
On the Practical Exploitability of Dual EC in TLS Implementations

Stephen Checkoway*, Matthew Fredrikson†, Ruben Niederhagen‡,
Matthew Green*, Tanja Lange‡, Thomas Ristenpart†,

Daniel J. Bernstein‡, § Jake Maskiewicz¶, and Hovav Shacham¶,
* Johns Hopkins University, † University of Wisconsin, ‡ Technische Universiteit Eindhoven,

§ University of Illinois at Chicago, ¶ UC San Diego

Abstract
This paper analyzes the actual cost of attacking TLS im-
plementations that use NIST’s Dual EC pseudorandom
number generator, assuming that the attacker generated
the constants used in Dual EC. It has been known for
several years that an attacker generating these constants
and seeing a long enough stretch of Dual EC output bits
can predict all future outputs; but TLS does not natu-
rally provide a long enough stretch of output bits, and the
cost of an attack turns out to depend heavily on choices
made in implementing the RNG and on choices made in
implementing other parts of TLS.

Specifically, this paper investigates OpenSSL-FIPS,
Windows’ SChannel, and the C/C++ and Java versions of
the RSA BSAFE library. This paper shows that Dual EC
exploitability is fragile, and in particular is stopped by an
outright bug in the certified Dual EC implementation in
OpenSSL. On the other hand, this paper also shows that
Dual EC exploitability benefits from two obscure TLS
options, one of which is implemented in BSAFE; from a
modification made to the Dual EC standard in 2007; and
from several attack optimizations introduced here. The
paper’s attacks are implemented; benchmarked; tested
against libraries modified to use new Dual EC constants;
and verified to successfully recover TLS plaintext.

1 Introduction
On September 5, 2013, the New York Times [18], the
Guardian [2] and ProPublica [12] reported the existence
of a secret National Security Agency SIGINT Enabling
Project with the mission to “actively [engage] the US and
foreign IT industries to covertly influence and/or overtly
leverage their commercial products’ designs.” The re-
vealed source documents describe a US $250 million/year
program designed to “make [systems] exploitable through
SIGINT collection” by inserting vulnerabilities, collect-
ing target network data, and influencing policies, stan-
dards and specifications for commercial public key tech-
nologies. Named targets include protocols for “TLS/SSL,
https (e.g. webmail), SSH, encrypted chat, VPNs and
encrypted VOIP.”

The documents also make specific reference to a
set of pseudorandom number generator (PRNG) algo-

rithms adopted as part of the National Institute of Stan-
dards and Technology (NIST) Special Publication 800-
90 [17] in 2006, and also standardized as part of ISO
18031 [11]. These standards include an algorithm called
the Dual Elliptic Curve Deterministic Random Bit Gen-
erator (Dual EC). As a result of these revelations, NIST
reopened the public comment period for SP 800-90.

Known weaknesses in Dual EC. Long before 2013,
Dual EC had been identified by the security community
as biased [22, 24], extremely slow, and backdoorable.

SP 800-90 had already noted that “elliptic curve arith-
metic” makes Dual EC generate “pseudorandom bits more
slowly than the other DRBG mechanisms in this Recom-
mendation” [17, p. 177] but had claimed that the Dual EC
design “allows for certain performance-enhancing possi-
bilities.” In fact, Dual EC with all known optimizations
is two orders of magnitude slower than the other PRNGs,
because it uses scalar multiplications on an elliptic curve
where the other PRNGs use a hash function or cipher call.

The back door is a less obvious issue, first brought to
public attention by Shumow and Ferguson [23] in 2007.
What Shumow and Ferguson showed was that an attacker
specifying Dual EC, and inspecting some Dual EC output
bits from an unknown seed, had the power to predict all
subsequent output bits.

Specifically, the description of Dual EC standardizes
three parameter sets, each specifying an elliptic curve E
over a finite field Fp, together with points P and Q on E.
The back door is knowledge of d = logQ P, the discrete
logarithm of P to the base Q; an attacker creating P and
Q can be assumed to know d. Shumow and Ferguson
showed that knowledge of d, together with about log2 p
consecutive output bits,1 makes it feasible to predict all
subsequent Dual EC output.

Shumow and Ferguson suggested as countermeasures
to vary P and Q and to reduce the number of bits output
per iteration of the PRNG. However, SP 800-90 requires
a particular number of bits per iteration, and states that
the standard P and Q “shall be used in applications re-
quiring certification under FIPS 140-2”; this stops use of
alternative points in certified implementations.

1256 bits were sufficient in all their P-256 experiments.

1

Table 1: Summary of our results for Dual EC using NIST P-256.

Default Cache Ext. Bytes per Adin Attack Time
Library PRNG Output Random Session Entropy Complexity (minutes)

BSAFE-C v1.1 X X X† 31–60 — 30 ·215(Cv +C f) 0.04
BSAFE-Java v1.1 X X† 28 — 231(Cv +5C f) 63.96
SChannel I‡ 28 — 231(Cv +4C f) 62.97
SChannel II‡ 30 — 233(Cv +C f)+217(5C f) 182.64
OpenSSL-fixed I* 32 220 215(Cv +3C f)+220(2C f) 0.02
OpenSSL-fixed III** 32 235+k 215(Cv +3C f)+235+k(2C f) 2k ·83.32

* Assuming process ID and counter known. ** Assuming 15 bits of entropy in process ID, maximum counter of 2k . See Section 4.3.
† With a library–compile-time flag. ‡ Versions tested: Windows 7 64-bit Service Pack 1 and Windows Server 2010 R2.

The entries in the table are for normal TLS connections. In particular, we exclude all forms of session resumption. A X in the Default
PRNG column indicates whether Dual EC is the default PRNG used by the library. A X in the Cache Output column indicates that the
unused Dual EC output is cached for use in a subsequent call. A X in the Extended Random column indicates that the proposed TLS
extension Extended Random [20] is supported in some configuration of BSAFE. Reported attack times do not rely on use of extended
random. Bytes per Session indicates how many contiguous, useful output bytes from Dual EC a TLS server’s handshake message reveals.
For SChannel II this is an average value of useful bits, see Section 4.2. Adin Entropy indicates how many bits of additional input are added
to each Dual EC generate call. The Attack Complexity is the computational cost in terms of the cost of a scalar multiplication with a
variable base point, Cv, and a fixed base point, C f in the worst case. With our optimizations (see Section 5), C f is roughly two orders of
magnitude faster than Cv; the exact speedup depends on context. The Time column gives our measured worst case time for the attack on a
four-node, quad-socket AMD Opteron 6276 cluster; the time for OpenSSL-fixed III is measured using k = 0.

Risk assessment for this back door depends on the prob-
ability that the creator of P and Q is an attacker. Shumow
and Ferguson wrote “WHAT WE ARE NOT SAYING:
NIST intentionally put a back door in this PRNG”; but
the September 2013 news indicates that NSA may have
deliberately engineered Dual EC with a back door. Our
concern in this paper is not with this probability assess-
ment, but rather with impact assessment, especially for
the use of Dual EC in TLS.

Use of Dual EC in products. Despite the known weak-
nesses in Dual EC, several vendors have implemented
Dual EC in their products [16]. For example, OpenSSL-
FIPS v2 and Microsoft’s SChannel include Dual EC, and
RSA’s crypto libraries use Dual EC by default. RSA Ex-
ecutive Chairman Art Coviello, responding to news that
NSA had paid RSA to use Dual EC [14], stated during
the opening speech of RSA Conference 2014: “Given
that RSA’s market for encryption tools was increasingly
limited to the US Federal government and organizations
selling applications to the federal government, use of this
algorithm as a default in many of our toolkits allowed us
to meet government certification requirements” [4].

Practical attacks on TLS using Dual EC. This paper
studies to which extent deployed cryptographic systems
that use Dual EC are vulnerable to the back door, assum-
ing that an attacker knows d = logQ P. Specifically, we
perform a case study of Dual EC use in TLS, arguably
the most important potential target for attacks. The basic
attack described by Shumow and Ferguson [23] (and in-
dependently, quietly, by Brown and Vanstone in a patent
application [3]) turns out to be highly oversimplified: it

does not consider critical limitations and variations in
the amount of PRNG output actually exposed in TLS,
additional inputs to the PRNG, PRNG reseeding, align-
ment of PRNG outputs, and outright bugs in Dual EC
implementations.

We present not just a theoretical evaluation of TLS
vulnerability but an in-depth analysis of Dual EC in four
recent implementations of TLS: RSA BSAFE Share for
C/C++ (henceforth BSAFE-C), RSA BSAFE Share for
Java (henceforth BSAFE-Java), Windows SChannel, and
OpenSSL. To experimentally verify the actual perfor-
mance of our attacks, we replace the NIST-specified con-
stants with ones we generate; for BSAFE and Windows
this required extensive reverse-engineering of binaries to
find not just P and Q but many implementation-specific
constants and run-time test vectors derived from P and Q
(see Section 4.4). Our major findings are as follows:

• The BSAFE implementations of TLS makes the
Dual EC back door particularly easy to exploit in two
ways. The Java version of BSAFE includes finger-
prints in connections, making them easy to identify.
The C version of BSAFE allows a drastic speedup in
the attack by broadcasting longer strings of random
bits than one would at first imagine to be possible
given the TLS standards.

• Windows SChannel does not implement the current
Dual EC standard: it omits an important computation.
We show that this does not prevent attacks; in fact, it
allows slightly faster attacks.

• We discovered in OpenSSL a previously unknown
bug that prevented the library from running when

2

Dual EC is enabled. It is still conceivable that some-
one is using Dual EC in OpenSSL, since the bug
has an obvious and very easy fix, so we applied this
fix and evaluated the resulting version of OpenSSL,
which we call OpenSSL-fixed. OpenSSL-fixed turns
out to use additional inputs in a way that under some
circumstances makes attacks significantly more ex-
pensive than for the other libraries.

When a TLS server uses DSA or ECDSA to sign its
DH/ECDH public key, a single known nonce reveals the
long-lived signing key which enables future active attacks.
Our attacks reveal the inner state of Dual EC which gen-
erates the nonces and we have successfully recovered the
long-term signing keys.

We also perform a brief measurement study of the IPv4
address space to assess the prevalence of these libraries
on the Internet.

We summarize our results in Table 1. The BSAFE-C
attack is practically instantaneous, even on an old laptop.
The BSAFE-Java and SChannel attacks require more pro-
cessing power to recover missing bits of Dual EC output.
The OpenSSL-fixed attack cost depends fundamentally on
how much information on the additional input is available.
All of these attacks are practical for a motivated attacker,
even when the attacks are repeated against a large number
of targets.

2 Dual EC attack theory
Review of Dual EC. We focus on Dual EC using the
NIST P-256 elliptic curve. For the curve equation and
the standardized base points P and Q see the appendix.
The state of Dual EC is a 32-byte string s, which the user
initializes as a secret random seed. The user then calls
Dual EC any number of times; each call implicitly reads
and writes the state, optionally reads additional input
from the user, and produces any number of random bytes
requested by the user.

Internally, each call works as follows. Additional in-
put, if provided, is hashed and xored into the state. The
state is then updated as follows: compute sP and then
overwrite s with the x-coordinate x(sP). A 30-byte block
of output is then generated as follows: compute sQ, take
the x-coordinate x(sQ), and discard the most significant 2
bytes. The resulting 30 bytes are output. If more ran-
dom bytes were requested, the state is updated again
and another 30-byte block of output is generated; this
repeats until enough blocks have been generated. Any ex-
cess bytes in the final block are discarded. The state
is updated one final time in preparation for the next
call, and the generator returns the requested number of
bytes.

Review of the basic attack. The attack from Shumow
and Ferguson works as follows. The attacker is assumed

to control the initial standardization of P. The attacker
takes advantage of this by generating a random secret
integer d and generating P as dQ. Alternatively, if the
attacker controls the initial standardization of Q rather
than P, the attacker generates Q as (1/d)P. Either way
P = dQ, with d secretly known to the attacker.

The idea of the attack is to reconstruct sQ from an
output block (see the next paragraph) and then multiply
by d, obtaining dsQ, i.e., sP. The x-coordinate x(sP) is
the user’s next PRNG state. The attacker then computes
all subsequent outputs the same way that the user does.

Recall that an output block reveals 30 out of the 32
bytes of the x-coordinate of sQ. The attacker tries all pos-
sibilities for the 2 missing bytes, obtaining 216 possibili-
ties for the x-coordinate, and then for each x-coordinate
uses the curve equation to reconstruct at most 2 possi-
bilities for the y-coordinate, for a total of at most 217

possibilities for sQ. About half of the x-coordinates will
not have any corresponding y-coordinate, and the other
half will produce two points (x,y) and (x,−y) that behave
identically for the attack, because x(s(x,y)) = x(s(x,−y)),
so the attacker keeps only one of those points and ends
up with about 215 possibilities for sQ. For each of these
possibilities, the attacker computes the corresponding
possibility for dsQ = sP and for the next Dual EC output.
The attacker pinpoints the correct guess by checking the
next actual Dual EC output.

Attacks with additional input. Shumow and Ferguson
did not analyze the case where a user provides additional
input to a Dual EC call. We point out that the analysis
of this case depends heavily on whether one considers
Dual EC in the June 2006 version of SP 800-90A, which
we call Dual EC 2006, or Dual EC in the March 2007
version of SP 800-90A, which we call Dual EC 2007.

Additional input is not used after the beginning of a
call and therefore does not stop the attacker from using
the first 30 bytes output by a call to predict subsequent
bytes output by the same call. The remaining question is
whether the attacker can predict the first 30 bytes from
this call given the last 30 bytes from the previous call.

If the additional input has enough entropy unknown to
the attacker then the answer is no: the first 30 bytes are
unpredictable. However, in the applications that we have
studied, additional input is either nonexistent or guessable.
This is where Dual EC 2006 and Dual EC 2007 produce
different answers.

What we have described so far is Dual EC 2007. The
previous call outputs most of sQ and produces s′ = x(sP)
as the new state. This call updates s′ to s′′ = x((s′ ⊕
H(adin))P), where H is a hash function, and then outputs
most of x(s′′Q). Given sQ the attacker computes dsQ =
sP, computes s′, and then for each possible adin computes
s′′ and s′′Q.

3

The 2006 version of Dual EC differs slightly from the
2007 version: Dual EC 2006 is missing the final step
which updates the seed s at the end of each call. The
previous call outputs most of sQ but leaves s untouched. If
there were no additional input, then this call would update
s to s′ = x(sP) and output most of x(s′Q). Given sQ,
the attacker computes sP = dsQ, s′, and s′Q. However,
with additional input, the state s is updated to s′ = x((s⊕
H(adin))P) and then most of x(s′Q) is output. Given sQ,
the attacker can compute sP = dsQ and x(sP) as before
but there is no obvious way to obtain (s⊕H(adin))P from
sP, even when adin is known.

Although, the addition of the final update step in
Dual EC 2007 has the effect of making the basic attack
possible in the rare case where the attacker has enough
consecutive output bytes to make the attack feasible —
but at most 30 bytes — from a single call to the generator,
it plays no role in any of our results. In some cases, it
actually makes our attacks slightly slower due to the need
to compute an extra state update.

Open questions. This theoretical analysis of Dual EC
exploitability leaves open several obvious questions re-
garding the practical exploitability of Dual EC by network
attackers who know the secret d. Do implementations
of cryptographic protocols such as TLS actually expose
enough Dual EC output to carry out the basic attack? How
expensive are the computations required to compensate
for missing output, and can these computations be made
less expensive? Is additional input actually used, and if
so is it hard to guess? Are certified implementations of
Dual EC in fact implementing Dual EC 2006, Dual EC
2007, or something different?

The answers turn out to include several surprises, and
in particular to rely on several implementation details and
protocol details that have not been previously observed
to be related to Dual EC. Our analysis strongly suggests
that, from an attacker’s perspective, backdooring a PRNG
should be combined not merely with influencing imple-
mentations to use the PRNG but also with influencing
other details that secretly improve the exploitability of the
PRNG. This paper does not attempt to determine whether
this is what happened with Dual EC, and does not ex-
plore the difficult topic of defending against such attacks,
beyond the obvious advice of not using Dual EC.

3 Attack target: TLS
TLS is the most widely used protocol for securing In-
ternet communications [5]. TLS consists of several sub-
protocols, including a record protocol and handshake
protocol. The handshake protocol is most relevant to
the attacks discussed in this paper, so for simplicity we
will describe only the relevant aspects of the handshake
sub-protocol used in TLS version 1.2; further details are
available in the RFC [5].

Client Server
Generate
client random
(≥ 28 bytes)

Generate
session ID,
server random
(≤ 32 + 28 bytes)

client random

Generate PMS
(46 bytes)

server random, session ID, cert(pk)

Enc(pk, PMS), Finished

Finished

MS = PRF(PMS, ”master secret”, client random || server random)

(a) TLS with RSA key transport.

Client Server
Generate
client random
(≥ 28 bytes)

Generate
session ID,
server random, a,
signature nonce
(≤ 32 + 28 + 32
+ 32 bytes)

client random

Generate b
(46 bytes)

server random, session ID, cert(pk), aP, sig

bP, Finished

Finished

MS = PRF(x(abP), ”master secret”, client random || server random)

(b) TLS with ECDHE exchange and ECDSA signature (P-256).

Figure 1: Simplified view of TLS handshakes.

The handshake sub-protocol produces a fresh set of ses-
sion keys with which application-layer data is encrypted
and authenticated using the record protocol. Figure 1 de-
picts (simplified versions of) the two main handshakes for
TLS: RSA key transport and ephemeral Diffie-Hellman
key exchange (DHE). Ephemeral DHE uses either ellip-
tic curve groups (ECDHE) or another suitable group. In
either handshake, the client initiates a connection by send-
ing a ClientHello message that includes a client nonce and
a list of supported cipher suites. The server replies with
a server nonce, a session ID, a certificate, an ephemeral
DHE public key (for DHE), and a signature over the ran-
dom nonces and public key. Signatures are either RSA
or DSA. The specification mandates 32-byte client and
server nonces, each consisting of 28 random bytes and
a 4-byte timestamp. The construction of a session ID is
arbitrary (i.e., up to the server implementation), though as
we will see many implementations use the same PRNG
that generates the ServerHello nonce and other crypto-
graphic secrets. The client’s next flow includes a client
ephemeral DH public key (for DHE) or an RSA PKCS
#1.5 encryption of a premaster secret (for RSA key trans-
port). The premaster secret consists of either a 2-byte
version number followed by a 46 byte random value (for
RSA key transport), or the DHE secret defined by the
DH public keys. Session keys are derived from the pre-
master secret and other values sent in the clear during
the handshake, so learning the premaster secret is suf-
ficient to break all subsequent encryption for a given
session.

4

TLS extensions. There are many extensions to TLS,
but we draw attention to three particular proposed — but
not standardized — extensions. Each of these extensions
has the side effect of removing the most obvious difficulty
in exploiting Dual EC in TLS, namely the limited amount
of randomness broadcast to the attacker. One might guess
that these extensions make P-256 less expensive to exploit
in TLS by a factor of 65,536 (and make P-384 and P-521
feasible to exploit), if they are actually implemented; our
analysis in Section 4.1 shows that one of these extensions
is in fact implemented in BSAFE, although the actual
effect on exploitability is more complicated. Neither of
these extensions has been previously described in connec-
tion with Dual EC.

One proposed extension, authored by Rescorla and
Salter [20] in 2008, supports “extended random” client
and server nonces. This extension is negotiable us-
ing the normal ClientHello extension mechanism, and
includes up to 216 − 1 bytes of data from a suitable
PRNG. The server replies with its own extended ran-
dom that must be of the same length as the client’s
extended random. The document states that this ex-
tension was requested by the United States Depart-
ment of Defense with the claim that nonces “should
be at least twice as long as the security level” (e.g.,
256-bit nonces for 128-bit security). The other ex-
tension, “Opaque PRF” proposed by the same au-
thors [19] in 2006, is nearly identical to “extended ran-
dom” but does not require the data to be random. A
third proposed extension, “additional random” by Hoff-
man [10] in 2010 is essentially the same as “extended
random.”

None of the three proposed extensions was ever
adopted as a standard by the IETF and the “Internet-
Drafts” describing them have all since expired.

Attack goals. We assume that the adversary’s goal is to
decrypt TLS packets to learn confidential material, or to
steal long-lived secret keys. In the second case the secret
keys need not be generated with Dual EC. We consider
both small-scale targeted attacks and larger-scale dragnet
surveillance attacks across broad swaths of the Internet.

Attack resources. Most of the attacks that we analyze
are purely passive, relying solely on interception of TLS
traffic sent through the network by the client and by the
server. Usually seeing only one direction of TLS traffic is
enough, and the attack can be mounted long after the fact
using recorded connections. Occasionally an active attack
is more powerful: for example, the range of µsecs in Sec-
tion 4.3 becomes narrower if the attacker uses carefully
timed connections to pin down the server’s clock.

The attacker is assumed to know the Dual EC back door
d with P = dQ. All of the attacks rely on the client or
server using Dual EC, but this is not an assumption; rather,

it is something that we evaluate, by reverse-engineering
several TLS implementations and also experimentally
assessing the deployment of those implementations.

Our measurements of attack cost assume that the at-
tacker knows the TLS software in use; otherwise the
attacker has to try several of the attacks, increasing cost
somewhat. See Section 6 for fingerprinting mechanisms.

The computer power required for attacking one
Dual EC instance is very small by cryptanalytic standards:
our optimized attacks (see Section 5) typically consume
between $0.00001 and $1 of electricity, depending on the
TLS implementation being attacked. (The exception to
“typical” is OpenSSL; see Sections 4.3 and 5.2.) However,
presumably the attacker’s actual goal is to repeat the at-
tack many times, especially in the dragnet-surveillance
scenario. Our measurements allow straightforward extrap-
olations of the computer resources required for large-scale
attacks.

4 Exploiting Dual EC in implementations
To attack each of the implementations discussed below,
the attacker follows three basic steps: (1) recover Dual EC
state from the session ID and/or server random fields in
the TLS handshake; (2) compute the DHE or ECDHE
shared secret which enables computing the 48-byte “mas-
ter secret” from which all session keys are derived; and
optionally (3) recover the long-lived DSA or ECDSA
signing key used to sign the server’s DHE or ECDHE
public key.

Step (1) is an application of the basic attack which com-
bines information exchanged in the handshake protocol
messages to determine the correct Dual EC state from
candidate states. Step (2) requires generating the DHE
or ECDHE secret key by following the exact generation
process used by the TLS implementation. Like Step (2),
Step (3) duplicates the implementation’s process for gen-
erating the nonce used in the signature of the public key.
From the nonce, the signature, and the public key, it is
straightforward to recover the signing key.

It is important to note that when a server uses DSA
or ECDSA signatures, a single broken connection by a
passive adversary is sufficient to recover the long-lived
signing key which is used to authenticate the server’s
(EC)DHE public key. In contrast to RSA long-lived keys,
recovering a server’s (EC)DSA signing key does not en-
able future passive eavesdropping; it does allow imper-
sonation of the server under active attack.

4.1 RSA BSAFE

Description. RSA’s BSAFE family of libraries come in
four flavors: Share for Java, Share for C and C++, Micro
Edition Suite, and Crypto-J/SSL-J. We examined Share
for Java and Share for C and C++. Although the two ver-

5

sions share a somewhat similar API, the implementation
details differ, leading to different attacks.

The BSAFE family of libraries contains a number of
options which can be configured at runtime. In order to
avoid a combinatorial explosion in the number of config-
urations to test and attack, we focus our attention on the
default configurations and the most secure cipher suites
that lead to the use of the P-256 curve in Dual EC and,
where applicable, ECDHE and ECDSA.2

Both BSAFE libraries we examined support both pre-
diction resistance whereby the generator is reseeded on
each call and output caching so that unused bytes from
one call to generate can be used in subsequent calls rather
than discarded. By default, neither option is enabled.

BSAFE-C. We examined the RSA BSAFE Share for C
and C++ library (BSAFE-C) version 1.1 for Microsoft
Windows. The library consists of two libraries, share-
crypto.lib which implements the core cryptographic prim-
itives, including Dual EC and sharesslpki.lib which imple-
ments TLS. Unlike the Micro Edition Suite, BSAFE-C is
distributed only as static libraries with associated header
files. This necessitated a minor reverse engineering ef-
fort to discover how BSAFE-C uses Dual EC in its TLS
implementation.

Unlike the other TLS implementations we examined,
BSAFE-C v. 1.1 does not support TLS 1.2. As a result, it
does not support elliptic curve cryptography for either key
exchange or digital signatures. By default, the preferred
cipher suites are TLS_DHE_DSS_WITH_AES_128_CBC_

SHA and TLS_DHE_RSA_WITH_AES_128_CBC_SHA so
we focused our efforts on these two.

A TLS server implemented using BSAFE-C generates
several pseudorandom values used during the TLS hand-
shake to establish session keys. In order, it generates
(1) a 32-byte session identifier, (2) 28 bytes for the server
random, (3) a 20-byte ephemeral Diffie–Hellman (DH)
secret key, and, when using DSA, (4) a 20-byte nonce.
The DH parameters and the server’s public key are signed
with the server’s RSA or DSA certificate and the session
ID, server random, public key, and signature are sent in
the server’s first flight of messages to the client during the
handshake.

Although BSAFE-C’s Dual EC interface does not cache
unused output bytes by default, a separate, internal inter-
face to produce pseudorandom values wraps Dual EC
and provides its own layer of caching by only requesting
multiples of 30 bytes from the Dual EC interface. This
internal interface is used by all of the higher-level func-
tionality, such as generating a DH secret key and a DSA
nonce. Due to a quirk of the implementation, if a request
to generate n bytes of output cannot be satisfied com-

2Share for Java additionally supports P-384 and P-521 for Dual EC,
ECDHE, and ECDSA.

pletely from the cached bytes, b(n+ 29)/30c · 30 bytes
are generated in a single call to Dual EC, even if most of
the n bytes will be taken from the cached bytes.

Caching output bytes means that when a new TLS ses-
sion is started, an attacker who has not seen all prior
connections has no way of knowing if the first value gen-
erated by the server — the session id — begins with a full
output block or if it contains bytes cached from a previous
call to Dual EC. However, due to the use of the requested
number of bytes rather than the number of remaining
bytes after pulling from the cache, the concatenation of
the 32-byte session ID and the 28 pseudorandom bytes in
the server random always contains a full 30-byte output
block and between one and 30 bytes of a subsequent block
where both blocks are generated in the call to Dual EC
for 60 bytes made while generating the session ID.

A passive network attacker can easily recover the ses-
sion keys and the server’s long-lived DSA secret key used
to sign the ephemeral DH parameters and public key.
The attacker uses the publicly exchanged values in the
connection through the ClientKeyExchange handshake
message. At this point, the attacker knows, the session
ID, the client and server randoms, the DH parameters
and client and server public keys, and the signature. This
contains everything needed for the attack. The session
keys are computed from the public values and the DH
shared secret.

To recover the inner state of Dual EC a long string of
consecutive output bytes is required. First, the session ID
and the pseudorandom 28 bytes of the server random are
concatenated into a 60-byte value B. Since up to 29 bytes
of B can come from a previous call to Dual EC, one
of B[0..29],B[1..30], . . . ,B[29..58] must be a full output
block. The basic attack is run on each in turn until the
Dual EC state for the next output block is recovered. The
attacker knows that the correct state has been found by
(1) generating the next output block and comparing the
corresponding bytes with the remaining bytes in B and
then (2) generating more bytes as needed to produce a DH
secret key and comparing the corresponding public key
to the server’s public key. If the public keys agree, then
the DH shared secret can be computed hence the session
keys can be computed.

Once the session keys for a single session have been
recovered, more bytes can be generated to produce the
DSA nonce. The DSA secret key a can be computed from
the nonce k, public key (p,q,g,y), and the signature (R,S)
of the message m as a = R−1 ·

(
S · k−H(m)

)
mod q.

Recovering the Dual EC internal state requires perform-
ing approximately 30 · 215 scalar multiplications with a
variable base point and an equal number with the fixed
point Q, in the worst case. The total attack has a cost
of 30 · 215(Cv +C f) where Cv (resp. C f) is the cost of
performing a single scalar multiplication with a variable

6

(resp. fixed) base point. To generate the DH key, between
3C f and 5C f are needed to produce enough Dual EC out-
put bytes; 1C f is needed to compute server’s DH public
key; and, finally 1Cv is needed to compute the shared DH
secret (using the client’s DH input). Finally, to generate
the nonce, at most one more Dual EC output is needed,
using 3C f .

BSAFE-Java. We examined the RSA BSAFE Share for
Java library version 1.1 (BSAFE-Java) and focused on
connections using the TLS_ECDHE_ECDSA_WITH_AES_
128_GCM_SHA256 cipher suite.

Unlike BSAFE-C, the output from Dual EC is not
cached so each generated output value is aligned with
a block of generator output. Unfortunately (for the at-
tacker), the session ID value produced by the server is not
a 32-byte pseudorandom value. Instead, the attacker is
forced to rely on the server random.

The values generated by Dual EC are, in order, (1) 28
bytes for server random; (2) 32 bytes for an ECDHE
secret key; and (3) 32 bytes for an ECDSA nonce.

As before, a passive network attacker waits until she
sees the ClientKeyExchange handshake message. At this
point she has all of the information she needs to mount
the following, simple attack. The 28 bytes from the server
random are treated as bytes 2 through 29 of the 32-byte x-
coordinate. She then mounts the basic attack by guessing
the remaining most significant 16-bits and least signifi-
cant 16-bits of the x-coordinate. A guess is checked by
generating a 32-byte ECDH secret key, computing the
corresponding public key, and comparing to the server’s
public key.

Once a match is found, the inner state of Dual EC
is known. The session keys can be derived from the
ECDH shared secret and the other values sent in the clear.
Similarly, the ECDSA nonce can be found by generating
another 32-byte value. As with the non-elliptic-curve
DSA, the server’s private key can be recovered from the
nonce and the signature.

In the worst case, recovering the generator state re-
quires approximately 231 scalar multiplications with a
variable base point and five times that number with a
fixed base point to generate candidate ECDH secret keys
and corresponding public keys. In total, the attack takes
231(Cv +5C f) work.

BSAFE connection watermarks and extended ran-
dom. The documentation for BSAFE-C and BSAFE-
Java indicate that they support connection watermarking
and the TLS extended random extension described in
Section 3.

In our experiments, BSAFE-Java has watermarks
enabled by default. The watermark works by setting
the first 20 bytes of the session ID to be the first
20 bytes of the server random and the last 12 bytes

are set to the string “RSA SSLJ .” This wa-
termark can only be disabled by setting the property
com.rsa.ssl.server.watermark=disabled
in the Java security properties file [21].

From reverse engineering the BSAFE-Java share-
Crypto.jar library, we determined that it contained code
to support or require the proposed TLS extended random
extension; however, this code was disabled by means of a
single static final boolean variable. We surmise that this
code is not “dead” in the traditional sense, but rather the
value of the variable can be changed to produce versions
of the library with different features.

By changing the value of this variable, we were able
to verify that the extended random extension is supported
by the server.3 When enabled and an extended random
extension is received from the client, the server generates
an equal length extended random response consisting of
bytes generated by Dual EC concatenated with the same
12-byte watermark. The client extended random is 32-
bytes by default. Interestingly, the 28 bytes for the server
random and the Dual EC generated bytes for the extended
random are generated together in a single call to Dual EC.
As a consequence, any BSAFE-Java server which sup-
ports extended random exposes a sufficient quantity of
contiguous output bytes to enable quick recovery of the
session keys. There does not appear to be a mechanism
for disabling the watermark in the extended random ex-
tension.

The BSAFE-C library documentation indicates that
both watermarking and extended random are supported
in some versions of the library; however, the version we
have appears to have been compiled without this support.4

For both the Java and C versions of BSAFE, we have no
evidence that versions of the libraries supporting extended
random ever shipped and our major findings do not rely
on extended random in any way.

We performed an Internet-wide scan of port 443 and
found very few servers on this default port that exhibited
this 32 byte watermark: only 386 of 8 million servers
contacted. Details on this scan are included in section 6.

4.2 Windows SChannel
SChannel (“Secure Channel”) is a security component
in the Windows operating system (introduced in Win-
dows 2000) that provides authentication and confiden-
tiality for socket-based communications. Although it
supports several protocols, it is most commonly used for
SSL/TLS, including by Microsoft’s Internet Information
Services (IIS) server and Internet Explorer (IE). We focus
on ECDHE/ECDSA handshakes that use P-256 (which

3An analogous variable enables support for the client.
4The header files for the version of BSAFE-C we have show

that the library was compiled with the command line flags
-DNO_TLS_EXT_RAND -DNO_RSA_WATERMARK.

7

in turn cause Dual EC to also use this curve), as used
by the version of IIS distributed with Windows 7 64-bit
Service Pack 1 and Windows Server 2010 R2. All infor-
mation about the internal workings of SChannel and its
implementation of Dual EC discussed in the following
was obtained via reverse-engineering.

Description. SChannel uses Microsoft’s FIPS 140-2
validated Cryptography Next Generation (CNG) API,
which includes an implementation of Dual EC. CNG
is implemented in two modules, one for user-mode
callers (bcryptprimitives.dll) and one for kernel mode
(cng.sys). Dual EC is used to generate pseudorandom
bytes when the BCryptGenRandom function is explicitly
directed to use it via a function argument or when it is
selected as the system-wide default. When using Dual EC,
BCryptGenRandom generates enough fresh blocks to sat-
isfy the request, and discards any remaining bytes (i.e.,
there is no caching between requests).

Whenever SChannel requests random bytes, it calls
BCryptGenRandom using the system-wide default. Our
reverse-engineering efforts and experiments indicate that
additional input is not provided by SChannel for TLS
connections. TLS handshakes are performed by a separate
process (lsass.exe) on behalf of IIS, which dispatches
one of several worker threads to handle each request.
Dual EC in CNG maintains separate state for each thread,
so a successful attack on the state of one thread will not
carry over to the others. Importantly, SChannel caches
ephemeral keys for two hours (this timeout is hard-coded
in the configurations we examined), and the cached keys
are shared among all worker threads until the timeout
expires.

When performing an ECDHE handshake, SChannel
requests random bytes in a different order than OpenSSL
and BSAFE: (1) 32 bytes for session ID, (2) 40 bytes for
ephemeral private key, (3) 32 bytes (not relevant to the at-
tack), (4) 28 bytes for ServerHello nonce, and (5) 32 bytes
for the signature (if using ECDSA). Notice the 40-byte
request for the private key, even though a P-256 private
key is only 32 bytes; this is because SChannel uses FIPS
186-3 B.4.1 (Key Pair Generation Using Extra Random
Bits) to generate ECDHE key pairs, which specifies 8
additional bytes to reduce bias from a modulo operation.
More importantly, SChannel requests bytes for the private
key before the ServerHello random field. This means that
any attempt to infer the private key must use the session
ID, or random fields from previous handshakes.

Deviation from SP-800-90A. The implementation of
Dual EC in CNG differs from the current SP-800-90A
specification in one noteworthy way. The final state up-
date (see Section 2) is computed but the result is thrown
away. This makes it identical to Dual EC 2006. This
appears to be a bug.

Interestingly, the code in bcryptprimitives.dll
that implements Dual EC (a function called
MSCryptDualEcGen) seems to include step 14 —
performing a point multiplication and projection on
the x-coordinate after generating the necessary blocks.
However, our reverse engineering efforts, as well as
our experiments, indicate that the result is not copied
into the seed state, and thus not used in subsequent
calls to Dual EC. In short, although the CNG Dual EC
implementation appears to contain code that implements
the full current specification, it effectively implements
Dual EC 2006 by ignoring the result of step 14 in future
calls to generate.

Fingerprint in the session ID. When an SChannel
server generates a new session ID, it requests 32 bytes,
S[0, . . . ,31] from BCryptGenRandom, and interprets the
first four bytes S[0, . . . ,3] as an unsigned integer v. It then
computes v′ = v mod CACHE_LEN, and constructs the fi-
nal session ID by concatenating these values, session_id =
v′[0, . . . ,3]‖S[4, . . . ,31]. CACHE_LEN is the maximum
number of entries allowed in SChannel’s session cache,
which was hard-coded to 20,000 on the systems we tested.
Thus, the presence of zeros in the third and fourth bytes of
the session ID is a likely (although imperfect) fingerprint
for SChannel implementations.

Attack 1: Using the server’s random nonce. With
Dual EC enabled, it is possible to use the 28-byte Server-
Hello nonce to learn the server’s ECDHE private key,
which will allow decryption of all ECDHE sessions within
the two-hour window before the private key is refreshed.
As previously discussed, these bytes are requested af-
ter the private key is generated, so in order to use them
for the attack, we must look at previous handshake mes-
sages sent from the server. The fact that SChannel uses
multiple threads to perform handshakes complicates the
attack, as we cannot know which thread was used for a
particular handshake unless we have learned the state of
all threads and updated them as new handshakes were
performed. On observing a handshake with the new
server public ephemeral key, denoted h, the attacker
works backwards through previous handshakes, using
the random field in each ServerHello message to generate
candidate Dual EC states using the basic attack. Each
candidate state is checked first against the ECDSA pub-
lic key to determine the state used in that handshake,
and then against the session ID in h to determine if the
same state was used to generate the new ephemeral key.
The 32 bytes for the ECDSA nonce are generated in
two calls, first 24 bytes then 8 bytes. These values are
concatenated and then byte-wise reversed to obtain the
nonce.

When the matching state is found, it is straightforward
to generate the ephemeral private key and subsequent

8

session keys. SChannel uses FIPS 186-3 B.4.1 to gen-
erate the private key, which corresponds to drawing 40
bytes of random input c, and computing the key as (c
(mod n−1))+1, where n is the curve order. The worst-
case complexity of this attack requires approximately 231

scalar multiplications with a variable base point and four
times as many with a fixed base point to check the ECDSA
public key, totaling 231(Cv +4C f).

Attack 2: Using the session ID. The second approach
uses the session ID in a handshake containing a new
ECDHE public key. Denote the 32-byte session ID in
the relevant handshake by S, and v′ the unsigned integer
corresponding to S[0, . . . ,4]. Recall that SChannel mod-
ifies the first four bytes of the session ID by replacing
it with its value modulo CACHE_LEN. All that one must
do to recover the private ephemeral key is run the ba-
sic attack on a set of inputs generated by enumerating
(1) all 4-byte sequences whose unsigned integer repre-
sentation v satisfies v′ = v mod CACHE_LEN (for the first
four bytes of the block that generated the session ID),
and (2) all 2-byte sequences for the last two bytes of
the first block that generated the session ID. Candidates
are checked by generating the next 40 bytes, using FIPS
186-3 B.4.1 to construct a private key, and comparing
the corresponding public key against that provided in the
ServerKeyExchange.

This attack sidesteps the issues created by threading in
SChannel, but because of the way the the session ID is
generated it is actually more complex than the previous.
Recall that CACHE_LEN= 20,000 in both configurations
tested, so this attack requires approximately 218 guesses
to deduce the first four bytes of the original session ID
block, and 216 for the last two bytes, giving approximately
233 candidate curve points. Of these, approximately 217

will agree with the last two bytes of the session ID, and we
determine which is correct by generating two additional
Dual EC blocks for a P-256 ECDHE private key, then per-
forming a point multiplication to compare with the public
key sent in the same handshake. The total complexity is
233(Cv +C f)+217(5C f).

4.3 OpenSSL

Description. OpenSSL is one of the most widely used
TLS libraries, due to its inclusion in many Linux/Apache
distributions. While the standard edition of OpenSSL
does not contain Dual EC, OpenSSL also ships a separate
package called the OpenSSL FIPS Object Module. When
this module is combined with OpenSSL, it provides a
TLS library containing all four DRBG algorithms defined
in NIST SP800-90A, including Dual EC. The Dual EC
algorithm is not the default PRNG in OpenSSL, but it
can be manually enabled by changing the PRNG settings
through an API call at runtime.

Bug. While investigating the OpenSSL-FIPS implemen-
tation of Dual EC, we discovered a previously unknown
bug that, in fact, prevented it from being run.5 The pres-
ence of this bug may suggest that nobody has successfully
run OpenSSL-FIPS configured to use Dual EC. How-
ever, the CMVP validation lists [16] show many “private”
validations of the OpenSSL-FIPS module so it is possi-
ble that some commercial manufacturer has repaired this
bug without propagating the fix back to the open source
OpenSSL tree. For this reason, we felt it worthwhile to
repair the bug in the FIPS module in order to investigate
the feasibility of the attack.

Analysis of OpenSSL-fixed. We examined a repaired
version of the OpenSSL FIPS Object Module ver-
sion 2.0.5 in combination with OpenSSL 1.0.1e (hence-
forth “OpenSSL-fixed”). The library consists of two com-
ponents, libcrypto.a which implements the core crypto-
graphic routines, including Dual EC, and libssl.a which
implements TLS. OpenSSL documentation provides guid-
ance on building the library, as well as usage in common
scenarios.

OpenSSL-fixed supports TLS 1.2 with the full comple-
ment of elliptic curve cryptography for key exchange and
digital signatures. By default, the preferred cipher suites
use ECDHE key exchange and either RSA or ECDSA
signatures. We investigated connections made using the
ECDHE handshake.

OpenSSL includes a textbook implementation of
Dual EC based on the NIST SP 800-90 March 2007
revision. On the server side of the standard ECDHE
handshake, the generate function is called repeatedly to
generate the following values: (1) a 32-byte session iden-
tifier, (2) a 28-byte server random,6 (3) a 32-byte ECDHE
ephemeral private key,7 and, when ECDSA is being used,
a 32-byte nonce. OpenSSL’s implementation of Dual EC
does not cache unused random bytes at the conclusion of
a generator call, hence each sequence of random bytes
begins with up to 30 bytes drawn from a single elliptic
curve point. Figure 2 illustrates the generation of these
values.

OpenSSL’s use of additional input. While analyzing
OpenSSL’s implementation of SP 800-90, we discovered
an important difference between OpenSSL and the other

5The bug involves a flaw in the runtime self-test mechanism that
causes OpenSSL-FIPS to shut down the generator immediately upon ini-
tializing it. This bug is not triggered while the module is in TEST mode,
which explains why unit and Known Answer Tests did not discover the
issue. See [13] for details.

6Although we do not discuss attacks against the client, a recent
fix to the OpenSSL client implementation increases the amount of
PRNG output in the client random to 32 bytes (see http://bit.ly/
1ftSQrM) which may decrease the attack complexity significantly.

7OpenSSL generates this key by drawing 32 random bytes and
checking whether the result (expressed as an integer) is less than the
group order n. If not, the process is repeated.

9

http://bit.ly/1ftSQrM
http://bit.ly/1ftSQrM

r1 r2

session id

r6 r7

ecdhe sk

r4

server random

 t1

s1 = t2 s2 s4 s6 = t7 s7

t4 t6

s8

x(●∗Q) x(●∗Q) x(●∗Q) x(●∗Q) x(●∗Q)

x(●∗P) x(●∗P) x(●∗P)

x(●∗P)

x(●∗P) x(●∗P) x(●∗P)

x(●∗P)

s0 s3

● ⊕ H(adin1) ● ⊕ H(adin2)
s5
● ⊕ H(adin3)

Figure 2: Dual EC usage in OpenSSL-FIPS using ECDHE with P-256.

libraries analyzed in this work. Specifically, OpenSSL
provides additional input with each call to the gener-
ate function. The additional input string is constructed
uniquely by the function FIPS_get_timevec() prior to
each query for random bytes. It comprises 16 bytes with
the following structure.

adin = (time in secs || time in µsecs || counter || pid)

Each of the component fields in the additional input string
is 4 bytes in length. On Unix-based systems the time
fields are computed using gettimeofday(). The counter
is a monotonically increasing global counter that is set
to 0 at library initialization, and increments with each
call to FIPS_get_timevec(). On operating systems where
the process IDs are available, pid contains the process ID
returned from getpid().

A passive attacker can capture 32 consecutive bytes of
Dual EC output by observing the session ID sent to the
client by an OpenSSL server. Assuming the generator is
instantiated with P-256, the attacker can now execute the
initial steps of the basic attack using the first 30 bytes,
in order to recover multiple candidate states, and (using
the additional two bytes) reduce the number of candidate
states to one, or a small number. From this point, the
OpenSSL attack differs from the basic attack. Given each
candidate state s, the attacker now calculates the step-14
update s = x(sP) and exhaustively guesses the additional
input string used in the next call to the generate function
as s′ = s⊕H(adin). This requires the attacker to iterate
through a set of candidate adin input strings, executing
the steps of the generate algorithm to recover a candidate
ECDHE private key, and comparing this value to the
intercepted ECDHE public key from a real handshake
trace.

The complexity of this attack depends on two factors:
the number of candidate states remaining at the conclu-
sion of the first portion of the attack, and the number of
candidate adin strings. Since we are guessing 16-bits,
only about half of all strings give a valid x-coordinate,
and are comparing the resultant output against 16 bits,

we expect to see 1 or 2 candidate states that generate the
correct first two values. In practice, we never saw more
than 3 candidate states.

Since the time in seconds is already transmitted as part
of the server random, the first portion of adin is known.
Thus it remains to predict the time in µseconds, process
ID and counter. Under reasonable assumptions about the
operating system and the number of connections so far
handled by the server, this can range from approximately
220 (primarily guessing the µsecs field) to 235 with a typ-
ical Unix range of pid values and known counter value,
and possibly 245 or more depending on how recently the
library was initialized. Notice that once an attacker re-
covers the adin string for a first TLS connection, it may
be relatively easy to predict these values for later connec-
tions.

The inclusion of additional input complicates the attack
since recovering the Dual EC state when it is most con-
venient, namely during the generation of the session ID,
does not immediately translate into recovering the session
keys. There are two cases to consider.

In the first case, the attacker knows nothing about the
state of the generator except that the counter value is no
bigger than k ≤ 32 bits. The first step is to recover the
generator state (for ease of analysis, assume only one can-
didate state is possible). As with BSAFE-C, this requires
approximately 215 variable base point multiplications and
an equal number of fixed base point multiplications. Next,
the additional input string needs to be guessed. For each
guess, this takes two fixed base point multiplications.
There are at most 235+k additional input strings to try. A
guess can be validated by comparing to the server random
field. Finally, the ECDHE secret and public keys need to
be computed for each guess of the second additional input
string. Each guess takes five fixed base point multiplica-
tions; however, since the attacker has already determined
the pid and the counter value, the attacker has a good esti-
mate of the time and increments the microsecond value
from there; this takes about 213 guesses. This gives a total
cost of 215(Cv +C f)+ 235+k(2C f)+ 213(5C f). The 213

10

is an upper bound for our observations. Usually less than
212 tests were sufficient and on a fast Internet servers even
less time passes between two calls of Dual EC.

In the second case, the attacker has already broken a
previous connection and so the pid and counter values are
known. The cost of performing the whole attack a sec-
ond time becomes 215(Cv +C f)+ 220(2C f)+ 213(5C f).
However, the cost of computing a scalar multiplication
with a variable base point is significantly higher than for
a fixed base point. It may be in the attacker’s best interest
to keep track of the generator’s state throughout each ses-
sion. This involves keeping track of counter updates and
recovering the state after each encrypted TLS record sent
and randomness used for ECDSA and IVs. The search
space for the time in adin for these values is usually small,
similar to that in the ECDHE key.

Then the cost of recovering the state at the beginning
of a new connection is at most 220(2C f) for testing the
time (and less if better estimates of the time are known)
in place of the 215(Cv +C f), for a total cost of 220(2C f)+
213(7C f). This is faster if the time update for the server
random call requires a smaller search space for the time
after the time has been determined for the session ID.

4.4 Attack validation
We implemented each of the attacks against TLS libraries
described above to validate that they work as described.
Since we do not know the relationship between the NIST-
specified points P and Q, we generated our own point Q′

by first generating a random value e R← {0,1, . . . ,n−1}
where n is the order of P, and set Q′ = eP. This gives
our trapdoor value d ≡ e−1 (mod n) such that dQ′ =
P. (Our random e and its corresponding d are given in
the Appendix.) We then modified each of the libraries
to use our point Q′ and captured network traces using
the libraries. We ran our attacks against these traces to
simulate a passive network attacker.

We would like to stress that anybody who knows the
back door for the NIST-specified points can run the same
attack on the fielded BSAFE and SChannel implementa-
tions without reverse engineering.

We describe the concrete performance results of our
attacks in the next section and give details on the libraries
here.

RSA BSAFE. The Dual EC implementation in BSAFE-
C contains the points P and Q as well as three tables of
scalar multiples of each of the points for fast multiplica-
tion. The tables contain 65, 517, and 573 multiples. After
working out the corresponding scalar factor for each entry
in the tables, we computed our own tables and modified
the relevant object files in the library. There were no
health checks or known answer tests (KATs) to bypass.

BSAFE-Java is distributed as a signed, obfuscated jar
file. We reverse engineered the code sufficiently to find

and bypass the checks that prevent modification and re-
placed the jar’s signature with our own. BSAFE-Java
has a single table of 431 scalar multiples of each of P
and Q.

Windows SChannel. Dual EC in SChannel is imple-
mented both in the kernel and a user-mode library. We
modified the user-mode library, which performs a KAT
when the operating system first loads the module at boot,
as well as continuously during operation when FIPS mode
is enabled. To sidestep these checks, we disabled FIPS
mode, and wrote a system service that (1) replaces Q with
Q′ in the the address space of the Local Security Authority
Subsystem Service (IIS and IE delegate TLS handshakes
to this process), and (2) makes Dual EC the system-wide
default PRNG.

OpenSSL-fixed. Dual EC in OpenSSL is implemented
in the separate OpenSSL-FIPS library. This library con-
tains both runtime KATs and a check of the SHA-1 hash
of the object code. Since the hash is computed each time
the library is compiled, we simply fixed the bug which
prevents Dual EC from being used (described above),
bypassed the KATs, and substituted Q′ for Q.

5 Implementation
We implemented all attacks for parallel architectures,
specifically clusters of multicore CPUs. The attacks are
parallelized using OpenMP and MPI, with the search
space distributed over all cores of the cluster nodes, using
one process per CPU and one thread per (virtual) core.
The attacks are “embarrassingly parallel”: there are no
data dependencies between the parallel computations and
thus no communication overhead and no limit on the scal-
ability of the parallelization, other than the total number
of independent computations.

5.1 Algorithmic optimizations
For finite-field arithmetic, we use the Gueron/Krasnov
OpenSSL patch for NIST P-256, described in [8] and
available at [9]. Square-root computations, to recover the
y-coordinates, use that p≡ 3 mod 4 and compute

√
a as

a(p+1)/4. We refer to the cost of recovering a y-coordinate
as Cy.

The definition of the update function in Dual EC re-
quires all scalar multiplications to result in affine points
(to derive a unique x-coordinate). To improve the per-
formance of our implementation we compute all point
operations in affine coordinates and batch the inversions
using Montgomery’s trick [15] across several parallel
computations. We use a batch size of 256 for all experi-
ments; increasing the batch size any further does not have
a measurable effect on the runtime.

The most performance critical operations on EC points
in the attack logic are:

11

1. Scalar multiplications using fixed base points P and
Q in order to compute the next internal state and to
compute the output string respectively; P is also used
as base point for ECDHE and ECDSA computations.

2. Scalar multiplications using variable base points and
a fixed scalar, the back door d, in order to compute a
candidate internal state given an output string.

In Table 1 we refer to the costs of a fixed-base-point
scalar multiplication as C f and those of a variable-base-
point one as Cv.

For the fixed-base-point computations we use large pre-
computed tables of multiples of the base point. For a
given width w we compute the lookup table consisting
of TP,i, j = i2 jwP for 0 < i < 2w, 0≤ j < 256/w. A scalar
multiplication sP can then be performed as d256/we addi-
tions of precomputed points from the lookup table using
sP = ∑

256/w
j=0 TP,s(j), j, where s = ∑

256/w
j=0 s(j)2 jw. We do

the same for Q in place of P. These tables are shared
among all threads of each process in the implementation.
We choose w= 16 for all our experiments for a reasonable
balance between performance and lookup table size. This
brings C f down to 16 point additions.

We implemented the scalar multiplications with the
fixed scalar d using signed sliding windows with window
width 5 and fully unrolled the code. This way Cv takes
253 doublings and 50 additions. Our d was a randomly
chosen 256-bit integer; see the appendix. An attacker
can choose d to minimize the cost of the fixed-scalar
variable-base-point scalar multiplication by choosing d
with low Hamming weight or more generally with a short
addition chain, although a sufficiently low weight runs the
risk that someone will discover d by a discrete-logarithm
computation. To put an upper bound on the Dual EC
attack time we avoid this optimization.

There is a proof of concept of the general Dual EC at-
tack in a blog post by Adamantiadis [1] using OpenSSL’s
libcrypto for curve and large integer arithmetic. Adaman-
tiadis does not implement a complete attack but recovers
the state from a 30 byte random output. His proof of
concept iterates through all 216 candidates to recover the
missing bits of the x-coordinate and computes the cor-
responding y coordinate. In case he discovers a point
on the curve, he applies the back-door computation and
computes the next random output. This proof of concept
has an expected cost of 216Cy +215(Cv +C f).

On a single core of an Intel Xeon CPU E3-1275 v3,
Adamantiadis’s code requires about 18.5 s. To circum-
vent the bug in the OpenSSL FIPS implantation, Adaman-
tiadis is using an older version of libcrypto. We modified
Adamantiadis’s code to run with libcrypto version 1.0.1e;
this version requires about 12.1 s. For comparison, we
reimplemented Adamantiadis’s proof of concept using
our optimized primitives. The optimized version requires

about 3.7 s on a single core. Thus, our optimizations give
an improvement by a factor of 3.3 over libcrypto.

In Adamantiadis’s code (using libcrypto version
1.0.1e), the computation of a y coordinate (corresponding
to cost Cy) takes about 15 µs on average. In our optimized
version, this computation requires only 6 µs, which is an
improvement by a factor of 2.5. The application of the
back-door computation in Adamantiadis’s code (scalar
multiplication of a variable point by a fixed factor, cost
Cv) requires about 168 µs on average, our code requires
about 98 µs, which is an improvement by a factor of
1.7. Scalar multiplication with fixed base points P and
Q (cost C f) benefits the most from our optimizations. In
Adamantiadis’s code, one scalar multiplication requires
about 171 µs on average. In our optimized code, the com-
putation for fixed base points requires only about 6µs on
average which is an improvement by a factor of 28. For
an actual attack, the proportion of C f to Cv is significantly
larger than in the proof of concept. This increases the
impact of our improvements on the attacks.

5.2 Performance measurements and estimates
All our attacks are based on the fact that some fields in the
handshake messages (e.g., session ID and server random)
contain a bit sequence derived from the x-coordinate of
a point R. In order to recover R, we iterate through all
possible combinations of the missing bits, check whether
each candidate ri actually is a valid x-coordinate and gives
a point candidate Ri, apply the back door by computing
dRi, and follow all the steps (including adin for the attacks
on OpenSSL-fixed) to check whether the candidate ri
eventually allows us to recover the (EC)DH secret. As the
steps differ for each implementation, a different amount
of computation is required for each attack (see Table 1,
column “Attack Complexity”).

We measure the cost of the attacks on a reference CPU,
an Intel Xeon CPU E3-1275 v3, which has 4 cores and 2
hardware threads per core when enabling Hyper Thread-
ing. Table 2 lists measured and estimated performance
numbers of the attacks. Turbo Boost and Hyper Thread-
ing are enabled; thus, we were using 8 OpenMP threads
for the measurements on the reference system.

We measure the runtime of testing 222 candidates
(about 221 candidate points). From these measurements,
we extrapolate the expected runtime of the attack. From
the expected runtime, we compute the cost of the attack as
the number of Intel Xeon reference processors that would
be required to perform the attack in an expected time of
less than one second.

Finally, to verify the efficiency of the attack on multi-
ple nodes, we measure the total worst case runtime of the
attack on a four-node, quad-socket AMD Opteron 6276
(Bulldozer) computing cluster. The cluster has an In-
finiband interconnect and 256 GB memory per node —

12

Table 2: Performance measurements and estimates.

Attack Intel Xeon Reference System 16-CPU AMD Cluster
222 Candidates (s) Expected Runtime (min) Expected Cost Total Runtime (min)

BSAFE-Java v1.1 75.08∗ 641 38,500 63.96∗

BSAFE-C v1.1 – 0.26 16 0.04∗

SChannel I 72.58∗ 619 37,100 62.97∗

SChannel II 62.79∗ 1,760 106,000 182.64∗

OpenSSL-fixed I – 0.04 3 0.02∗

OpenSSL-fixed II – 707 44,200 83.32∗

OpenSSL-fixed III – 2k ·707 2k ·44,200 2k ·83.32
∗measured

however, neither of these is relevant for the attacks be-
cause they do not need much communication and require
less than 1 GB of RAM per process.

For the timing measurements we ran each case several
times to verify that there is no significant variance and
finally picked the time from a representative test run.

BSAFE-Java v1.1. In this case, the session ID of the
handshake is not derived from Dual EC — so we have to
use the 28 bytes of the server random, missing 32 bits
of the target x-coordinate. The complexity of the attack
on BSAFE-Java is 232Cy +231(Cv +5C f). We measured
a time of 75.08 s to check 222 candidates. In total, this
attack requires checking at most 232 candidates, so we ex-
pect a runtime of 232−22 ·75.08 s/2≈ 641 min (rounded
to three significant digits) on the reference CPU. There-
fore, the expected cost to finish this attack within one
second is about 38,500 reference CPUs. We measured a
worst-case total runtime of 63.96 min on our cluster.

BSAFE-C v1.1. For the BSAFE-C attack, we can sim-
ply concatenate session ID and server random and guess
16 bits of the target x-coordinate for the 30 possible
cases. The complexity of the attack on BSAFE-C is
30 · [216Cy + 215(Cv +C f)]. In the worst case this only
requires testing 30 ·216 candidates which is less than 222,
so we do not have a measurement for the first column in
Table 2. Instead, we measured the worst case time for the
whole attack (31.12 seconds) and list half of the worst
case time, i.e., 31.12 s/2≈ 0.26 min as expected runtime.
This gives an expected cost of 16 reference CPUs. This
attack required 0.04 min on our cluster; most of this time
is probably due to initialization overhead.

SChannel I. The SChannel I attack uses the server ran-
dom from the preceding handshake to hook into the ran-
dom number stream and to discover the server’s ECDHE
private key in the handshake when the private key is re-
freshed. The complexity of this attack is 232Cy+231(Cv+
4C f). Checking 222 candidates takes 72.58 s. This is

slightly less than the time for BSAFE-Java, because this
attack requires only four instead of five multiplications
by a fixed base point for each point candidate. The whole
attack requires checking at most 232 candidates, so the
expected runtime is 232−22 ·72.58 s/2≈ 619 min. There-
fore, the expected cost of the attack is 37,100 reference
CPUs. The measured worst-case total time on our cluster
is 62.97 min.

SChannel II. The SChannel II attack uses just one sin-
gle handshake to recover the secret keys and therefore
relies on the session ID (where the 4 least significant
bytes have been replaced by their value modulo 20,000)
to recover the state of the PRNG. The complexity of at-
tack is 234Cy +233(Cv +C f)+217(5C f), more precisely
232/20,000 ·216[Cy +(Cv +C f +5C f /216)/2]. The dom-
inant part for each candidate check is Cy +(Cv +C f)/2
which requires a smaller number of multiplications with
a fixed base point than SChannel I. Thus, we measured
only 62.79 s to check 222 candidates. This attack requires
checking up to 232/20,000 ·216 candidates; therefore, this
attack has an expected runtime of 232−22/20,000 · 216 ·
62.79 s/2 ≈ 1,760 min. This gives an expected cost of
106,000 reference CPUs.

OpenSSL-fixed. Due to the use of adin before each
random draw, OpenSSL is a special case among the im-
plementations of Dual EC. The attack on OpenSSL takes
three steps: First, we find the current state by finding the
16 missing bits for the session ID. This requires checking
at most 216 candidates; thus, we do not give a measure-
ment for 222 candidates in the first column of Table 2.
Since this step might result in more than one state can-
didate, we always compute all 216 candidates. If more
than one candidate is recovered, the attacker either has to
check all candidates (in parallel) or retry with a different
handshake if applicable. In the following we investigate
the expected case that only candidate is found. In the sec-
ond step, we need to find the adin used to generate server

13

random. Here, adin consists of the current system time
(including µs), the process ID (pid), and a counter value.
In the last step, we need to find the next adin before the
call to generate the DH key. The pid and the counter are
known from the previous adin; we only need to find the
µs over a very short time span by iteratively incrementing
the time counter. We assume a maximum of 213 µs for
this time span. Due to the small workload, the scalability
of the parallelization of step one and three is limited.

The complexity of the OpenSSL attack is 216Cy +
215(Cv +3C f)+220+k+l(2C f)+213(5C f) where k is the
number of unknown bits of the adin counter and l is the
number of unknown bits of the adin pid. We are using
a batch size of 256. Therefore, we can split the work-
load of checking 216 candidates in the first step to at most
216/256 = 256 threads without loss of efficiency. The
last step requires at most 213 iterations, so we can use at
most 213/256 = 32 threads. Step one and three contribute
to only an insignificant fraction of the total complexity
when pid or counter are not known.

We examine three cases:

OpenSSL-fixed I: pid and counter are known, µs of time
are unknown,

OpenSSL-fixed II: counter is known, µs of time and pid
(15 bits) are unknown,

OpenSSL-fixed III: µs of time, pid (15 bits), and
counter (k bits) are unknown.

The system time in seconds is known due to the times-
tamp in the server-random field of the handshake mes-
sage. Therefore, only the µs must be found by exhaus-
tive search. The seconds might have clocked since the
timestamp was obtained; thus, we need to test up to
1,000,000+∆ candidates for the µs. An upper limit on ∆

is the time between the server receiving the ClientHello
message and sending the ServerHello message. We use
1,000,000 µs+48,576 µs = 220 µs as upper limit.

The standard maximum pid on Linux systems is 215. If
the attacker starts listening to the server right after bootup,
he can assume the initial counter to be zero; otherwise,
he may make an educated guess about the current counter
state based on uptime and the average connection number.

To compute the expected runtime of this attack we
measured the worst-case runtime of the case OpenSSL-
fixed I. The first step to compute state candidates took
about 0.96 s; the second step checking all possible 220 µs
for one single state candidate took 2.59 s. The final
step checking the next 213 µs took only 0.05 s. There-
fore, the expected runtime of OpenSSL-fixed I is 0.96 s+
2.59 s/2+0.05 s/2≈ 0.04 min; the expected cost is three
reference CPUs. The expected runtime of OpenSSL-fixed
II is 0.96 s+215 ·2.59 s/2+0.05 s/2≈ 707 min. We are
using 8 threads in the reference system; the maximum

number of threads for the first step is 256 threads and
32 threads for the last step. Therefore, the first step can
not be faster than 0.96 s/(256/8) ≈ 0.03 s and the last
step requires at least 0.05 s/(32/8)≈ 0.01 s in the worst
case. To finish the whole attack in one second on average,
the second step must take 1 s−0.03 s−0.01 s = 0.96 s
on average which requires 215 ·2.59 s/2/0.96 s≈ 44,200
reference CPUs. For OpenSSL-fixed III these values are
multiplied by 2k, assuming k unknown bits for the counter
of the adin.

We ran OpenSSL-fixed II on the cluster, testing all
235 combinations of µs and pid to obtain the worst-case
total runtime. The time of 83.32 min is noticeably less
than 215 times the time of 0.02 s taken in the OpenSSL-
fixed I scenario. This is because in OpenSSL-fixed I the
computations of 215Cv for the first step have a strong
impact on the runtime, testing 235 candidates gives more
precise timing estimates of C f . We can extrapolate the
costs for OpenSSL-fixed III as 2k times those of OpenSSL-
fixed II because the contribution of the first and of the
third step become negligible.

These runtime and cost estimates show that a power-
ful attacker (in case of BSAFE-C, an arbitrary attacker)
is able to break TLS connections that use the Dual EC
pseudorandom number generator when he possesses the
back-door information. The usability of the attack on
OpenSSL-fixed depends on additional knowledge about
the adin; however, computing clusters of around 100,000
CPUs are realistic as of today (for example the Tianhe-
2 supercomputer in China has 16,000 computing nodes
with 5 CPUs each [25]) and sufficient to break BSAFE
and SChannel in less than one second.

6 Passive TLS server fingerprinting
In many contexts, including exploitation of the Dual EC
backdoor, it is useful to identify, or fingerprint, the imple-
mentation used by a TLS server. Existing tools for TLS
fingerprinting use active techniques (requesting a page to
get an error message and analyzing the result), but our
investigations of TLS implementations suggest that the
session ID field, in particular, admits a passive fingerprint-
ing mechanism useful to an attacker observing network
traffic or even one attacking recorded connections from
years ago.

Data collection. We collected a large dataset of TLS
session information from servers listening on port 443 in
the IPv4 address space. We executed a ZMap scan [6] of
port 443 over the entire IPv4 address space (excluding
ZMap’s default blacklist). The ZMap scan netted 38.9
million services responding on port 443. For 37.1 million
of these services, we used a modified version of OpenSSL
v1.0.1e s_client to connect to the service, and attempt
to perform a TLS handshake up through receiving the
ServerHello message (containing the session ID, server

14

random value, and TLS server extensions), and then sent a
TCP RST to the server. Of these attempts, 21.8M servers
responded with a ServerHello message.

We investigated a number of candidate fingerprints
based on observable behavior to a passive adversary. For
each server that exhibited the RSA BSAFE fingerprint,
we made an HTTP GET request on port 443 in an at-
tempt to determine what software the server uses via the
self-reported Server field of the HTTP header. We re-
peated this for 1,000 randomly-selected IP’s exhibiting
the SChannel fingerprint. We consider an observable
behavior to be a selective fingerprint if ≥ 95% of the
servers from which we received HTTP headers identify
themselves as the same implementation.

6.1 Fingerprints detected
We detected many different types of fingerprints by exam-
ining server random values, session IDs, and TLS server
extensions (all unencrypted values to a passive observer).
In addition to the fingerprints on BSAFE and SChan-
nel discussed in Sections 4.1 and 4.2, we identified five
selective fingerprints from unique combinations of sup-
ported extensions, 2 selective fingerprints corresponding
to session ID values with fewer than 32 bytes, and seven
selective fingerprints corresponding to fixed subsequences
in the session ID.

In sum, 4 million of the servers we contacted exhibited
selective fingerprints. We discuss our findings for BSAFE
and SChannel in more detail below.

RSA BSAFE. As described in Section 4.1, by default,
BSAFE-Java has a very prominent fingerprint that is en-
abled by default, and BSAFE-C has a similar fingerprint
that is not enabled by default. We found 720 servers with
the BSAFE-Java fingerprint, and none with the BSAFE-C
fingerprint. Of these servers, 33% self-reported running
Apache Coyote 1.1,8 with the remaining two self-reported
implementations (“ADP API” and lighthttpd) appearing
on fewer than ten instances. The remaining servers did
not return a Server field.

Microsoft SChannel. As described in Section 4.2,
SChannel exhibits a fingerprint in the first 4 bytes of
the session ID. 2.7 million of the servers we contacted
exhibited this fingerprint. We requested HTTP headers
from 1,000 of these IPs (randomly selected), and 96%
of the responses included the string “Microsoft” in the
server field, suggesting that this is a selective fingerprint.

7 Conclusions
We provided the first theoretical and practical analysis of
the exploitability of Dual EC as used in deployed TLS

8Apache Coyote is a front end that forwards requests to Apache
Tomcat, which supports Java Servlets and JavaServer pages; running
Tomcat with BSAFE-Java may indicate an effort to provide a FIPS-
compliant web application.

implementations. We evaluated the viability and perfor-
mance of recovering TLS session keys for fielded imple-
mentations that use Dual EC. Our results demonstrate that
otherwise innocuous implementation decisions greatly
affect exploitability. For example, RSA BSAFE-C is by
far the easiest to exploit due to caching of unused bytes
of Dual EC output. On the other end of the spectrum,
OpenSSL-fixed uses additional input, which can render
attacks significantly more challenging if no or only little
information is available about the server.

We developed and successfully tested state-of-the-art
parallelized implementations of all attacks against ver-
sions of the libraries patched to use Dual EC constants
that we generated. Depending on the design choices in
the implementations, an attacker can recover TLS session
keys within seconds on a single CPU or may require a
cluster of more than 100,000 CPUs for the same task if a
different library is used. For OpenSSL some parameters
might require such a serious cluster for an even longer
time.

While there are a number of available mitigations to
the vulnerabilities we discuss in this work, the simplest
and best is to remove the Dual EC implementation from
deployed products. OpenSSL has already initiated the
(expensive, due to FIPS certification) process of remov-
ing Dual EC from its FIPS version and, in the mean-
time, is not fixing the bug we discovered that prevents its
use [13]. RSA has advised developers to stop using the
BSAFE Dual EC implementation [7]. Our work further
emphasizes the need to deprecate the algorithm as soon
as possible.

Acknowledgements
We would like to thank Bo-Yin Yang’s research group at
Academia Sinica, Taiwan, for giving us access to their
computing cluster for benchmarking. We also thank Steve
Marquess and Dr. Stephen Henson of the OpenSSL Foun-
dation for helpful discussions. We thank Kurt Opsahl and
Nate Cardozo of the Electronic Frontier Foundation for
their legal advice throughout this project.

This work was supported in part by the European Com-
mission through the ICT program under contract INFSO-
ICT-284833 (PUFFIN), by the US National Science Foun-
dation under grants 1018836 and 1314919, and by the
Netherlands Organisation for Scientific Research (NWO)
under grant 639.073.005.

References
[1] Aris Adamantiadis. Dual_EC_DRBG backdoor: a

proof of concept, December 2013. Online: http:
//blog.0xbadc0de.be/archives/155.

[2] James Ball, Julian Borger, and Glenn Greenwald.
Revealed: how US and UK spy agencies defeat inter-
net privacy and security. The Guardian, September 5

15

http://blog.0xbadc0de.be/archives/155
http://blog.0xbadc0de.be/archives/155

2013. Online: http://www.theguardian.
com/world/2013/sep/05/nsa-gchq-
encryption-codes-security.

[3] Daniel R. L. Brown and Scott A. Van-
stone. Elliptic curve random number gen-
eration, August 2007. Online: http:
//www.freshpatents.com/Elliptic-
curve-random-number-generation-
dt20070816ptan20070189527.php.

[4] Art Coviello. RSA Conference 2014 keynote
for Art Coviello, February 2014. Online:
http://www.emc.com/collateral/
corporation/rsa-conference-
keynote-art-coviello-feburary-
24-2014.pdf.

[5] Tim Dierks and Eric Rescorla. RFC 5246: The
transport layer security (TLS) protocol version 1.2.
The Internet Engineering Task Force, August
2008. Online: http://www.rfc-archive.
org/getrfc.php?rfc=5246.

[6] Zakir Durumeric, Eric Wustrow, and J. Alex Hal-
derman. ZMap: Fast internet-wide scanning and
its security applications. In Proceedings USENIX
Security 2013, pages 605–619, 2013.

[7] Dan Goodin. Stop using NSA-influenced code
in our products, RSA tells customers, September
2013. Online: http://arstechnica.com/
security/2013/09/stop-using-nsa-
influence-code-in-our-product-rsa-
tells-customers/.

[8] Shay Gueron and Vlad Krasnov. Fast prime field el-
liptic curve cryptography with 256 bit primes. IACR
Cryptology ePrint Archive, 2013:816, December
2013. Online: http://eprint.iacr.org/
2013/816.

[9] Shay Gueron and Vlad Krasnov, 2013. On-
line: http://rt.openssl.org/Ticket/
Display.html?id=2582.

[10] Paul Hoffman. Additional random ex-
tension to TLS, February 2010. Online:
http://tools.ietf.org/html/draft-
hoffman-tls-additional-random-ext-
01. Internet-Draft version 01.

[11] Joint Technical Committee ISO/IEC JTC 1, Informa-
tion technology, Subcommittee SC 27, IT Security
techniques. ISO/IEC 18031: Information technol-
ogy – Security techniques – Random bit generation,
2005.

[12] Jeff Larson, Nicole Perlroth, and Scott Shane.
Revealed: The NSA’s secret campaign to
crack, undermine Internet security. ProP-
ublica, September 2013. Online: http:
//www.propublica.org/article/the-

nsas-secret-campaign-to-crack-
undermine-internet-encryption.

[13] Steve Marquess. Flaw in Dual EC DRBG
(no, not that one), December 2013. On-
line: http://marc.info/?l=openssl-
announce&m=138747119822324&w=2.

[14] Joseph Menn. Exclusive: Secret con-
tract tied NSA and security industry pio-
neer. Reuters, December 2013. Online:
http://www.reuters.com/article/
2013/12/20/us-usa-security-rsa-
idUSBRE9BJ1C220131220.

[15] Peter Montgomery. Speeding the Pollard and elliptic
curve methods of factorization. Math. Comp., 48:
243–264, 1987.

[16] National Institute of Standards and Technology.
DRBG validation list. February 2014. Online:
http://csrc.nist.gov/groups/STM/
cavp/documents/drbg/drbgval.html.

[17] National Institutes of Standards and Technol-
ogy. Special publication 800-90. Recom-
mendation for Random Number Generation Us-
ing Deterministic Random Bit Generators, 2012.
(first version June 2006, second version March
2007). Online: http://csrc.nist.gov/
publications/PubsSPs.html#800-90A.

[18] Nicole Perlroth, Jeff Larson, and Scott Shane.
N.S.A. able to foil basic safeguards of privacy
on web. International New York Times, Septem-
ber 2013. Online: http://www.nytimes.
com/2013/09/06/us/nsa-foils-much-
internet-encryption.html.

[19] Eric Rescorla and Margaret Salter. Opaque
PRF inputs for TLS, December 2006. Online:
http://tools.ietf.org/html/draft-
rescorla-tls-opaque-prf-input-00.
Internet-Draft version 00.

[20] Eric Rescorla and Margaret Salter. Extended
random values for TLS, March 2009. Online:
http://tools.ietf.org/html/draft-
rescorla-tls-extended-random-02.
Internet-Draft version 02.

[21] RSA Security Inc. The RSA watermark.
2009. Online: https://developer-
content.emc.com/docs/rsashare/
share_for_java/1.1/dev_guide/
group__LEARNJSSE__WATERMARK.html.

[22] Berry Schoenmakers and Andrey Sidorenko. Crypt-
analysis of the dual elliptic curve pseudorandom
generator. Cryptology ePrint Archive, Report
2006/190, 2006. Online: http://eprint.
iacr.org/.

[23] Dan Shumow and Niels Ferguson. On the possibil-
ity of a back door in the NIST SP800-90 Dual Ec

16

http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.freshpatents.com/Elliptic-curve-random-number-generation-dt20070816ptan20070189527.php
http://www.freshpatents.com/Elliptic-curve-random-number-generation-dt20070816ptan20070189527.php
http://www.freshpatents.com/Elliptic-curve-random-number-generation-dt20070816ptan20070189527.php
http://www.freshpatents.com/Elliptic-curve-random-number-generation-dt20070816ptan20070189527.php
http://www.emc.com/collateral/corporation/rsa-conference-keynote-art-coviello-feburary-24-2014.pdf
http://www.emc.com/collateral/corporation/rsa-conference-keynote-art-coviello-feburary-24-2014.pdf
http://www.emc.com/collateral/corporation/rsa-conference-keynote-art-coviello-feburary-24-2014.pdf
http://www.emc.com/collateral/corporation/rsa-conference-keynote-art-coviello-feburary-24-2014.pdf
http://www.rfc-archive.org/getrfc.php?rfc=5246
http://www.rfc-archive.org/getrfc.php?rfc=5246
http://arstechnica.com/security/2013/09/stop-using-nsa-influence-code-in-our-product-rsa-tells-customers/
http://arstechnica.com/security/2013/09/stop-using-nsa-influence-code-in-our-product-rsa-tells-customers/
http://arstechnica.com/security/2013/09/stop-using-nsa-influence-code-in-our-product-rsa-tells-customers/
http://arstechnica.com/security/2013/09/stop-using-nsa-influence-code-in-our-product-rsa-tells-customers/
http://eprint.iacr.org/2013/816
http://eprint.iacr.org/2013/816
http://rt.openssl.org/Ticket/Display.html?id=2582
http://rt.openssl.org/Ticket/Display.html?id=2582
http://tools.ietf.org/html/draft-hoffman-tls-additional-random-ext-01
http://tools.ietf.org/html/draft-hoffman-tls-additional-random-ext-01
http://tools.ietf.org/html/draft-hoffman-tls-additional-random-ext-01
http://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
http://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
http://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
http://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
http://marc.info/?l=openssl-announce&m=138747119822324&w=2
http://marc.info/?l=openssl-announce&m=138747119822324&w=2
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://tools.ietf.org/html/draft-rescorla-tls-opaque-prf-input-00
http://tools.ietf.org/html/draft-rescorla-tls-opaque-prf-input-00
http://tools.ietf.org/html/draft-rescorla-tls-extended-random-02
http://tools.ietf.org/html/draft-rescorla-tls-extended-random-02
https://developer-content.emc.com/docs/rsashare/share_for_java/1.1/dev_guide/group__LEARNJSSE__WATERMARK.html
https://developer-content.emc.com/docs/rsashare/share_for_java/1.1/dev_guide/group__LEARNJSSE__WATERMARK.html
https://developer-content.emc.com/docs/rsashare/share_for_java/1.1/dev_guide/group__LEARNJSSE__WATERMARK.html
https://developer-content.emc.com/docs/rsashare/share_for_java/1.1/dev_guide/group__LEARNJSSE__WATERMARK.html
http://eprint.iacr.org/
http://eprint.iacr.org/

Prng. CRYPTO 2007 Rump Session, August 2007.
Online: http://rump2007.cr.yp.to/15-
shumow.pdf.

[24] Kristian Gjøsteen, 2006. Online: http:
//www.math.ntnu.no/~kristiag/
drafts/dual-ec-drbg-comments.pdf.

[25] TOP500, June 2013. Online: http://www.
top500.org/lists/2013/06/.

Appendix
Our experiments used the P-256 curve parameters. This
curve is defined over Fp with p = 2256− 2224 + 2192 +
296− 1. The curve is given in short Weierstrass form
E : y2 = x3−3x+b, where

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc \

651d06b0 cc53b0f6 3bce3c3e 27d2604b.

The base point P has order n, where

Px = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 \

77037d81 2deb33a0 f4a13945 d898c296

Py = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 \

2bce3357 6b315ece cbb64068 37bf51f5

n = ffffffff 00000000 ffffffff ffffffff \

bce6faad a7179e84 f3b9cac2 fc632551.

The official second point Q as given in the Dual EC
description is

Qx = c97445f4 5cdef9f0 d3e05e1e 585fc297 \

235b82b5 be8ff3ef ca67c598 52018192

Qy = b28ef557 ba31dfcb dd21ac46 e2a91e3c \

304f44cb 87058ada 2cb81515 1e610046.

To implement our attacks we generated the following
random constant e to compute a new point Q′ = eP. The
trapdoor is d ≡ e−1 (mod n).

e = facc5582 909e66b3 09b1a3ae 5e4d51fc \

0edbfb57 6ef8bfa9 c233b035 9f7a7b49

d = 6fc45453 894de99c 661581b0 a12087b8 \

62667b78 5aaba711 6dcdcb3c b3a79afe

Q′x = f6c4f766 b3c61f09 e6095822 24cc8ebc \

cf4cd496 1ef780cc 02e8f09a 0efa7ca5

Q′y = f212c576 8d46716c 6cac4d23 ff12e8ae \

89fd9eee c83a0e83 e35db3aa de0ccb5b

17

http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
http://www.top500.org/lists/2013/06/
http://www.top500.org/lists/2013/06/

	Introduction
	Dual EC attack theory
	Attack target: TLS
	Exploiting Dual EC in implementations
	RSA BSAFE
	Windows SChannel
	OpenSSL
	Attack validation

	Implementation
	Algorithmic optimizations
	Performance measurements and estimates

	Passive TLS server fingerprinting
	Fingerprints detected

	Conclusions

