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A b s t r a c t 

In this paper, it is argued that probability theory, when 
used correctly, is suffrcient for the task of reasoning under 
uncertainty. Since numerous authors have rejected prob­
ability as inadequate for various reasons, the bulk of the 
paper is aimed at refuting these claims and indicating the 
scources of error. In particular, the definition of probability 
as a measure of belief rather than a frequency ratio is advo­
cated, since a frequency interpretation of probability dras­
tically restricts the domain of applicability. Other sources 
of error include the confusion between relative and abso­
lute probability, the distinction between probability and 
the uncertainty of that probability. Also, the interaction 
of logic and probability is discusses and it is argued that 
many extensions of logic, such as "default logic" are better 
understood in a probabilistic framework. The main claim 
of this paper is that the numerous schemes for represent­
ing and reasoning about uncertainty that have appeared in 
the AI literature are unnecessary—probability is all that is 
needed. 

1 I n t r o d u c t i o n 

A glance through any major AI publication shows that 
an overwhelming proportion of papers are concerned with 
what might be described as the logical approach to infer­
ence and knowledge representation. It now widely accepted 
that many knowledge representations can be mapped into 
(first order) predicate calculus, and the corresponding in­
ference procedures can be reduced to a type of controlled 
logical deduction. However, examples of human reasoning 
(judgements) are full of such terms as "probably", "most", 
"usually" etc., showing that many patterns of human rea­
soning are not logical in form, but intrinsically probabilistic. 

The claim that many patterns of human reasoning are 
probabilistic does not mean that the underlying "logic" of 
such patterns cannot be axiomatized. On the contrary, a 
basis for such an axiomatization is given in section 3. The 
claim is that when such an exercise is performed, the re­
sulting patterns of inference are different in form from those 
found in analogous logical deductions. A characteristic dif­

ference is that in probabilistic inference all the relevant 
inference paths ("proofs") connecting the evidence to the 
hypothesis of interest must be examined and "combined", 
while in logic it is sufficient to establish a single path be­
tween the axioms and the theorem of interest. Also, the 
output is different, the former includes at least one numer­
ical measure, the latter simply true or false. 

Unfortunately, the logical style of reasoning is so preva­
lent in AI that many have attempted to force intrinsically 
probabilistic situations into a logical straight-jacket with 
predictable limited success. Two conspicuous examples of 
this are "Default Logic" [19] and "Non-Monotonic Logic" 
[15] discussed in more detail below. These methods are 
appropriate for dealing with some situations where limited 
knowledge is available. The same cannot be said for those 
who invent new theories for reasoning under uncertainty, 
such as "Certainty Factors", "Schafer/Dempstcr Theory", 
"Confirmation Theory", "Fuzzy Logic", "Endorsements" 
etc. 

These theories will be shown below to be at best unnec­
essary and at worst misleading (not to mention confusing 
to the poor novice faced with so many possibilities). Each 
one is an attempt to circumvent some perceived difficulty 
of probability theory, but as shown below these difficulties 
exist only in the minds of their inventors. However, these 
supposed difficulties are common misconceptions of prob­
ability, generally springing from the inadequate frequency 
interpretation. A major aim of this paper is to put for­
ward the older view (Bayes, Laplace etc.), that probability 
is a measure of belief in a proposition given particular evi­
dence. This definition avoids the difficulties associated with 
the frequency definition and answers the objections of those 
who felt compelled to invent new theories. 

An analogy can be draw between the situation in AI in 
the late 1970s, where Pat Hayes, in a paper entitled "In 
Defence of Logic" [10], found it necessary to take a broad­
side at the proliferation of new representation languages 
(with associated inference procedures) that proported to 
solve difficulties with the logical approach. He showed that 
far from being "nonlogical" it is possible to cast such lan­
guages into an equivalent logical form, and by doing so 
provide a clear semantics. In addition, he pointed out the 
obvious but unpopular fact that logic has been around for 
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a long time and has a considerable body of research and 
experience that no new theory can match. Similarly today 
we have a set of new theories for dealing with uncertainty, 
despite the fact that probability theory has been around 
for three centuries and, as shown below, is sufficient for the 
ta.sk. 

Any text on probability presents a formal calculus for 
manipulating probabilities according to a consistant set of 
axioms. Many disputes concerning probability are centered 
on the interpretation of the terms in the formal system, 
since an interpretation (model theory) is necessary if the 
theory is to be applied. Others dispute that the formal ax­
ioms under any interpretation really capture their intuitive 
expectations for uncertain inference. This paper argues for 
a particular interpretation of the probability formalism and 
that the result is sufficient for all uncertain inference in AI. 
Since Haves' theorem is integral to the use of probabilities 
the terms Hayesian and probabilistic are used interchange­
ably. 

2 S o m e M i s c o n c e p t i o n s o f P r o b a ­

b i l i t y 

This section discusses and hopefully exorcises the most 
common misconceptions of probability. 

2.1 P r o b a b i l i t y is a F r e q u e n c y R a t i o 

Rather than give an historical account of the different theo­
ries (interpretations) that have been applied to probability 
(e.g. |8]), the following definition is put forward as one that 
withstands all previous criticisms: 

The (conditional) probability of a proposition given par­
ticular evidence is a real number between zero and one, that 
is a measure of an entity's belief in that proposition, given 
the evidence 

Several corollaries follow directly from this definition. 
Firstly, there is no such thing as the probability of a propo­
sition, since the probability value depends on the evidence 
used to derive it. This implies that if new evidence is uti­
lized, the probability value assigned to the proposition will 
generally change. The only exception to this variability 
is when the probability is zero or one, because then there 
is no longer any uncertainty and further evidence makes 
no difference. Secondly, different observers with different 
evidence (information) will assign different probabilities. 
There is no contradiction inherent in this the apparent 
contradiction comes from the idea that every proposition 
has a unique probability. A third consequence of the above 
definition is that probabilities are inherently subjective in 
the sense that the value depends on the believer's infor­
mation, but they are objective in the sense that the same 
(ideal) believers should arrive at the same value given the 
same information. 

This definition differs sharply from the still commonly 
held frequency definition of probability: 

The probability of an event (hypothesis) is the ratio of the 
number of occurrences (n) in which the event is true to the 
total number of such occurrences (m) 

This definition has some immediate problems that many 
other critics have noted. For a start, this definition re­
stricts probability to domains where repeated experiments 
(e.g., sampling) are possible, or at least conceivable. Also, 
the probability of an event under this definition is unde­
fined if there are no prior examples (m = 0) thus limiting 
its usefulness. Even worse are cases where, for example, 
there has been one success (n = 1) and one trial (rn = 
1), giving a probability of one for the next event!—that 
is on the basis of a single trial the probability of the next 
event is known with certainty. In most circumstances this is 
nonsense—those who defend the frequency ratio definition 
escape into "the law of large numbers" which essentially 
says that given a large number of (repeatable) trials, the 
true probability lies within given error bounds with high 
probability. This restriction bans small sample cases from 
the realm of probabilistic ("frequency") analysis, but works 
well for the large sample case. Given the success of the fre­
quency definition in areas where it is applicable, it is fortu­
nate that there is a strong connection between the measure 
of belief definition of probability and the frequency ratio 
definition. It has been shown by Jaynes [12] that under 
certain conditions (e.g., repeatable trials) the expectation 
of the frequency ratio is necessarily equal to the probabil­
ity. However the measure of belief definition applies to the 
small sample case as well. 

Philosophers have been arguing the "correct" definition 
of probability for centuries, and some have defined up to five 
different meanings for probability [8], including: "statisti­
cal probability" (i.e., the frequency ratio definition); "prob­
ability = propensity" (i.e., probability used for prediction); 
"logical probability" (i.e., the degree of confirmation of a 
hypothesis based on logical analysis) and "subjective prob­
ability" . The measure of belief definition subsumes all these 
supposedly different concepts. For example, the probabil­
ity of set membership ("the probability of A being a B") 
and the probability of future events ("the probability that 
H will happen, given E") are not different kinds of prob­
ability but just the observer's belief in the corresponding 
proposition given the evidence. Similarly, it makes no dif­
ference to the belief in a proposition whether the proba­
bility is the result of logical analysis (e.g., the probability 
of a number being prime) or the result of empirical obser­
vations (e.g., the probability of surviving a car accident). 
The philosophical distinctions and alternative definitions of 
probability obscure rather than enlighten understanding of 
probability. 

2.2 B a y e s i a n A n a l y s i s R e q u i r e s V a s t 
A m o u n t s o f D a t a 

This particular fallacy has appeared so often that its truth 
is rarely questioned. The reason for this fallacy follows 
directly from the frequency ratio definition. This says 
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that the probability of a proposition, such as "This pa­
tient has a particular infection given his particular set of 
symptoms'", can be computed from the number of patients 
that have previously exhibited that combination of symp­
toms. Clearly, in practice, the set of previous patients with 
a particular combination of symptoms is going to be very 
small or zero, so by the frequency definition of probability 
this conditional probability cannot be computed. 

In anything but the most trivial cases, the basic problem 
that the Bayesian (or any other) approach must deal with is 
that the available information is not sufficient to determine 
any particular conditional probability, as in the above ex­
ample. That is, the probability space associated with a par­
ticular problem is usually highly under-constrained by the 
known probabilities, so it is impossible to calculate directly 
any particular conditional probability [3]. The normal way 
around this difficulty is to make additional assumptions 
that supply the missing constraints. The most common as­
sumption is "conditional independence", as advocated in 
[2], [7] and [16]. The conditional independence assumption 
has been generalized by Lemmer and Barth [14] to include 
conditional independence between groups of propositions, 
and all these forms of independence assumptions are sub­
sumed under the maximum entropy assumption [3], [13]. 

The use of the maximum entropy assumption (or its spe­
cializations) raises the question of its validity. For maxi­
mum entropy, it has been shown that the probability gen­
erated is the one which has the maximum number of pos­
sible worlds consistent with the known information, and in 
this sense is the "best" value [12]. In some circumstances, 
such as occur in statistical mechanics, the probability of 
the system being in a state with entropy significantly less 
than the maximum is vanishingly small. Maximum entropy 
implies that if a non maximum value is chosen, then more 
information is being assumed than was available—i.e., the 
maximum entropy gives the "least commitment'' value or 
the one that distributes the uncertainty as evenly as possi­
ble over the set of possibilities. Conditional independence 
(the most common form of maximum entropy) is not just 
another assumption, as implied in [18], it is the only con­
sistent assumption that can be made in the absence of any 
information about possible interactions. However, these 
desirable properties do not mean that information is being 
generated out of nothing. 

What maximum entropy is doing is providing a neutral 
background against which any systematic (non-random) 
patterns can be observed. That is, if the current (prob-
abilistic) information is incomplete, the predictions using 
this information and maximum entropy will differ signifi­
cantly from future observations. When such differences are 
detected the response should not be to throw out maxi­
mum entropy (as many authors advocate), but to utilize 
this additional information. Maximum entropy is making 
stronger predictions than the current information warrants 
because it is assuming the current information is complete. 
However, without this prediction it is difficult to detect if 
the current information is incomplete, and thus difficult to 

discover new information. Also many decision making sit­
uations require probability values, so that some additional 
principle, such as maximum entropy, is necessary in these 
circumstances to select point values even when the value 
is poorly known. This justification for the maximum en­
tropy assumption is really the old problem associated with 
the use of prior probabilities in the Bayesian approach as 
discussed in the next subsection. 

2.3 P r i o r P r o b a b i l i t i e s A s s u m e m o r e 
I n f o r m a t i o n t h a n G i v e n 

This statement appears in numerous AI publications, espe­
cially those expounding the Schafer-Dempster approach to 
uncertainty. For example: 

"Baycaiana might attempt to represent ignorance by a 
function assigning 0.25 to each of the four possibilities, as-
suming no prior information. ...such a function would im­
ply more information given by the evidence than is truly the 
case."—[1]. 

"A Likelihood represented by a point probability is usually 
an over statement of what is actually known, distorting the 
available precision".—[9] 

Yet those that make these claims fail to show a single 
unfortunate consequence that follows from this supposed 
assumed information. To illustrate the situation, consider 
the following examples. In the first example, you are told 
there is a normal dice and asked what probability you would 
assign to the next throw yielding a ''6''. The Maximum En­
tropy answer is 1/6, since this distributes the uncertainty as 
evenly as possible over the set of possibilities. In the next 
example you are told there is a loaded dice (but not which 
numeral is favoured) and are asked what is the probabil­
ity of a ''6''. Again the answer representing your state of 
knowledge is to assign 1/6. The difference between these two 
situations is that in the first example your know ledge of dice 
mechanics and symmetry implies that after having seen the 
outcome of many throws you do not expect to change your 
state of knowledge (i.e., the probability assignment). How­
ever, for the loaded dice, you do expect the probabilities 
assigned to the different faces to change as a result of fur­
ther trials. 

Those who reject the Maximum Entropy approach argue 
that in the second example, the initial assignment of 1/6 was 
assuming more than you know because after many trials 
you ended up with a different assignment (i.e., the initial 
assignment was incorrect). This objection arises from the 
mistaken idea that there is such a thing a the probability of 
a proposition instead of the idea that probability represents 
a state of knowledge. Of course the probability assignment 
to a proposition will change as more information is gained 
without inconsistency with previous assignments. The idea 
that there is a unique probability associated with a partic­
ular proposition comes from situations where all observers 
have the same information (e.g., physics), and so they all 
have the same measure of belief (assuming ideal observers). 

However, not just any prior probabilities will do. If non-
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equal priors are chosen, this implies that you have informa­
tion about the different possibilities. Put another way, the 
equal prior assignment gives a neutral background against 
which deviations from your state of maximum uncertainty 
can be detected. It is because it is not assuming more infor­
mation than given that the maximum entropy assignment 
is used. Looking at the example in reverse, if someone 
assigns equal probabilities to a set of possible outcomes, 
they are telling you they are completely ignorant about the 
next outcome (apart from how many possibilities there are). 
Note that in these two examples, our knowledge about our 
knowledge of the probabilities (i.e., the probability distri­
bution of the probability) is the main difference. 

A more subtle criticism of the use of the principle of indif­
ference that has historically plagued probability theory is 
illustrated by the following example. Assume there are five 
"concepts" (a, b, c, d, c), then the principle of indifference 
will assign prior probability 1/5 to each. If you are now told 
that concept a is actually / or g, then you should reassign 
probabilities of 1/6 to each of (/,f, g, c, d, e). This apparent 
arbitrariness of the prior probabilities through regrouping 
and relabelling is put forward as a reason for rejecting use 
of priors at all. The arbitrariness of the probability assign­
ment only arises in this example because the "concepts" 
are meaningless, so any grouping is just as meaningless as 
any other. If the problem is undefined, probability theory 
(or any other theory) cannot say anything useful. However, 
as soon as the concepts are identified with possibilities in 
the real world, the arbitrariness disappears. When each 
possibility in a problem corresponds to a physically real­
izable possibility, we no longer have the freedom to count 
arbitrary groupings of such outcomes as if they are a sep­
arate outcome- i.e., we can no longer arbitrarily redefine 
the problem [11]. 

For example, consider the famous problem known as 
Bertrand's Paradox. In this "paradox" we are required to 
draw lines uat random" that intersect a circle, and wish to 
know the probability that the length of a chord of such a 
line is longer than a side of an inscribed equilateral trian­
gle. There appears to be different answers depending how 
"equally possible" situations are defined. Three possibili­
ties are to assign uniform probability density to: (a) the 
distance between the centers of the chord and circle, (b) 
the angle the chord makes with the center, and (c) the cen­
ter of the chord within the circle; each possibility giving 
a different answer. Jaynes [11] has shown that only (a) 
is consistent with the requirement that the answer be in­
variant under infinitesimal translations and rotations—an 
obvious requirement coming from our understanding of the 
physical set-up. 

Another example of the invariance argument leading to 
a definite prior probability assignment is to consider the 
probability of finding a ship within a particular square mile 
somewhere in the Atlantic. If this is the only information 
available, then an invariance argument requires assigning 
equal probability to equal areas, in agreement with intu­
ition. Since the Atlantic is roughly diamond shaped, this 

means that the probability of finding the ship at an equato­
rial latitude is higher than at a polar latitude. If the ship is 
instructed to move to a particular latitude, but interference 
completely scrambles our reception of which latitude, then 
after the ship has had time to move, our knowledge is rep­
resented by assigning uniform probability to each latitude 
This new assignment, based on the new "information" leads 
to a new probability distribution in which the probability 
of finding the ship near the equator is now less than near 
the poles. This example shows that in real problems we 
cannot arbitrarily assign equal prior probabilities to any 
dimension or combination of possibilities because to do so 
implies unequal assignments on other dimensions. In prac-
tice, our rich domian background knowledge usually leads 
to non-uniform priors, even though we may be uncertain of 
their values. In complex cases, there is no substitute for a 
careful analysis of each problem to find what the appropri­
ate priors for that problem are. 

2.4 N u m b e r s a re n o t Necessary 

An unfortunate tendency in AI is to rediscover the wheel 
but call it something else so it then becomes a "new" 
paradigm. An example is found in Cohen and Grinberg 
[5], who shows, convincingly, that in many situations it is 
necessary to keep track of the evidence that was used to ar­
rive at a particular (conditional probability) judgment, so 
that the judgment can be revised if new evidence requires 
it. Their work calls attention to the fact that a computed 
probability number is just a summarization of all the evi­
dence that was used to derive it (for convenience in deci­
sion making), and so does not contain information about its 
origin. However, it still a conditional probability and the 
conditions of its derivation can also be important. This uti­
lization of probabilistic dependencies is unfortunately given 
the new name "endorsements", and from its success in ex­
plaining observed judgements under uncertainty, the con­
clusion is reached that numbers are not necessary for such 
judgements at all! 

This conclusion has validity in restricted circumstances 
in particular, it is possible to construct a theory of relative 
probabilities (e.g., [8]) that only uses information of the 
form P1 is-more-probable-than P2 Deductions in such a 
theory do not use numbers and can keep track of their de­
pendencies in a style similar to "endorsements". However, 
the best that such a theory can say is that "this proposi­
tion is the most probable given the evidence"—it cannot 
indicate any absolute strength in its conclusion. It often 
happens that the most probable alternative is itself highly 
unlikely, but non-numeric approaches are unable to express 
such a result. The bottom line is that judgment under un­
certainty can bo done without using numbers if the user is 
in a decision making situation where he has only to choose 
among a set of alternatives. If he has the option of not 
selecting at all (e.g., because the most likely alternative is 
still too improbable), then non-numeric approaches are not 
sufficient. 
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2.5 M o r e t h a n one N u m b e r i s N e e d e d t o 
R e p r e s e n t U n c e r t a i n t y 

Many of the alternative theories of uncertainty start with 
the observation that a single number (a probability value) 
does not represent all the uncertainty about a proposition— 
in particular, it does not indicate the accuracy with which 
the probability value itself is known (i.e., the probability 
of the probability). Similarly, Schafer [20) distinguishes be­
tween uncertainty (roughly a probability) and ignorance 
(no knowledge of the probability). However, even though 
one can make these distinctions, basic questions about their 
utility remain. Ultimately, the utility of any theory of un­
certainty comes from the coupling it provides between ev­
idence (information) and decision making (or prediction). 
A theory of uncertainty is useless without a model theory 
that indicates how to map evidence into an uncertainty 
measure and how to use this uncertainty measure to make 
predictions (or decisions). To decide whether particular dis­
tinctions of types of uncertainty are useful or not, we must 
examine whether they make any difference to the theory's 
decision making behavior. 

The theory of optimal decision making using point prob­
ability and utility values is well known. This would seem 
to imply that a point probability is sufficient to represent 
uncertainty. However, this theory makes the assumption 
that the probabilities used in the analysis are known to 
sufficient accuracy. Probability theory can be extended so 
that a probability density function is assigned to a sentence 
instead of a point value, or higher order moments of the 
density function can be given. However, a result of decision 
analysis is that exactly the same decision is reached whether 
a point value or a density function is used. This situation 
is similar to that in mechanics, where a complex body can 
be replaced by a point mass at the center of gravity to give 
the same results. However, knowledge of the probability 
density function is important for sensitivity analysis as in 
the following example. 

If you are given a black box and told that it will put out a 
string of decimal digits and are asked what is the probabil­
ity that the first digit will be say 7, the standard principle 
of indifference answer is (.1). If, later, after seeing 10,000 
digits of which 1000 were 0, 1000 were 1, etc., in no notice­
able order, you are again asked to give the probability that 
the next digit will be 7, you will still answer (.1). This last 
answer, by standard information theory, implies that all 
the evidence gave no information whatever—you are still 
as uncertain about the probability of the next event as you 
were before seeing the "evidence". However, something has 
clearly changed between these two cases—it is the expec­
tation that further evidence will significantly change our 
probability assignment (i.e., will provide real information). 
This changed expectation can be captured as a standard 
deviation about the probability value which is very large 
initially and becomes quite small (about .003) after seeing 
the 10,000 trials. 

This example implies that if you are in a decision mak­

ing (or prediction) situation and obtaining more evidence 
is not an option then a single number (the probability) is 
a sufficient representation of your uncertainty. However, 
if obtaining more information is a possible option, then a 
measure of how informative this information is likely to be 
(e.g., the standard deviation) is required. Thus, how many 
numbers are needed to represent uncertainty depends on 
the questions you are trying to answer with the uncertainty 
representation. To always calculate two numbers, as done 
in the Schafer-Dempster approach, is often overkill, and in 
some cases, under-kill. 

2.6 T h e B a y e s i a n A p p r o a c h D o e s n ' t W o r k -
So H e r e i s a N e w S c h e m e ! 

As described above, various authors have found fault with 
Bayesian probability, and their response has been to invent 
new representations and inference procedures that purport 
to remove particular difficulties. However, these ad hoc the­
ories do not have a well established model theory to show 
how to go from real data to the internal uncertainty repre­
sentation and then to map the final uncertainty represen­
tation into a well defined decision theory. Because of this 
missing interpretive framework, and because of their rejec­
tion of prior probabilities, they have produced all sorts of 
misleading conclusions. The following examples are illus­
trative: 
Example 1 

''Translated to the notation of conditional probability, this 
rule (s1,s2,s3 => h\) seems to say P(h1\sls2,s3) =0.7 
where h1 is the hypothesis that the organism is Strepto­
coccus, s1 is the observation that the organism is gram-
positive, s2 that it is a coccus, and s3 that it grows in 
chains. Questioning of the expert gradually reveals, how­
ever, that despite the apparent similarity to a statement 
regarding a conditional probability, the number 0. 7 differs 
significantly from a probability. The expert may well agree 
that P(h1\s1, s2,s3) = 0.7, but he becomes uneasy when 
he attempts to follow the logical conclusion that therefore 
P(not hl\s1,s2)s) — 0.3. He claims that the three observa­
tions are evidence (to degree 0.7) in favor of the conclusion 
that the organism is a Streptococcus and should not be con­
strued as evidence (to degree 0.S) against Streptococcus. 
We shall refer to this problem as Paradox 1 ...*—[1] 

The authors then conclude, on the basis of this "para­
dox", that one should gather and evaluate separately the 
evidence for an hypothesis and the evidence against it. This 
spurious argument only arises by ignoring prior probabili­
ties and the consequent misrepresentation of the situation 
to the expert. The prior probability of an infection be­
ing caused by a particular bacterium is low, for the sake 
of argument we will assume it to be .01. After seeing the 
evidence (s1, s2, s3) the expert is willing to update his prob­
ability (i.e., his belief) to 0.7. Another way of saying the 
same thing is that the probability (belief) in the negation 
of the hypothesis (that the organism is not Streptococcus) 
drops from a prior of .99 to .3. Thus, either way, the evi-
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deuce is being used to strongly support the hypothesis, and 
not (as claimed above) being construed as evidence against 
the hypothesis. Given the misrepresentation of the situa­
tion, it is not surprising that the expert felt uneasy with 
the way his evidence was being used. 

This example shows the danger of ignoring prior proba­
bilities when dealing with uncertainty, and also shows its 
considerable advantages when used properly. As a basic 
principle of inference one should use whatever information 
is available, and this includes prior probabilities. Perhaps 
the main sources of opposition to the use of prior probabil­
ities is that they are subjective estimates of the expert, and 
it has been shown (e.g., [21]) that people are not very good 
at estimating probabilities. However, the expert does not 
necessarily have to supply the priors—once the hypothesis 
space is defined, the equiprobable assignment (i.e., the prin­
ciple of indifference) or relevant data can be used instead. 
If the expert has prior information (e.g., some infections 
have higher prior probabilities than others) then he should 
give this information to the system (in the form of non­
uniform priors), because to not do so is to ignore useful 
information. The fact that these subjective estimates will 
be poorly known is no excuse for not using them. Fortu­
nately, the final probability values calculated on the basis 
of extensive new information are not very sensitive to the 
exact value of the priors. 

Example 2 (Fuzzy Sets, Fuzzy and Possibilistie Logic) 
".., it is a standard practice to rely almost entirely on 

the techniques provided by probability theory and statistics, 
especially in applications relating to parameter estimation, 
hypothesis testing and system identification. It can be ar-
gued, however, as we do in the present paper, that such 
techniques cannot cope effectively with those problems in 
which the softness of data is nonstatistical in nature in 
the sense that it relates, in the main, to the presence of 
fuzzy sets rather than random measurement errors or data 
variability." Zadeh, [23] 

This quote captures some of the motivation that under­
lies fuzzy sets (and their further development fuzzy and 
possibility logic)—namely, the fallacy that probabilities are 
necessarily frequencies. The concept of vague set bound­
aries has no obvious frequency interpretation, so Zadeh in­
vented fuzzy sets to capture this vagueness idea. Actually, 
there is a probabilistic (degree of belief) model for vague 
sets that also supplies a computable quantitative measure 
for the "best" (most informative) vague classification. Nor­
mally, a set is defined by a criterion that distinguishes mem­
bers from non-members without allowing for partial mem­
bership. This concept of sets has been widely critisized 
by philosophers (e.g., Wittgenstein) largely because sets in 
common use do not have sharp boundaries. The alternative 
probabilistic model is to define a set by a "prototype" and 
expectations of divergence from the prototypical features 
shown by members of the set. That is each object has a 
numeric "degree of membership" given by how likely it is 
that the observed features would have occurred given that 
it is a member of that set. The best classification of the 

object is that which maximizes the probabilistic "similar­
ity" measure, and it is quite possible for an object to be so 
dissimilar from any prototype that it forms a new set. Also, 
an object can be simultaneously probabilistically similar to 
more than one set. The underlying theory of probabilistic 
set membership is given in [22]. 

Other errors found in the Al literature include the notion 
that the final conditional probability value of a proposition 
depends on the order in which the evidence is introduced 
[20]; that hypotheses, such as the possible diseases a pa­
tient might have, are mutually exclusive [2]; that a piece of 
evidence whose conditional probability differs considerably 
from that of other evidence should be rejected [17] (instead 
of rejecting the corresponding hypothesis); etc 

2.7 S u m m a r y o f C o n c e p t u a l C o n f u s i o n s 

The authors that reject probabilities as a formalism for 
dealing with uncertainty in Al are usually a victim of one 
or more of the following confusions. 

• Relative versus Absolute Probabilities To decide the 
most probable of a set of hypotheses is only a relative 
evaluation sufficient for some tasks, but decision anal­
ysis requires (absolute) conditional probability values. 

• Separation of Probability and Utility The impor­
tance (utility) of an hypothesis is often confused with 
its probability, since both are required for decision 
making. 

• Probabilities are a Measure of Belief in a Proposition 
This definition does not require a frequency interpre­
tation, but applies to any well defined situation and 
summarizes all the evidence for that proposition 

• Probability versus Uncertainty about the Probability 
The (conditional) probability P of a proposition is the 
user's measure of belief in that proposition, but infor­
mation about the accuracy of P is fully expressed by 
a probability density function over P. 

• Probability is not a special case of Logic Probabilistic 
reasoning is often cast incorrectly in a logical form, as 
discusses in Section 3. 

• Prior Probabilities should be used Failure to use 
prior probabilities can lead to erroneous conclusions, 
especially when there is a large number of possibili­
ties. 

• Ambiguous Probabilities—If they occur, it is a sign 
that the problem is not fully defined, not that proba­
bility theory is inadequate. 

3 L o g i c a n d P r o b a b i l i t y 

Formally, probability can be regarded as a generalization 
of predicate calculus, where instead of the truth value of a 
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formula given the evidence (context) having only the val­
ues 0 (false) or 1 (true), it is generalized to a real number 
between 0 and 1. This generalization can be achieved by 
creating new propositions of the form uThe probability of 
/'' is A", where F is an arbitary well formed formula in 
predicate calculus. Once it has been accepted that: 

• The generalized truth value (degree of plausibility) of 
a formula can be represented by a real number. 

• The extremes of this scale must be compatible with 
logic. 

• An infinitesimal increase in the plausibility of A given 
new evidence implies an infinitesimal decrease in the 
plausibility of -A. 

• The plausibility should not be dependent on the order 
of evaluation. 

• Where possible, all the available evidence should be 
used in evaluating the plausibility. 

• Equivalent problems should have the same plausibility. 

then it has been shown by [6] that all the degrees of freedom 
have been used up. That is, all the standard Kolmogorov 
"axioms" of probability (Addition, Multiplication, Baye's 
etc.) follow as logic consequences. This implies that fuzzy 
set theory (which rejects the additivity axiom) is necessar­
ily violating one or more of the above requirements. Any 
formalism for representing "plausibility" by a real number 
is either equivalent to probability theory (but perhaps dif­
fering in interpretation) or not satisfying the above basic 
criterion. Even formalisms that do not use a single real 
number (e.g., [20]) can be captured by higher order proba­
bility theory (i.e., probabilities of probabilities etc.). Prob­
ability theory provides the basic procedure for computing 
uncertainties in real situations, but it is often not obvious 
how to apply it in a particular situation in particular, the 
assignment of prior probabilities has historically been the 
main sources of difficulty. 

Misapplications of probability do not usually arise from 
dispute or uncertainty about the basic axioms but from 
the way they are interpreted. A purist would insist that the 
only propositions that can be known with certainty are tau­
tologies (e.g., 7 is a prime number)—any empirical (contin­
gent) proposition can only be known probabilistically, since 
it is based on induction. However, this insistence forbids 
the application of logically reasoning to anything about the 
real world! A reasonable compromise is to treat proposi­
tions whose probability is close to 0 or 1 as if they are known 
with certainty i.e., thresholding probability values if they 
are "beyond reasonable doubt". The result of this approx­
imation is to allow logical reasoning instead of probability, 
because it is usually easier to use. Many of the difficulties 
experienced by logicians in applying logic to the real world 
come from a failure to recognize that logic is only an ap­
proximation of probability. In particular, "Default Logic" 

and "Non-Monotonic Logic" are mainly concerned with be­
lief revision when new (logically contradictory) evidence is 
found. While these logics are suitable for such things as 
theory completion (when one wishes to avoid, say, having 
to state all negative facts), they often attempt to force into 
a logical mold a type of reasoning that is not logical in 
nature. One standard example of default reasoning "All 
birds fly unless proved otherwise" should be "Most birds 
fly", which can be used as a piece of evidence in evaluating 
the probability of the proposition "this bird flies'1, along 
with any other relevant evidence. 

In probabilistic reasoning, different pieces of evidence are 
combined together to change the reasoner's measure of be­
lief in a particular proposition a single line of reasoning, 
such as a logical proof, is not sufficient. In many cases, 
there is one piece of evidence (or line of reasoning) that 
dominates the final result, which is usually given as the 
"reason" for The result ("if there is smoke, there is fire"). 
Such reasoning resembles logical reasoning and is often mis­
taken for it, but its non-logical nature becomes clear when 
"contradictory" evidence is found. In probability, contra­
dictions do not occur all the evidence is combined to get a 
final probability value, so there is no need to reject evidence 
(although evidence can be.used to reject hypotheses). Prac-
tical reasoning is usually a complex combination of logical 
reasoning (discovering consequences, finding the possibili­
ties) and probabilistic reasoning (evaluating the evidence1, 
weighting the possibilities). Likewise, Al should be using 
both methods where appropriate. 

4 S u b j e c t i v e P r o b a b i l i t i e s 

An important topic on the border line between AI (espe­
cially expert systems), cognitive science, psychology and 
philosophy is that of subjective probabilities. Given the 
above emphasis on probability being a measure of belief, 
it will come as no surprise that this paper advocates that 
subjective probabilities should be treated the same as any 
other probability (such as that from a measurement). How­
ever, there are a number of caveats that should be observed, 
particularly the observation [21] that people are poor es­
timators of probability largely because they are victims 
of many of the misconceptions noted above. Rather than 
just accepting this situation, as the expert system commu­
nity seem to, and try to work around it by better inter­
viewing techniques and the like, the view advocated here 
is that we should aim for artificial intelligence. In par­
ticular, we should infer expert systems directly from data 
(as in [1]), rather than filter the same information (badly) 
through an "expert" and accept whatever numbers he pro­
vides. Anyone who has observed an expert giving proba­
bility estimates and then discovered he will later provide a 
completely different estimate, must begin to wonder about 
the quality of the results of such an expert system. 

An artificial intelligence system that reasons under un­
certainty will probably use many of the mental techniques 
that people use. One such technique is random sampling 
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in the set of possible worlds (i.e., the set of worlds that is 
consistent with current knowledge) to find the proportion 
of those worlds in which the predicate of interest is true 
(i.e., estimate its probability). For example, if a robot is 
trying to estimate the probability that a person will enter 
the work area during a particular operation, it should use 
its current world knowledge to construct (randomly) sce­
narios in which the event happens and others in which it 
does not, then using the probability of these different sce­
narios, to form an estimate of the events' probability. In 
doing this construction, logic is used extensively. For exam­
ple, if is unlikely that any person could reach the work area 
in the time available, then the event is unlikely. When peo­
ple perform similar hypothetical reasoning, they are often 
biased by such things as the most recent relevant events— 
an artificial intelligent system should be designed to avoid 
such biases and estimate the required probability to the 
accuracy desired. 

An artificially intelligent system for reasoning under un­
certainty should be possible based only on the basic "laws" 
of probability—Baye's theorem, additivity rule, multiplica­
tion rule etc., and additional principles, such as "if there is 
no known causal connection between two events, then as­
sume they are independent (causal closure)" etc. In under-
constrained situations, the principle of indifference (or max­
imum entropy) should be used to obtain the most unbiased 
value given the available information. No other represen­
tation or calculus is necessary for reasoning under uncer­
tainty. This includes the problem of combining evidence 
from different sources (use Bayes' theorem). Note that use 
of Bayes' theorem requires that the system keep track of the 
information that was used in computing conditional proba­
bilities for belief maintenance, in a manner very similar to 
truth maintenance in logic. 
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