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Abst rac t 

It is well known that for many NP-complete 
problems, such as K-Sat, etc., typical cases are 
easy to solve; so that computationally hard 
cases must be rare (assuming P = NP). This 
paper shows that NP-complete problems can 
be summarized by at least one "order param-
eter", and that the hard problems occur at 
a cri t ical value of such a parameter. This 
cri t ical value separates two regions of charac-
teristically different properties. For example, 
for K-colorabil ity, the crit ical value separates 
overconstrained from underconstrained random 
graphs, and it marks the value at which the 
probabi l i ty of a solution changes abruptly from 
near 0 to near 1. It is the high density of well-
separated almost solutions (local minima) at 
this boundary that cause search algorithms to 
" thrash". This boundary is a type of phase 
transit ion and we show that it is preserved un­
der mappings between problems. We show that 
for some P problems either there is no phase 
transit ion or it occurs for bounded N (and so 
bounds the cost). These results suggest a way 
of deciding if a problem is in P or NP and why 
they are different. 

1 In t roduc t i on 

A common result of AI research is to show that some 
class of problems is NP-complete (or NP-hard), w i th the 
impl icat ion that this class of problems is very hard to 
solve (assuming P = NP) . On the other hand it is well 
known that for many of these NP problems, typical in-
stances are easy to solve (e.g. [10]). There is no con-
tradict ion here, since NP complexity is usually a worst 
case analysis for a whole class of problems, and so says 
nothing about the diff iculty of typical instances- How-
ever, this si tuat ion raises the question "where are the 
really hard instances of NP problems?" Can a subclass 
of problems be defined that is typically (exponentially) 
hard to solve, or do worst cases appear as rare "patholog-
ical cases" scattered unpredictably in the problem space? 
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In this paper we show that for many NP problems one 
or more "order parameters" can be defined, and hard 
instances occur around particular crit ical values of these 
order parameters. In addit ion, such crit ical values form 
a boundary that separates the space of problems into 
two regions. One region is underconstrained, so the den-
sity of solutions is high, thus making it relatively easy 
to find a solution. The other region is overconstrained 
and very unlikely to contain a solution. If there are solu-
tions in this overconstrained region, then they have such 
deep local min imum (strong basin of attraction) that any 
reasonable algori thm is likely to find i t . If there is no 
solution, then a backtrack search can usually establish 
this wi th ease, since potential solution paths are usually 
cut off early in the search. Really hard problems occur 
on the boundary between these two regions, where the 
probabil i ty of a solution is low but non-negligible. At 
this point there are typically many local min ima corre-
sponding to almost solutions separated by high "energy 
barriers". These almost solutions form deep local min-
ima that may often trap search methods that rely on 
local information. 

Because it is possible to locate a region where hard 
problems occur, it is possible to predict whether a par­
ticular problem is likely to be easy to solve. We expect 
that in future computer scientists wi l l produce "phase 
diagrams" for particular problem domains to aid in hard 
problem identification and for prediction of solution ex­
istence probabil i ty, such as shown in [6]. 

We present these ideas by first showing how phase 
transitions arise in problem solving, and then il lustrat­
ing particular transitions through several examples with 
different properties. We then show how some of these 
examples interrelate when they are mapped onto each 
other. Finally, we summarize the results and state a 
strong conjecture based on these results. 

2 Phase Transitions 
We first review well-studied cases where the behavior 
of a complex system, including phase transitions, can be 
described by an order parameter. For example, the prob-
ability that a random graph is connected, or contains a 
Hamil ton circuit, or a triangle etc., has a sharp threshold 
for particular values of the average graph connectivity. 
In the case of graph connectivity and Hamilton circuits, 
this threshold depends on the graph size as well. Other 
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properties of random graphs also show interesting behav­
ior around the transition point which is characteristic of 
phase transitions. In particular, the size of the largest 
connected sub-graph grows very rapidly as a function of 
the average connectivity as the critical connectivity is 
approached from below. Also, the sizes of the subgraphs 
below the threshold show a fractal distribution—these 
properties are related to analogous physical systems, e.g. 

Our interest in phase transitions arises from the dis-
covery that hard to solve problems occur at such bound­
aries for many types of problems. The importance of 
phase transitions for Al is discussed in [4] where it is 
argued that complex systems composed of many inter­
acting values can often be understood at the macroscopic 
level in terms of a few order parameters that are char­
acteristic of the system as a whole. Summarizing the 
properties of complex systems through a small set of pa­
rameters is routine in statistical mechanics [2], [7]. This 
is possible because a large number of local interactions 
can produce dramatic coordinated macroscopic behav­
ior, such as phase transitions, that do not depend on 
the detailed interactions wi th in the system. Examples 
of phase transitions in AI are given in [5],[6]. 

3 An Example: Hamil ton Circuits 

A Hamilton Circuit (HC) is a cyclic ordering of a set of 
nodes such that there is an edge connecting every pair of 
nodes in the graph in order. The cyclic condition ensures 
that the circuit is closed, and the requirement that all 
the nodes be included (wi th no repeats) ensures that 
the circuit does not cross over itself, and passes through 
every node. The problem is to find if a HC exists for a 
given graph. 

The first question we investigate is how the probabil-
ity of the existence of a HC in a random graph varies 
with the average connectivity of the graph. The results 
for several different graph sizes are shown in Fig. la . 
These results were generated by finding the proportion 
of 20 randomly generated graphs that contained a HC 
for graphs with different connectivities and numbers of 
nodes. A fully connected graph always has a HC (all 
node orderings are a HC), and so an almost fully con­
nected graph has a very high probability of containing 
a HC. In this region there are a very large number of 
HCs, and this number drops rapidly as the boundary 
is approached. At the other extreme, a random graph 
barely above an average connectivity of 2 is unlikely to 
even be connected, and so is very unlikely to contain 
a HC. For some critical value of the average connec­
tivity between these two extremes, the probability of a 
HC changes steeply from almost 0 to almost 1. The­
ory predicts that the transition wi l l occur at an average 
connectivity of In N + In In N [1], and this prediction is 
supported by our results in Fig. l a , where the theoret­
ical value is shown by the dashed vertical line. This 
transition shows the characteristic properties of a phase 
transition. For example, the size of the largest almost 
HC grows exponentially below the threshold, and this 
is the main reason for our next result. The second 
question we investigate is how the computational cost of 
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finding a HC (if one exists) varies with the connectiv­
ity. Graphs were randomly generated with a given con­
nectivity, and a backtrack search procedure was run for 
each graph. The number of steps this procedure needed 
to find a HC relative to the minimum number is shown 
in Fig. lb,c. The arrows at the top of the figure rep­
resent graphs whose cost exceeded a prespecified maxi-
mum. The solid line represents the average of 20 trials, 
but since this average includes the saturated values it 
severely underestimates the true cost. Despite this un­
derestimation, the existence of a phase transition is clear. 
The sharpness of the transition increases with increasing 
graph size (N) , as does the location of the critical con­
nectivity. Similar results were obtained for graphs that 
were guaranteed to contain a HC by construction. An 
important effect to note in both cases is that the phase 
transition in cost occurs at the same point at which the 
probability of a HC drops to zero within the numeric 



accuracy. 

The HC backtrack algorithm uses two heuristics: 1) 
the init ial starting node is the one with the highest con­
nectivity, 2) neighbor nodes of the last node selected 
are sorted by their connectivity to the remaining unse-
lected nodes—the neighbor with the highest connectivity 
is selected first. More effective heuristics, such as bi-
directional search, may exist, but we do not expect that 
the behavior observed in Fig. lb,c would be qualitatively 
different. 

For HCs, the above results show that the average con­
nectivity is an appropriate order parameter, but is this 
the only one? Another possible order parameter is the 
variance of the average connectivity. Preliminary results 
show that the phase transition exists for both high and 
low variancet but the data is insufficient to decide if the 
variance changes the location of the critical connectivity. 

We have shown empirically that for HCs there is a 
phase transition in computational cost around a critical 
value of the average connectivity of a graph. The value of 
this critical connectivity increases wi th graph size (N ) , 
and also gets sharper with N. This critical connectivity 
occurs at the point at which the probability that there 
is a HC in a random graph drops to almost zero. In 
other words, the critical connectivity separates two re-
gions. 1) A low connectivity region where there is almost 
zero probabil ity of there being a HC—here the backtrack 
algorithm quickly terminates because all potential HCs 
are cut off early in the search. If there is a solution in 
this low probability region, then the algorithm has l i t ­
tle trouble finding i t , since every other alternative is cut 
off early. 2) A high connectivity region, on the other 
hand, has a high density of HCs, and so the backtrack 
algorithm quickly finds one. It is on the border between 
these two regions where hard problems occur. On the 
border there are many almost HCs that are quite differ­
ent from each other (i.e. it typically takes many changes 
to transform an almost solution into any other almost 
solution) and these numerous local minima make it hard 
to find a HC (if there is one). Any search procedure 
based on local information wi l l have the same difficulty. 

Although the most difficult HC problems occur in the 
neighborhood of the phase transition, this does not mean 
that problems not near the transition are easy. For ex-
ample, strictly 3-connected random graphs with at least 
one HC (guaranteed by construction) have a solution 
time that grows exponentially with the size of the graph 
(using the above backtrack algorithm). This means that 
even HC problems on random graphs whose connectiv­
ity is some distance from the phase transition are very 
hard—but those on the boundary are even harder. The 
reason most HC problems are hard, whereas most graph 
coloring problems are not seems to be a consequence of 
the global constraint in HCs, but not for K-colorability. 

For HC problems there is one global constraint (i.e. a 
constraint involving all the nodes)—perhaps the phase 
transition is a result of this property? To investigate 
this possibility, we next examine graph coloring as an 
example w i th only pair-wise local constraints. 

4 An Example; Graph Coloring 
This is a constraint satisfaction problem, where each 
variable can take on a number of possible values ("col-
ors"), and there are binary constraints that forbid par­
ticular pairs of variables from having the same color. 
The goal is to see if there is an assignment of colors to 
the variables that satisfy the constraints and only use 
K colors, or report that no assignment is possible. This 
version is the K colorability decision problem; more gen­
erally the goal is to find the minimum K that satisfies the 
constraints (the chromatic number problem). Any solu-
tion to a graph coloring problem can be used to generate 
other solutions by interchanging the colors, implying a 
color rotation symetry. Many practical constraint satis­
faction problems, such as timetable construction, can be 
mapped into a graph coloring problem. 

Graph coloring has been extensively investigated, both 
theoretically and empirically, e.g., [9],[10]. Even though 
graph coloring is an NP-complete problem, these authors 
report that graph coloring is "almost always easy". In 
particular, a simple backtrack algorithm by Brelaz was 
found to solve all randomly generated graphs it was tried 
on with l i t t le backtrack [10]. We continue these inves-
tigations but restrict our attention to random graphs 
that have been "reduced". The ^reduction operators" 
decribed below guarantee that if the reduced graph is It-
colorable (or not) then the original graph is K-colorable 
(or not). Any graph that can be reduced to one that 
is tr ivial ly K-colorable (or not) can be solved without 
search. VVe only investigate the space of reduced graphs, 
because the hard problems must be in this space. The 
particular reduction operators we used for K-colorabi!ity 
are: 

1. Remove Underconstrained Nodes—a node with less 
than K constraints can be removed, because it can 
always be colored. 

2. Remove Subsumed Nodes—a node N can be re­
moved if there is a node M that is connected to 
everything N is connected to, since any color that 
works for M wil l work for N (provided N is not con­
nected to M). 

3. Merge nodes that must have the same color—if any 
nodes are fully connected to a clique of size K- l , 
then these nodes can be merged into a single node 
with all the constraints of its constituents, because 
they must have the same color. 

Underconstrained: Redundant Symmetric: 

Figure 2: Reduction Operators for 3-Colorability 

These reduction operators can be applied in any order, 
and typically the application of one operator creates a 
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situation where other operators become Applicable, pro­
ducing a reduction cascade. We found that these oper­
ators reduced all our carefully hand-constructed "hard" 
graphs to tr ivial cases! In particular, all graphs reduced 
using K = 1 reduced to the null graph, showing that 
2-colorability is a trivial P problem [3], Although these 
are all the reduction operators we could find, they are 
all that is possible. In particular, we have found re­
duction operators that eliminate more than one node at 
a time, but these operators are so rarely applicable we 
did not use them. The following investigations are all 
in the space of random reduced graphs because the K-
colorability of a reduced graph is equivalent to that of 
many unreduced graphs. This kind of problem simplifi­
cation by preprocessing is often overlooked in discussion 
of algorithms, yet it can make apparently hard problems 
trivial. The essential difference between problem reduc­
tion and problem solving is that problem reduction does 
not produce disjunctive alternatives (i.e. no search). 

We empirically investigated the probability of a solu­
tion for K-colorability problems for different values of 
K and N (number of nodes). The results are shown in 
Fig. 3a, where each probability point is the average of 
about 5 trials, but there are no points in the transition 
region because they are too costly to compute. Two 
trends are clear from these results. First is the abrupt 
change in solution probability occurs at higher values of 
the connectivity for larger K, and the other is the sharp­
ness of the transition increases with N. 

We next show how the computational cost varies as 
a function of the connectivity for different values of K. 
The results are shown in Figs. 2b,c for random reduced 
graphs that were generated so that they were guaran­
teed to have a solution. For both 3-Col and 4-Col the 
existence of a phase transition is clear, and their loca­
tion is the same as that for the corresponding solution-
probability transition to within the numeric noise level. 
The transition for.4-Col is much sharper than for 3-Col. 
Similar results are obtained for random reduced graphs 
that are not guaranteed to have a K-col solution, and for 
random graphs restricted to 2-D neighbor connections. 

Brelaz's algorithm [10] uses heuristics: Select an un-
colored node with the fewest remaining colors; ties are 
broken by selecting the node connected to the most un-
colored nodes; remaining choices are made randomly. 
This is a very effective algorithm, but its performance 
at the phase boundary is highly variable, even on the 
same graph, because the heuristics do not always lead to 
a unique choice. These "fluctuations" are typical of be­
havior near a phase transition. This observation suggests 
an improvement for a backtrack algorithm—run many 
versions of it in parallel, so that the expected number of 
steps is lower than for a single version. 

These results show that there is a phase transition for 
the cost of solving K-colorability problems, and it occurs 
at the critical average connectivity where the probabil­
ity of a solution has dropped to almost zero. This ex­
plains why previous authors [9],[10] found K-colorability 
an easy problem—they were using nonreduced graphs 
whose effective connectivities did not typically fall near 
the phase boundary. 

Examination of Brelaz's algorithm on the hard in­
stances shows that it often backtracks, and sometimes 
backtracks all the way to the beginning. This "thrash­
ing* occurs because there ate many near-solutions avail-
able, and they look like solutions to the backtrack al­
gorithm until an assignment is nearly complete. These 
local minima make it hard to find a solution if one is 
present—the proverbial needle in a haystack. This ob-
servation hints as to why some NP instances are hard; it 
seems likely that any algorithm based on local informa-
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tion will be fooled by the high number of local minima 
in problems near the phase boundary. Further exper-
imentation suggests that graphs with a high variance 
of the average connectivity are generally easier to solve 
than ones with lower variance, so that the variance of 
the average connectivity may be an additional order pa­
rameter. 

An apparent exception to the conjecture that all the 
NP problems overlap the critical boundary, is to discover 
if planar graphs with node connectivity < 4) are 3-CoJ. 
This is an NP-complete problem [3]> yet our 3-Col tran­
sition for random reduced graphs occurs at a connec­
tivity ~ 5.4 (see Fig. 3b)), To compare planar graphs 
with our results we must first reduce them. Merging de-
stroys the planarity of the graph, reduces the number of 
nodes and simultaneously increases the connectivity of 
the merged nodes. The results is increased average con-
nectivity of the previously planar graphs so that they 
straddle the critical connectivity, thus preserving the 
conjecture. However, if the proportion of 4-connected 
nodes in 3,4 planar graphs are sufficiently restricted, the 
result is a new P class of problems, assuming the conjec­
ture is true. 

5 An Example: K-Satisfyabil i ty 
Since it is possible to map K-colorability problems into 
K-sat problems and vice versa [3], we next investigate 
K-sat problems. We used a form of resolution to re-
duce random K-sat problems before applying a simple 
backtrack search procedure with a most-constrained-first 
heuristic. The results are shown in Fig. 4. As for k-
colorability, there is a sharp drop in the probability of a 
solution at some critical value of the graph average con-
nectivity, and this critical value depends on K. Also, the 
normalized cost of solution shows a phase transition at 
about the point at which the solution probability drops 
to near zero. Sirmlar results were found for random re­
duced graphs whose method of construction guaranteed 
at least one solution. We found that 2-sat does not have 
a phase boundary, but 3-aat does, as expected, since 2-
sat is P and 3-sat is NP. 

Large random reduced K-sat problems seem to get eas-
ier with large K—the phase transition evident in Fig. 4 
becomes weaker with larger K until it disappears alto-
gether (i.e. the backtrack search procedure solves the 
problem without backtrack). We do not fully understand 
this behavior, but it is probably due to an incomplete set 
of reduction operators that leave so may "tr iv ial" prob-
lems (for large K) that the relatively few hard problems 
are missed. This is the same reason that previous au­
thors missed the phase transition for K-colorability; the 
hard problems are greatly diluted by trivial problems. 
So far, the only way we have been able to create hard 
K-sat problems is by mapping equivalent K-colorability 
problems. 

6 An Example: Traveling Salesman 

All the previous examples have been constraint satisfac-
tion problems where the order parameter turned out to 

be the average connectivity of the corresponding graph, 
and the variance of the average connectivity may be a 
weak additional order parameter. We now investigate a 
different order parameter (the standard deviation of the 
cost matrix) in the context of a minimization problem— 
the Traveling Salesman Problem (TSP). In a TSP, the 
goal is to find a Hamilton circuit among a set of nodes 
("cities") such that the total cost of the circuit is a min-
imum. The costs of edges in the graph are given by an 
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interger-valued cost matrix that in general is not sym­
metric. This cost matrix can be rescaled and a con­
stant added without changing the essential problem. For 
convenience we choose cost matrices with a mean edge 
cost of 10, but with varying standard deviations of these 
costs. To estimate the computational cost of solving TSP 
problems we used Little's algorithm; the best exact al­
gorithm we could find [8], It is a kind of backtrack al­
gorithm that efficiently exploits properties of the cost 
matrix and guarantees to find a minimum cost solution. 

The results of running Little's algorithm for different 
numbers of cities with random cost matrices constructed 
according to a log-normal distribution with the given 
standard deviation are shown in Figs. 5 a,b,c. Note that 
the vertical axis is a Log scale, so the phase transition 
is more dramatic than appears at first sight. The mag­
nitude and sharpness of the phase transition clearly in-
creases with city size. 

Because TSP is a minimization problem, there is 
no probability-of-solution phase transition, such as for 
Hamilton circuits and graph colorability. However, as 
for the previous problems, the obvious phase boundary 
separates two distinct regions. In one region where the 
standard deviation is high, only the low cost tail of the 
distribution is considered by Little's algorithm, since any 

minimum cost circuit wi l l only use these low cost transi-
tions. At the other extreme, where the costs are mostly 
equal, there are many tours of the same minimum cost, 
and so finding one of them is not difficult. This is why 
the curves in Fig. 5 drop precipitously when the standard 
deviation goes to zero. Once again, a phase boundary 
has been found between two regions of fundamentally 
different behavior. Around this boundary the density of 
local minima of almost equal cost tours forces the search 
algorithm to investigate many false leads, leading to a 
dramatic rise in the computational cost. 

Note that TSP contains HC as a special case where 
all the costs are either 1 or 2,(see [3]), where a cost of 1 
corresponds to the nodes being connected. Because TSP 
"contains" HC as a special case, the phase transition in 
HC would be expected to occur at the same variance 
value as TSP (when the 1,2 costs are suitably mapped). 
This behavior has been observed to within the numerical 
noise l imits. 

7 Mappings Between Problems 

Perhaps the main contribution of the NP-completeness 
theory is the demonstration that many apparently dif­
ferent problems can be mapped into each other so that 
solutions are preserved under the mapping. The main 
conjecture of this paper is that problems whose order 
parameter is at the critical boundary are typically re-
ally hard. If this is true, then an important question 
is whether the critical boundaries are preserved under 
these problem mappings, as would be expected if this 
conjecture is true. 

We first investigate what happens when hard-to-K-
color reduced graphs are mapped into equivalent K-sat 
problems. By introducing Boolean variables to represent 
propositions such as "Node 10 is Red", and translat-
ing the constraints into conjunctive normal form, K-col 
can be mapped into a K-sat problem. This direct map­
ping can be further reduced by applying resolution to 
the clauses. This shows that mapping a reduced prob-
lem in one space into an equivalent problem in another 
space does not necessarily produce a reduced problem in 
the new space. Using this mapping, we found that hard 
to color K-col graphs translate into hard to solve K-sat 
problems, as expected. 

Another interesting question is what happens to a P 
problem if it is mapped into an NP problem in the same 
family? Do P problems avoid the critical region in such a 
mapping? As an example, consider the mapping of 2-sat 
(a P problem) into 3-sat (an NP problem). Such a map­
ping is given in [3], where a 2-sat clause, such as (a V b) 
goes into two clauses (a V b V x) and (a V b V x). Since 
every such transformation introduces an extra variable 
(e.g. x) which only occurs in two clauses, the average 
connectivity of all the variables is dragged below the crit­
ical threshold. In other words, just transforming 2-sat 
into 3-sat by tr ivial variable addit ion does not produce 
hard problems since the transformed problems do not 
overlap the critical region. 

In view of these results it is tempting to conjecture 
that the difference between P and an NP problems is 

336 Automated Reasoning 



whether a phase boundary exists or not. Unfortunately, 
this is not true—what matters is whether the phase 
boundary (if there is one) occurs at a fixed N or not. 
To explain this distinction, we compare the above re-
sults with the N-Queens problem [9], which is a known 
to be P. For Hamilton circuits, the phase boundary oc­
curs at an average connectivity given approximately by 
ln N + In ln N, while for K-col the boundary occurs at 
particular values of the average connectivity that depend 
on K but not on N. However, for the N-Queens problem 
the number of variables increases as N2, while number 
of constraints only increases as O(N). This means the 
average connectivity of the variables decreases with in­
creasing N and cannot be freely chosen. For low N the 
problem is overconstrained and for high N the problem 
is very underconstrained. There is a phase transition at 
N = 4, but because this phase transition occurs for a 
fixed (low) N, the amount of computation is strongly 
bounded, as expected for a P problem, 

8 Discussion 
Because of the basic equivalence of NP-complete prob-
lems, we expect phase boundaries in NP complete prob-
lems other than those investigated here. However, con-
strained minimization problems such as graph partit ion, 
integer part i t ion, maximal clique, Ramsey numbers etc., 
may have a different order parameters. Some of these 
problems show a "spin-glass like" transition [2]. 

An objection to the above results may be that they 
are all based on heuristic backtrack search, so that they 
may be a result of this choice rather than intrinsic to the 
problem. For graph coloring, a "local repair" algorithm 
[9] and a probablistic search procedure also had diffi­
culties with reduced graphs in the critical connectivity 
range, adding confirmation that the phase phenomenon 
is intrinsic. The difficulties experienced by all these al­
gorithms seems to be due to the large number of local 
minima. 

9 Conclusions and Conjectures 
The results reported above suggest the following conjec­
ture: 

Al l NP-complete problems have at least one 
order parameter and the hard to solve prob-
lems are around a critical value of this order 
parameter. This critical value (a phase transi­
tion) separates one region from another, such as 
overconstrained and underconstrained regions 
of the problem space. In such cases, the phase 
transition occurs at the point where the solu­
tion probability changes abruptly from almost 
zero to almost 1. 

The converse conjecture is: 

P problems do not contain a phase transition 
or if they do it occurs for bounded N (and so 
has bounded cost). 

We have presented empirical evidence for these conjec-
tures for particular problem classes, and have shown in 
some cases that the hard problems in one space map 

into hard problems in the other space, thus preserving 
the phase boundary under the mapping. We have also 
shown cases where the distinction between P and NP 
was whether the the P class was excluded from the crit­
ical region. If these conjectures are true, then all that 
is needed to turn an NP problem into a P problem is 
to add restrictions so problems near the critical value 
of the order parameter are excluded. Note that these 
results depend on using only reduced problems, which 
may explain why these particular results have not been 
previously noticed. 

There are many outstanding questions, such as: 
"What happens for NP-hard problems"; "Can hard 
problems occur in the non-critical region?", "Do other 
types of problems, such as optimization problems, 
games, etc. have the same properties?"; and so on. 
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