
Return-Oriented Programming without Returns

Stephen Checkoway†, Lucas Davi‡, Alexandra Dmitrienko‡, Ahmad-Reza Sadeghi‡,
Hovav Shacham†, Marcel Winandy‡

†Department of Computer Science and Engineering
University of California, San Diego

La Jolla, California, USA

‡System Security Lab
Ruhr-Universität Bochum

Bochum, Germany

ABSTRACT
We show that on both the x86 and ARM architectures it is possible
to mount return-oriented programming attacks without using return
instructions. Our attacks instead make use of certain instruction
sequences that behave like a return, which occur with sufficient
frequency in large libraries on (x86) Linux and (ARM) Android to
allow creation of Turing-complete gadget sets.

Because they do not make use of return instructions, our new
attacks have negative implications for several recently proposed
classes of defense against return-oriented programming: those that
detect the too-frequent use of returns in the instruction stream;
those that detect violations of the last-in, first-out invariant nor-
mally maintained for the return-address stack; and those that mod-
ify compilers to produce code that avoids the return instruction.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security, Algorithms

1. INTRODUCTION
This paper is about the feasibility of certain defenses against

return-oriented programming. In the last year, several natural de-
fenses have been proposed that target properties of return-oriented
attacks and are intended to be simpler and have lower overhead than
a comprehensive defense such as Control-Flow Integrity (CFI) [1,
14].1 In this paper, we show that these narrowly tailored defenses
are incomplete by devising a new variant of return-oriented pro-
gramming that evades them. Our results call into doubt the useful-
ness of these ad-hoc defenses.

Return-Oriented Programming.
Return-oriented programming allows an attacker to exploit mem-

ory errors in a program without injecting new code into the pro-

1Note that even the closest to a generally available CFI instantiation
for ARM, Google’s NaCl [40], would require substantial additional
development to support full CFI for general-purpose ARM code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

gram’s address space. In a return-oriented attack, the attacker ar-
ranges for short sequences of instructions in the target program to
be executed, one sequence after another. Through a choice of these
sequences and their arrangement, the attacker can induce arbitrary
(Turing-complete) behavior in the target program. Traditionally,
the instruction sequences are chosen so that each ends in a “return”
instruction, which, if the attacker has control of the stack, allows
control to flow from one sequence to the next — and gives return-
oriented programming its name.

The organizational unit of return-oriented programming is the
gadget, an arrangement of instruction sequence addresses and data
that, when run, induces some well-defined behavior, such as com-
puting an exclusive-or or performing a conditional branch. Return-
oriented exploits begin by devising a Turing-complete set of gad-
gets, from which any desired attack functionality is then synthe-
sized.2

Return-oriented programming was introduced by Shacham in
2007 [41] for the x86 architecture. It was subsequently extended
to the SPARC [3], Atmel AVR [15], PowerPC [26], Z80 [4], and
ARM [23] processors. While the original return-oriented attack
was largely manual, later work showed that each stage of the attack
can be automated [3, 38, 20, 23]. Return-oriented programming has
proved useful for compromising Harvard-architecture platforms,
such as Sequoia’s AVC Advantage voting machine [4] and Apple’s
iPhone [22, 30], on which traditional code injection is not a possi-
bility.

Defenses Against Return-Oriented Programming.
The instruction stream executed during a return-oriented attack

as described above is different from the instruction stream executed
by legitimate programs in at least two ways: first, it contains many
return instructions, just a few instructions apart; second, it unwinds
the stack with return instructions for which there were no corre-
sponding “call” instructions. These differences have been seized

2The crucial feature of return-oriented programming is Turing
completeness without code injection. A great deal of work prior
to 2007 showed how to leverage control of the stack to invoke
and chain libc functions [29, 31] and short instruction sequences
such as pops followed by returns [33, 24] and even to produce un-
conditional loops [36, 37]. On most platforms, one can use these
techniques to mark some memory region both writable and exe-
cutable, then inject and execute arbitrary native machine code from
that memory region as a second stage; the machine code is Turing
complete, of course, so the first stage need not be Turing complete.
(McDonald proposed essentially this approach in 1999 to bypass
Solaris’s nonexecutable stack [29].) Exploits of this sort are not a
contribution of this paper, nor of Shacham’s 2007 paper [41]. In-
deed, setting aside Turing completeness, the observation that code
reuse attacks might be feasible using chaining instructions other
than “return” was made by the PaX team in 2003 [34].

upon by researchers as the basis for mechanisms to detect and de-
feat return-oriented attacks:
• The first difference suggests a defense that looks for instruc-

tion streams with frequent returns. Davi, Sadeghi, and Wi-
nandy [12] and Chen et al. [6] both use dynamic binary in-
strumentation frameworks (Pin [28] and Valgrind [32], re-
spectively) to instrument program code. With both systems,
three consecutive sequences of five or fewer instructions end-
ing in a return trigger an alarm.
• The second difference suggests a defense that looks for vio-

lations of the last-in, first-out stack invariant usually main-
tained in benign programs by the call and return instruc-
tions. These solutions can be categorized in compiler-based
solutions like Stack Shield [45] and RAD [7]; instrumen-
tation-based solutions securing function prologues and epi-
logues [35, 18]; those using just-in-time compilation, e.g.,
TRUSS [42] and ROPdefender [13]; and, finally, hardware-
facilitated solutions [16, 17]. All these proposals guarantee
the integrity of return addresses, which is violated in conven-
tional return-oriented programming attacks.
• More generally, if a body of code doesn’t contain return in-

structions, then traditional return-oriented programming is
impossible. Li et al. [25] propose a compiler for the x86 that
avoids issuing 0xc3 bytes that can be used as unintended
return instructions and that replaces intended call and return
instructions with an indirect call mechanism that pushes a
“return index” onto the stack instead of a return address to
avoid the return in the function epilogue.

While several of these defenses build on binary instrumentation
platforms and inherit the performance degradation that binary in-
strumentation entails, the properties they verify are amenable to
hardware implementation at greatly reduced overhead. What we
show in this paper is that these defenses would not be worthwhile
even if implemented in hardware. Resources would instead be bet-
ter spent deploying a comprehensive solution, such as CFI [1, 14].

Our Contribution.
We show that, on both the x86 and the ARM, it is possible to

perform return-oriented programming without using return instruc-
tions. We show that instruction sequences exist that behave like re-
turns, and that these can be used instead of returns to chain useful
sequences together to yield Turing-complete functionality.

Return instructions have two properties that make them useful
for return-oriented programming: (1) they transfer control of ex-
ecution by means of an indirect jump; and (2) they update some
processor state, so a subsequent return will not transfer control to
the same location. In the case of actual return instructions, the lo-
cation to which control is transferred is the address at the top of the
stack, and the updated shared state is the stack pointer. On both the
x86 and the ARM, instruction sequences exist that have these same
two properties, but that do not include a return instruction. These
sequences update a piece of global state (e.g., the stack pointer),
load the address of the next instruction sequence to execute based
on this updated state, and branch to the address loaded.

Unlike return instructions, which are plentiful, our update-load-
branch instruction sequences occur too infrequently for us to ex-
pect to obtain a gadget set where each instruction sequence used
ends in the two or three instructions that make up the update-load-
branch operation. To overcome this, we reuse a single such update-
load-branch instruction sequence as a trampoline. Each instruction
sequence we use in composing our gadget set ends in an indirect
jump to the trampoline, which redirects the execution to the next
sequence of instructions. We discuss these techniques in Section 2.

In Section 3 we describe a Turing-complete gadget set for the
x86 that we have created based on the libc and certain large libraries
distributed with Debian GNU/Linux 5.0.4 (“Lenny”). In Section 4
we similarly describe a Turing-complete gadget set on Google’s
Android 2.0 (“Eclair”). The x86 is the dominant architecture for
desktop and server computing; within the last few years ARM has
achieved similar dominance in mobile computing. Thus our find-
ings have implications for both major architectures in use today.

In Section 5, we consider how an attacker undertakes what Dino
Dai Zovi calls the stack pivot [9] — taking control of the stack
pointer to execute return-oriented code — without using return in-
structions. And, for completeness, we show in Section 6 complete
return-oriented exploits without return instructions against sample
target programs for both architectures.

Negative Implications for Defenses.
Our attack has negative implications for defenses against return-

oriented programming that look for return instructions in order to
recognize a return-oriented instruction stream. Defenses of the first
kind considered above, which detect the use of several return in-
structions in close succession, will not detect attacks structured like
the ones we introduce in this paper since these attacks make use of
either one return or none at all. When it is possible to initiate an at-
tack without a return, the LIFO invariant of the return-address stack
is not violated, so defenses of the second sort will also not detect
the attacks. Defenses of the third kind, which rewrite binaries to
eliminate return instructions, are likewise irrelevant, since return
instructions, whether intended or unintended, are never used.

Because our attack does not violate the LIFO invariant of the
return-address stack, it is not clear that defenses that maintain a
shadow return-address stack can be salvaged. Maintaining a shadow
copy of jump targets would not be useful, because no simple invari-
ant governs these targets in benign programs.3

On the other hand, it may be possible to patch defenses of the
first kind to look not just for several returns in quick succession but
also for several indirect jumps in quick succession. This would de-
tect attacks structured as ours are. Doing so without being able,
provably, to detect that every kind of return-like instruction se-
quence that a return-oriented program might use risks engaging
in a classic cat-and-mouse game in which attackers switch to new
return-like sequences to evade the upgraded defenses. Prior to
our results in this paper, it appeared that return-oriented program-
ming unavoidably relied on return instructions, making these in-
structions attractive targets for detection and defense. Now, how-
ever, it appears that a different property must be found by which
to detect return-oriented attacks. Instead of such a cat-and-mouse
game, it would be better to deploy a comprehensive defense such
as CFI.

Full Versions.
This paper represents the merging of two papers available sepa-

rately as technical reports [5, 11]. Some details are omitted in this
version due to space constraints.

2. ROP WITHOUT RETURNS
In this section we describe how return-like instruction sequences

can substitute for rets, allowing return-oriented programming with-
out use of return instructions.

3We further observe that shadow return-address stacks are difficult
to keep synchronized in the presence of longjmp calls, thunks, and
other unusual forms of control transfer; a defense that relies on the
correctness of the shadow return-address stack may be brittle.

Assumptions and Adversary Model.
We define a strong adversary model. For our attack we assume

the availability of standard protection mechanisms against code in-
jection and return address corruption attacks.

1. We assume that the target platform may enforce the W ⊕X
security model.

2. We assume that the target platform may use countermea-
sures to defend against/detect conventional return-oriented
programming attacks, as described in Section 1.

3. We assume that the target platform provides an application
with some bug allowing us to divert a target program’s con-
trol flow without using any return (i.e., function epilogue)
instruction. We want to avoid the use of any return instruc-
tion, so that our attack circumvents return address checkers.

The High-Level Idea.
A ret instruction has the following effects: (1) it retrieves the

four-byte value at the top of the stack, and sets the instruction
pointer (eip) to that value, so that the instructions beginning at that
address execute; and (2) it increases the value of the stack pointer
(esp) by four, so that the top of the stack is now the word above
the word assigned to eip. In return-oriented programming, the lo-
cation of each instruction sequence is written to the stack; when a
sequence has executed, reaching the ret that ends it, that ret causes
the next instruction sequence to be executed.

One way to view this arrangement of the stack, suggested by
Roemer et al. [39], is that in return-oriented programming the stack
pointer takes the place of the instruction pointer in ordinary pro-
gramming; that each gadget on the stack is an instruction for a
custom-built virtual machine; and that the ret at the end of each
instruction sequence acts like a typewriter carriage return to ad-
vance the processor to the next instruction — something the pro-
cessor does automatically for ordinary programs.

Our insight in this paper is that many other instruction sequences
have ret-like properties, and that such instruction sequences make
possible return-oriented programming without returns. Our replace-
ment for the ret instruction is an update-load-branch sequence, so
named because it first updates the global state that acts as the return-
oriented program’s instruction pointer, then uses the updated state
to load from memory the address of the next instruction sequence
to execute, and finally branches to the loaded address.

On the x86, we recommend the use of return-like instruction
sequences of the form “pop x ; jmp ∗x”, where x is any general-
purpose register. (One can also use other kinds of sequences, in-
cluding ones where the register updated is not the stack pointer;
see Section 3.1.) On the ARM, we recommend the use of “update-
load-branch” return-like instruction sequences such as “adds r6,#4;
ldr r5, [r6,#124]; blx r5”; where a general-purpose register (in this
example, r6) is the updated state.

Reusing an Update-Load-Branch Sequence.
It turns out that update-load-branch instruction sequences are

more rare than the ret instructions they take the place of. (Return in-
structions are just one instruction, not two or more, and are used in
almost every function.) Instead of trying to build a Turing-complete
gadget set where every instruction sequence ends in update-load-
branch, we look for a single update-load-branch sequence in the
target program, then reuse this sequence as a trampoline. To reuse
the trampoline, we select instruction sequences ending in an indi-
rect jump instruction whose target is the trampoline.4 The trampo-

4Shacham observed [41, Section 5.1] that if ebx contains the ad-
dress of a ret instruction then any instruction sequence ending in

1

Trampoline

3

2

Adversary

Corrupt Control
Structures

Data

Control

Structures

(CS)

Code

Libraries (lib)

Program Memory

Jump (BLX)

Force

Jump (BLX)

Back

JumpInstruction Sequence

Instruction Sequence Jump

Figure 1: Return-oriented programming without returns

line updates the program’s global state and transfers control to the
next instruction sequence. There are sufficiently many instruction
sequences ending in indirect jumps that a Turing-complete gadget
set can be constructed this way.

If, on the x86, we reserve a register y to store the trampoline’s
address then sequences ending in an indirect jump through y will
behave as though they themselves ended in update-load-branch in-
structions, allowing the sequences to be chained together in the
return-oriented style. The principle is the same for ARM, where
we use blx (Branch-Link-Exchange) as our indirect jump.

The principle of a jump-based attack is depicted in Figure 1. It
shows an abstract view of a program’s memory. The adversary can-
not inject own malicious code due to enabled W⊕X protection (see
Assumption 1). However, an adversary is still able to use existing
code of the target program and its libraries. Therefore, the adver-
sary corrupts the control structure (CS) section so that program ex-
ecution transfers to a specific piece of code in a linked library (lib).
Usually control structures (such as return and jump addresses) are
located on the stack or on the heap. The instruction sequence of
the linked library is executed until an indirect jump instruction has
been reached which redirects the execution to the next sequence of
instructions by using our trampoline. The trampoline is also part of
the linked libraries and is responsible for redirecting execution to
the next instruction sequence.

3. INSTANTIATION ON INTEL X86

3.1 Update-Load-Branch on the x86
Consider the sequence “pop %eax; jmp ∗%eax”, which updates

the stack pointer as the global program state, and has the side effect
of overwriting the eax register. This is a usable update-load-branch,
and one example of a large class of such sequences.

More generally, we can, first, substitute another general-purpose
register (esp excepted, for obvious reasons) for eax. Second, we
can use doubly indirect jumps instead of singly indirect jumps, by
storing at the stack word popped into eax not the address of the
next sequence to run but the address of another location in memory
that holds that sequence address. A return-oriented exploit that uses
such doubly indirect jumps can be organized to include a sequence
catalog of useful instruction sequence addresses, something like
the Global Offset Table used in dynamic linking. Third, we can
use doubly indirect jumps with an immediate offset (either 8-bit
or 32-bit), by adding to or subtracting from the sequence address
to cancel out the effect of the immediate offset. Fourth, we can
observe that the x86 provides two kinds of doubly indirect jumps:

jmp ∗%ebx behaves just as if it had ended in ret; here we are replac-
ing ret by an update-load-branch sequence. For the use of related
techniques in the context of code injection, see [10, 27, 8].

near jumps, which take a 32-bit address in the current segment;
and far jumps, which take a 32-bit address together with a 16-bit
segment selector. Far jumps allow for sophisticated privilege do-
main regimes with restricted cross-domain calls (as, e.g., in the
x86 NaCl sandbox [48]). We, however, need only the following
fact: An appropriate choice of segment selector (on our Debian
system, 0x0073) leaves the code segment unchanged; a far jump
to an address with this segment selector behaves exactly like a near
jump to the same address.5 Because the segment selector follows
the address in memory, we can follow each address in the sequence
catalog with the appropriate segment selector and thereafter use far
and near doubly indirect jumps interchangeably. (This introduces
zero bytes into the catalog; if this is a problem for a particular ex-
ploit, the zero bytes can be patched in at runtime; see Section 6.1.)

We use sequences of the sort described above in constructing our
gadgets. We refer to all of them using the shorthand pop x ; jmp ∗x ,
where x is any general purpose register. Pop-jump sequences occur
with some frequency as unintended instructions because of acci-
dental features of the x86 ISA; see our tech report [5].

There are yet more possibilities for update-load-branch instruc-
tion sequences on the x86. One could imagine a sequence based on
call ∗x , which would decrease esp each time it is used. Or a dif-
ferent register than esp could be used, as, e.g., in add 0x4, %eax;
jmp ∗(%eax); this is similar to the update-load-branch sequence
we use in Section 4 for our ARM instantiation. Or, using SIB ad-
dressing, a combination of registers could be used, with the index
register scaled by 4 and incremented after each dereference. Or
a memory location could serve as the mutable state instead of a
register. The point here is that many possible types of instruction
sequence exhibit the necessary behavior and are potentially suitable
for return-oriented programming. A defense that detects some but
not all of these types of instruction sequences would be of limited
value, as attackers may be able to switch to a different return-like
sequence and thereby evade detection.

3.2 Gadget Set
To demonstrate that Turing-complete return-oriented computa-

tion without returns is feasible in real programs, we design a set of
gadgets each of which performs a discrete computation and can be
reasoned about independently by virtue of little or no state main-
tained between gadgets. We build these gadgets by examining the
C standard library found in Debian GNU/Linux 5.0.4 (“Lenny”),
GNU libc 2.7, which is 1294572 bytes.6 As we will see below, by
itself, Debian’s libc is almost sufficient. We need a single instruc-
tion sequence to exist in the either target program or in a library

5A 16-bit segment selector consists of a 13-bit index, a 1-bit table
indicator, and a 2-bit requested privilege level. The index speci-
fies a 64-bit segment descriptor in either the global descriptor ta-
ble or the local descriptor table as specified by the table indicator.
Each segment descriptor contains a number of bit-fields including
the segment base address, segment limit and privilege level. Since
Linux uses a flat address space, most of the segment descriptors
used in user programs specify a base address of zero and a limit of
4 GB [21]. The selector 0x0073 corresponds to an index of 14 in
the global descriptor table with a requested privilege level of ring 3.
6There are actually two distinct libcs on our test system: /lib/
libc-2.7.so and /lib/i686/cmov/libc-2.7.so. The
gadgets described in this section and the example exploit in Sec-
tion 6.1 are constructed from the former. However, the latter li-
brary is loaded at runtime instead on some machines, apparently
those that support the conditional-move instructions cmovcc (in-
troduced with the Intel Pentium Pro). We have verified that this
libc also provides instruction sequences sufficient for constructing
a Turing-complete gadget set without returns, which gives addi-
tional evidence for our thesis in this paper.

loaded by the target program. We find this additional instruction
sequence in two large libraries: Mozilla’s libxul (11857460 bytes),
distributed with Firefox and Thunderbird; and the PHP language’s
libphp5 (5450680 bytes). These libraries are used in Web browsers
and Web servers, respectively — common targets for exploitation.

(Could compilers be modified to avoid emitting pop-jump se-
quences? We note, first, that these instructions need be intended
instructions placed in the binary by the compiler; second, that we
do not require the pop immediately to precede the jump, making the
compiler’s job harder; and, third, that other instruction sequences
than pop-jump could be used. Modifying compilers is a compli-
cated project. We believe that the effort would be better spent de-
ploying a comprehensive solution.)

As described in Section 2, rather than using sequences of instruc-
tions that end in pop x ; jmp ∗x , we use sequences of instructions
that end in jmp ∗y where y is a pointer to a pop x ; jmp ∗x sequence.
It is exactly this pop x ; jmp ∗x that we do not find in libc7 and so
must exist in the target program or one of its libraries. We call this
(facetiously) the bring your own pop-jump (BYOPJ) paradigm.

Because libc is loaded into every Linux executable, we gain con-
fidence by using it as the corpus for our instruction sequences (ex-
cept the pop-jump) that return-oriented programming without re-
turns is likely possible in any large Linux program that an attacker
might target. We stress that using most instruction sequences from
libc but a pop-jump from libxul is not how a real attacker would go
about mounting an attack. Libxul is larger and has more convenient
instruction sequences than libc does; a Turing-complete gadget set
could be constructed more easily from libxul alone than from libc
with a libxul pop-jump. However, any program that did not link
against libxul would require an entirely different gadget set. Un-
like creating a new gadget set, testing that a program contains a
suitable pop-jump is simple and easily automated.

Most of the useful instruction sequences end with either a near
(resp. far) indirect jump to the address stored in the near (resp. far)
pointer in memory at an address stored in register edx. That is,
many instruction sequences end with jmp ∗(%edx) or ljmp ∗(%edx).

Each gadget could be made fully independent from the others,
but since register edx is so useful for chaining instruction sequences,
we ensure that at the end of each gadget, it holds the address of the
sequence catalog entry for the pop x ; jmp ∗x . In most cases, this
required no additional work. The function call gadget is the only
one which required the fix up.

Following Checkoway et al. [4], we design a three-address code
memory-memory gadget set: our gadgets are of the form x← yopz,
where x, y, and z are literal locations in memory that hold the
operands and destination. We use register edx to chain our in-
struction sequences; for the pop x ; jmp ∗x sequence in our BYOPJ
paradigm, we use register ebx. This means that we cannot store any
state in register ebx, but we need not worry about changing its con-
tents during the course of an instruction sequence since it will be
overwritten during the pop %ebx. This leaves us with five registers,
eax, ecx, ebp, esi, and edi, to do with as we please.

Instruction Sequences.
We used 34 distinct instruction sequences ending with jmp ∗x to

construct 19 general purpose gadgets: load immediate, move, load,
store, add, add immediate, subtract, negate, and, and immediate,
or, or immediate, xor, xor immediate, complement, branch uncon-
ditional, branch conditional, set less than, and function call. The

7In the second libc described in footnote 6, there is a single
pop %edx; jmp ∗(%edx) sequence but as we show below, edx is
too useful to use for this purpose. Other minor differences exist
between the two libraries but we do not dwell on them further.

majority of the instruction sequences contain four or fewer instruc-
tions. The sequences were chosen by hand out of a collection of
potential instruction sequences in libc discovered by the algorithm
given by Shacham [41].

Loading data from the stack into a register can be accomplished
by means of a pop x ; jmp ∗y instruction sequence:

pop %eax; sub %dh, %bl; jmp ∗(%edx)
pop %ecx; cmp %dh, %dh; jmp ∗(%edx)
pop %ebp; or $0xF3, %al; jmp ∗(%edx)
pop %esi; or $0xF3, %al; jmp ∗(%edx)
pop %edi; cmp %bl, %dl; jmp ∗(%edx)
pop %esp; or %edi, %esi; jmp ∗(%eax)
popad; cld; ljmp ∗(%edx)

The first five can be used to load any of the registers we wish to
use as long as we load register eax after registers ebp and esi. The
sixth allows for a simple jump by changing the stack pointer, see
below. Instruction popad pops all seven general purpose registers
off of the stack (it does not pop register esp, but it require 4 bytes
that are ignored for a total of 32 bytes popped off of the stack).
Without a pop %edx; jmp ∗x instruction in the target binary or its
libraries, popad is the only way to load register edx. This is only
an issue for our function call gadget described below.

The gadgets need to be able to move data between memory and
registers as well as between multiple registers. Moving a word from
memory into a register is accomplished by means of a mov n(x), y
instruction where n is some immediate offset. The analogous in-
struction mov x, n(y) allows for the reverse operation. Movement
between registers is less straight-forward because while such an
x86 instruction exists, we find none in sequences ending in jmp ∗x .
Instead, the contents of two registers can be exchanged with the
xchg instruction, or by arranging for the destination register to be
0x00000000 or 0xffffffff, the source register can be ored
or anded with the destination, effecting the move.

One difficulty we will frequently encounter is the need to use a
register for holding data in one instruction sequence and for being
the x in the jmp ∗x in another sequence within a single gadget.
Handling this requires careful structuring of the gadget to ensure
that the register has been loaded with the address of the pointer to
the pop x ; jmp ∗x sequence before it is needed.

By now, the gadget-construction procedure is well-described in
the literature [41, 3, 15, 20, 19, 26]. As such, we only briefly de-
scribe each of our standard gadgets and focus more on the gadgets
that require extra finesse.

Data Movement.
The first thing we wish to do is to load immediate values into

memory at a fixed address. This is easily accomplished by loading
esi with the immediate value and eax with the fixed address plus
0xb. This takes two pops. Then we use mov %esi, -0xb(%eax)
to write the immediate value to memory.

Since we want a collection of memory-memory gadgets, we need
to load a word from one (constant) location in memory and store it
into another (constant) location in memory. This is accomplished
by loading the source address into eax, loading the destination ad-
dress into ebp, loading from eax into edi, and finally storing edi
into memory at the address in ebp. This is the move gadget.

A simple modification to the move gadget yields the load gad-
get. Rather than storing the word in memory at the source address
into the destination address, that word is used as a pointer to an-
other word in memory which is loaded into another register and
then stored at the destination address. In pseudo code, the opera-
tion is the following.

eax ← source
edi ← (eax)
esi ← (edi)
eax ← destination
(eax) ← esi

A store gadget is similar except that the address where the source
value is to be stored is itself stored at a fixed location. That is, the
store gadget performs the operation (A)← B where A is the word
in memory at the destination address and B is the word in mem-
ory at the source address. In fact, we can perform the operation
(A+ n)← B where n is a literal value. This allows for easy con-
stant array indexing into an array that is not at a fixed location in
memory, where A is the array base and n is the offset.

Arithmetic Operations.
The add, add immediate, and subtract gadgets are straight for-

ward. They work by loading the source operands into registers,
performing the appropriate operation, and then storing the result
back to memory. The x86 ISA allows one of the operands to be a
location in memory which would obviate the need to load one of
the operands. This could potentially simplify the gadgets.

The negate gadget loads the word from the source address, takes
the two’s complement of the word, and stores it back to mem-
ory. The neg instruction, which performs the two’s complement
of a register does not appear near a jmp ∗x instruction; we in-
stead load esi with zero using xor %esi, %esi, then use the se-
quence subl -0x7D(%ebp,%ecx), %esi; jmp ∗(%ecx) to subtract
the value from zero. The subl instruction performs the operation
esi← esi− (ebp+ecx−0x7D).8 Since our jmp ∗x uses ecx, we
have to load it with the address of a pointer to the pop x ; jmp ∗x se-
quence. This means that ebp must have the value of the source ad-
dress plus 0x7D minus the address of the pointer to pop x ; jmp ∗x .

Logical Operations.
The and, and immediate, or, and or immediate gadgets are con-

structed in an analogous manner to the add gadget. Namely, the
operands are loaded into registers, the operation is performed, and
the result is stored back to memory. The only tricky part is the
movement of data between registers as described above.

The xor and xor immediate gadgets are similar, but instead of
xoring the value of two registers and then storing the results back
to memory, they write the first source word to the destination and
then xor that location with the second source word.

The complement gadget computes the one’s complement of the
source value and stores it into the destination address. Similar to
the situation with the negate gadget, there is an x86 instruction not
which performs the one’s complement, but it does not appear in the
useful instructions sequences in libc. Instead, we proceed exactly
as for the negate gadget except instead of loading esi with zero, we
load it with 0xffffffff=−1. This works because−1−x=¬x.

Branching.
In a normal program, a branch can either be to an absolute ad-

dress or to an address relative to the current instruction. In return-
oriented programming, a branch is performed by changing the stack
pointer rather than the instruction pointer. An absolute branch can
be effected by popping a value off the stack into esp. Alternatively,
a negative offset from the end of the gadget can be popped into edi
which is then subtracted from the stack pointer using the sequence
sub %edi, %esp; ljmp ∗(%eax) This allows stack-pointer-relative
branching. This is the basis for our branch unconditional gadget.
8The parentheses denote dereference, not grouping.

In order to have Turing-complete behavior, we must have a way
to perform a conditional branch. The x86 has a number of condi-
tional branch operations; however, these are unsuitable for our pur-
pose since they affect the instruction pointer rather than the stack
pointer. Instead, we need a way to change the stack pointer con-
ditioned on the word stored in memory at a known address. If
the word is zero, then we do not change the stack pointer. If the
word is 0xffffffff, then we subtract an offset from the stack
pointer as in the unconditional case. The way we do this is by
loading the word into a register and anding with the offset. The
result is subtracted from the stack pointer. The implementation is
a straight-forward combination of the and gadget and the branch
unconditional gadget and is our branch conditional gadget.

In any gadget set, the most difficult gadget to construct is the
one that compares two values and performs an operation based on
the relative magnitude of the values. Taking a cue from the MIPS
architecture, we implement a set less than gadget that sets the word
at the destination address equal to 0xffffffff if the first source
word is less than the second source word.

The implementation of the set less than gadget is given in Fig-
ure 2. The string compare instruction cmpsl compares the two
words pointed to by %ds:%esi and %es:%edi and sets the carry
flag if the latter is greater than the former. As a side effect, it in-
crements or decrements registers esi and edi based on the direction
flag; however, this is of no concern since we are only comparing a
single word. The sbb instruction subtracts esi plus the value of the
carry flag from esi. In essence, if the first source value is less than
the second source value, then the carry flag will be set and esi is set
to 0xffffffff, otherwise, the carry flag will not be set and so
esi will be set to zero, exactly as required for the branch conditional
gadget. The one thing we have to be careful of is register cl cannot
be zero otherwise a divide by zero exception will occur.

With the set less than and logical gadgets, a conditional branch
based on comparing any two values for any of the six relations
<, ≤, =, 6=, ≥, and > can be formed. At this point our set of
gadgets is Turing-complete.

Function Calls.
Now that we have a Turing-complete set of gadgets, we extend

their functionality by adding a gadget to perform function calls.
This gives us two new abilities: we can call normal return-oriented
instruction sequences — i.e., those ending in return — or we can
call legitimate functions. Since we use an actual call instruction,
any return-oriented programming defense relying on the LIFO na-
ture of the call stack will be thwarted since this invariant is main-
tained. Any defense relying on the frequency of return instructions
will be thwarted as long as the number of other instructions exe-
cuted between these calls is sufficiently high.

Since calling legitimate functions is the more complicated of the
two operations, we focus on it here. Calling a sequence ending in
return is roughly the same except for moving the stack pointer and
handling the return value.

Before a function call is made, the stack pointer must be moved
to a new location to keep from overwriting our previous gadgets on
the stack. If n is the address where the stack pointer should be when
the function begins to execute — i.e., the location where the return
address will be stored — then the k arguments should be stored at
addresses n+4, n+8, . . . , n+4k. This can be done using the load
immediate or move gadgets. The function call gadget is then used
to perform the computation A← fun(arg1,arg2, . . . ,argk) with the
stack pointer set to n.

Since the Linux application binary interface (ABI) for x86 spec-
ifies that registers eax, ecx, and edx are caller-saved, we must take

care that return-oriented code is not confused if a called function
overwrites these registers. One particularly tricky point is that since
edx is caller-saved, once we return from the call we need to restore
it to the address of the pointer to the pop x ; jmp ∗x . We cannot
do this using only the instruction sequences in libc if we care about
the return value which is in eax. Continuing our BYOPJ paradigm,
if the target program has either a pop %edx; jmp ∗(%edx) or a
pop %edx; jmp ∗(%esi), then we can restore edx without overwrit-
ing the return value in eax. Mozilla’s libxul has such a sequence.
Without such a sequence, the function call gadget has to be tailored
for each application rather than being generic.

The implementation of the function call gadget is given in Fig-
ure 3. Some parts of the implementation are rather subtle. The first
thing it does is to load registers esi, ebp, and eax. Register esi is
loaded with the address of the sequence catalog entry for the call-
jump sequence, ebp is loaded with the actual address of the leave-
jump sequence, and eax is loaded with the literal value n (plus the
offset for our store sequence). Next, the address of the sequence
catalog entry for the call-jump is stored at address n. Register esi is
then loaded with 0x38 and the value of the stack pointer is added
to it. At this point, esi holds the address we will set the stack pointer
to after the the function call returns.

Now that we know the location on the stack we wish to return to
after our function call, we need to move it into ebp. The easiest way
to do this is to store it to memory (where we will eventually store
the function’s return value), load it back from memory into edi, then
exchange it with ebp. After the exchange, edi holds the address of
the leave-jump sequence and ebp holds the value we will set the
stack pointer to after the function call. Next, we load esi with the
address of the sequence catalog entry for pop x ; jmp ∗x ; load ecx
with the address where the pointer to the function is stored (plus an
offset); and load eax with the value n. Registers esp and eax are
exchanged causing the stack pointer to be set to n.

Recall that the first thing the function call gadget did was to store
the address of the catalog entry for the call-jump sequence to n.
At this point, the indirect call of the function fun happens. After
fun returns, we cannot rely on the values in registers ecx or edx
while eax holds the return value. However, edi holds the address
of the leave-jump sequence, thus the jmp ∗%edi instruction causes
a leave instruction to be executed which sets the stack pointer to
ebp — which is still holding the address we placed into it with the
first xchg instruction — and then pops the value off of the top of the
stack into ebp. This causes the address of the sequence catalog en-
try for pop x ; jmp ∗x (plus an offset) to be loaded into ebp causing
the subsequent jmp ∗-0x7d(%ebp) instruction to chain the next
instruction sequence.

We now have two choices for the implementation. In the ab-
sence of a pop %edx; jmp ∗(%edx) sequence, we use a popad;
jmp ∗(%edx), losing the return value. In this case, the function call
gadget is complete. If we do have a pop %edx; jmp ∗(%edx) se-
quence, we execute that, and then store the return value in eax into
memory. The latter form of the gadget is shown in Figure 3.

4. INSTANTIATION ON ARM
In this section we introduce our attack method and gadget set for

ARM. We also provide some background information on ARM’s
RISC architecture.

4.1 ARM/THUMB Instruction Set
ARM is a 32-bit processor and features 16 general-purpose reg-

isters r0 to r15 as depicted in Table 1. All these registers can be
accessed/changed directly. In contrast to the Intel x86 architecture,
even the program counter pc can be accessed directly. Additionally,

A

0x55555555

B

C
pop %esi; or $0xf3, %al; jmp *(%edx)

pop %eax; sub %dh, %bl; jmp *(%edx)

mov %esi, -0xB(%eax); jmp *(%edx)

pop %ecx; cmp %dh, %dh; jmp *(%edx)

pop %edi; cmp %bl, %dh; jmp *(%edx)

sbb %esi, %esi; sub %dh, %bl; jmp *(%edx)

Sequence

Catalog

Set Less Than

Gadget

esp

cmpsl %es:(%edi), %ds:(%esi);

div %cl; ljmp *(%edx)

Figure 2: Set less than gadget. If the word at address B is less than the word at address C, set the word at address A to 0xffffffff;
otherwise set it to 0x00000000. The gadget begins executing with the stack pointer (esp) pointing to the bottom-most (smallest
address) cell of the gadget. As execution proceeds, the stack pointer moves to higher cells (higher addresses). Each cell is either a
pointer to an entry in the sequence catalog — which is itself a pointer to the instruction sequence that is actually executed — or data.
After the final instruction sequence in the gadget has executed, the stack pointer points to the next gadget to be executed.

0xb + result

0x7d +

n

0x56000A00+f

0xd + result

0xb + result

0x38

0xb + n

leave

sar %cl, %bl

jmp *-0x7d(%ebp) pop %esi; or $0xf3, %al; jmp *(%edx)

pop %ebp; or $0xf3, %al; jmp *(%edx)

call *-0x56000A00(%ecx); add %bh, %bl;

inc %ebx; add %bh, %dh; jmp *%edi

pop %eax; sub %dh, %bl; jmp *(%edx)

mov %esi, -0xB(%eax); jmp *(%edx)

add %esp, %esi; jmp *(%edx)

mov -0xD(%eax), %edi; jmp *(%edx)

xchg %ebp, %edi; jmp *(%edx)

pop %ecx; cmp %dh, %dh; jmp *(%edx)

xchg %esp, %eax; dec %ebx;

std; jmp *0(%esi)

pop %edx; jmp *(%edx)

pop %ebx; jmp *(%ebx)

xchg %esi, %eax; and %dh, %dh;

jmp *(%edx)

Sequence

Catalog

Function Call

Gadget

esp

Figure 3: Function call gadget. This convoluted gadget makes the function call result←←← f(((arg1,,,arg2,,, . . . ,,,argk))) where the arguments
have already been placed at n+++4,,,n+++8,,, . . . ,,,n+++4k. The return value is stored into memory at address result.

ARM processors feature a current program status register (cpsr),
which holds the current state of the system. It contains condition
flags, interrupt enable flags, and the current mode.

Although ARM has a 32-bit RISC architecture, it also provides
a 16-bit instruction set, called THUMB. The THUMB instruction
set is a subset of the ARM instruction set and is in particular suit-

Table 1: ARM Registers

Register Purpose

r0–r3 Function arguments; function results
r4–r11 Register variables (callee saved)
r12 Scratch register
r13 (sp) Stack Pointer
r14 (lr) Link Register (subroutine return address)
r15 (pc) Program Counter
cpsr Control Program Status Register

able for embedded systems which often suffer from greater mem-
ory restrictions as PCs. In particular, the libraries libc and libweb-
core which we use as the code base for our attack on ARM contain
mainly THUMB instructions.

Function Calls.
According to the ARM Architecture Procedure Call Standard

(AAPCS) [2], function calls are to be performed either through a
bl or through a blx instruction. Both instructions perform a branch
with link operation — that is, the program counter pc is loaded with
the address of the subroutine and the link register lr is loaded with
the return address. The blx instruction additionally allows switch-
ing between the ARM and THUMB instruction sets. Of the two
instructions, only blx can perform an indirect jump through a regis-
ter. Note that, in practice, not all function calls follow the AAPCS
calling convention: Instead of transferring the return address to lr,
the ARM C compiler may push the return address onto the stack
and perform a direct branch to the function.

A function return is effected by writing the return address to the
program counter pc. For this, the ARM architecture provides no
dedicated return instruction. Instead, any instruction that is able
to write to the program counter can be used as return instruction.
For instance, one common return instruction is the bx lr instruction
that branches to the address stored in the link register lr. It is also
possible to use the ldm (load multiple) instruction to load the return
address from the stack.

4.2 Attack Method Design
Our attack uses the indirect call form of the blx (Branch-Link-

Exchange) instruction — that is, we use blx r where r is a general
purpose register — to cause control to flow from one instruction se-
quence to another. As described above, the blx instruction is usually
used for indirect function calls, potentially exchanging instruction
sets.

The blx instruction is not a part of a function epilogue. Hence,
an attack based on blx instructions cannot be detected by return ad-
dress checkers. Moreover, in contrast to Intel’s x86 call instruction,
the blx instruction does not impact values on the stack (or generally
on the memory), which makes the blx instruction very suitable for
an attack. However, since the program counter pc can be accessed
as a general purpose register, any instruction which uses the pro-
gram counter pc as a destination register could also be used for the
attack. We selected blx instructions because most of the instruction
sequences we identified in our code base end with blx.

For extraction of a Turing-complete gadget set we manually in-
spected the system libraries libc and libwebcore of an Android 2.0
(“Eclair”) platform for instruction sequences ending in blx instruc-
tions. Android’s libc version is very compact, hence, we included
Android’s Web Browser library libwebcore to enlarge the code base.
Both of the libraries (by default) are linked into the memory space
of an application to fixed addresses. Note that the ARM gadget
compiler proposed in [23] automatically extracts instruction se-

rsp

Adversary

Address 1

Sequence 1

Arguments

Address 2

Update + load r

and branch to

target address

Memory

(under control of the adversary)

3.

4.

6.

Argument 1

Argument 2

7.

Sequence 2

Low Memory Addresses

Setup

Update SP and transfer

control to Address 1

Gadget

High Memory Addresses

Jump

Addresses

Update−Load−Branch (ULB)

(Trampoline)

5.

2.

1.

Register Allocation

:=

:=

:=r

r

r

sp

r6

r3

ja

sp

ulb

ins
ins
blx rulb

blx rulb

ins
ins

ja

ulb jaInitialize r , r

rulb

Figure 4: The Attack Method/Architecture

quences ending in a so-called "free branch” (such as blx). How-
ever, the gadgets in [23] are chained together by function epilogues
which allow return address checkers to detect the attack. As we
show in this paper our attack technique is solely based on blx in-
structions and requires no function epilogues. The instantiation of
this type of attack is more involved (see also [11] for more de-
tails).

Memory Layout.
Figure 4 depicts the memory layout and the attack steps. The

memory area under control of the adversary consists of jump ad-
dresses and arguments which are clearly separated from each other.
Each jump address points to a specific instruction sequence whereas
each sequence ends with a blx instruction in order to allow chaining
of multiple sequences. We misuse the stack pointer sp as a pointer
to arguments and need a second register (denoted with rja) as a
pointer to jump addresses. We use the stack pointer because many
sequences we identified in our code base contain load/store oper-
ations where sp is used as base register. However, the adversary
is not forced to control the stack pointer. Instead any register (rsp)
can be used as pointer to arguments and data. The order of jump
addresses and arguments highly depends on the appropriate instruc-
tion sequences found on a platform. For instance, if the instruction
sequence which updates rja adds a positive constant then jump ad-
dresses have to go from lower to higher memory addresses. In Fig-
ure 4 jump addresses go from lower to higher memory addresses
and arguments are ordered vice versa. Of course, if jump addresses
are not separated from arguments then one register could be saved.
This is the approach we take on the x86 (see Section 3), where it
is convenient to use pop instructions to load arguments while up-
dating the stack pointer. On ARM, unfortunately, the libraries we
examined load arguments without updating the stack pointer. That
is the reason why we use rja as pointer to jump addresses which is
updated after each instruction sequence.

Attack Steps.
First, the adversary injects jump addresses and arguments to the

stack or the heap (see Section 6 for a concrete example). Similar to
x86 (see Section 3.2), our attack method on ARM consists mainly
of three parts: (1) setup, (2) update-load-branch (ULB) sequence,

and (3) gadgets which consist of several instruction sequences. By
subverting the control-flow, the adversary is able to initialize sev-
eral registers. We refer to this process as a setup (step 1 in Figure 4).

The setup initializes three registers: rja, rulb , and rsp . Registers rja
and rsp are used as a pointer to jump addresses and arguments. Reg-
ister rulb is loaded with the address of our ULB sequence (see be-
low). Finally, the last action of our setup phase is to redirect execu-
tion to sequence 1 (steps 2 and 3). After sequence 1 completes its
task, the blx instruction (located at the end of the sequence) redi-
rects execution to our ULB sequence (step 4). The ULB sequence
acts as trampoline by updating register rja, loading the address of
sequence 2, and branching to sequence 2 (steps 5 and 6).

4.3 Gadget Set
The crucial part of our attack is to build a Turing-complete gad-

get set allowing an adversary to generate arbitrary program behav-
ior. Generally, gadgets consist of several instruction sequences,
whereas for our purposes the instruction sequences on ARM have
to end in a blx instruction to redirect execution to our ULB se-
quence. We could construct all these gadgets using the sequences
in our code base, namely the libraries libwebcore and libc of an
Android 2.0 device.

Details of Setup and ULB Sequence.
First, we describe the details of our setup and the ULB sequence.

Since, our concrete attack directly initializes register r4 through r15
by exploiting a setjmp vulnerability on the heap, we assume for the
moment that the adversary can directly initialize these registers. We
will describe in Section 6 in more details how this can be achieved.

In Section 4.2 we introduced the registers rja, rulb , and rsp as the
basis for our attack. The allocation of these registers fundamen-
tally depends on the identified instruction sequences in our code
base and involves technical challenges because these registers must
be preserved during the execution of the gadget chain. For our
code base we made the following allocation (as depicted in Fig-
ure 4): rja = r6, rulb = r3, and rsp = sp. Further, we use following
sequences for the setup and the ULB sequences:

l d r r3 , [sp , # 0] ; b l x r3 / / Setup
adds r6 , # 4 ; l d r r5 , [r6 , # 1 2 4] ; b l x r5 / / ULB

We use r3 for rulb because most of the sequences in our code base
end with a blx r3 instruction. Our setup sequence initializes r3 by
loading the address of the ULB sequence from the stack through
a ldr (load register) instruction into r3. Note, since our adversary
is able to directly initialize r4–r15 by the setjmp vulnerability, we
require no additional setup sequences for rja and rsp .

The ULB sequence acts as connector for all executed instruction
sequences by (1) updating rja after each sequence and (2) transfer-
ring control to the subsequent instruction sequence. Since registers
r0–r3 are often used as destination registers before a blx instruc-
tion, we decided to use r6 as rja register. The ULB sequence first
increases register r6 by 4 bytes (Update), then loads the next jump
address (by an offset of 124 bytes to r6) in r5 (Load), and finally
branches to the loaded address (Branch). However, this sequence
does not directly use rja as branch destination register, rather it uses
for this r5. Thus, we must take into account that the content of r5 is
overwritten after each ULB sequence.

One technical problem we have to address is that most of our
sequences use the pre-indexed addressing mode, which means that
sp does not change its value after it is used as base register in a
load operation. It would be desirable to directly load sp, but unfor-
tunately, we have no such load operation in the sequences of our
code base. Hence, we use the following sequence to update sp:

sub sp ,#12 ; adds r0 , r4 , # 0 ; b l x r3

This sequence decreases the value of the stack pointer by 12 bytes
and as a side-effect overwrites the value of register r0 with the con-
tent stored in r4. To preserve register r0, its value could first be
stored to memory or moved to a free register.

Data Movement.
Data movement gadgets are needed for loading and storing val-

ues from and to memory. Due to the RISC architecture of ARM
processors, load and store operations are only permitted through
dedicated instructions. The ARM instruction set offers for this the
ldr and str instructions.9 A register can be loaded through the ldr
instruction. Storing a register to memory is performed through the
str instruction. For instance, the following sequence loads a word
from the stack (with zero bytes offset) into r1:

l d r r1 , [sp , # 0] ; b l x r3

To load an immediate value into a register the following sequence
could be used, which loads NULL into r2:

movs r2 , # 0 ; b l x r3

For a store operation we need at least two registers, one holding
the word to be stored and one holding the target address. This can
be achieved by load gadgets as described above. Finally, the store
operation is performed through the str instruction.

Arithmetic Operations.
Arithmetic operation gadgets include gadgets for addition, sub-

traction, multiplication and division. The ADD gadget can be real-
ized with the arithmetic addition instruction adds as follows:

adds r0 , r0 , r2 ; b l x r3

This sequence adds the contents of register r0 and r2 and stores the
result in register r0.

Our SUB gadget is based on the arithmetic subtraction instruc-
tion subs as depicted in Figure 5. This gadget subtracts r0 from
r4. Sequences 1 and 2 load the first operand into r4 through r0,
whereas the conditional branch in sequence 2 will be never taken,
because r3 holds the address of the ULB sequence (which does
not equal NULL). Afterwards, sequence 3 loads r0 with the second
operand. The fourth sequence loads the address where the result
will be stored into register r2. Finally, the last sequence performs
the subtraction and stores the result at memory position [sp, #32]
and in register r1.

The remaining MUL and DIV gadget can be realized by invoking
the ADD and SUB gadget in a loop.

Logical Operations.
The design of logical gadgets is very similar to the design of

arithmetic gadgets. First, they load the source registers. Then,
they perform the desired operation. For example, we instantiate
the AND gadget as depicted in Figure 6.

First, sequences 1 and 2 load the first operand into register r7.
Next, sequence 3 loads the second operand into register r1, and
finally, sequence 4 performs the and operation on register r1 and
r7, the result is stored into register r7.

One important logical gadget to mention is the NOT gadget that
computes the two’s complement of a specific value. We realize the
NOT gadget (based on the ideas presented in Section 3.2) by sub-
tracting the source register from −1. The AND and NOT gadgets
9In addition to these two instructions, ARM provides the ldm and
stm instructions for a multiple load and store operation.

Result (r1)

sp

1.Operand

sp,#28

2.Operand

sp,#32

+(#4)

subs r1,r4,r0
str r1,[r2,#4]
adds r0,r5,#0
ldr r1,[sp,#32]
blx r3

Sequence 1

ldr r0,[sp,#4]
blx r3

Sequence 2

Sequence 5

blx r3
ldr r0,[sp,#16]

Sequence 3

ldr r2,[sp,#12]
blx r3

Sequence 4

cmp r3,#0
mov r4,r0
beq 212b0
blx r3

Figure 5: The Subtract Gadget

can be combined to form a NAND gadget. All other logical opera-
tions (such as or, xor) can be emulated through our NAND gadget.
Similarly, the negate gadget can be simulated through a SUB gad-
get by subtracting the source register from zero.

Branching.
Branching implicates changing the rja (r6) register rather than

the instruction pointer. The unconditional branching gadget can be
realized by adding an offset to register rja, or by directly loading rja
with a new value.

Our conditional branching gadget is realized by the same ap-
proach we used for Intel x86 (see Section 3.2): We compare two
values and depending on the result, rja is either changed by an un-
conditional branch gadget or remains as it is. To realize this gad-
get, we need a compare operation. This can be simulated through
a SUB gadget updating the carry flag in the cpsr register. The up-
dated carry bit is then added to the constant 0xffffffff, hence
the result will be either 0x0 or 0xffffffff. Finally, the result
must be anded with the desired branch offset. The result of this last
operation will be either 0x0 (Carry Bit = 1) or the offset (Carry
Bit = 0), which is finally added to rja.

System and Function Calls.
System calls are highly important for runtime attacks. Basically,

they are needed to invoke special services of the operating system
(e.g., opening a file or executing a new program). For instance,
conventional code injection attacks use the execve system call to
execute a program such as /bin/sh. System calls are also often im-

ldr r2,[sp,#4]

ldr r1,[sp,#16]

sp

1.Operand (r7)

2.Operand (r1)

blx r3

blx r3

Sequence 3

Sequence 1

ands r7,r1
blx r3

adds r7,r2
blx r3

Sequence 2

Sequence 4

Figure 6: AND Gadget

ldr r3,[sp,#0]
blx r3

adds r6,#4
ldr r5,[r6,#124]
blx r5

pushed r7

pushed r4

ULB Address

sp

3.

1.

push {r4,r7}
mov r7,#11
svc 0x00000000
pop {r4,r7}
movs r0,r0
bxpl lr

blx r7
adds r1,r0,#0
adds r0,r5,#0
blx r4

Sequence 1

System Call (execve)

Sequence 2

Update−Load−Branch (ULB)

4.

2.

Figure 7: System Call Gadget

plemented as functions in libc. Thus, a program only needs to in-
voke the appropriate system call function. A common alternative to
this scheme consists of passing arguments in registers and in storing
the system call number in a register (e.g., on ARM r7, and on Intel
eax). The system call is then invoked through a software interrupt
(e.g., on ARM svc 0x0 (Supervisor Call), and on Intel sysenter).

The libc version of Android OS implements system calls by trans-
ferring the system call number to r7. Therefore all system call func-
tions only differ in the movs r7, #SYS_NR instruction. We have in-
spected the appropriate libraries and could not identify a svc 0x0
instruction. Hence, we can only invoke a system call by calling
the appropriate function in libc. Thus, our system call gadget is, in
actuality, a general purpose function call gadget.

Our system/function call gadget is depicted in Figure 7. We have
to take into account that the blx instruction loads the return address
into the link register lr. Since the bxpl lr10 (located at the end of
the execve function) redirects execution back to the value stored
in the link register, we have to ensure that lr points at that time
to a valid instruction sequence. However, when the blx instruc-
tion is invoked, lr will be automatically loaded with the address of
[pc,#2] (for Thumb compiled code). Hence, we use an instruction
sequence with two blx instructions (sequence 1). The arguments for
the system call must be initialized by load gadgets (not depicted in
Figure 7). Usually, registers r0 through r3 hold arguments for a sys-
tem call. If a system call expects an argument in r3, then our rulb
will be overwritten. Thus, we must temporarily change the rulb to a
different register if r3 is used as argument.

First, sequence 1 invokes the system call function with the ad-
dress of the system call function stored in r7 (step 1). After the
system call returns, the bxpl lr instruction redirects execution back
to sequence 1 (step 2). Afterwards, sequence 1 performs two data
movement instructions11 and then redirects execution to sequence 2
(step 3). This sequence re-initializes our rulb register r3 with the ad-
dress of the ULB sequence. Finally, sequence 2 redirects execution
to the ULB sequence which loads the next jump address (step 4).

As can be seen in Figure 7, the system call function pushes two
values onto the stack. Since we separated arguments from jump
addresses, the two push instructions will only overwrite arguments
and not jump addresses. However, one can backup the affected
arguments through a store gadget before invoking the system call.

10The condition flag pl means that the branch will only be executed
if the N flag in the cpsr register is not set. The N flag will be set
if r0 holds a negative value. This will only be the case if an error
occurred during the system call.

11Note that a function returning a 64 bit value (e.g., long long or
double), will load the return value in r0 and r1. However, as a
side-effect our gadget overwrites the value of r1 after the function
retuns. To allow function calls with a return value greater than 32
bits we have to use a sequence that preserves r1.

5. GETTING STARTED
Return-oriented programming is an alternative to code injection

when an attacker has diverted a target program’s control flow by
taking advantage of a memory error such as a buffer overflow. How
the initial control flow diversion is accomplished, then, is orthogo-
nal to the question of return-oriented programming.12

All the same, some of the traditional means of diverting con-
trol flow require the target program to execute a return instruction,
which means they risk detection by the defenses our new return-
oriented programming are designed to evade.

In some cases, a different approach will allow attackers to avoid
this initial return. In this section, we discuss four classes of mem-
ory errors from the perspective of the returnless return-oriented pro-
gramming paradigm and consider for each the prospects for an at-
tacker to take control without using a return instruction. Recall
that, in order for a return-oriented exploit to be successful, the
attacker must gain control of both the instruction pointer and the
stack pointer — or, more generally, the state used for the update-
load-branch instruction sequence. In addition, the return-oriented
program must be some place in memory.

Stack Buffer Overflow.
The traditional means of exploiting a stack buffer overflow is

to overwrite the saved instruction pointer in some function’s stack
frame. When that function returns, control will flow not to the in-
struction after the call that invoked the function but rather to any
location of the attacker’s choosing. In a return-oriented attack, this
will be the first instruction sequence in the first gadget laid out on
the stack; conveniently, the stack pointer will point to the next word
on the stack, which is also under attacker control. By this point,
however, the LIFO invariant of the return-address stack has been vi-
olated. (A single return instruction would not, of course, be caught
by defenses that look for several returns in close succession.)

To take advantage of a stack buffer overflow without a return,
an attacker must overwrite stack frames without modifying any
saved instruction pointers. Instead, she should change pointer data
such as function pointers in a function frame above the one that
contains the overflowed buffer. Once the function containing the
buffer has returned (to the function that legitimately called it), the
memory around the stack pointer will be attacker-controlled; when
the pointer she modified is used, an instruction sequence such as
popad; jmp ∗y or ldm sp!, {r0-r11}; blx r3 as its target will give her
control of the registers and begin running return-oriented code.

Setjmp Buffer Overwrite.
The setjmp and longjmp functions allow for nonlocal gotos. A

program allocates space for a jmp_buf structure, which includes
an array of words long enough to hold the callee-saved registers.
When setjmp is called, it stores the values of those registers into
the jmp_buf. The instruction pointer stored into the buffer is the
normal subroutine return address — the saved instruction pointer
pushed onto the stack by the call instruction on x86 or the lr on the
ARM — and the stored stack pointer is the value the stack pointer
had before the call to setjmp. When setjmp returns, it returns zero.

When, later, longjmp is called, it restores the general-purpose
registers to their previous values, sets the return-value register —
eax or r0 — to longjmp’s second argument, sets the stack pointer,

12Also orthogonal are defenses against buffer overflows such as
stack cookies or generally against reliable exploitation such as
address-space randomization. Such defenses, like the ones we con-
sider in this paper, and unlike CFI, are ad-hoc. They defeat certain
exploits but can be bypassed in some cases. See, e.g., [43, 46].

and finally does an indirect jump to the saved instruction pointer.
In essence, setjmp returns two times while longjmp never returns.

If an attacker is able to write the exploit program to some loca-
tion in memory and overwrite two words of a jmp_buf — the stack
and instruction pointers — that is subsequently the first argument to
a longjmp call, then the attacker can arrange for his return-oriented
exploit to run. This method of transferring control to a return-
oriented program is so convenient that it was employed for testing
the gadgets described in Sections 3 and 4. See Section 6 for an
example of this method.

C++ Vtable Pointer Overwrite.
If the attacker overwrites an object instance of a class with virtual

functions on the heap, then there is (in the general case) no hope of
controlling memory around the stack pointer. However, the attacker
will control the memory around the object itself, as well as around
the object’s vtable, since in overwriting the object she can cause the
vtable pointer to point at some memory under her control, such as a
packet buffer on the heap. Depending on the code that the compiler
generates for virtual method invocation, then, at the time that an
instruction sequence is invoked, one or more registers will point
to the object, the vtable, or both. The attacker must leverage these
pointers (1) to change the stack pointer to memory she controls, and
(2) to cause a second instruction sequence to execute after the first.

Being able to leverage a vtable pointer overwrite to take control
in a generic way (i.e., one that depends only on the compiler version
and flags, not on the program being attacked) is an open problem.
The alternative is to generate an exploit that is specific to the pro-
gram attacked, the way that, for example, alphanumeric shellcodes
must be written differently depending on what register or memory
location they can consult to find the shellcode’s location [47].

Function Pointer Overwrite.
With a function pointer overwrite on the heap, as with a vtable

pointer overwrite, the challenge for the attacker is twofold. The first
code sequence she causes to execute must both relocate the stack to
memory she controls and arrange for a second instruction sequence
to execute in turn. It is likely that this is impossible generically
without using the return instruction, and a specific exploit must be
crafted for each target program.

6. CONCRETE ATTACKS

6.1 Linux Intel x86
We construct a complete, working shellcode using a return-ori-

ented program without returns and which contains no zero bytes
making it usable with a strcpy vulnerability. Once control flow has
transferred to the shellcode, it sets up the arguments for a call to the
syscall function.

syscall(SYS_execve, "/bin/sh",
argv, evnp)

The target program, given in Listing 1, allocates enough memory
on the heap to hold a 160 byte character array and a jmp_buf. Then,
setjmp is called to initialize the jmp_buf and the target program’s
first argument is copied to the character array. Finally, longjmp
causes control flow back to the point of the setjmp’s return and
the program exits. The target program is compiled and linked with
Mozilla’s libxul to provide the two instruction sequences pop %ebx;
jmp ∗(%ebx) and pop %edx; jmp ∗(%edx) as described in Sec-
tion 3. This is a toy program; we include it not because we are
interested in exploiting such programs but because it lets us gauge
a baseline for the size of a complete return-oriented exploit.

Listing 1: Target program for our example exploit.
struct foo {

char buffer[160];
jmp_buf jb;

};

int main(int argc, char **argv) {
struct foo *f = malloc(sizeof *f);
if(setjmp(f->jb))

return 0;
strcpy(f->buffer, argv[1]);
longjmp(f->jb, 1);

}

The shellcode “egg” we wrote (see [5, Listing 2]) consists of
four parts: (1) the return-oriented program; (2) data used by the
program; (3) the instruction sequence catalog; and (4) data over-
writing the jmp_buf. The program consists of a sequence of point-
ers to the sequence catalog and values to load into registers. The
jmp_buf pointers are overwritten to point the stack pointer at the
beginning of the program and the instruction pointer at the se-
quence pop %edx; jmp ∗(%edx) in libxul. The program xors esi
with itself to clear it and uses this register to write zero words in
the data section as needed; it then restores important nonzero data
that was overwritten; and finally, it calls the syscall function, with
arguments from the exploit’s data section.

The pop %edx; jmp ∗(%edx) sequence can be replaced with
popad; cld; ljmp ∗(%edx) from libc. This requires the use of a far
pointer which contains 00 as its final byte. A strcpy vulnerability
allows writing a single terminating zero byte. Thus, our shellcode
egg can contain exactly one far pointer at the very end.

When the target program is run with the exploit egg as its first
argument, the result is a new shell.

6.2 Google Android ARM
In the following we provide background information on Google

Android and show details of our attack mounted on a device emu-
lator hosting Android 2.0 (“Eclair”).

Background on Google Android.
Android is an open source operating system for mobile devices

which includes a customized Linux kernel, middleware framework
and core applications. It is used in modern Google smartphones
such as Motorola Droid and a number of devices from the HTC
manufacturer (HTC Droid Eris, HTC Imagio, HTC Hero, etc.).

The Android platform is based on a Linux kernel, which provides
low-level services to the rest of the system such as networking,
storage, memory and processing. A middleware layer consists of
native C/C++ libraries, an optimized Java virtual machine called
Dalvik Virtual Machine (DVM), and core libraries written in Java.
The DVM executes binaries of applications from upper layers.

Android applications are written in Java, but can also access
C/C++ libraries via the Java Native Interface (JNI). Application
developers may use JNI to incorporate C/C++ libraries into their
applications. Moreover, many C libraries are mapped by default to
fixed memory addresses in the program memory space. This pro-
vides a large C/C++ code base that we exploit for our attack.

Attack Instantiation.
Similar to our attack on Intel x86, we aim to launch Android’s

terminal application. The terminal application is part of the Dev-
Tool application, which is included by default in the Android emu-

ULB Address

system()

blx r3

sp

Update−Load−Branch (ULB)

Sequence 1
adds r0,r4,#0
blx r3

Sequence 2

ldr r5,[r6,#124]
adds r6,#4

blx r5

Sequence 3

am s

tart

Term

ldr r3,[sp,#0]

Figure 8: The Gadget Chain of the Attack on Android

lator image. However, we were able to launch a similar attack on
a real device. In particular, we succeeded to run the attack on Dev
Phone 2 with the latest Android version available for this device,
Android 1.6 (“Donut”). However, the Android image flashed on to
the real device differs from the image in the emulator in that it has
no DevTool application installed by default. Thus, the attack on a
real device would require the additional assumption that a terminal
application such as DevTool or AndroidTerm13 is installed on the
device.

We incorporated our target program, given in Listing 1, as na-
tive code to a standard Java application in Android by using the
JNI. Due to the inclusion of C/C++ libraries, the security guaran-
tees provided by the Java programming language do not hold any
longer.14 Instead of using the strcpy vulnerability, on Android, we
use the fgets function, because it allows us to read zero bytes, which
we need for initializing sp, because our target program always al-
locates the foo structure at a memory position starting with 0x00.
The fgets function reads the specified number of bytes from a file
into the buffer member of the foo structure without checking
the bounds of the buffer.

In order to mount our attack against the target program, our gad-
get chain invokes the system libc function as follows:

am start -a android.intent.action.MAIN
-c android.intent.category.TEST
-n com.android.term/.Term

This command invokes the Activity Manager application which in
turn starts a terminal from the DevTool application.

All used gadgets used in our attack on Android are shown in
Figure 8. To invoke the system function, we (1) initialize register
r6 and sp by means of the setjmp heap overflow; (2) load r3 with
the address of our ULB sequence (sequence 1); (3) load the address
of the interpreter command in r0 (sequence 2); (4) finally invoke
the libc system function (sequence 3). The corresponding exploit
payload is included in the tech report [11].

7. CONCLUSION
We have shown that on the x86 and ARM it is possible to mount

a return-oriented programming attack without using any return in-
structions. In the new attack, certain return-like instruction se-
quences take the place of the return instruction. These instruction
sequences are rare but a single one used as a trampoline suffices to
chain together other instruction sequences that each end in an indi-
rect jump, which makes it possible to construct a Turing-complete

13http://code.google.com/p/androidterm/
14In particular, Tan and Croft [44] identified various vulnerabilities
in native code of the JDK (Java Development Kit).

http://code.google.com/p/androidterm/

gadget set without return instructions given large Linux (x86) or
Android (ARM) platform libraries.

Because it does not make use of return instructions, our new at-
tack has negative implications for recently proposed classes of de-
fense against return-oriented programming that detect too-frequent
use of returns in the instruction stream, that detect violations of the
LIFO invariant normally maintained for the return-address stack,
or that rewrite binaries to avoid use of the return instruction.

The major open problem suggested by our work is whether it is
possible to find some property that all return-oriented attacks prov-
ably must share, but that is more specific (and therefore more ef-
ficiently checked) than CFI, which would rule out all control-flow
attacks. The use of return instructions to chain sequences appeared
to be such a property, but we have shown that it is not. Such a prop-
erty could be used as part of a defense against return-oriented pro-
gramming, assuming that it can be efficiently tested. In the absence
of such a narrowly tailored property, it is not clear that effective
defenses against return-oriented programming can be deployed at
lower overhead than full CFI.

8. ACKNOWLEDGMENTS
We thank Thorsten Holz, Tim Kornau, Benny Pinkas, Stefan

Savage and Geoff Voelker for helpful discussions. This material
is based upon work supported by the National Science Foundation
under Grant No. 0831532. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National
Science Foundation. The second author was supported by EU FP7
project CACE and the third author by the Erasmus Mundus Exter-
nal Co-operation Window Programme of the European Union.

9. REFERENCES
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.

Control-flow integrity: Principles, implementations, and
applications. In V. Atluri, C. Meadows, and A. Juels, editors,
Proceedings of CCS 2005, pages 340–53. ACM Press, Nov.
2005.

[2] ARM Limited. Procedure call standard for the ARM
architecture.
http://infocenter.arm.com/help/topic/
com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf,
2009.

[3] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: Generalizing return-oriented
programming to RISC. In P. Syverson and S. Jha, editors,
Proceedings of CCS 2008, pages 27–38. ACM Press, Oct.
2008.

[4] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman,
E. W. Felten, and H. Shacham. Can DREs provide
long-lasting security? The case of return-oriented
programming and the AVC Advantage. In D. Jefferson, J. L.
Hall, and T. Moran, editors, Proceedings of EVT/WOTE
2009. USENIX/ACCURATE/IAVoSS, Aug. 2009.

[5] S. Checkoway and H. Shacham. Escape from return-oriented
programming: Return-oriented programming without returns
(on the x86). Technical Report CS2010-0954, UC San
Diego, Feb. 2010.

[6] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie.
DROP: Detecting return-oriented programming malicious
code. In A. Prakash and I. Sengupta, editors, Proceedings of
ICISS 2009, volume 5905 of LNCS, pages 163–77.
Springer-Verlag, Dec. 2009.

[7] T. Chiueh and F.-H. Hsu. RAD: A compile-time solution to
buffer overflow attacks. In P. Dasgupta and W. Zhao, editors,
Proceedings of ICDCS 2001, pages 409–17. IEEE Computer
Society, Apr. 2001.

[8] J. R. Crandall, S. F. Wu, and F. T. Chong. Experiences using
Minos as a tool for capturing and analyzing novel worms for
unknown vulnerabilities. In K. Julisch and C. Krügel,
editors, Proceedings of DIMVA 2005, volume 3548 of LNCS,
pages 32–50. Springer-Verlag, July 2005.

[9] D. Dai Zovi. Practical return-oriented programming.
SOURCE Boston 2010, Apr. 2010. Presentation. Slides:
http://trailofbits.files.wordpress.com/
2010/04/practical-rop.pdf.

[10] dark spyrit. Win32 buffer overflows (location, exploitation
and prevention). Phrack Magazine, 55(15), Sept. 1999.
http://www.phrack.org/archives/55/p55_
0x0f_Win32%20Buffer%20Overflows..._by_
dark%20spyrit.txt.

[11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.
Return-oriented programming without returns on ARM.
Technical Report HGI-TR-2010-002, Ruhr-University
Bochum, July 2010. Online: http://www.trust.rub.
de/home/_publications/DaDmSaWi2010/.

[12] L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic integrity
measurement and attestation: Towards defense against
return-oriented programming attacks. In N. Asokan,
C. Nita-Rotaru, and J.-P. Seifert, editors, Proceedings of STC
2009, pages 49–54. ACM Press, Nov. 2009.

[13] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A
detection tool to defend against return-oriented programming
attacks. Technical Report HGI-TR-2010-001,
Ruhr-University Bochum, Mar. 2010. Online:
http://www.trust.rub.de/home/
_publications/LuSaWi10/.

[14] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. Necula. XFI: Software guards for system address spaces.
In B. Bershad and J. Mogul, editors, Proceedings of OSDI
2006, pages 75–88. USENIX, Nov. 2006.

[15] A. Francillon and C. Castelluccia. Code injection attacks on
Harvard-architecture devices. In P. Syverson and S. Jha,
editors, Proceedings of CCS 2008, pages 15–26. ACM Press,
Oct. 2008.

[16] A. Francillon, D. Perito, and C. Castelluccia. Defending
embedded systems against control flow attacks. In
S. Lachmund and C. Schaefer, editors, Proceedings of
SecuCode 2009, pages 19–26. ACM Press, Nov. 2009.

[17] M. Frantzen and M. Shuey. StackGhost: Hardware facilitated
stack protection. In D. Wallach, editor, Proceedings of
USENIX Security 2001, pages 55–66. USENIX, Aug. 2001.

[18] S. Gupta, P. Pratap, H. Saran, and S. Arun-Kumar. Dynamic
code instrumentation to detect and recover from return
address corruption. In N. Gupta and A. Podgurski, editors,
Proceedings of WODA 2006, pages 65–72. ACM Press, May
2006.

[19] R. Hund. Listing of gadgets constructed on ten evaluation
machines. Online: http://pi1.informatik.uni-
mannheim.de/filepool/projects/return-
oriented-rootkit/measurements-ro.tgz, May
2009.

[20] R. Hund, T. Holz, and F. Freiling. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://www.phrack.org/archives/55/p55_0x0f_Win32%20Buffer%20Overflows..._by_dark%20spyrit.txt
http://www.phrack.org/archives/55/p55_0x0f_Win32%20Buffer%20Overflows..._by_dark%20spyrit.txt
http://www.phrack.org/archives/55/p55_0x0f_Win32%20Buffer%20Overflows..._by_dark%20spyrit.txt
http://www.trust.rub.de/home/_publications/DaDmSaWi2010/
http://www.trust.rub.de/home/_publications/DaDmSaWi2010/
http://www.trust.rub.de/home/_publications/LuSaWi10/
http://www.trust.rub.de/home/_publications/LuSaWi10/
http://pi1.informatik.uni-mannheim.de/filepool/projects/return-oriented-rootkit/measurements-ro.tgz
http://pi1.informatik.uni-mannheim.de/filepool/projects/return-oriented-rootkit/measurements-ro.tgz
http://pi1.informatik.uni-mannheim.de/filepool/projects/return-oriented-rootkit/measurements-ro.tgz

F. Monrose, editor, Proceedings of USENIX Security 2009,
pages 383–98. USENIX, Aug. 2009.

[21] Intel Corporation. IA-32 Intel Architecture Software
Developer’s Manual, Volume 3: System Programming Guide,
2001.

[22] V. Iozzo and C. Miller. Fun and games with Mac OS X and
iPhone payloads. Black Hat Europe 2009, Apr. 2009.
Presentation. Slides:
http://www.blackhat.com/presentations/
bh-europe-09/Miller_Iozzo/BlackHat-
Europe-2009-Miller-Iozzo-OSX-IPhone-
Payloads-whitepaper.pdf.

[23] T. Kornau. Return oriented programming for the ARM
architecture. Master’s thesis, Ruhr-Universität Bochum, Jan.
2010. Online:
http://zynamics.com/downloads/kornau-
tim--diplomarbeit--rop.pdf.

[24] S. Krahmer. x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique, Sept. 2005.
http://www.suse.de/~krahmer/no-nx.pdf.

[25] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram.
Defeating return-oriented rootkits with “return-less” kernels.
In G. Muller, editor, Proceedings of EuroSys 2010, pages
195–208. ACM Press, Apr. 2010.

[26] F. Lidner. Developments in Cisco IOS forensics.
CONFidence 2.0, Nov. 2009. Presentation. Slides:
http://www.recurity-labs.com/content/
pub/FX_Router_Exploitation.pdf.

[27] D. Litchfield. Defeating the stack based buffer overflow
prevention mechanism of Microsoft Windows 2003 Server,
Sept. 2003. Online:
http://www.ngssoftware.com/papers/
defeating-w2k3-stack-protection.pdf.

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In V. Sarkar and M. W. Hall, editors,
Proceedings of PLDI 2005, pages 190–200. ACM Press,
June 2005.

[29] J. McDonald. Defeating Solaris/SPARC non-executable
stack protection. Bugtraq, Mar. 1999. Online:
http://seclists.org/bugtraq/1999/Mar/4.

[30] R. Naraine. Pwn2Own 2010: iPhone hacked, SMS database
hijacked. Online:
http://blogs.zdnet.com/security/?p=5836,
Mar. 2010.

[31] Nergal. The advanced return-into-lib(c) exploits: PaX case
study. Phrack Magazine, 58(4), Dec. 2001.
http://www.phrack.org/archives/58/p58_
0x04_Advanced%20return-into-
lib(c)%20exploits%20(PaX%20case%20study)
_by_nergal.txt.

[32] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In J. Ferrante
and K. S. McKinley, editors, Proceedings of PLDI 2007,
pages 89–100. ACM Press, June 2007.

[33] T. Newsham. Re: Smashing the stack: prevention? Bugtraq,
Apr. 1997. Online:
http://seclists.org/bugtraq/1997/Apr/129.

[34] PaX Team. What the future holds for PaX, Mar. 2003.
Online: http://pax.grsecurity.net/docs/pax-
future.txt.

[35] M. Prasad and T. Chiueh. A binary rewriting defense against
stack based overflow attacks. In B. Noble, editor,
Proceedings of USENIX Technical 2003, pages 211–24.
USENIX, June 2003.

[36] G. Richarte. Re: Future of buffer overflows? Bugtraq, Oct.
2000. Online: http:
//seclists.org/bugtraq/2000/Nov/32 and
http://seclists.org/bugtraq/2000/Nov/26.

[37] G. Richarte. Insecure programming by example: Esoteric #2.
Online: http://community.corest.com/~gera/
InsecureProgramming/e2.html, July 2001.

[38] R. Roemer. Finding the bad in good code: Automated
return-oriented programming exploit discovery. Master’s
thesis, UC San Diego, Mar. 2009. Online: https://
cseweb.ucsd.edu/~rroemer/doc/thesis.pdf.

[39] R. Roemer, E. Buchanan, H. Shacham, and S. Savage.
Return-oriented programming: Systems, languages, and
applications. Manuscript, 2009. Online:
https://cseweb.ucsd.edu/~hovav/papers/
rbss09.html.

[40] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting software fault
isolation to contemporary CPU architectures. In I. Goldberg,
editor, Proceedings of USENIX Security 2010, pages 1–11.
USENIX, Aug. 2010.

[41] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
S. De Capitani di Vimercati and P. Syverson, editors,
Proceedings of CCS 2007, pages 552–61. ACM Press, Oct.
2007.

[42] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent
runtime shadow stack: Protection against malicious return
address modifications. http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.120.5702,
2008.

[43] A. Sotirov and M. Dowd. Bypassing browser memory
protections in Windows Vista. Online:
http://www.phreedom.org/research/
bypassing-browser-memory-protections/,
Aug. 2008. Presented at Black Hat 2008.

[44] G. Tan and J. Croft. An empirical security study of the native
code in the JDK. In P. Van Oorschot, editor, Proceedings of
USENIX Security 2008, pages 365–77. USENIX, July 2008.

[45] Vendicator. Stack Shield: A "stack smashing" technique
protection tool for Linux.
http://www.angelfire.com/sk/stackshield.

[46] P. Vreugdenhil. Pwn2Own 2010 Windows 7 Internet
Explorer 8 exploit. Online:
vreugdenhilresearch.nl/Pwn2Own-2010-
Windows7-InternetExplorer8.pdf, Mar. 2010.

[47] B.-J. S. Wever. ALPHA2: Zero tolerance, Unicode-proof
uppercase alphanumeric shellcode encoding. Online:
http://skypher.com/wiki/index.php/ALPHA2,
2004.

[48] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A sandbox for portable, untrusted x86 native code. In
A. Myers and D. Evans, editors, Proceedings of IEEE
Security and Privacy (“Oakland”) 2009, pages 79–93. IEEE
Computer Society, May 2009.

http://www.blackhat.com/presentations/bh-europe-09/Miller_Iozzo/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf
http://www.blackhat.com/presentations/bh-europe-09/Miller_Iozzo/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf
http://www.blackhat.com/presentations/bh-europe-09/Miller_Iozzo/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf
http://www.blackhat.com/presentations/bh-europe-09/Miller_Iozzo/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf
http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
http://www.suse.de/~krahmer/no-nx.pdf
http://www.recurity-labs.com/content/pub/FX_Router_Exploitation.pdf
http://www.recurity-labs.com/content/pub/FX_Router_Exploitation.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://seclists.org/bugtraq/1999/Mar/4
http://blogs.zdnet.com/security/?p=5836
http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt
http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt
http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt
http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt
http://seclists.org/bugtraq/1997/Apr/129
http://pax.grsecurity.net/docs/pax-future.txt
http://pax.grsecurity.net/docs/pax-future.txt
http://seclists.org/bugtraq/2000/Nov/32
http://seclists.org/bugtraq/2000/Nov/32
http://seclists.org/bugtraq/2000/Nov/26
http://community.corest.com/~gera/InsecureProgramming/e2.html
http://community.corest.com/~gera/InsecureProgramming/e2.html
https://cseweb.ucsd.edu/~rroemer/doc/thesis.pdf
https://cseweb.ucsd.edu/~rroemer/doc/thesis.pdf
https://cseweb.ucsd.edu/~hovav/papers/rbss09.html
https://cseweb.ucsd.edu/~hovav/papers/rbss09.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5702
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5702
http://www.phreedom.org/research/bypassing-browser-memory-protections/
http://www.phreedom.org/research/bypassing-browser-memory-protections/
http://www.angelfire.com/sk/stackshield
vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://skypher.com/wiki/index.php/ALPHA2

	Introduction
	ROP without Returns
	Instantiation on Intel x86
	Update-Load-Branch on the x86
	Gadget Set

	Instantiation on ARM
	ARM/THUMB Instruction Set
	Attack Method Design
	Gadget Set

	Getting Started
	Concrete Attacks
	Linux Intel x86
	Google Android ARM

	Conclusion
	Acknowledgments
	References

