
First Step Towards Automatic Correction of Firewall Policy Faults

Fei Chen Alex X. Liu

Dept. of Computer Science and Engineering

Michigan State University

East Lansing, Michigan 48824-1266, U.S.A.

Email: {feichen, alexliu}@cse.msu.edu

JeeHyun Hwang Tao Xie

Dept. of Computer Science

North Carolina State University

Raleigh, North Carolina 27695, U.S.A.

Email: {jhwang4, txie}@ncsu.edu

Abstract

Firewalls are critical components of network security and

have been widely deployed for protecting private net-

works. A firewall determines whether to accept or dis-

card a packet that passes through it based on its pol-

icy. However, most real-life firewalls have been plagued

with policy faults, which either allow malicious traffic or

block legitimate traffic. Due to the complexity of fire-

wall policies, manually locating the faults of a firewall

policy and further correcting them are difficult. Auto-

matically correcting the faults of a firewall policy is an

important and challenging problem. In this paper, we

make three major contributions. First, we propose the

first comprehensive fault model for firewall policies in-

cluding five types of faults. For each type of fault, we

present an automatic correction technique. Second, we

propose the first systematic approach that employs these

five techniques to automatically correct all or part of the

misclassified packets of a faulty firewall policy. Third,

we conducted extensive experiments to evaluate the ef-

fectiveness of our approach. Experimental results show

that our approach is effective to correct a faulty firewall

policy with three of these types of faults.

1 Introduction

1.1 Motivation

Firewalls serve as critical components for securing the

private networks of business, institutions, and home net-

works. A firewall is often placed at the entrance be-

tween a private network and the outside Internet so that it

can check all incoming and outgoing packets and decide

whether to accept or discard a packet based on its policy.

A firewall policy is usually specified as a sequence of

rules that follow the first-match semantics where the de-

cision for a packet is the decision of the first rule that the

packet matches. However, most real-life firewall policies

are poorly configured and contain faults (i.e., miscon-

figurations) [21]. A policy fault either creates security

holes that allow malicious traffic to sneak into a private

network or blocks legitimate traffic and disrupts normal

business processes. In other words, a faulty firewall pol-

icy evaluates some packets to unexpected decisions. We

call such packets misclassified packets of a faulty fire-

wall policy. Therefore, it is important to develop an ap-

proach that can assist firewall administrators to automat-

ically correct firewall faults.

1.2 Technical Challenges

There are three key challenges for automatic correction

of firewall policy faults. First, it is difficult to determine

the number of policy faults and the type of each fault in

a faulty firewall. The reason is that a set of misclassified

packets can be caused by different types of faults and dif-

ferent number of faults. Second, it is difficult to correct

a firewall fault. A firewall policy may consist of a large

number of rules (e.g., thousands of rules) and each rule

has a predicate over multi-dimensional fields. Locating

a fault in a large number of rules and further correcting

it by checking the field of each dimension are two diffi-

cult tasks. Third, it is difficult to correct a fault without

introducing other faults Due to the first-match semantics

of firewall policies, correcting a fault in a firewall rule

affects the functionality of all the subsequent rules, and

hence may introduce other faults into the firewall policy.

1.3 Limitations of Prior Art

To the best of our knowledge, no approach has been pro-

posed for automatic correction of firewall policy faults.

The closest work to us is the technique of firewall fault

localization proposed by Marmorstein et al. [17]. Their

technique first finds failed tests that violate some security

requirements and further uses the failed tests to locate

two or three faulty rules in a firewall policy. However,

many types of faults cannot be located by their technique,

e.g., wrong order of firewall rules, which is a common

type of fault in firewall policies [21]. Furthermore, even

if a faulty rule is located, it may not be corrected by just

changing the faulty rule. For example, if a firewall policy

misses one rule, we cannot single out a faulty rule in the

policy to correct.

Another piece of related work is fault localiza-

tion/fixing, which has been studied in software engineer-

ing for years (e.g., [1, 10, 19, 23]). The state-of-the-art

techniques in that field focus on locating/fixing a single

fault in a program. While the proposed approach in this

paper can effectively correct multiple faults in a faulty

firewall policy for three types of faults. Our work serves

as a good starting point towards policy-fault fixing.

1.4 Our Approach

To correct a faulty firewall policy, essentially we need to

correct all misclassified packets of the policy such that

all these packets will be evaluated to expected decisions.

However, it is not practical to manually find every mis-

classified packet and then correct it due to the large num-

ber of misclassified packets of the faulty policy.

The idea of our approach is that we first find some

samples of all the misclassified packets and then use

these samples to correct all or part of the misclassified

packets of the faulty policy. We propose the first compre-

hensive fault model for firewall policies. The proposed

fault model includes five types of faults, wrong order,

missing rules, wrong decisions, wrong predicates, and

wrong extra rules. For each type of fault, we propose

a correction technique based on the passed and failed

tests of a firewall policy. Passed tests are packets that are

evaluated to expected decisions. Failed tests are packets

that are evaluated to unexpected decisions. Note that the

failed tests are samples of all misclassified packets.

To generate passed and failed tests, we first employ

automated packet generation techniques [8] to generate

test packets for a faulty firewall policy. The generated

packets can achieve high structural coverage, i.e., cov-

ering all or most rules [8]. Second, administrators clas-

sify these packets into passed and failed tests by checking

whether their evaluated decisions are correct. Identifying

passed/failed tests can be automated in some situations,

e.g., when policy properties are written, or multiple im-

plementations of the policy are available. Even if this op-

eration cannot be done automatically, manual inspection

of passed/failed tests is also common practice for ensur-

ing network security in industry. For example, applying

some existing vulnerability testing tools, such as Nessus

[18] and Satan [20], does need manual inspection. In this

paper, our goal is to automatically correct policies after

we have passed/failed packets. Identifying passed/failed

tests is out of scope of this paper.

Given passed and failed tests, correcting a faulty fire-

wall policy is still difficult because it is hard to identify

the number of faults and the type and the location of each

fault in the firewall policy. To address this problem, we

propose a greedy algorithm. In each step of the greedy

algorithm, we try every correction technique and choose

one technique that can maximize the number of passed

tests (or minimize the number of failed tests). We then

repeat this step until there are no failed tests.

Our proposed approach cannot guarantee to correct all

faults in a firewall policy because it is practically im-

possible unless the formal representation of the policy

is available. However, in practice, most administrators

do not have such formal representations of their firewall

policies. To correct a faulty firewall policy without its

formal representation, administrators need to examine

the decisions of all 2104 packets1 and manually correct

each of misclassified packets; doing so is practically im-

possible. This paper represents the first step towards au-

tomatic correction of firewall policy faults. We hope to

attract more attention from the research community on

this important and challenging problem.

1.5 Key Contributions

Our major contributions can be summarized as below:

1. We propose the first comprehensive fault model

for firewall polices, including five types of faults,

wrong order, missing rules, wrong decisions, wrong

predicates, and wrong extra rules.

2. We propose the first systematic approach that can

automatically correct all or part of the misclassified

packets of a faulty firewall policy.

3. We conduct extensive experiments on real-life fire-

wall policies to evaluate the effectiveness of our ap-

proach.

1.6 Summary of Experimental Results

We generated a large number of faulty firewall policies

from 40 real-life firewalls, and then applied our approach

over each faulty policy and produced the fixed policy.

Faulty policies with k faults (1≤k≤5) were tested. These

faults in a faulty policy were of the same type. The

experimental results show that for three types of faults,

wrong order, wrong decisions, and wrong extra rules,

our approach can effectively correct misclassified pack-

ets. When k≤4, our approach can correct all misclassi-

fied packets for over 53.2% faulty policies. This result is

certainly encouraging and we hope that this paper will at-

tract more attention from the research community to this

1A packet typically includes five fields, source IP (32 bits), des-

tination IP (32 bits), source port (16 bits), destination port (16 bits),

and protocol type (8 bits). Thus, the number of possible packets is

2
32+32+16+16+8

= 2
104 .

2

important problem. For two other types of faults, miss-

ing rules and wrong predicates, our approach does not

achieve satisfactory results, deserving further study.

2 Related Work

2.1 Firewall Policy Fault Localization

Fault localization for firewall policies has drawn atten-

tion recently [9, 17]. Marmorstein et al. proposed a tech-

nique to find failed tests that violate the security require-

ment of a firewall policy and further use the failed tests to

locate two or three faulty rules in a firewall policy [17].

However, they did not provide a systematic methodol-

ogy to identify faulty rules according to different types

of firewall faults, e.g., wrong order of firewall rules.

Furthermore, they applied their approach only to a sim-

ple firewall policy (with 5 rules), which cannot strongly

demonstrate the effectiveness of their approach.

Our previous work proposed a technique to locate a

fault in a firewall policy [9]. The approach first ana-

lyzes a faulty firewall policy and its failed tests and then

finds the potential faulty rules based on structural cover-

age metrics2. However, this work has three limitations:

(1) it considers only two types of faults, which are wrong

decisions and wrong predicates, while a firewall policy

may contain other types of faults; (2) it considers only a

firewall policy with a single fault, while a firewall pol-

icy may contain multiple faults; (3) it does not propose a

technique to correct the faults in a firewall policy.

2.2 Firewall Policy Analysis and Testing

Firewall policy analysis tools have been proposed in

prior work (e.g., [2, 3, 7, 12, 22]). Tools for detecting

potential firewall policy faults by conflict detection were

proposed in [3, 7]. Similar to conflict detection, some

other tools were proposed for detecting anomalies in a

firewall policy [2, 22]. Detecting conflicts or anomalies

is helpful for finding faults in a firewall policy. However,

the number of conflicts or anomalies could be too large

to be manually inspected. Therefore, correcting a faulty

policy is difficult by using these firewall policy analy-

sis tools. Change impact analysis of firewall policies has

also been studied [12]. Such tools are helpful to analyze

the impact after changing a firewall policy, but no algo-

rithm has been presented for correcting a faulty firewall

policy.

Firewall policy testing tools have also been explored

in prior work (e.g., [4, 11, 14, 16]). Such tools focus on

injecting packets as tests into a firewall to detect faults in

the firewall policy. If the evaluated decision of a packet

2Firewall policy coverage is measured based on which entities (e.g.,

rules or fields) are involved (called “covered”) during packet evalua-

tion.

is not as expected, faults in the firewall policy are ex-

posed. However, because a firewall policy may have a

large number of rules and the rules often conflict, it is

difficult to manually locate faults and correct them based

on the passed and failed tests.

2.3 Software Fault Localization and Fixing

Fault localization and fixing have been studied for years

in the software engineering and programming language

communities (e.g., [1, 10, 19, 23]). Such research fo-

cuses on locating and fixing a fault in a software pro-

gram. Four main techniques have been proposed for lo-

cating/fixing faults in software programs: dynamic pro-

gram slicing [1], delta debugging [23], nearest neighbor

[19], and statistical techniques [10]. These techniques

typically analyze likely fault locations based on dynamic

information collected from running the faulty program.

Firewall polices and general programs are fundamentally

different in terms of structure, semantics, and function-

ality, etc. Therefore, fault localization and fixing tech-

niques of software programs are not suitable for locating

faults in firewall policies.

3 Background

3.1 Firewall Policies

A firewall policy is a sequence of rules 〈r1, · · · , rn〉 and

each rule is composed of a predicate over d fields,

F1, · · · , Fd and a decision for the packets that match the

predicate. Figure 1 shows a firewall policy, whose format

follows Cisco Access Control Lists [5].

A field Fi is a variable of finite length (i.e., of a fi-

nite number of bits). The domain of field Fi of w bits,

denoted as D(Fi), is [0, 2w−1]. Firewalls usually check

five fields, source IP (32 bits), destination IP (32 bits),

source port (16 bits), destination port (16 bits), and pro-

tocol type (8 bits). For example, the domain of the source

IP is [0, 232 − 1].
A packet p over the d fields F1, · · · , Fd is a d-tuple

(x1, · · · , xd) where each xi (1 ≤ i ≤ d) is an element

of D(Fi). An example packet over these five fields is

(1.2.3.5, 192.168.1.1, 78, 25, TCP).

A predicate defines a set of packets over the fields

F1, · · · , Fd, and is specified as F1 ∈ S1 ∧ · · · ∧
Fd ∈ Sd. Each Si is a subset of D(Fi) and is

specified as either a prefix or a range. A prefix

{0, 1}k{∗}w−k (with k leading 0s or 1s) denotes the

range [{0, 1}k{0}w−k, {0, 1}k{1}w−k]. For example,

prefix 01** denotes the range [0100, 0111].
A decision is an action for the packets that match the

predicate of the rule. For firewalls, the typical decisions

include accept and discard.

A packet (x1, · · · , xd) matches a rule F1 ∈ S1 ∧ · · · ∧
Fd ∈ Sd → 〈decision〉 if and only if the condition

3

x1 ∈ S1 ∧ · · · ∧ xd ∈ Sd holds. For example, the packet

(1.2.3.5, 192.168.1.1, 78, 25, TCP) matches the rule r1
in Figure 1.

A rule F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉 is

called a singleton rule if and only if each Si has only one

element.

Rule Src. IP Dest. IP Src. Port Dest. Port Prot. Dec.

r1 1.2.3.* 192.168.1.1 * 25 TCP accept

r2 * * * * * discard

Figure 1: An example firewall

A firewall policy 〈r1, · · · , rn〉 is complete if and only if

for any packet p, there is at least one rule that p matches.

To ensure that a firewall policy is complete, the predicate

of the last rule is usually specified as F1 ∈ D(F1)∧· · ·∧
Fd ∈ D(Fd), i.e., the last rule r2 in Figure 1.

Two rules in a firewall policy may overlap; that is,

there exists at least one packet that matches both rules.

Two rules may conflict; that is, the two rules not only

overlap but also have different decisions. For example,

in Figure 1, two rules r1, r2 overlap and conflict because

the packet (1.2.3.5, 192.168.1.1, 78, 25, TCP) matches

r1 and r2, and the decisions of r1 and r2 are different.

Firewalls typically resolve conflicts by employing the

first-match semantics where the decision for a packet p
is the decision of the first (i.e., highest priority) rule that

p matches in the firewall policy. Thus, for the packet

(1.2.3.5, 192.168.1.1, 78, 25, TCP), the decision of the

firewall policy in Figure 1 is accept.

3.2 Packet Generation

To check the correctness or detect faults in a firewall pol-

icy, administrators need to generate test packets to eval-

uate that each entity (e.g., each rule) is correct. In our

previous work [8], we developed automated packet gen-

eration techniques to achieve high structural coverage.

One cost-effective technique is packet generation based

on local constraint solving. In this paper, we use this

technique to generate packets for firewall policies. This

technique statically analyzes rules to generate test pack-

ets. Given a policy, the packet generator analyzes the

predicate in an individual rule and generates packets to

evaluate the constraints (i.e., rule fields) to be true or

false. The generator first constructs constraints to evalu-

ate each field in a rule to be either false or true, and then

it generates a packet based on the concrete values derived

by constraint solving. For example, given rule r1 in Fig-

ure 1, the generator analyzes r1 and generates a packet

(e.g., packet (1.2.3.5, 192.168.1.1, 23447, 25, TCP)) to

cover r1; this packet evaluates each of r1’s fields to be

true during evaluation. Then, the generator analyzes r2
and generates a packet (e.g., packet (2.2.3.5, 192.168.1.1,

23447, 26, UDP)) to cover r2; this packet evaluates each

of r2’s fields to be true during evaluation. When fire-

wall policies do not include many conflicts, this tech-

nique can effectively generate packets to achieve high

structural coverage.

4 A Fault Model of Firewall Polices

A fault model of firewall policies is an explicit hypoth-

esis about potential faults in firewall policies. Our pro-

posed fault model includes five types of faults.

1. Wrong order. This type of fault indicates that the or-

der of rules is wrong. Recall that the rules in a fire-

wall policy follow the first-match semantics due to

conflicts between rules. Misordering firewall rules

can misconfigure a firewall policy. Wrong order of

rules is a common fault caused by adding a new rule

at the beginning of a firewall policy without care-

fully considering the order between the new rule

and the original rules. For example, if we misorder

r1 and r2 in Figure 1, all packets will be discarded.

2. Missing rules. This type of fault indicates that ad-

ministrators need to add new rules to the original

policy. Usually, administrators add a new rule re-

garding a new security concern. However, some-

times they may forget to add the rule to the original

firewall policy.

3. Wrong predicates. This type of fault indicates that

predicates of some rules are wrong. When configur-

ing a firewall policy, administrators define the predi-

cates of rules based on security requirements. How-

ever, some special cases may be overlooked.

4. Wrong decisions. This type of fault indicates that

the decisions of some rules are wrong.

5. Wrong extra rules. This type of fault indicates that

administrators need to delete some rules from the

original policy. When administrators make some

changes to a firewall policy, they may add a new

rule but sometimes forget to delete old rules that fil-

ter a similar set of packets as the new rule does.

In this paper, we consider faults in a firewall policy

that can be represented as a set of misclassified pack-

ets. Under this assumption, given a set of misclassified

packets, we can always find one or multiple faults in our

fault model that can generate the same set of misclas-

sified packets. One simple way to find such faults is

that for each misclassified packet, we consider that the

faulty policy misses a singleton rule for this misclassified

packet. Therefore, we can always find multiple missing

rules faults that can generate the same set of misclassi-

fied packets.

4

The correction techniques for these five types of faults

are called order fixing, rule addition, predicate fixing, de-

cision fixing, and rule deletion, respectively. Each oper-

ation in these five techniques is called a modification.

5 Automatic Correction of Firewall Policy

Faults

Normally, a faulty firewall policy is detected when ad-

ministrators find that the policy allows some malicious

packets or blocks some legitimate packets. Because the

number of these observed malicious packets or legitimate

packets is typically small, these packets cannot provide

enough information about the faults in the firewall policy,

and hence correcting the policy with these packets is dif-

ficult. Therefore, after finding a faulty firewall policy, we

first employ the automated packet generation techniques

[9], which can achieve high structural coverage, to gen-

erate test packets for the faulty policy. Second, adminis-

trators identify passed/failed tests automatically or man-

ually. According to security requirements for the firewall

policy, if the decision of a packet is correct, administra-

tors classify it as a passed test; otherwise, administrators

classify it as a failed test. In some situations, e.g., when

policy properties are written, or multiple implementa-

tions of the policy are available, this operation can be

automated. Manual inspection is also a common practice

for ensuring network security in industry. For example,

applying some existing vulnerability testing tools, such

as Nessus [18] and Satan [20], does need manual inspec-

tion. Our goal is to automatically correct policies after

we have passed/failed packets. Identifying passed/failed

tests is out of the scope of this paper.

Figure 2 shows a faulty firewall policy and its passed

and failed tests. This policy includes 5 rules over two

fields F1 and F2, where the domain of each field is

[1,10]. The rule r1 means that accept packets whose

value of the first field is in the range [1, 5] and whose

value of the second field is in the range [1, 10]. We use a
as a shorthand for “accept” and d as a shorthand for “dis-

card”. For the passed and failed tests, we use a and d to

denote expected decisions. We assign each test a distinct

ID pi (1≤i≤8).

Given passed and failed tests, it is difficult to automat-

ically correct a faulty firewall policy for three reasons.

First, it is difficult to locate the faults because a firewall

policy may consist of a large number of rules, and the

rules often conflict. Second, before correcting a fault, we

need to first determine the type of the fault and then use

the corresponding correction technique to fix this fault.

However, it is difficult to determine the type of a fault

because the same misbehavior of a firewall policy, i.e.,

the same set of misclassified packets, can be caused by

different types of faults. Third, it is difficult to correct a

r1 : F1 ∈ [1, 5] ∧ F2 ∈ [1, 10] → a
r2 : F1 ∈ [1, 6] ∧ F2 ∈ [3, 10] → a
r3 : F1 ∈ [6, 10] ∧ F2 ∈ [1, 3] → d
r4 : F1 ∈ [7, 10] ∧ F2 ∈ [4, 8] → a
r5 : F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d
(a) An example faulty firewall policy

p1 : (3, 2) → a
p2 : (5, 7) → a
p3 : (6, 7) → a
p4 : (7, 2) → d
p5 : (8, 10) → d

(b) A set of passed tests

p6 : (6, 3) → d
p7 : (7, 9) → a
p8 : (8, 5) → d

(c) A set of failed tests

Figure 2: An example faulty firewall policy with its

failed and passed tests

fault. Due to the first-match semantics, changing a rule

can affect the functionality of all the subsequent rules.

Without thorough consideration, correcting a fault may

introduce a new fault into the firewall policy.

In this paper, we formalize the problem of correcting

a faulty firewall policy as follows:

Given a faulty firewall policy FW , a set of passed

tests PT , and a set of failed tests FT , where

|PT |≥0 and |FT |>0, find a sequence of modifications

〈M1, · · · ,Mm〉, where Mj (1≤j≤m) denotes one mod-

ification, such that the following two conditions hold:

1. After applying 〈M1, · · · ,Mm〉 to FW , all tests in

PT ∪ FT become passed tests.

2. No other sequence that satisfies the first condition

has a smaller number of modifications than m.

Correcting a faulty firewall policy with the minimum

number of modifications is a global optimization prob-

lem and hard to solve because the policy may consist of

a large number of rules, and different combinations of

modifications can be made. We propose a greedy algo-

rithm to address this problem. For each step, we correct

one fault in the policy such that the number of passed

tests increases (or the number of failed tests decreases).

To determine which correction technique should be used

at each step, we try the five correction techniques. Then,

we calculate the number of passed tests for each type of

modifications and choose the correction technique that

corresponds to the maximum number of passed tests. We

then repeat the preceding step until there are no failed

tests. Figure 3 illustrates our approach for automatic cor-

rection of firewall policy faults.

Our greedy algorithm can guarantee to find a sequence

of modifications that satisfies the first condition. For

each step, the greedy algorithm can increase at least one

passed test because of the rule addition technique. Us-

ing this technique, we can at least convert each failed test

5

Packet

Generation

Faulty Firewall

Policy

Passed Tests Failed Tests

Order

Fixing
Decision

Fixing

Adding

Rules

Deleting

Rules

Predicate

Fixing

|Failed Tests| = 0?
No

Yes

Fixed Firewall Policy

Classify

Packets

Figure 3: Overview of automatically correcting a faulty firewall policy

to a singleton rule and then add these singleton rules at

the beginning of the faulty firewall policy. For example,

convert the failed test (6, 3) → d in Figure 2(c) to a sin-

gleton rule F1 ∈ [6, 6] ∧ F2 ∈ [3, 3] → d. However,

the greedy algorithm cannot guarantee to find the global

optimization solution that satisfies the second condition.

Note that administrators can supervise this process.

For each step, administrators can choose their preferred

technique for correcting a fault in the policy. If adminis-

trators do not want to supervise the process, our greedy

algorithm can automatically produce the fixed policy.

Further note that without any restriction, our automatic

approach for correcting firewall policy faults could in-

troduce potential faults in the firewall policy. However,

an administrator typically has some critical requirements

when he/she designs the firewall policy. These critical re-

quirements define that some packets should be accepted

or discarded. The administrator can restrict the proposed

approach not to violate the critical requirements. Con-

sider a critical requirement that a data server in an organi-

zation should not be accessed by any outside connection.

For each step of our greedy algorithm, if the modifica-

tion generated in this step violates the requirement, the

approach can simply choose the next modification that

does not violate the requirement.

In the next five sections, we discuss our scheme for

each correction technique, respectively. Recall that the

last rule of a firewall policy is usually specified as

F1∈D(F1) ∧ · · · ∧ Fd∈D(Fd) → 〈decision〉. Check-

ing whether the last rule is correct is trivial. Therefore,

we assume that the last rule of a firewall policy is correct

in our discussion.

6 Order Fixing

Due to the first-match semantics, changing the order of

two rules in a firewall policy (i.e., swapping two rules)

affects its functionality. Therefore, after swapping two

rules of a firewall policy, we need to test and reclassify

all passed tests and failed tests. It is computationally ex-

pensive to directly swap every two rules in a faulty fire-

wall policy and then find the two rules such that swap-

ping them can maximize the increased number of passed

tests. Given a firewall policy with n rules, without con-

sidering the last rule, there are (n− 1)(n− 2)/2 pairs of

rules that can be swapped. Furthermore, for each swap-

ping, we need to reclassify all passed and failed tests.

Assume that the number of passed tests is m1 and the

number of failed tests is m2. The computational cost of

this brute-force way is (n− 1)(n− 2)(m1 +m2)/2.

To address this challenge, we use all-match firewall

decision diagrams (all-match FDDs) [15] as the core data

structure. An all-match FDD is a canonical representa-

tion of a firewall policy such that any firewall policy can

be converted to an equivalent all-match FDD. Figure 4

shows the all-match FDD converted from the faulty fire-

wall policy in Figure 2. An all-match FDD for a fire-

wall policy FW :〈r1, · · · , rn〉 over attributes F1, · · · , Fd

is an acyclic and directed graph that has the following

five properties:

1. There is exactly one node that has no incoming

edges. This node is called the root. The nodes that

have no outgoing edges are called terminal nodes.

2. Each node v has a label, denoted as F (v). If v is

a nonterminal node, then F (v) ∈ {F1, · · · , Fd}. If

6

v is a terminal node, then F (v) is a list of integer

values 〈i1, · · · , ik〉 where 1≤i1<· · ·<ik≤ n.

3. Each edge e:u→v is labeled with a nonempty set

of integers, denoted as I(e), where I(e) is a subset

of the domain of u’s label (i.e., I(e)⊆D(F (u))).
The set of all outgoing edges of a node v, denoted

as E(v), satisfies two conditions: (1) consistency:

I(e)∩I(e′)=∅ for any two distinct edges e and e′ in

E(v); (2) completeness:
⋃

e∈E(v) I(e)=D(F (v)).

4. A directed path from the root to a terminal node

is called a decision path. No two nodes on a de-

cision path have the same label. Given a deci-

sion path P :(v1e1 · · · vdedvd+1), the matching set

of P is defined as the set of all packets that satisfy

F (v1)∈I(e1)∧· · ·∧F (vd)∈I(ed). We use C(P) to

denote the matching set of P .

5. For any decision path P : (v1e1 · · · vdedvd+1)
where F (vd+1) = 〈i1, · · · , ik〉, if C(P) ∩ C(rj) 6=
∅, C(P) ⊆ C(rj) and j ∈ {i1, · · · , ik}.

For ease of presentation, we use {P1, · · · ,Ph} to denote

the all-match FDD of the firewall policy FW . Based on

this definition, we can draw the following theorem, the

proof of which is in Appendix A.

Theorem 6.1 Given two firewall policies

FW1:〈r11 ,· · ·,r1n〉 and FW2:〈r21 ,· · ·,r2n〉, and their

all-match FDDs {P1
1 ,· · ·, P1

h1
} and {P2

1 ,· · ·,P2
h2
}, if

{r11 ,· · ·,r1n} = {r21,· · ·,r2n}, without considering terminal

nodes, {P1
1 , · · · ,P

1
h1
} = {P2

1 , · · · ,P
2
h2
}.

According to Theorem 6.1, for swapping two rules,

we only need to swap the sequence numbers of the two

rules in the terminal nodes of the all-match FDD. For

finding two rules such that swapping them maximizes the

number of passed tests, our correction technique includes

five steps:

(1) Convert the policy to an equivalent all-match FDD.

(2) For each failed test p, we find the decision path P :
(v1e1 · · · vdedvd+1) that matches p (i.e., p ∈ C(P)).
Let 〈i1, · · · , ik〉 (1≤i1<· · ·<ik≤n) denote F (vd+1).
Note that the decision of ri1 is not the expected de-

cision for the failed test p; otherwise, p should be a

passed test.

(3) Find the rules in {ri2 , · · · , rik} whose decisions are

the expected decision of p. Suppose {rj1 , · · · , rjg} are

those rules that we find for p, where {rj1 , · · · , rjg}
⊆ {ri2 , · · · , rik}. Because the decision of rules in

{rj1 , · · · , rjg} is the expected decision for p, swap-

ping ri1 with any rule in {rj1 , · · · , rjg} changes p to a

passed test. Note that because the last rule of a firewall

is a default rule, we cannot swap it with any preceding

rule. If rjg is the last rule of the faulty firewall (i.e.,

jg = n), we delete rjg from {rj1 , · · · , rjg}.

(4) For all failed tests, we find out all rule pairs such that

swapping two rules in a rule pair may increase the

number of passed tests. Then we swap two rules in

each rule pair. Note that swapping two rules in a rule

pair changes the corresponding failed test to a passed

test. However, this modification may change some

passed tests to failed tests. Therefore, after swapping

two rules in each rule pair, we reclassify all tests and

calculate the number of passed tests.

(5) Find a rule pair such that swapping the two rules in

this pair can maximize the number of passed tests.

Note that if there are more than one rule pair such that

swapping two rules in each pair can maximize the in-

creased number of passed tests, we choose the rule pair

that affects the functionality of the minimum number of

original firewall rules. Let (ri1 , rj1), · · · , (rig , rjg) de-

note these rule pairs, where ik≤jk (1≤k≤g). Due to

the first-match semantics, we choose the rule pair (ri, rj)
where i is the maximum integer in {i1, · · · , ig}.

[1, 5] [7, 10]
F1

[1, 2]

F2 F2

[1,2]

F2

[3, 10]
[3,3]

[4,10] [1,3]
[4,8]

[9,10]

[6, 6]

1,5 1,2,5 3,5 2,3,5 2,5 3,5 4,5 5

Figure 4: All-match FDD converted from the faulty fire-

wall policy in Figure 2

For the faulty firewall policy in Figure 2, we first con-

vert the faulty firewall policy to an all-match FDD, which

is shown in Figure 4. Second, for each failed test, we find

the corresponding rule pairs. In the example, we find

only one rule pair (r2, r3) for the failed test (6, 3) → d.

Third, after swapping r2 and r3, (6, 2) → d becomes

a passed test and no passed test changes to a failed test.

Therefore, swapping r2 and r3 increases the number of

passed tests by 1.

7 Rule Addition

There are two challenges for adding a rule to a faulty

firewall policy. First, given a faulty firewall policy with

n rules, there are n positions where we can add a rule.

Determining which position is the best for adding a rule

is a challenge. Second, because the predicate of a fire-

wall rule is composed of multiple fields and the number

7

of possible values in each field is typically large, brute-

force addition of every possible rule for each position is

computationally expensive. Considering a firewall rule

with five fields (i.e., 32-bit source IP, 32-bit destination

IP, 16-bit source port, 16-bit destination port, and 8-bit

protocol type) and two possible decisions (i.e., accept

and discard), the number of possible firewall rules that

we can add for each position is O(2204), because for each

field with d-bit length, the number of possible ranges is

(22d)=O(22d−1). Furthermore, after adding a rule, we

still need to reclassify all passed and failed tests.

The basic idea of our solution is that for each posi-

tion, we first find all possible failed tests that can be cor-

rected by adding a rule at this position, and then compute

a rule that matches the maximum number of failed tests.

To avoid changing a passed test to a failed test, the rule

that we compute does not match any possible passed test.

More formally, given a faulty firewall policy with n rules

〈r1, · · · , rn〉, let position i (1≤i≤n) denote the position

between ri−1 and ri. Note that we cannot add a rule

after rn because rn is the default rule. Our correction

technique for adding a rule includes five steps:

(1) For each position i, find a set of passed tests PT (i)
and a set of failed tests FT (i) such that any test p in

PT (i) ∪ FT (i) does not match any rule rj (1 ≤ j ≤
i − 1). Note that when i = 1, rj does not exist. In

such case, PT (1) = PT and FT (1) = FT . Due to

the first-match semantics, if a failed test p matches a

rule ri, adding a rule after rule ri cannot change the

decision of p and hence cannot correct p. Therefore,

the set FT (i) includes all possible failed tests that we

can correct by adding a rule at position i.

(2) Based on the expected decisions of tests, divide PT (i)
into two sets PT (i)a and PT (i)d where PT (i)a con-

sists of all passed tests with expected decision accept

and PT (i)d consists of all passed tests with discard.

Similarly, we divide FT (i) into two sets FT (i)a and

FT (i)d. The purpose is that adding a rule cannot cor-

rect two failed tests with different expected decisions.

(3) For set FT (i)a, compute a rule with decision accept,

denoted as r′i,a, that satisfies two conditions:

(a) No passed test in PT (i)d matches r′i,a.

(b) Under Condition (a), r′i,a matches the maximum

number of failed tests in FT (i)a.

The algorithm for computing rule r′i,a based on

FT (i)a and PT (i)d is discussed in Section 7.1.

(4) Similar to Step 3, for set FT (i)d, compute a rule with

decision discard, denoted as r′i,d, that satisfies two

conditions:

(a) No passed test in PT (i)a matches r′i,d.

(b) Under Condition (a), r′i,d matches the maximum

number of failed tests in FT (i)d.

(5) Find a rule r′j, decision (1≤j≤n) that corrects the max-

imum number of failed tests and then add r′j, decision
to position j.

Note that if there is more than one rule that can cor-

rect the maximum number of failed tests, we choose rule

r′j, decision where j is the maximum integer among these

rules such that adding this rule affects the functionality of

the smallest number of original rules in a firewall policy.

For the faulty policy in Figure 2, Figure 5 shows the

four sets PT (i)a, PT (i)d, FT (i)a, and FT (i)d for each

rule of the policy.

PT (i)a PT (i)d FT (i)a FT (i)d
r1 p1, p2, p3 p4, p5 p7 p6, p8
r2 p3 p4, p5 p7 p6, p8
r3 – p4, p5 p7 p8
r4 – p5 p7 p8
r5 – p5 p7 –

Figure 5: PT (i)a, PT (i)d, FT (i)a, and FT (i)d for

each rule in Figure 2

7.1 Computing Rules r′i,a and r
′

i,d

Without loss of generality, in this section, we discuss the

algorithm for computing r′i,a based on a set of failed

tests FT (i)a and a set of passed tests PT (i)d. First,

we generate a rule that can match all failed tests in

FT (i)a. Suppose that the predicate of a firewall rule

is composed of d fields. For each field j (1≤j≤d), as-

sume that xj is the minimum value of all failed tests

in FT (i)a and yj is the maximum value. Therefore,

the rule r:F1∈[x1, y1]∧· · ·∧Fd∈[xd, yd]→a matches all

failed tests in FT (i)a. Second, we use the passed tests in

PT (i)d to split the rule to multiple rules, each of which

does not match any passed test. Let (z1, · · · , zd)→d de-

note the first passed test p in PT (i)d. If rule r matches

p, for each field j, we generate two rules by using zj to

split [xj , yj] into two ranges [xj , zj − 1] and [zj +1, yj].
The resulting two rules for field j are as follows.

F1∈[x1, y1]∧· · ·∧Fj−1∈[xj−1, yj−1]∧Fj∈[xj, zj − 1]
∧Fj+1∈[xj+1, yj+1]∧· · ·∧Fd∈[xd, yd]→a

F1∈[x1, y1]∧· · ·∧Fj−1∈[xj−1, yj−1]∧Fj∈[zj + 1, yj]
∧Fj+1∈[xj+1, yj+1]∧· · ·∧Fd∈[xd, yd]→a

Note that if xj>zj−1 (or zj+1>yj), the rule that in-

cludes [xj , zj − 1] (or [zj + 1, yj]) is meaningless and it

should be deleted from the resulting rules. If rule r does

not match p, p cannot split r. Then, we use the second

8

test in PT (i)d to split the resulting rules generated from

p. Repeat this step until we check all the passed tests in

PT (i)d. Finally, we choose one rule that matches the

maximum number of failed tests.

Take two sets PT (2)a and FT (2)d in Figure 5 as an

example, rule r′2,d can be computed as F1 ∈ [6, 8]∧F2 ∈
[3, 5] → d, which can correct two failed tests p6 and p8.

8 Predicate Fixing

There are two challenges for fixing a predicate in a faulty

firewall policy. First, for a faulty firewall policy with n
rules, there are n−1 possible predicates that we can cor-

rect. Note that the last rule rn is the default rule. Second,

similar to adding rules, brute-force fixing of the predicate

for each rule is computationally expensive. The number

of possible predicates for each rule is O(2203).
The basic idea for predicate fixing is similar to adding

rules. We first find all possible failed tests that can be

corrected by fixing a predicate, and then compute a rule

that matches the maximum number of failed tests. How-

ever, there are two major differences. First, for fix-

ing the predicate of ri, we compute only a rule with

the same decision of ri. Second, after fixing the pred-

icate of rule ri, the original rule ri does not exist in

the firewall policy. Therefore, the passed tests whose

first-matching rule is ri may become failed tests. The

set of these passed tests for ri can be computed as

PT (i)−PT (i+1) (shown in Figure 7). The passed tests

whose first-matching rule is not ri should be prevented

from changing to failed tests. Therefore, the set of all

possible failed tests that we can correct by fixing ri’s
predicate is FT (i)∪(PT (i)−PT (i + 1)). Our correc-

tion technique for predicate fixing includes five steps:

(1) For each position i (1≤i≤n), find a set of passed tests

PT (i) and a set of failed tests FT (i) such that any

test p in PT (i)∪FT (i) does not match any rule rj
(1≤j≤i− 1).

(2) For each rule ri (1≤i≤n−1), compute the set of all

possible failed tests FT (i)∪(PT (i)−PT (i+ 1)) that

we can correct by fixing ri’s predicate. Let ̂FT (i) de-

note FT (i)∪(PT (i)−PT (i + 1)). The complemen-

tary set of FT (i)∪(PT (i)−PT (i+1)) is PT (i+1),
which is the set of passed tests that we cannot change

to failed tests by fixing ri’s predicate.

(3) Based on the expected decisions of tests, divide

PT (i+ 1) into two sets PT (i+ 1)a and PT (i+ 1)d,

and divide ̂FT (i) into two sets ̂FT (i)a and ̂FT (i)d.

(4) Without loss of generality, assume that ri’s decision is

accept. For set ̂FT (i)a, we compute r′′i,a that satisfies

two conditions:

(a) No passed test in PT (i+ 1)d matches r′′i,a.

(b) Under condition (a), r′′i,a matches the maximum

number of failed tests in ̂FT (i)a.

The algorithm for computing rule r′′i,a based on

̂FT (i)a and PT (i + 1)d is the same as that in Sec-

tion 7.1. Let r′′i denote the resulting rule.

(5) Find a rule r′′j (1≤j≤n−1) that can correct the maxi-

mum number of failed tests and then replace rule rj .

Note that if there is more than one rule that can correct

the maximum number of failed tests, we choose rule r′′j
where j is the maximum integer among these rules.

For the faulty policy in Figure 2, Figure 6 shows the

four sets PT (i+ 1)a, PT (i+ 1)d, ̂FT (i)a, and ̂FT (i)d
for each rule. Rule r′′2,a can be computed as F1 ∈ [6, 7]∧
F2 ∈ [7, 9] → a, which can correct one failed test p7.

PT (i+ 1)a PT (i+ 1)d ̂FT (i)a ̂FT (i)d
r1 p3 p4, p5 p1, p2, p7 p6, p8
r2 – p4, p5 p3, p7 p6, p8
r3 – p5 p7 p4, p8
r4 – p5 p7 p8

Figure 6: PT (i+1)a, PT (i+1)d, ̂FT (i)a, and ̂FT (i)d
for each rule in Figure 2

9 Decision Fixing

The idea of fixing a decision is that for each rule ri, we

first find the passed tests and failed tests whose first-

matching rule is ri. The set of the passed tests for ri
can be computed as PT (i)−PT (i+1) and the set of the

failed tests for ri can be computed as FT (i)−FT (i+1).
If we change the decision of ri, the passed tests in

PT (i)−PT (i+1) become failed tests and the failed tests

in FT (i)−FT (i+1) become passed tests. Then, we can

calculate the increased number of passed tests by fixing

ri’s decision. Finally, we fix the decision of the rule that

corresponds to the maximum increased number of passed

tests. Our correction technique for fixing a decision in-

cludes three steps:

(1) For each rule ri (1 ≤ i ≤ n − 1), compute two sets

PT (i)− PT (i+ 1) and FT (i)− FT (i+ 1).

(2) Calculate the increased number of passed

tests by fixing ri’s decision, which is

|FT (i)−FT (i+1)|−|PT (i)−PT (i+ 1)|.

(3) Fix the decision of a rule that can maximize the in-

creased number of passed tests.

9

Note that if there is more than one rule such that fixing

the decision of each of them can maximize the increased

number of passed tests, we choose the rule with the max-

imum sequence number.

For the faulty policy in Figure 2, Figure 7 shows the

two sets PT (i)−PT (i+1) and FT (i)−FT (i+1) for

each rule. Clearly, fixing the decision of r4 can change

the failed test p8 to a passed test.

PT (i)− PT (i+ 1) FT (i)− FT (i+ 1)
r1 p1, p2 –

r2 p3 p6
r3 p4 –

r4 – p8

Figure 7: PT (i)−PT (i+1) and FT (i)−FT (i+1) for

each rule in Figure 2

10 Rule Deletion

The idea of deleting a firewall rule is that we use the all-

match FDD to calculate the increased number of passed

packets by deleting each rule, and then delete the rule

that can maximize the increased number of passed pack-

ets. Given a faulty policy with n rules and its all-match

FDD, our correction technique for deleting a rule in-

cludes three steps:

(1) For each rule ri (1≤i≤n−1), find every decision path

P :(v1e1 · · · vdedvd+1) such that C(P)⊆C(ri) and i is

the first rule id in F (vd+1). Let {P i
1, · · · ,P

i
h} denote

the set of such decision paths.

(2) For each decision path P i
g:(v1e1 · · · vdedvd+1) (1 ≤

g ≤ h), find the set of passed tests PT (P i
g) and

the set of failed tests FT (P i
g), where any test in

PT (P i
g) or FT (P i

g) matches P i
g. Let 〈i1, · · · , ik〉

(1≤i1<· · ·<ik≤n) denote F (vd+1). Note that i1 = i
because of the first-match semantics. Let lg denote

the increased number of passed tests that match P i
g

after deleting rule ri. To calculate lg, we need to

check whether ri and ri2 have the same decision. If

ri and ri2 have the same decision, deleting ri does not

change two sets PT (P i
g) and FT (P i

g). In this case,

lg=0. Otherwise, the passed tests in PT (P i
g) become

failed tests and the failed tests in FT (P i
g) become

passed tests. In this case, lg = |FT (P i
g)|− |PT (P i

g)|.
Therefore, the increased number of passed packets af-

ter deleting rule ri can be computed as
∑h

g=1 lg.

(3) Delete the rule that can maximize the number of

passed packets.

Note that if rule ri is not the first-matching rule for any

failed test, |FT (P i
g)|=0 (1≤g≤h) and hence

∑h

g=1 lg ≤

0. In this case, deleting ri cannot increase the number of

passed packets. We can easily find such rules by comput-

ing the set FT (i)−FT (i + 1) for each rule ri. Further

note that if there is more than one rule such that delet-

ing each of them can maximize the increased number of

passed tests, we choose the rule with the maximum se-

quence number.

For the faulty firewall policy in Figure 2, by checking

FT (i)−FT (i+1) in Figure 7, we find that deleting rule

r1 or r3 cannot increase the number of passed packets. In

the all-match FDD of the faulty policy (shown in Figure

4), for rule r2, there are two paths, F1∈[6, 6]∧F2∈[3, 3]
and F1∈[6, 6]∧F2∈[4, 10], where 2 is the first integer in

their terminal nodes. Because the failed test p6 matches

the first path, and r2 and r3 have different decisions,

deleting r2 changes p6 to a passed test. Because the

passed test p3 matches the second path, and r2 and r5
have different decisions, deleting r2 changes p3 to a

failed test. Therefore, deleting r2 does not increase the

number of passed tests. Similarly, deleting r4 changes

p8 to a passed test, and hence increases the number of

passed tests by 1.

11 Experimental Results

11.1 Evaluation Setup

In our experiments, faulty firewall policies were gener-

ated from 40 real-life firewall policies that we collected

from universities, ISPs, and network device manufactur-

ers. The 40 real-life policies were considered as correct

policies with respect to these faulty policies. Each fire-

wall examines five fields, source IP, destination IP, source

port, destination port, and protocol type. The number of

rules for each policy ranges from dozens to thousands.

To evaluate the effectiveness and efficiency of our ap-

proach, we first employed the technique of mutation test-

ing [6] to create faulty firewall policies. The technique

for injecting synthetic faults with mutation testing is a

well-accepted mechanism for carrying out testing exper-

iments in both testing academia and industry. Particu-

larly, each faulty policy contains one type of fault, and

the number of faults in a faulty firewall policy ranges

from 1 to 5. Given a real-life firewall with n rules, for

each type of fault and each number of faults, we created

n−1 faulty policies. Note that we did not change the

last rule of a real-life policy. For example, to create a

faulty firewall policy with k wrong decisions faults, we

randomly chose k rules in a real-life firewall policy and

then changed the decisions of the k rules. For each type

of fault and each number of faults, we generated 35618

faulty firewall policies. Second, for each faulty policy,

we employed a firewall testing tool [8] to generate test

packets. Note that we generated test packets based on

the faulty policy rather than its corresponding real-life

10

policy. For each faulty policy, on average, the total num-

ber of passed and failed tests is about 3n, where n is

the number of rules in the policy. Third, we classified

them into passed and failed tests. For each test packet,

we compared two decisions evaluated by the faulty pol-

icy and its corresponding real-life policy. If the two de-

cisions were the same, we classified the test packet as

a passed test; otherwise, we classified it as a failed test.

Note that in practice this step should be done by adminis-

trators. Finally, we implemented and applied our greedy

algorithm over the faulty firewall policy and produced

the fixed policy. For each step of the greedy algorithm, if

different techniques increase the same number of passed

tests, we randomly choose one technique.

11.2 Methodology

In this section, we define the metrics to measure the ef-

fectiveness of our approach. First, we define the dif-

ference between two firewall policies. Given two poli-

cies FW1 and FW2, the difference between FW1 and

FW2, denoted as ∆(FW1, FW2), is the total number

of packets each of which has different decisions evalu-

ated by FW1 and FW2. To compute ∆(FW1, FW2),
we first use a firewall comparison algorithm [13] to find

the functional discrepancies between FW1 and FW2,

where each discrepancy denotes a set of packets and each

packet has different decisions evaluated by the two poli-

cies. Then, we compute the number of packets included

by all discrepancies. Let FWreal denote a real-life fire-

wall policy and FWfaulty denote a faulty policy created

from FWreal. Let FWfixed denote the fixed policy by

correctingFWfaulty andm(FWfaulty) denote the num-

ber of modifications. Let S(t, k) denote a set of faulty

policies, where t denotes the type of fault and k denotes

the number of faults in each faulty policy. We define two

metrics for evaluating the effectiveness of our approach:

1. The difference ratio over FWreal, FWfaulty , and

FWfixed:

∆(FWreal, FWfixed)

∆(FWreal, FWfaulty)

2. The average number of modifications over S(t, k):

∑
FWfaulty∈S(t,k) m(FWfaulty)

|S(t, k)|

Note that ∆(FWreal, FWfaulty) is the total number

of misclassified packets in the faulty firewall policy. For

the example policy in Figure 1, if we generate a faulty

firewall policy by changing r1’s decision to discard, the

difference between these two policies is 28×216=224.

Hence, the total number of packets that are misclassi-

fied by the faulty firewall policy is 224. In fact, for a

faulty policy, one failed test is a misclassified packet. But

the number of failed tests is typically much smaller than

the number of misclassified packets. For example, we

may generate only one failed test (1.2.3.5, 192.168.1.1,

23447, 25, TCP)→accept for the preceding faulty pol-

icy. After applying our approach over a faulty policy, the

fixed policy FWfixed not only corrects all failed tests,

but also may correct other misclassified packets. The dif-

ference ratio
∆(FWreal,FWfixed)
∆(FWreal,FWfaulty)

measures the percent-

age of misclassified packets after correcting FWfaulty .

If
∆(FWreal,FWfixed)
∆(FWreal,FWfaulty)

= 0, FWfixed corrects all mis-

classified packets, which means that FWfixed is equiva-

lent to FWreal in terms of functionality.

11.3 Effectiveness of Our Approach

Figures 8(a)-8(e) show the cumulative distribution of dif-

ference ratios overFWreal, FWfaulty , andFWfixed for

each type of fault. In Figures 8(a)-8(e), we use “One

Fault”, · · ·, “Five Faults” to denote the number of faults

in faulty firewall policies. We observe that for three types

of faults, wrong order, wrong decisions, and wrong ex-

tra rules, fixed policies can significantly reduce the num-

ber of misclassified packets. For faulty policies with

k faults, where k faults are one of these three types

and k ≤ 4, over 53.2% fixed policies are equivalent to

their corresponding real-life policies. For faulty poli-

cies with 1 to 5 wrong decisions faults, the percentages

of fixed policies that are equivalent to their correspond-

ing real-life policies are 73.5%, 68.8%, 63.7%, 59.3%,

and 53.8%, respectively. For faulty policies with 1 to 5

wrong order faults, the percentages of fixed policies that

are equivalent to their corresponding real-life policies are

69.7%, 64.2%, 59.7%, 54.3%, and 48.9%, respectively.

For faulty policies with 1 to 5 wrong extra rules faults,

the percentages of fixed policies that are equivalent to

their corresponding real-life policies are 68.3%, 63.5%,

59.3%, 53.2%, and 47.3%, respectively.

We also observe that fixed policies can reduce only a

small number of misclassified packets for two types of

faults, missing rules and wrong predicates. For faulty

policies with 1 to 2 missing rules faults, the percentages

of fixed policies that have 50% difference ratio with their

corresponding real-life policies are 15.7% and 8.32%, re-

spectively. For faulty policies with 1 to 2 wrong predi-

cates faults, the percentages of fixed policies that have

50% difference ratio with their corresponding real-life

policies are 17.3% and 9.1%, respectively. The reason

is that in most cases, the information provided by failed

tests is not enough to recover the missing rule (or correct

predicate). A firewall rule (or predicate) with 5 fields

can be denoted as a hyperrectangle over a 5-dimensional

space, and failed tests are only some points in the hy-

perrectangle. To recover the missing rule (or correct the

11

40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80
P

e
rc

e
n

ta
g

e
 o

f
D

if
fe

re
n

c
e

Percentage of fixed policies

One Fault
Two Faults
Three Faults
Four Faults
Five Faults

(a) Wrong Order

40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

P
e

rc
e

n
ta

g
e

 o
f

D
if
fe

re
n

c
e

Percentage of fixed policies

One Fault
Two Faults
Three Faults
Four Faults
Five Faults

(b) Wrong Decisions

40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

P
e

rc
e

n
ta

g
e

 o
f

D
if
fe

re
n

c
e

Percentage of fixed policies

One Fault
Two Faults
Three Faults
Four Faults
Five Faults

(c) Wrong Extra Rules

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
D

if
fe

re
n
c
e

Percentage of fixed policies

One Fault
Two Faults
Three Faults
Four Faults
Five Faults

(d) Missing Rules

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
D

if
fe

re
n
c
e

Percentage of fixed policies

One Fault
Two Faults
Three Faults
Four Faults
Five Faults

(e) Wrong Predicates

1 2 3 4 5
1

2

3

4

5

6

7

8

9

10

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

o
d

if
ic

a
ti
o

n
s

The number of firewall faults

Wrong Decisions
Wrong Order
Wrong Extra Rules
Missing Rules
Wrong Predicates

(f) Avg. Number of Modifications

Figure 8: Cumulative distribution of difference ratio and average number of modifications for each type of firewall

policy faults

12

wrong predicate), for each surface of the hyperrectangle,

there should be at least one point on it. However, the

chance of such a case is very small.

Figure 8(f) shows the average number of modifications

for each type of firewall faults. We observe that for faulty

firewall policies with k faults, where k ≤ 5, the ratio be-

tween the average number of modifications and the num-

ber of faults is less than 2. Note that to correct a faulty

firewall policy with k faults, k is the minimum number

of modifications. Therefore, the number of modifications

of our approach is close to the minimum number.

11.4 Efficiency of Our Approach

We implemented our approach using Java 1.6.0. In our

experiments, for a faulty firewall policy, we measure the

total processing time of generating test packets, classi-

fying packets into passed and failed tests, and fixing the

policy to evaluate the efficiency of our approach. Note

that classifying test packets is automatically done in our

experiments by comparing two decisions evaluated by

the faulty firewall and its corresponding real-life firewall

for test packets. In practice, this step should be done by

administrators. Our experiments were carried out on a

desktop PC running Linux with 2 quad-core Intel Xeon

at 2.3GHz and 16GB of memory. Our experimental re-

sults show that for the faulty firewall policy with 7652

rules, the total processing time for fixing this faulty pol-

icy is less than 10 minutes.

12 Case Study

In this section, we applied our automatic correction tool

for firewall policy faults to a real-life faulty firewall pol-

icy with 87 rules and demonstrated that our tool can help

the administrator to correct the misconfiguration in the

firewall policy. The real-life firewall policy is shown in

the Appendix B where the policy is anonymized due to

the privacy and security concern.

We first employed the automated packet generation

techniques [9] to generate test packets for the fire-

wall policy and then asked the administrator to identify

passed/failed tests. Among these test packets, we ob-

tained seven failed tests, which are shown in Table 1.

Second, we applied our proposed solution to this fire-

wall policy and generated a sequence of modifications to

correct the seven failed tests in Table 1. The resulting

sequence includes four modifications: swapping rule 6

and rule 38, deleting rules 48, 49, and 50, which sug-

gest that the firewall policy has one wrong-order fault

and three wrong-extra-rule faults. We confirmed these

faults with the administrator and he admitted that the re-

sulting sequence of modifications generated by our tool

can correct these faults automatically.

p1 : (157.96.252.36, 157.96.252.66, 13249, 25341, IP) → a

p2 : (67.48.121.156, 157.96.139.10, 4537, 109, TCP) → a

p3 : (35.121.47.232, 157.96.139.10, 21374, 109, TCP) → a

p4 : (25.35.113.153, 157.96.139.10, 7546, 110, TCP) → a

p5 : (154.182.56.79, 157.96.139.10, 16734, 110, TCP) → a

p6 : (193.21.135.85, 157.96.139.10, 19678, 143, TCP) → a

p7 : (213.174.191.25, 157.96.139.10, 24131, 143, TCP) → a

Table 1: Seven failed tests for the real-life firewall policy

13 Conclusions

We make three key contributions in this paper. First, we

propose the first comprehensive fault model for firewall

policies, including five types of faults. For each type of

fault, we present an automatic correction technique. Sec-

ond, we propose the systematic approach that can auto-

matically correct all or part of the misclassified packets

of a faulty firewall policy. To the best of our knowledge,

our paper is the first one for automatic correction of fire-

wall policy faults. Last, we implemented our approach

and evaluated its effectiveness on real-life firewalls. To

measure the effectiveness of our approach, we propose

two metrics, which we believe are general metrics for

measuring the effectiveness of firewall policy correction

tools. The experimental results demonstrated that our ap-

proach is effective to correct a faulty firewall policy with

three types of faults: wrong order, wrong decisions, and

wrong extra rules.

Acknowledgment

This work is supported in part by NSF grant CNS-

0716579, NSF grant CNS-0716407, an MSU IRGP

Grant, and an NIST grant.

References

[1] AGRAWAL, H., AND HORGAN, J. R. Dynamic

program slicing. In Proceedings of ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI) (1990), pp. 246–256.

[2] AL-SHAER, E., AND HAMED, H. Discovery of

policy anomalies in distributed firewalls. In Pro-

ceedings of IEEE Conference on Computer Com-

munications (INFOCOM) (2004), pp. 2605–2616.

[3] BABOESCU, F., AND VARGHESE, G. Fast and

scalable conflict detection for packet classifiers. In

Proceedings of IEEE International Conference on

Network Protocols (ICNP) (2002), pp. 717–735.

[4] CERT. Test the firewall system. http://www.cert.

org/security-improvement/practices/p060.html.

[5] CISCO REFLEXIVE ACLS. http://www.cisco.com/.

13

[6] DEMILLO, R. A., LIPTON, R. J., AND SAY-

WARD, F. G. Hints on test data selection: Help

for the practicing programmer. IEEE Computer 11,

4 (1978), pp. 34–41.

[7] HARI, A., SURI, S., AND PARULKAR, G. M.

Detecting and resolving packet filter conflicts. In

In Proceedings of IEEE Conference on Computer

Communications (INFOCOM) (2000), pp. 1203–

1212.

[8] HWANG, J., XIE, T., CHEN, F., AND LIU, A. X.

Systematic structural testing of firewall policies.

In Proceedings of IEEE International Symposium

on Reliable Distributed Systems (SRDS) (2008),

pp. 105–114.

[9] HWANG, J., XIE, T., CHEN, F., AND LIU, A. X.

Fault localization for firewall policies. In Proceed-

ings of IEEE International Symposium on Reliable

Distributed Systems (SRDS) (2009), pp. 100–106.

[10] JONES, J. A., AND HARROLD, M. J. Em-

pirical evaluation of the Tarantula automatic

fault-localization technique. In Proceedings

of IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE) (2005),

pp. 273–282.

[11] JÜRJENS, J., AND WIMMEL, G. Specification-

based testing of firewalls. In Proceedings of Inter-

national Conference Perspectives of System Infor-

matics (PSI) (2001), pp. 308–316.

[12] LIU, A. X. Change-impact analysis of firewall

policies. In Proceedings of European Symposium

Research Computer Security (ESORICS) (2007),

pp. 155–170.

[13] LIU, A. X., AND GOUDA, M. G. Diverse firewall

design. IEEE Transactions on Parallel and Dis-

tributed Systems (TPDS) 19, 8 (2008), pp. 1237–

1251.

[14] LIU, A. X., GOUDA, M. G., MA, H. H., AND

NGU, A. H. Non-intrusive testing of firewalls. In

Proceedings of International Computer Engineer-

ing Conference (ICENCO) (2004), pp. 196–201.

[15] LIU, A. X., ZHOU, Y., AND MEINERS, C. R.

All-match based complete redundancy removal for

packet classifiers in TCAMs. In Proceedings of

IEEE Conference on Computer Communications

(INFOCOM) (2008), pp. 574–582.

[16] LYU, M. R., AND LAU, L. K. Y. Firewall se-

curity: Policies, testing and performance evalua-

tion. In Proceedings of International Conference on

Computer Systems and Applications (COMPSAC)

(2000), pp. 116–121.

[17] MARMORSTEIN, R., AND KEARNS, P. Assisted

firewall policy repair using examples and history. In

Proceedings of USENIX Large Installation System

Administration Conference (LISA) (2007), pp. 1–

11.

[18] NESSUS. http://www.nessus.org/.

[19] RENIERIS, M., AND REISS, S. P. Fault localiza-

tion with nearest neighbor queries. In Proceedings

of IEEE International Conference on Automated

Software Engineering (ASE) (2003), pp. 30–39.

[20] SATAN. http://www.porcupine.org/satan/.

[21] WOOL, A. A quantitative study of firewall configu-

ration errors. IEEE Computer 37, 6 (2004), pp. 62–

67.

[22] YUAN, L., CHEN, H., MAI, J., CHUAH, C.-

N., SU, Z., AND MOHAPATRA, P. FIREMAN: a

toolkit for firewall modeling and analysis. In Pro-

ceedings of IEEE Symposium on Security and Pri-

vacy (IEEE S&P) (2006), pp. 199–213.

[23] ZELLER, A. Isolating cause-effect chains from

computer programs. In Proceedings of ACM SIG-

SOFT Symposium on Foundations of Software En-

gineering (FSE) (2002), pp. 1–10.

Appendix A

Before we prove Theorem 6.1, we first prove the follow-

ing two lemmas.

Lemma 13.1 Given a firewall policy FW :〈r1,· · ·,rn〉
and its all-match FDD {P1,· · ·,Ph}, for any rule ri in

FW , if Pi1 ,· · ·,Pim are all the decision paths whose ter-

minal node contains ri, the following condition holds:

C(ri) = ∪m
t=1C(Pit).

Proof : According to property 5 in the definition of all-

match FDDs, we have ∪m
t=1C(Pit) ⊆ C(ri). Consider

a packet p in C(ri). According to the consistency and

completeness properties of all-match FDDs, there exists

one and only one decision path that p matches. Let P
denote this path. Thus, we have p ∈ C(ri) ∩ C(P).
According to property 5, i is in the label of P’s terminal

node. Thus, we have P ∈ {Pi1 , · · · ,Pim}. Therefore,

p ∈ ∪m
t=1C(Pit). Thus, we have ∪m

t=1C(Pit) ⊇ C(ri).

Lemma 13.2 Given a firewall policy FW :〈r1,· · ·,rn〉
and its all-match FDD {P1,· · ·,Ph}, for any rule ri
in FW , there exists only one set of paths P ∈
{Pi1 , · · · ,Pim} such that C(ri) = ∪m

t=1C(Pit).

14

Proof : Suppose there exists another one set of

path {P ′

i1
, · · · ,P ′

il
}, which is different from P ∈

{Pi1 , · · · ,Pim}. Thus, there exists at least one P ′

is
6∈

{Pi1 , · · · ,Pim} (1 ≤ s ≤ l). According to the consis-

tency and completeness properties of all-match FDDs,

for any Pit (1 ≤ t ≤ m), Pit ∩ P ′

is
= ∅. Thus,

∪m
t=1C(Pit) 6= ∪l

s=1C(P ′

is
), which contradicts with our

assumption.

Next we can prove Theorem 6.1 based on Lemma 13.1

and Lemma 13.2.

Proof of Theorem 6.1: Based on Lemma 13.2, for

each rule r1i ∈ {r11, · · · , r
1
n} (1 ≤ i ≤ n), we can

find only one set of paths P ∈ {P1
1 ,· · ·, P1

h1
} such

that C(r1i) = ∪m
t=1C(P1

it
). Because {r11 ,· · ·,r1n} =

{r21 ,· · ·,r2n}, there exists r2j (1 ≤ j ≤ n) such that

r2j = r1i . Thus, for each rule r1i and its corresponding

rule r2j , we have

C(r1i) = C(r2j) = ∪m
t=1C(P1

it
)

We also know that for the all-match FDD {P1
1 ,· · ·,

P1
h1
} generated from FW1:〈r11 ,· · ·,r1n〉, the following

condition holds:

∪n
i=1(∪

m
t=1P

1
it
) = {P1

1 , · · · ,P
1
h1
}

Similarly, for the all-match FDD {P2
1 , · · · ,P

2
h2
} gener-

ated from FW2:〈r21 , · · · , r
2
n〉, we have

∪n
i=1(∪

m
t=1P

1
it
) = {P2

1 , · · · ,P
2
h2
}

Thus, {P1
1 , · · · ,P

1
h1
} = {P2

1 , · · · ,P
2
h2
}.

Appendix B

The real-life firewall policy with 87 rules is shown as

follows.

Src IP Dest IP Src Port Dest Port Protocol Action

1 67.54.138.163 157.96.119.153 * 9100 TCP accept

2 67.54.138.163 157.96.119.153 * 161 UDP accept

3 * * * * 53 deny

4 * * * * 55 deny

5 * * * * 77 deny

6 * 157.96.252.66 * * IP accept

7 32.45.186.83 * * * IP deny

8 * 157.96.139.14 * 443 TCP deny

9 231.49.182.251 * * * IP deny

10 * * * 3127 TCP deny

11 * * * 2745 TCP deny

12 * * 4000 * UDP deny

13 * * * 111 UDP deny

14 * * * 111 TCP deny

15 * * * 2049 UDP deny

16 * * * 2049 TCP deny

17 * * * 7 UDP deny

18 * * * 7 TCP deny

19 * * * 6346 TCP deny

20 * * * 7000 TCP deny

21 * * * 161 UDP deny

22 * * * 162 UDP deny

23 * * * 1993 UDP deny

24 * * * 67 UDP deny

25 * * * 68 UDP deny

Src IP Dest IP Src Port Dest Port Protocol Action

26 * * * 49 UDP deny

27 178.95.49.* * * * IP deny

28 157.96.119.* * * * IP deny

29 157.96.120.* * * * IP deny

30 157.96.121.* * * * IP deny

31 157.96.122.* * * * IP deny

32 157.96.130.* * * * IP deny

33 157.96.138.* * * * IP deny

34 157.96.139.* * * * IP deny

35 157.96.143.* * * * IP deny

36 157.96.144.* * * * IP deny

37 157.96.158.* * * * IP deny

38 157.96.252.* * * * IP deny

39 * 157.96.139.9 * 1949 UDP accept

40 * 157.96.139.10 * 1949 UDP accept

41 * 157.96.120.2 * 1949 UDP accept

42 * 157.96.139.9 * 1949 TCP accept

43 * 157.96.139.10 * 1949 TCP accept

44 * 157.96.120.2 * 1949 TCP accept

45 255.255.255.255 * * * IP deny

46 0.0.0.0 * * * IP deny

47 * 157.96.119.* * * IP deny

48 * 157.96.139.10 * 109 TCP accept

49 * 157.96.139.10 * 110 TCP accept

50 * 157.96.139.10 * 143 TCP accept

51 62.78.103.* * * * IP deny

52 * * * 6667 TCP deny

53 * * * 6112 TCP deny

54 * * * 109 TCP deny

55 * * * 110 TCP deny

56 * * * 1433 UDP deny

57 * * * 1434 UDP deny

58 * * * 135 TCP deny

59 * * * 137 TCP deny

60 * * * 138 TCP deny

61 * * * 139 TCP deny

62 * * * 445 TCP deny

63 * * * 135 UDP deny

64 * * * 137 UDP deny

65 * * * 138 UDP deny

66 * * * 139 UDP deny

67 * * * 445 UDP deny

68 * * * 143 TCP deny

69 * * * 515 TCP deny

70 * * * 512 TCP deny

71 * * * 514 UDP deny

72 * * * 69 UDP deny

73 * * * 514 TCP deny

74 * 157.96.138.138 * 5900 TCP accept

75 * 157.96.138.138 * 5166 TCP accept

76 * 157.96.138.138 * * IP deny

77 * 157.96.138.101 * 5900 TCP accept

78 * 157.96.138.101 * 5166 TCP accept

79 * 157.96.138.101 * * IP deny

80 * 157.96.138.80 * * IP deny

81 * 157.96.138.82 * * IP deny

82 * 157.96.138.234 * * IP deny

83 * 157.96.138.235 * * IP deny

84 * 157.96.138.236 * * IP deny

85 * 157.96.128.* * * IP accept

86 * 157.96.140.* * * IP deny

87 * * * * IP accept

15

