical with however a reduced horizon.

3.1. Minimizing the expected distance to the maximum

In technical terms, we aim at minimizing the expected (relative) spread

S(τ ;T ) =
MT −Xτ

MT

between the instantaneous price Xτ and the ex post realized maximum over

the allowed horizon MT = max{Xt, t ∈ [0, T ]}.
In order for this forward-looking problem to be handled analytically,

we impose that the price process follows a (possibly drifted) geometric

Brownian motion Xt = ext with

dxt = µ dt+ σ dBt or ẋ = µ+ ση

where Bt in the Stochastic Differential Equation (left) is a Wiener process,

and η = dBt

dt in the Langevin equation (right) is a standard White Gaussian

Noise. We rewrite the maximum value as MT = emT with obviously mT =

max{xt, t ∈ [0, T ]}. The problem is clearly invariant under a shift of both

xt and mT , so that we can arbitrarily set x0 = 0.

The optimal time to sell is then defined as the solution of the minimiza-

tion problem

τ∗ = argmin
τ∈[0,T ]

E[lnS(τ ;T )] = argmin
τ∈[0,T ]

E[s(τ ;T )]

where s(τ ;T ) = mT − xτ . The expectation estimator is clearly inter-

temporal, and the probability distribution function Pµ of s(τ ;T ) can be

written in terms of the joint density fµ of (xτ ,mT ) as

Pµ(s; τ, T ) =

∫ ∞

0

∫ ∞

−∞
fµ(x,m; τ, T ) δ(m− x− s) dxdm

=

∫ ∞

0

fµ(m− s,m; τ, T ) dm. (18)

dJoint work with S. Majumdar [24], motivated by a paper by Shiryaev, Xu and Zhou [25].
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This is equivalent to writing Pµ(s; τ, T ) =
∫
dFµ(m − s,m; τ, T ), with the

(partial) cumulative distribution function

Fµ(x,m; τ, T ) = P[xτ = x,mT ≤ m]

counting the fraction of the paths arriving in [x, x + dx] at time τ among

all paths never crossing m from below over the whole horizon [0, T ]. It

is expressed in terms of the causal propagator Gµ as the probability of

arriving in x at time τ without ever hitting m, and then arriving anywhere

below m in the remaining time T − τ :

Fµ(x,m; τ, T ) = Gµ(x, τ ;m)

∫ m

−∞
Gµ(x

′, T − τ ;m− x) dx′. (19)

The propagator Gµ(x, τ ;m) describes a µ-drifted diffusion close to a

fixed absorbing boundary, or equivalently a pure diffusion close to a bound-

ary moving at constant velocity (“daredevil at the edge of a receding

cliff”, [12]), see Fig. 6. It can be written in terms of the propagator G0

of the zero-drift diffusion:

Gµ(x, t;m) = exp

(
−µ

2 − 2µx

2σ2

)
G0(x, t;m),

where G0 can be computed in several ways — method of images [16, 26],

path-integral method [24, 27], solution of the Fokker-Planck equation.

The solution writes (up to a normalizing constant) as the difference

G0(x, t;m) ∝ G0(x, t;∞) −G0(x− 2m, t;∞) between the free propagator

G0(x, t;∞) =
1√

2πσ2t
exp

(
− (x− x0)

2

2σ2t

)

with initial positions at x0 = 0 and x0 = 2m. As expected, G0(m, t;m) = 0

at all times, saying that the probability of presence at the boundary is nil.

Once Gµ is known, the joint distribution fµ of xτ and mT is obtained

by differentiating Eq. (19) with respect to m, and the distribution of the

spread is found from Eq. (18) to be

Pµ(s; τ, T ) = aµ(s; τ) b−µ(s, T − τ) + a−µ(s;T − τ) bµ(s, τ) , (20)

where

aµ(s; τ) =
µ

2σ2
exp

(
−2sµ

σ2

)
erfc

(
s− µτ√
2σ2τ

)
+

1√
2πσ2τ

exp

(
− (s+ µτ)2

2σ2τ

)

bµ(s; τ) = − exp

(
−2sµ

σ2

)
erfc

(
s− µτ√
2σ2τ

)
+ erfc

(
− s+ µτ√

2σ2τ

)
.
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Finally, the expected spread is

E[s(τ, T )] =

∫ ∞

0

sPµ(s; τ, T ) ds =

∫∫ ∞

0

s fµ(m− s,m; τ, T ) dm ds, (21)

and the optimal τ∗ is found by minimizing this function with respect to τ :

τ∗ =

{
T , µ ≥ 0

0 , µ ≤ 0
. (22)

It is degenerate at µ = 0 where both τ∗ = 0 and τ∗ = T are optimal.

This result states in technical terms a very intuitive truism: whenever the

log-prices are expected to increase in average (µ > 0) one should keep

the stock as long as possible, and conversely if the log-prices are expected

to fall (µ < 0) one should sell immediately. It should not be surprising

that τ∗ is not affected by the value of the so-called “volatility” parameter

σ, since the optimization program only focused on “maximizing the gain”

without controlling for the encountered risk, and thus the solution applies

to a risk-neutral agent only.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

t [units of T]

x(
t) 

[u
ni

ts
 o

f σ
]

m

µ

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

t [units of T]

x(
t)

−
µ 

t [
un

its
 o

f σ
]

m − µ t

Fig. 6. Illustration for a positive drift (µ > 0). In the case where µ < 0, the upper
barrier moves away linearly. See Sect. 2.2 page 5 for an application of the bilateral case.

3.2. Maximizing the occurrence time probability of maxi-

mum

Alternatively to minimizing the spread s(τ ;T ) between the expected max-

imum mT and the log-price xτ at the selling time, one can try to maximize



June 14, 2013 0:8 World Scientific Review Volume - 9in x 6in FPTinFinance

Some applications of first-passage ideas to finance 19

the probability pµ(τ ;T )dτ = dP[xτ = mT ] that mT will occur at time τ ,

whatever value it takes. But the joint probability that the global maximum

over [0, T ] has a value mT = m, and that this maximum is reached for the

first (and in fact only) time at t = τ is nothing else than fµ(m,m; τ, T ).

In order to avoid the issue of infinite crossings of the continuous Brown-

ian motion [24, 28, 29], we allow for an infinitesimal spread s = m− x that

we eventually take to 0:

pµ(τ ;T ) ∝
∫ ∞

0

lim
s→0

fµ(m− s,m; τ, T ) dm = Pµ(0
+; τ, T ),

with Pµ given in Eq. (20). Noticing that aµ converges to a finite value

aµ(0, τ) when s→ 0, and that the expansion of bµ to first order in s around

0 is bµ(s→ 0, τ) ≈ 4s aµ(0, τ), we have

Pµ(s → 0; τ, T ) = 8s aµ(0, τ) a−µ(0, T − τ)

and finally, normalizing with
∫ T

0 Pµ(s; τ, T )dτ , we get

pµ(τ ;T ) = 2σ2 aµ(0, τ) a−µ(0, T − τ) . (23)

Notice that when µ = 0 the function a0(s, τ) is the centered normal dis-

tribution with variance σ2τ . In particular a0(0, τ) = 1/
√
2πσ2τ and one

recovers Lévy’s result [30]:

p0(τ ;T ) =
1

π

1√
τ (T − τ)

,

with two global maxima at τ⋆ = 0 and τ⋆ = T . For non zero µ’s, the

distribution still have inverse square-root singularities both at τ = 0 and

τ = T , but with unequal amplitudes. For µ < 0, the amplitude of the τ = 0

singularity is larger than that of the τ = T singularity, and vice-versa when

µ > 0. Therefore one concludes that:

τm = argmax
τ∈[0,T ]

pµ(τ ;T ) =

{
T , µ ≥ 0

0 , µ ≤ 0
(24)

and is thus equal to τ∗, see Eq. (22).

Whereas the minimization program of the previous section embedded

the information of all the possible gaps s (as revealed by Eq. (21)), max-

imizing the occurrence time distribution only cares for the infinitesimal

proximity of the maximum s = m − x → 0. Nevertheless, although the

objective function is not the same (minimize the spread or maximize the

probability), the solution of the optimal time is not sensitive to the chosen

criterion.
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4. Optimal trading with linear costse

The problem addressed in this section is to determine the optimal strat-

egy in the presence of “linear” trading costs (i.e. a fixed cost per share,

neglecting any price impact) and a constraint on the maximum size of the

position (both long and short). This problem is of very significant interest

in practice, at least for small sizes. For large sizes, a quadratic cost can be

added to mimic price impact; the problem is however not (yet ?) solved in

full generality.

We consider an agent who wants to maximize his/her expected gains,

by trading a single asset, of current price Pricet, over a long period [0, T ]

(we will later consider the limit T → ∞). The position (signed number of

shares/contracts) of the trader at time t is πt. We assume that the agent

has some signal pt that predicts the next price change rt = Pricet+1−Pricet,

and is faced with the following constraints:

• His/her risk control system is simply a cap on the absolute size of his/her

position : |πt| ≤M , with no other risk control.

• He/she has to pay linear costs Γ|∆πt| whenever he/she trades a quantity

∆πt ≡ πt+1 − πt

We assume that the predictor has a number of “nice” (but natural) prop-

erties; in particular, the predictability Lt(p) = E[rt|pt = p] is an odd,

continuous and strictly increasing function of p. We also assume that it

is Markovian: ∀ωt+1, P[ωt+1|pt, pt−1, . . . ] = P[ωt+1|pt] where ωt+1 is any

event at t + 1. In what follows, we will use the notation Pt(p
′|p)dp′ =

P[pt+1=p
′|pt=p]dp′. We also define an integrated predictability at t = ∞,

depending on pt :

p∞(pt) = E[Price∞ − Pricet|pt] =
∞∑

n=0

E[rt+n|pt].

This quantity indicates how much one will gain in the future if one keeps a

fixed position πt′≥t = π : the expected gain is then p∞(pt) π.

4.1. The Optimal Strategy

A näıve solution

At first sight, the solution to this problem seems straightforward: if the

expected future gain (given by the integrated predictability) exceeds the
eJoint work with J. de Lataillade, C. Deremble and M. Potters [31].
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trading cost per contract Γ, then one trades in the direction of the signal

(if not already at the maximum position), otherwise one does not. This

solution obviously generates a positive average gain, but it has no reason

to be the optimal solution. Indeed, because the predictor is auto-correlated

in time, it might be worthy (and in general it will be) to wait for a larger

value of the predictor, in order to grab the opportunities that have the most

chances to get realized, and discard the others. As we shall see, the mistake

in this näıve reasoning is not to compare the future gain with the cost, but

rather comes from a wrong definition of the future gain, which does not

include future trading decisions.

The Bellman method: general solution

The framework to attack this problem is Bellman’s optimal control theory,

or dynamic programming [32], which consists in solving the problem back-

wards: by assuming one follows the optimal strategy for all future times

t′ > t, one can find the optimal solution at time t. As is usual in dynamic

programming, one has a control variable πt, which needs to be optimized,

and a state variable pt, which parameterizes the solution. The optimization

is done through a value function Vt(π, p), which gives the maximal expected

gains between time t and +∞, considering that the position at t − 1 is π

and the predictor’s value at t is p. The optimal solution of the system will

be denoted (π∗
t )t∈[0,T ].

At the last time step t = T , the expected future return is really p∞(p)πT
where p = pT , since no trading is allowed beyond that time. Any trade ∆πT
induces a cost Γ|∆πT |, so:
If p∞(p) ≥ +Γ then π∗

T = +M , and VT (π, p) = +p∞(p)M − Γ (M−π)
If p∞(p) ≤ −Γ then π∗

T = −M , and VT (π, p) = −p∞(p)M − Γ (M+π)

If |p∞(p)| < Γ then π∗
T = π , and VT (π, p) = p∞(p)π.

Hence, one recovers exactly the näıve solution in this case, but this is only

because there is no trading beyond t = T . Now at t < T , the quantity to

be maximized includes immediate gains, costs and future gains. This leads

to the following recursion relation:

Vt(π, p) = max
|π′|≤M

{
Lt(p) · π′ − Γ|π′ − π|+

∫
Vt+1(π

′, p′)Pt(p
′|p)dp′

}
,

(25)

and π∗
t is the value of π′ which realises this maximum when π = π∗

t−1 and

p = pt. The general solution is given by the following construction [31]:
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• π∗
t =

{
π∗
t−1 if |pt| < qt

sign(pt) ·M if |pt| ≥ qt
(with π−1 = 0)

• qt is such that qt ≥ 0 and g(t, qt) = Γ, where g(t, p) is a continuous,

strictly increasing function of p which satisfies, for t < T :

g(t, p) = Lt(p) + Γ

[∫ ∞

qt+1

−
∫ −qt+1

−∞

]
Pt(p

′|p)dp′ (26)

+

∫ qt+1

−qt+1

g(t+ 1, p′)Pt(p
′|p)dp′

The stationary solution

The solution provided by Bellman’s method above exhibits in general a

dependence in t. Let us now consider the case where T → ∞, and suppose

that the predictor is stationary, i.e. Pt(p
′|p) = P (p′|p) is independent of t.

Then we obtain a telescopic (self-consistent) equation for the one-variable

function g, and the solution for the threshold q∗:

g(p) = L(p) + Γ

[∫ ∞

q∗
−
∫ −q∗

−∞

]
P (p′|p)dp′ +

∫ q∗

−q∗
g(p′)P (p′|p)dp′ (27)

g(q∗) = Γ (28)

The optimal solution π∗
t to the system is then similar to the general

solution, but with a constant threshold q∗. Thus, we obtain a very simple

trading system, always saturated at ±M , with a threshold to decide at each

step whether we should revert the position or not. This of course looks a lot

like the näıve solution of page 20. The only difference lies in the value of the

threshold q∗ = g−1(Γ), defined by Eqs. (27,28), instead of qnäıve = p−1
∞ (Γ)

for the näıve solution. Intuitively, these equations take our future trading

into account, whereas the näıve solution does not.

If we look closely at Eq. (27), its interpretation becomes transparent:

2M g(p) is equal the expected difference in total future profit between the

situation where π = +M and the situation where π = −M . This difference

is made up of:

• ∆π L(p) which represents the difference in immediate gain

• ∆π ΓP[pt+1>q
∗|pt=p] which represents the loss if the current position

is −M and in the next time step the predictor goes over the positive

threshold q∗ (hence π will go to +M)
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• ∆π ΓP[pt+1<−q∗|pt=p] which represents the loss if the current position

is +M and in the next time step the predictor goes below the negative

threshold −q∗ (hence π will go to −M)

•
∫ q∗

−q∗ P (p
′|p) 2Mg(p′) dp′ which is the expected difference in total fu-

ture profit if, in the next step, the predictor remains between the two

thresholds (leaving π unchanged).

Since the change of position between −M and +M costs 2MΓ, it makes

sense to compare 2Mg(p) with it and only trade when g(p) is greater than

Γ. Hence, g(p) can be seen as the “gain per traded lot”.

According to Eq. (27), |g(p)| ≥ |L(p)| and with Eq. (28) this implies

in particular that L(q∗) ≤ Γ. This property is actually rather intuitive:

indeed, if the immediate expected gain was higher than the trading cost,

then there would be no reason not to trade the maximal possible amount.

From here on, we only consider a linear predictor, Lt(p) = p.

Reformulation as a path integral

Although Eq. (27) is easy to interpret, it proves very difficult to solve in

concrete cases. It can be rewritten by expanding the function g:

g(p) = p+

∫ q∗

−q∗
p1P (p1|p)dp1 +

∫ q∗

−q∗

∫ q∗

−q∗
p2P (p2|p1)P (p1|p)dp1dp2 + . . .

+ Γ ·
[∫ +∞

q∗
P (p1|p)dp1 +

∫ +∞

q∗

∫ q∗

−q∗
P (p2|p1)P (p1|p)dp1dp2 + . . .

]

− Γ ·
[∫ −q∗

−∞
P (p1|p)dp1 +

∫ −q∗

−∞

∫ q∗

−q∗
P (p2|p1)P (p1|p)dp1dp2 + . . .

]

= G(p) + Γ [P+(p)− P−(p)] , (29)

and can thus be understood as a path integral: G(p) can be interpreted

as the average over all possible exit times n of the cumulated predictor∑n−1
i=0 pi, where the expectation is taken only over all paths that stay in

[−q∗, q∗] until n. Similarly P+(p) and P−(p) are the probabilities for a path

starting at p0 = p to exit (at any possible later time) above q∗ or below

−q∗, respectively.
Using now the fact that g(q∗) = Γ, and P+(q

∗) + P−(q∗) = 1, we get:

G(q∗)− 2ΓP−(q
∗) = 0. (30)

In some cases, both sides of this equation will tend to be infinitesimal, so it

is rather the ratio limp→q∗ G(p)/P−(p) that we will ask to equal 2Γ. Figure 7
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illustrates our reformulation of the problem in terms of first passage times

properties.

−2
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*

*− q

q

Fig. 7. Path integral representation of Eq. (30). The value of q∗ is such that the
“penalty” 2Γ over all paths exiting through −q∗ is equal to the average gain over all
paths exiting either through q∗ (e.g. φ1, blue) or through −q∗ (e.g. φ2, red).

Note that Eq. (30) is completely general provided the assumptions of

page 20 are satisfied, it does not rely on any specific statistics of the pre-

dictor. In the next section, we will explicitly solve this equation when the

predictor is Gaussian and follows an auto-regressive evolution.

4.2. Application to an auto-regressive linear predictor

Let us assume that the predictor follows a discrete auto-regressive dynam-

ics:

pt+1 = ρ · pt + β · ξt, (31)

where (ξt)t∈R is a set of independent N (0, 1) Gaussian random variables.

One classical example of such a predictor is an exponential moving average

of price returns:

pEMA
t = K

∑

t′<t

ρt
′−t−1 rt.

If we suppose, as is usual, that the returns rt areN (0, σr) random variables,

then pEMA
t follows the dynamics in Eq. (31) with β = Kσr. Note however

that the rt must have some small correlations in order to be predictable!

Therefore, in this case, the discussion in terms of an auto-regressive process

is only consistent in the limit K ≪ 1.
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When ρ = 0, the predictor is a white noise in time: E[ptpt+1] = 0.

Since we assume a perfect p ↔ −p symmetry, the self-consistent equa-

tion becomes simply g(p) = p, which trivially implies that q∗ = Γ in that

case. This threshold is what we expect from such a system: without any

auto-correlation, the best strategy is to trade as soon as the instantaneous

predictability is above the trading cost. Note that in this case p∞ = pt, so

this threshold also coincides with the näıve solution.

At the other extreme, when ǫ ≡ 1−ρ≪ 1, we have E[pt+n|pt] ≈ e−ǫn pt,

so τ = 1/ǫ is the auto-correlation time of the predictor pt. The standard

deviation of the predictor, i.e. its average predictability, is σp =
√
E[p2t ] =

β/
√
2ǫ. The integrated predictability is given by

p∞(p) =

∞∑

n=0

E[pt+n|pt] ≈
∞∑

n=0

e−ǫn pt ≈ p/ǫ,

what implies that the näıve threshold value is given by qnäıve = Γǫ, while

the integrated average predictability is σ∞ = β/
√
2ǫ3. In what follows, we

will study the problem by distinguishing between two cases:

β ≫ Γ : the predictor can easily beat its transaction costs at every step.

This situation (which is not very realistic) requires to keep a discrete

time approach of the problem.

β ≪ Γ : the predictor needs in general a large number of steps to beat the

costs. This will lead to a continuous formulation of the problem.

Discrete case: β ≫ Γ

We already explained in page 23 that q∗ ≤ Γ with a linear predictor. Con-

sequently, whenever β ≫ Γ, we also have β ≫ q∗. This means that, starting

at p = q∗, one will typically jump beyond q∗ or −q∗ in just one step. Thus:

G(q∗) = q∗ and P−(q
∗) =

∫ +∞

x∗

e−x2/2

√
2π

dx,

where x∗ = (2 − ǫ)q∗/β. Since β ≫ q∗, one has x∗ ≪ 1 and thus P−(q∗) ≈
1/2. Equation (30) finally gives: q∗ = Γ. Hence, if the volatility of each

predictor change is very large compared to the trading costs, then one needs

to be as selective as possible.

Continuous case: β ≪ Γ

If the threshold was of the order of the predictor’s surprise q∗ ≈ β, the

predictor would have a significant probability of switching from above q∗
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to below −q∗ in just one step. The optimal strategy would then require

to resell everything at cost 2Γ, whereas the immediate gain would only

be of the order of magnitude of β. So when β ≪ Γ, we necessarily have

q∗ ≫ β, and many steps are required for the predictor to get from q∗ ≫ β

to −q∗ ≪ −β. This is effectively the continuum limit, where the variation

of the predictor at each time step is infinitesimal compared to q∗. We can

then approximate the dynamics of the predictor by the Ornstein-Uhlenbeck

drift-diffusion process:

dpt = −ǫ pt dt+ β dXt, (32)

where (Xt)t is a Wiener process.

In such a continuous setting, the quantities G(q∗) and P−(q∗) are actu-

ally ill-defined because the diffusion process starts on an absorbing bound-

ary. This is a classical problem, which is handled by starting infinitesimally

close to q∗. Therefore we consider G(p) and P−(p) for p = q∗ − δ < q∗.
It can be shown that these two functions obey two Kolmogorov backward

equations, that read:

1

2
β2 ∂

2G
∂p2

− ǫp
∂G
∂p

= −p and
1

2
β2 ∂

2P−
∂p2

− ǫp
∂P−
∂p

= 0, (33)

with boundary conditions: G(±q∗) = 0 and P−(q∗) = 0, P−(−q∗) = 1. We

therefore encounter again the problem of a Brownian harmonic oscillator

confined between two walls, already discussed in Sect. 2.3. The solution of

these equations are

G(p) = 1

ǫ

(
p− q∗

I(p
√
a)

I(q∗
√
a)

)
and P−(p) =

1

2

(
1− I(p

√
a)

I(q∗
√
a)

)
,

with

I(x) =

∫ x

0

ev
2

dv and a =
ǫ

β2
.

To first order in δ → 0, Eq. (30) becomes

−δ
ǫ
+
δq∗

ǫ

√
a · I

′(q∗
√
a)

I(q∗
√
a)

≈ Γδ
√
a
I ′(q∗

√
a)

I(q∗
√
a)
.

As expected, δ disappears from the equation, to give the following solution

for the threshold q∗:

q∗ =
β√
ǫ
F−1

(
Γǫ3/2

β

)
where F (x) = x− I(x)/I ′(x) . (34)
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Note that when ǫ ≪ 1, this equation can be expressed entirely in terms of

the integrated predictability:

p∞(q∗) = σ∞
√
2 · F−1

(
Γ

σ∞
√
2

)
.

This means that we can find the optimal threshold for a predictor by study-

ing only its total predictive power (if we suppose of course that it satisfies

all the required properties).

One can now study the limits of Eq. (34) for large and small values

of the only remaining adimensional parameter η = Γǫ3/2/β. Interestingly,

η ≈ 1 is the regime of practical interest where predictability beats costs

whenever the predictor’s value is of the order of its rms. The asymptotes

of F (x) are as follows:

• If x≫ 1, then
∫ x

0
ev

2

dv ≪ ex
2

, so F (x) ≈ x.

• If x≪ 1, then F (x) ≃ x− (1− x2)
∫ x

0
(1− v2)dv ≈ 2x3/3.

Therefore when η ≫ 1, the threshold is simply given by q∗ = Γǫ. This

result is rather intuitive: if β is very small then the predictability of the

predictor is weak, compared to the trading cost. Hence, it makes sense to

try to catch any profitable opportunity, without taking future trading into

account. That is why we recover the näıve solution of page 20. If on the

other hand β ≫ Γǫ3/2 then η ≪ 1, and F−1(η) ≈ 3
√
3η/2, which yields

q∗ =
3

√
3

2
· Γβ2.

This says that if β is large enough, the optimal threshold is independent

of the mean-reversion parameter ǫ. The surprise, however, is the rather

unexpected dependence of the threshold q∗ as the 1/3 power of the trad-

ing costs. This result was obtained in the literature before, in the limit

considered here of a continuous time random walk, see Refs. [33–35]. Our

formulation is however much more general, and would allow one to treat

non Gaussian and non stationnary situations as well.
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5. Some open problems

We presented three very different examples of “first passage time” problems

coming from quantitative finance. Let us discuss some extensions and open

issues concerning these three problems.

As far as the Kolmogorov-Smirnov goodness-of-fit test is concerned, we

believe that extensions of this test to higher-dimensional, multivariate set-

tings, would be quite interesting. More precisely, the concept of “copulas”

(that describe the correlation structure between dependent variables) has

become an important one in theoretical finance in the recent years. For

pairs of dependent variables, the copula C(u, v) is an increasing function

of both its arguments, from [0, 1]× [0, 1] to [0, 1]. The trivial copula, corre-

sponding to independent variables, is such that C(u, v) = uv. It turns out

that it is always possible to transform an arbitrary copula into the indepen-

dent one by an appropriate change of variables, (u, v) → (s, t) [36, 37]. One

can then, in the spirit of KS, test the GoF in a copula independent manner.

The problem boils down to estimating the distribution of the maximum of

a pinned “Brownian sheet” that generalizes the Brownian bridge described

above. This is still an unsolved problem, but there is a hope that an exact

solution can be found. Extensions to weights that emphasize the “tails” of

the copula, similar to our one-dimensional problem above, would be quite

interesting too.

The second problem, concerning the optimal selling time, is interesting

from a mathematical/pedagogical point of view, but the final result turns

out to be quite trivial from a financial point of view. A more interesting

problem would be to add some correlations in the returns, accounting for

trends or mean-reversion, for example with an exponentially decaying corre-

lation function of the lag that would allow to make the problem Markovian.

Finally, the issue of optimal strategies in the presence of transaction

costs would deserve much more attention. One particularly relevant en-

deavor would be to solve the problem in the presence of both linear and

quadratic costs, i.e. when the cost of a change of position ∆π is of the form

Γ|∆π| + Γ′|∆π|2. The case treated in this review corresponds to Γ′ = 0,

but in practice price impact is very important: prices tend to go up when

one buys, and down when one sells.
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[30] P. Lévy, Sur certains processus stochastiques homogènes, Compositio Math-
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