A Minimum Spanning Tree Algorithm with Inverse-Ackermann
Type Complexity*

BERNARD CHAZELLE!

NECI Research Tech Report 99-099 (July 1999)
Journal of the ACM, 47(6), 2000, pp. 1028-1047.

Abstract

A deterministic algorithm for computing a minimum spanning tree of a connected
graph is presented. Its running time is O(ma(m,n)), where « is the classical functional
inverse of Ackermann’s function and n (resp. m) is the number of vertices (resp. edges).
The algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric
assumptions on the edge costs.

1 Introduction

The history of the minimum spanning tree (MST) problem is long and rich, going as far back
as Boruvka’s work in 1926 [1, 9, 13]. In fact, MST is perhaps the oldest open problem in
computer science. According to Nesetfil [13], “this is a cornerstone problem of combinatorial
optimization and in a sense its cradle.” Textbook algorithms run in O(mlogn) time, where n
and m denote, respectively, the number of vertices and edges in the graph. Improvements to
O(mloglogn) were given independently by Yao [18] and by Cheriton and Tarjan [4]. In the
mid-eighties, Fredman and Tarjan [6] lowered the complexity to O(mpB(m,n)), where B(m,n)
is the number of log-iterations necessary to map n to a number less than m/n. In the worst
case, m = O(n) and the running time is O(m log* m). Soon after, the complexity was further
reduced to O(mlog S(m,n)) by Gabow et al. [8]. Recently, Karger et al. [10] have discovered
a randomized algorithm with linear expected complexity. If the edge costs are integers and
the model allows bucketing and bit manipulation, it is possible to solve the problem in linear
time deterministically, as was shown by Fredman and Willard [7]. To achieve a similar result
in a comparison-based model has long been a high-priority objective in the field of algorithms.
The reason why is, first, the illustrious history of the MsT problem; second, the fact that it
goes to the heart of matroid optimization.

This paper does not resolve the MST problem, but it takes a significant step towards a
solution and charts out a new line of attack. Our main result is a deterministic algorithm
for computing the MST of a connected graph in time O(ma(m,n)), where « is the functional

*A preliminary version of this paper appeared in “A faster deterministic algorithm for minimum spanning
trees”, by B. Chazelle, Proc. 38th Ann. IEEE Symp. Found. Comp. Sci. (1997), 22-31. This work was
supported in part by NSF Grant CCR-93-01254, NSF Grant CCR-96-23768, ARO Grant DAAH(04-96-1-0181,
and NEC Research Institute.

tDepartment of Computer Science, Princeton University, and NEC Research Institute,
chazelle@Qcs.princeton.edu and chazelle@Qresearch.nj.nec.com

inverse of Ackermann’s function defined in [15]. The algorithm is comparison-based: it uses
pointers, not arrays, and it makes no numeric assumptions on the edge costs.

In addition to providing a new complexity bound, the larger contribution of this paper is
to introduce a nongreedy approach to matroid optimization, which we hope will prove useful
beyond minimum spanning trees. The key idea is to compute sub-optimal independent sets
in a nongreedy fashion, and then progressively improve upon them until an optimal basis is
reached. Specifically, an approximate priority queue, called a soft heap [2], is used to construct
a good, but not necessarily minimum, spanning tree. The quality of the tree is progressively
refined until an MST is finally produced.

Theorem 1.1 The MST of a connected graph with n vertices and m edges can be computed
in O(ma(m,n)).

How good is the ma(m,n) bound? Is it optimal? Doubtful. Is it natural? Definitely.
Given a spanning tree 7', to verify that it is minimum can be done in linear time [5, 11, 12]:
the problem is to check that any edge outside T is the most expensive along the cycle it forms
with 7. With real costs, this can be viewed as a problem of computing over the semigroup
(R, max) along paths of a tree. Interestingly, this problem requires Q(ma(m,n)) time over
an arbitrary semigroup [3, 16]. This lower bound suggests that in order to improve upon our
algorithm specific properties of (R, max) will have to be exploited. This is done statically
in [5, 11, 12]. We speculate that an answer might come from a dynamic equivalent.

This paper is organized as follows. This section proceeds with a brief overview of the
algorithm (§1.1), a discussion of the key concept of edge corruption (§1.2) and a review of
soft heaps (§1.3). In §2 we introduce the main structural invariants of the algorithm and we
discuss its components in detail. We prove its correctness in §3, and we analyze its complexity
in §4 and §5.

1.1 The Algorithm at a Glance

The input is a connected, undirected graph G, with no self-loops, where each edge e is assigned
a cost c(e). These costs are assumed to be distinct elements from a totally ordered universe
(a nonrestrictive assumption, as ties can be broken arbitrarily). As is well known, the MST
of such a graph is unique. A subgraph C of G is contractible if its intersection with MST (G)
is connected. What makes this notion useful is that MST (G) can be assembled directly from
MST (C) and MST (G'), where G’ is the graph derived from G by contracting C into a single
vertex. Previous algorithms identify contractible subgraphs on the fly as the explored portion
of the MST grows. Our first idea is to reverse this process, ie, to certify the contractibility
of C before computing its MST. The advantage should be obvious. Computing MST (C) is
bound to be easier if we already know that C' is contractible, for then we need to look only
at edges with both endpoints in C. Otherwise, we must also visit edges with one endpoint in
C. This makes genuine divide-and-conquer possible. The challenge is, how can we discover
a contractible subgraph without computing its MST at the same time? Current methods are
not helpful, and that is why we turn to soft heaps.

To compute MST (G), first we decompose G into vertex-disjoint contractible subgraphs of
suitable size. Next, we contract each subgraph into a single vertex to form a minor!' of G,
which we similarly decompose into vertex-disjoint contractible subgraphs, etc. We iterate on

LA minor is a graph derived from a sequence of edge contractions and their implied vertex deletions.

this process until G becomes a single vertex. This forms a hierarchy of contractible subgraphs,
which we can model by a perfectly balanced tree 7T its leaves are the vertices of G; an internal
node z with children {z;} is associated with a graph C, whose vertices are the contractions of
the graphs {C,, }. Each level of T represents a certain minor of G, and each C, is a contractible
subgraph of the minor associated with the level of its children. In this association, the leaf
level corresponds to G while the root corresponds to the whole graph G contracted into a
single vertex. Once T is available, we compute the MST of each C, recursively. Because the
C,’s are contractible, glueing together the trees MsT (C,) produces MsT (G).

We have considerable freedom in choosing the height d of 7 and the number n, of vertices
of each C, (which, as we should note, is also the number of children of z). The tree T is
then computed in O(m + d3n) time. If d is chosen large then the n,’s can be kept small;
the recursive computation within each C, is very fast but building 7 is slow. Conversely, a
small height speeds up the construction of 7 but, by making the C,’s bigger, it makes the
recursion more expensive. This is where Ackermann’s function comes into play by providing
the best possible tradeoff. Let d, denote the height of z in 7, which is defined as the maximum
number of edges from z to a leaf below. A judicious choice is n, = S(¢,1)> = 8 if d, = 1, and
n, = S(t—1,8(t,d, — 1))® if d, > 1, where ¢ > 0 is minimum such that n < S(t,d)?, with
d = ¢[(m/n)/3], for a large enough constant ¢, and

S(1,7) = 24, for any j > 0;
S(i,1) = 2, for any i > 0;
SG,7) = S(,j—1)S(GE—1,5(,j —1)), for any i,§ > 1.

We easily prove by induction that the ezpansion of C, relative to G (ie, the subgraph of
G whose vertices end up in C,) has precisely S(t,d,)? vertices. This follows from the identity

S(t,d, —1)3n, = S(t,d, —1)3S(t —1,8(t,d, — 1))® = S(t,d,)>.

If we assume for simplicity that n is actually equal to S(¢,d)3, the previous statement is true
for all z, including the root of 7. It follows immediately that d coincides with the height of
T. Let us prove by induction on ¢ that if the number of vertices of G satisfies n = S(t,d)3,
then MST (G) can be computed in bt(m + d°n) time, where b is a large enough constant. For
the sake of this overview, we omit the basis case ¢ = 1. To apply the induction hypothesis
on the computation cost of MST (C,), we note that the number of vertices of C, satisfies
n, = S(t—1,8(t,d, — 1))3, so by visual inspection we see that, in the formula above, ¢ must
be replaced by t — 1 and d by S(¢,d, — 1). This gives a cost of b(t — 1)(m, + S(t,d, — 1)3n,),
where m, is the number of edges in C,. Summing up over all internal nodes z € T allows us
to bound the computation costs of all the MST (C,)’s by

bt —1)(m+Y S(t,d. —1)>S(t—1,8(td. —1))*) = b(t — 1) (m + Y S(t,d.)?),
z z
which is
b(t — 1)<m + # vertices in expansion of C’Z) =b(t — 1)(m + dn).
Adding to this the time claimed earlier for computing 7 yields, for b large enough,
b(t — 1)(m + dn) + O(m + d®n) < bt(m + d°n),

which proves our claim. As we show later, our choice of ¢ and d implies that t = O(a(m,n)),
and so the running time of the MST algorithm is O(ma(m,n)).

This informal discussion leads to the heart of the matter: how to build 7 in O(m + d®n)
time. We have swept under the rug a number of peripheral difficulties, which in the end results
in an algorithm significantly more sophisticated than the one we have outlined. Indeed, quite
a few things can go wrong along the way; none as serious as edge corruption, an unavoidable
byproduct of soft heaps which we discuss next.

1.2 Edge Corruption

In the course of computing 7, certain edges of G become corrupted, meaning that their costs are
raised. To make matters even worse, the cost of a corrupted edge can be raised more than once.
The reason for all this has to do with the soft heap, the approximate priority queue which we
use for identifying contractible subgraphs (more on this later). Some corrupted edges cause
trouble, while others do not. To understand this phenomenon—one of the most intriguing
aspects of the analysis—we must discuss how the overall construction of 7 is scheduled.

It would be tempting to build 7 bottom-up level by level, but this would be a mistake.
Indeed, it is imperative to maintain a connected structure. So, instead, we compute 7 in pos-
torder: children first, parent last. Let z be the current node visited in 7, and let z1,...,2; = 2
be the active path, ie, the path from the root z;. The subgraphs C,,,...,C,, are being cur-
rently assembled, and as soon as C,, is ready it is contracted into one vertex, which is then
added to C,, _,. A minor technical note: if z;; is the leftmost child of z;, ie, the first child
visited chronologically, then C,; does not yet have any vertex, and so it makes sense to omit
z; from the active path altogether. The benefit of such shortcuts is that by avoiding one-child
parents, we ensure that each of C,,,...,C,, now has at least one vertex, which itself is a
vertex of G or a contraction of a connected subgraph.

As long as an edge of G has exactly one vertex in C,, U---UC(,,, it is said to be of the
border type. Of course, the type of an edge changes over time: successively, unvisited, border,
€ C, along active path, contracted. Corruption can strike edges only when they are of the
border type (since it is then that they are in soft heaps). At first, corruption might seem fatal:
if all edges become corrupted, aren’t we solving an MST problem with entirely wrong edge
costs? But in fact, rather miraculously, corruption causes harm only in one specific situation:
we say that an edge becomes bad if it is a corrupted border edge at the time its incident C,
is contracted into one vertex. Once bad always bad, but like any corrupted edge its cost can
still rise. Remarkably, it can be shown that if no edges ever turned bad, the algorithm would
behave as though no corruption ever occurred, regardless of how much actually took place.
Our goal, thus, is to fight badness rather than corruption. We are able to limit the number of
bad edges to within m /2 + d3n. The number of edges corrupted but never bad is irrelevant.

Once T is built, we restore all the edge costs to their original values, and we remove all the
bad edges. We recurse within what is left of the C,’s to produce a spanning forest F'. Finally,
we throw back in the bad edges and recurse again to produce the minimum spanning tree of
G. There are subtleties in these various recursions, which we explain in the next section. We
close this overview with a quick sketch of the soft heap.

1.3 The Soft Heap

A simple priority queue, called a soft heap, is the main vehicle for selecting good candidate
edges. The data structure stores items with keys from a totally ordered universe, and supports
the operations:

e create (S): Create an empty soft heap S.

insert (S, z): Add new item z to S.

meld (S,S’): Form a new soft heap with the items stored in § and &’ (assumed to be
disjoint), and destroy S and §'.

delete (S,z): Remove item z from S.

e findmin (S): Return an item in & with the smallest key.

A soft heap may, at any time, increase the value of certain keys. Such keys, and by extension,
the corresponding items, are called corrupted. Naturally, findmin returns the item of minimum
current (not original) key. A parameter e controls the amount of corruption. The soft heap is
introduced in the companion paper [2]. We summarize its main features below.

Theorem 1.2 [2]. Beginning with no prior data, consider a mized sequence of operations
that includes n inserts. For any 0 < ¢ < 1/2, a soft heap with error rate ¢ supports each
operation in constant amortized time, except for insert, which takes O(logl/e) time. The
data structure never contains more than en corrupted items at any given time.

2 The MST Algorithm

We begin with a review of a well-known procedure known as a Boruvka phase. Pick a vertex
and contract the cheapest edge incident to it. As is well known, this transforms G into a
graph with the same set of non-MST edges. We clean up the graph, if necessary, by removing
the self-loops that might have been created in the process. (Recall that the graph may have
multiple edges, to begin with.) We can generalize this process by selecting the cheapest edge
incident to each vertex in GG, and contracting each connected component in the subgraph of
selected edges. Again, we clean up afterwards. This is called a Boruvka phase; it is easily
performed in O(m) time in one pass through the graph. The number of vertices drops by at
least a factor of two. This simple procedure is useful for reducing the number of vertices and
it plays an important role in our MST algorithm.

To compute the MST of a connected graph G with n vertices and m edges, we call the
function msf (G, t) for the parameter value

t=min{i > 0|n < S(i,d)*}, (1)

where d = ¢[(m/n)Y/?]. Throughout this paper, ¢ denotes a large enough integral constant.
The function msf takes as input an integer ¢ > 1 and a graph with distinct edge costs, and
returns its minimum spanning forest (MSF). As this suggests, we no longer assume that the
input graph should be connected. As will soon be clear, dropping the connectivity assumption
is mandated by the recursion invariants. The choice of ¢ is arbitrary and affects only the
running time. The particular setting in (1) is the best possible, but because of the recursive
nature of the algorithm it is necessary to allow ¢ to vary as a parameter.

msf(G, t)
[1] If ¢ =1 or n = O(1), return MSF (G) by direct computation.
[2] Perform c consecutive Boruivka phases.
[3] Build 7 and form the graph B of bad edges.
[4] Set F < U,e7 msf(C, \ B,t—1).

[5] Return msf(F U B,t) U { edges contracted in [2] }.

Steps [1,2]: Boruvka Phases

The case t = 1 is special. We solve the problem in O(n?) time by performing Borfivka phases
until G is contracted to a single vertex. If we are careful to remove multiple edges (by keeping
only the cheapest edge in each group) and to keep the graph free of multiple edges, we easily
carry out all phases in a total of O(n? + (n/2)? + ---) = O(n?) time. If, on the other hand,
n = O(1), we compute the MST in O(m) time.

We apply the remainder of the algorithm to each connected component of G separately.
For the purpose of this explanation, therefore, we might as well assume that G is connected.
The aim of step [2] is simply to reduce the number of vertices. The Bortuivka phases transform
G into a graph Gy with ng < n/2°¢ vertices and my < m edges. This transformation requires
O(n + m) time.

Step [3]: Building the Hierarchy 7

With ¢ > 1 specified, so is the target size n, of each C,, ie, n, = S(t — 1,S(t,d,, — 1))?, where
d, is the height of z € 7. We use the word “target” because the algorithm sometimes fails
to meet those intended sizes. This is no mere technicality but rather a deep structural aspect
of the algorithm, whose explanation is best postponed at this point.

To get things off the ground is routine, and so we discuss the algorithm in mid-action. Let
21,...,2; = z denote the active path. As shown in Fig. 1, the subgraphs C,,,...,C,, currently
under construction are linked together in a cost-decreasing chain of edges. The algorithm
occasionally discards edges from Gy. (The word “discarded” has a technical meaning and
refers to edges removed from consideration in specific circumstances explained below.) Each
graph C, includes all the non-discarded edges of Gy whose endpoints map into it, therefore to
specify a given C, it suffices to provide its vertices. The invariants below hold at any time with
respect to the current graph Gy (ie, the original Gy minus all the edges previously discarded).
We need the important concept of a working cost: at any time, the working cost of an edge is
its current cost if the edge is bad, and its original cost otherwise. Thus, we distinguish among
three types of cost: original, current, and working.

INv1 For all i < k, we keep an edge (called a chain-link) joining C,, to C,, , whose
current cost is (i) at most that of any border edge incident to C,, U---UC,,
and (ii) less than the working cost of any edge joining two distinct C,;’s

(j <1i). To enforce the latter condition efficiently, we maintain a min-link, if
it exists, for each pair ¢ < j: this is an edge of minimum working cost joining
C,; and C;.

INV2 For all j, the border edges (u,v) with u € C,; are stored either in a soft heap,
denoted H(j), or in one, H(i,j), where 0 < ¢ < j. No edge appears in more
than one heap. Besides the condition u € C,;, membership in H(j) implies
that v is incident to at least one edge stored in some H (4, 7); membership in
H(i,j) implies that v is also adjacent to C,, but not to any C,, in between
(i <1 < j). We extend this to i = 0 to mean that v is incident to no C,,
(I < 7). All the soft heaps have error rate 1/c.

border edges no cheaper than e
m/
— L

I @/
T

1 2 i

working cost (link) > current cost (€)

Figure 1: The chain of subgraphs along the active path, with edge costs indicated by vertical
height. Recall that working costs are current for bad edges and original for others.

The main thrust of INV1 is to stipulate that the active path corresponds to a descending
chain of edges connecting various C,’s. This descending property is essential for ensuring
contractibility. The chain-link between C,;, and C,,, is the edge that contributes C, , its
first vertex. Subsequently, as C,,,, grows, lower-cost edges might connect it to C,; and so, in
general, the chain-link is likely to be distinct from the min-link between C;; and C, -

Why do we need so many heaps? The short answer is, to fight badness. The problem
is that when bad edges are deleted from a soft heap, Theorem 1.2 allows the same amount
of corruption to be produced anew. These newly corrupted edges might then turn bad and
be deleted. Cycling through this process could have disastrous effects, perhaps even making
every single edge bad. We use separate heaps in order to create a buffering effect to counter
this process. This mechanism relies on structural properties of minimum spanning trees and
a subtle interplay among heaps.

The tree T is built in a postorder traversal driven by a stack whose two operations, pop
and push, translate into, respectively, a retraction and an extension of the active path.

e RETRACTION: This happens for k¥ > 2 when the last subgraph C,, has attained its
target size, ie, its number n,, of vertices has reached the value of S(t —1,S(¢,d,, —1))3,
where d,, is the height of z; in 7. Recall that this target size is also the number of
children of zj in 7. In the particular case, d,, = 1, the target size is set to S(¢,1)* = 8.

The subgraph C, is contracted and becomes a new vertex of C,, ,. That vertex is joined
to C,_, by the chain-link (plus maybe other edges) between C,, , and (now contracted)
C,; these edges are not contracted. As a net result, C,, , gains one vertex and one or
several new edges, and the end of the active path is now z; ;. A minor technicality:
because of the aforementioned shortcuts taken in forming the active path to avoid zero-
vertex C,’s, we must add a new node between z; 1 and z; in case their heights differ
by more than one. (The numbering of the C,’s is implicit and no updating is necessary;
heights are understood here with respect to the full—not partially constructed—tree 7.)

Maintaining INV1 in O(k) time is straightforward; INV2 is less so. Here is what we do:

The heaps H(k) and H(k — 1,k) are destroyed. All corrupted edges are discarded.
(Note that these edges, if not bad already, become so now.) The remaining items are
partitioned into subsets, called clusters, of edges that share the same endpoint outside
the chain. For each cluster in turn, select the edge (r,s) of minimum current cost and
discard the others (if any). Next, insert the selected edge into the heap implied by INV2.
Specifically, if (7, s) comes from H (k) and shares s with an edge in H(k — 1, k), or if it
comes from H(k — 1,k), then by INV2 it also shares s with an edge in some H(i,k — 1)
already, and so it can be inserted into H(k — 1). Otherwise, (r, s) comes from H (k) and
so, by INV2, it shares s with an edge in some H (7, k), with now ¢ < k—1. The edge (7, s)
should be inserted into H(i, k). Finally, for each ¢ < k —1, meld H (i, k) into H (i, k —1).

Two remarks: (i) by inserting (r, s) into H (%, k), we force into the heap at least a second
edge pointing to s; (ii) since H (i, k) is melded into H(i,k — 1), we could have inserted
(r,8) into H(k—1), instead of H(i, k), and still maintain INV2. We choose not to because
of the risk of seeing edges hopping between H(x)’s at each retraction, which would be
too costly.

EXTENSION: Do findmin on all the heaps, and retrieve the border edge (u,v) of min-
imum current cost c¢(u,v). This is called the extension edge. Of all the min-links of
working cost at most c¢(u,v), find the one (a,b) incident to the C,; of smallest index
1. If such an edge indeed exists, we perform a fusion: we contract the whole subchain
C,ipy U---UC,, into a (Fig. 2). It is best to think of this as a two-step process: first,
contract all the edges with both endpoints in C;,,, U--- U C},. By abuse of notation,
call b the resulting vertex, and now contract the edge(s) joining a to b.

Next, we update all relevant min-links, which is easily done in O(k?) time. To update
heaps we generalize the retraction recipe in the obvious manner: We extend the destruc-
tion of heaps to include not just H(k) and H(k — 1,k) but H(i + 1),...,H(k), and all
H(j,7"), 1 < j < j'. First, we discard all corrupted edges from those heaps since they
are now bad. Then, we regroup the remaining edges into clusters and, for each one in
turn, we reinsert the edge (r,s) of minimum current cost and discard the others. As
before, we distinguish between two cases:

1. If (r, s) comes from some H(j,j') or H(j'), but in the latter case shares s with an
edge in H(j,j'), where i < j < j', then by iterative application of INV2 it also
shares s with an edge (7', s) in some H(h,l), with h <7 <[. As we explain below,
the edge (', s) is to migrate into H (h,%) through melding, if it is not there already,
ie, if [> 4, therefore by INV2 we can insert (r,s) into H(i).

2. Otherwise, (r,s) comes from H(j), where i < j, and it shares s with an edge in
some H(h,j), with now h < i. We insert the edge (r, s) into H(h, j).

Finally, for each h,j with h < i < j, we meld H(h,j) into H(h,i). Observe that by
INv1(i) and the choice of the vertex a, it cannot be further down the chain than wu; hint:
consider the chain-link leaving the chain from the same C, as (u,v). Therefore, whether
u originally belonged to the last C, in the chain, it now does. Regardless of whether a
fusion took place, we extend the chain by making v into the single-vertex C,, and the
extension edge (u,v) into the chain-link incident to it. The end of the active path is now
2. Note that this is not the same zj as before: without fusion, the new value of & is the
old one plus one; with fusion, it is 7 + 1.

O1d border edges incident to v cease to be of the border type: delete them from their
respective heaps, and find among them the min-link between v and each of C,,...,C;, ,.
Insert the new border edges incident to v into the appropriate H (7, k); in case of multiple

edges, keep only the cheapest in each group and discard the others.

D) Yy
~_ J— f— Vv
] Yy /
f—
u
a b

C

Zi Zy

Figure 2: Extension: all three subgraphs right of C, collapse into b and then into a.

Having explained how retractions and extensions work, we review the construction of 7.
At any given node zj of height at least 1, we perform extensions (and their accompanying
fusions) as long as we can (stack push), stopping only when the size condition for retraction
at that node has been met (stack pop). There is no retraction condition for the root z;, and
so the algorithm stops only when border edges run out and extensions are no longer possible.
Assume that no fusion ever takes place. From the identity

S(t,d,) = S(t,d, —1)S(t—1,5(¢t,d, — 1)),

it immediately follows by induction that, for any internal z distinct from the root, the expan-
sion of C, has exactly n,S(t,d, — 1)% vertices, which is S(t,d,)?; recall that the expansion
of C, consists of the vertices of Gy mapping into C,, plus all the edges of Gy joining pairs
of them. Fusions muddy the waters by forcing contractions before the target size has been
reached and also by creating arbitrarily large expansions. As we shall see, however, any C,
whose expansion exceeds its allowed size is naturally broken down into subgraphs of the right
size, which then can be treated separately.

Remarks:

o A fusion is not a retraction into C,,. Because the edge (a, b) is contracted, too, and does
not become an edge of C,;, a fusion, unlike a retraction, does not increase the number of
vertices in C,;. A fusion reflects the difficulty we may have to “grow” to its proper size

the subgraph C, of the last node z of the active path. The solution is to contract “just
enough” to be able to resume the extension from that (new) last node. For the algorithm
designer, fusions are a nuisance but for the running time, they are a blessing. In fact,
one could imagine the entire algorithm reduced to one giant fusion, and computing the
MST in linear time.

e The formation of clusters is a way of discarding edges once and for all. Because no edge
is ever discarded from H (0, j), the set of non-discarded edges always spans all of Gy and
the algorithm never terminates prematurely with vertices still unexplored. Recall that
the graph G and, hence, G are assumed connected for the purpose of this discussion,
but in case they are not, we simply repeat the construction of 7 for each connected
component.

e The algorithm needs to keep track of the bad edges in order to form B in step [3]. Badness
occurs to the corrupted border edges incident to C,, (in retraction) or C,, , U---UCy,
(in fusion). All such edges are either explicitly examined (and discarded) or they belong
to heaps that are being melded: H (i, k) into H (i, k—1) in a retraction or possibly several
H(h,j) into the corresponding H(h,7) in a fusion. A soft heap gives ready access to its
corrupted items, so we can mark the relevant edges bad. To make this cost negligible,
we ensure that edges are marked only once by, for example, stringing all the non-bad

corrupted edges together in a linked list.

e In step [3], the graph B takes its vertices from Gy, but in the next step an edge of B
has its endpoints in C, (and so, not necessarily, in Gy). This minor ambiguity simplifies
the notation and is easily resolved from the context.

Step [4]: Recursing in Subgraphs of T

Having built the tree 7, we consider each node z: recall that C, does not include any of the
discarded edges. Let C,\ B denote the subgraph of C, obtained by removing all the bad edges.
(Not all bad edges may have been discarded; in fact, bad edges can be selected as extension
edges and thus play a direct role in building the C,’s.) We apply the algorithm recursively to
C, \ B after resetting all edge costs to their original values, and decrementing the parameter
t by one. The only effect of this parameter change is to modify the target sizes for the new
trees 7 to be built. The output F is a set of edges joining vertices in C,, but once again we
maintain this convenient ambiguity which allows us to treat them as edges of Gy in step [5].
The correspondence between the vertices of C, and the children of z should be obvious,
were it not for the presence of fusions. Consider the first fusion into vertex a of C,. Prior
to it, vertex a corresponds to a child v of z, meaning that it is the contraction of C,. What
happens after the fusion? As far as a is concerned in step [4] the answer is: nothing. Vertex
a still corresponds to the same C,, and step [4] recurses in C, \ B. Next, we treat the part of
T corresponding to the subchain C,, , U---UC,, as a hierarchy of its own. Further fusions
into a are handled in the same way. In the end, vertex a is the contraction of not just C, but
also of a number of subchains of the form C,,,, U---UC,, equal to the number of fusions.
Going back to a particular fusion of b into a, of all the edges currently joining a and
(contracted) b we retain in F' the original min-link (a,b) if it is not bad, else none of them.
Note that retaining in F' only one edge of the form (a,b) per fusion is the same as solving
the MSF problem, relative to original costs, for the group of non-bad, non-discarded multiple

10

edges joining a and b. The reason is that if the min-link is not bad, then its working cost is
also its original cost and it is minimum in the group: consequently, the edge is the MST of
that group. If the min-link is bad, we do not need to include any edge of the group into F,
since bad edges are all reprocessed in step [5]. (As we show in the proof of correctness below,
we need not be concerned with non-bad discarded edges joining a and b: they are dominated
in original cost by other edges of the form (a,b) that are themselves bad or not discarded, and
hence, processed in this step or the next.)

Slightly anticipating the complexity discussion, we note that because each subchain in-
dividually stays within its mandated size, their potential proliferation does not increase the
per-edge complexity of the algorithm. Fusions might muddy the picture a little but, from a
complexity viewpoint, in fact the more of them the better. Think of the ultimate case, where
the graph Gy is made of a single path of edges with costs in increasing order, together with
an arbitrary number of other edges of much higher cost. Using a soft heap with zero error
rate (for illustrative purposes only), every extension gives rise to a fusion, and every edge of
the path is discovered as a fusion edge of the form (a,b). The tree 7 remains of height one
and step [4] is trivial.

Step [5]: The Final Recursion

In step [3], we collected all the bad edges created during the construction of 7 and we formed
the graph B. We now add to it the edges of F' to assemble the subgraph F U B of Gy.
Again, we emphasize the fact that the vertices of this graph are original vertices of Gy and
not the contracted endpoints from which they might have emerged during the construction of
T. Applying the same sort of transfer, the output of msf(F U B,t) is now viewed as a set of
edges with endpoints in G, not in Gy. Adding the edges contracted in step [2] produces the
MST of G.

3 Correctness

We prove by induction on ¢ and n that msf(G,t) computes the MSF of G. Since the algo-
rithm iterates through the connected components separately, we can again assume that G is
connected. Because of step [1] we can obviously assume that ¢ > 1 and 7 is larger than a
suitable constant. Boruvka phases contract only MST edges, therefore, by induction on the
correctness of msf, the output of step [5] is, indeed, MST (G), provided that any edge e of Gy
outside F' U B is also outside MST (Gy). In other words, the proof of correctness of our MST
algorithm will be complete once we prove the following:

Lemma 3.1 If an edge of Gy is not bad and lies outside F, then it lies outside MST (Gy).

In the lemma, all costs are understood as original. Of course, this innocent-looking state-
ment is the heart of the matter, since it pertains directly to the hierarchy 7. To begin with, we
must verify the two main invariants. Using heaps to choose extension edges, and hence chain-
links, ensures INV1(i); similarly, we resort to fusions simply to maintain INV1(ii). Observe
that if an extension edge is corrupted but not bad, then it becomes a chain-link whose current
cost exceeds its working cost, so the distinction between working and current in INV1 is not
meaningless. Intuitively, (i) reflects the structure provided by the heaps, and (ii) the structure
needed for contractibility. Only border edges can be discarded, so the discarding process itself

11

cannot violate these invariants. As we discussed earlier, INV2 is preserved through our updat-
ing of the heaps. We must now show why maintaining these invariants produces contractible
C,’s.

Contractibility is defined in terms of MST, a global notion. Fortunately, we can certify by
local means that the subgraph C of Gy spanned by a subset of the vertices is contractible.
Indeed, it suffices to check that C' is strongly contractible, meaning that for every pair of edges
e, f in Gy, each with exactly one vertex in C, there exists a path in C that connects e to f
along which no edge exceeds the cost of both e and f. This implies contractibility (but not the
other way around). Why? We argue by contradiction, assuming that C is not contractible. By
definition, C N MST (G) must have more than one connected component. Consider a shortest
path m in MST (Gy) that joins two distinct components. The path has no edge in C (else it
could be shortened) and it has more than one edge (else it would be in C), so its end-edges
e and f are distinct and each has exactly one endpoint in C. Any path in C joining e and
f forms a cycle with 7 and by elementary properties of MST, the most expensive cycle edge
is outside MST (Gy), ie, outside of w, and hence in C. This contradicts the assumption and
proves the claim. The proof extends easily to accommodate nondistinct edge costs.

Lemma 3.2 Consider the subgraph C, at the time of its contraction. With respect to working
costs, C, is strongly contractible and the same holds of every fusion edge (a,b).

Proof: The lemma refers to the edges present in C, and in its neighborhood at the time C,
is contracted: it does not include the edges of Gy that have been discarded (in fact the lemma
is false otherwise). The graph C, is formed by incrementally adding vertices via retractions.
Occasionally, new neighboring edges are added by fusion into some a € C,. Because C,
does not contain border edges, edge discarding never takes place within it, and so it grows
monotonically. (This does not mean, of course, that C, includes all the edges of the original
Gy that join pairs of vertices in it.) Assume for now that no fusion occurs. Each retraction
has a unique chain-link (ie, an extension edge) associated with it, and together they form a
spanning tree of C,. Thus, given any two edges e, f, each with exactly one endpoint in C,
the tree has a unique path 7 joining (but not including) them. Let g = (u, v) be the edge of 7
of highest current cost ever; break ties, if necessary, by choosing as g the last one selected for
extension chronologically. As usual, we make the convention that v is the endpoint outside
the chain at the time of extension. Along 7, the vertex u lies between v and one of the two
edges, say, e (Fig. 3). Throughout this proof the term “working” is to be understood at the
time right after C, is contracted, while “current” refers to the time when g is selected as a
new chain-link (u,v) through extension. We claim that the working cost of e is at least the
current cost of g. Since the working cost of no edge in 7 can ever exceed the current cost of
g, the lemma follows.

Figure 3: Proving contractibility.

We prove the claim. If e currently joins C, to some other C,., it follows from INV1(ii).
Otherwise, let €’ be the first (current) border edge encountered along the path from g to e.

12

By INV1(i), its current cost is at least that of g, and so by our choice of g, we have ¢’ ¢ ,
and hence, ¢ = e. Consequently, e currently is and still will be a border edge when C, is
contracted. If it is in a corrupted state then, it becomes bad after the contraction (were it
not so already) and so, by definition, its working cost is at least its current cost (it could be
higher); otherwise, both costs coincide with the original one. In both cases, the claim is true.

To deal with a fusion into C,, we should think of it as a two-step process: (i) a sequence
of retractions involving, successively, C,,C,,_,,...,C,,,, where in this notation C, = C,,,
and (ii) the contraction of (a,b) into a. For the purpose of this discussion, let us run the
algorithm right until the time C, is contracted, while skipping step (ii) in all fusions into
C,. Then, as far as C, is concerned its evolution is indistinguishable from the no-fusion case
discussed earlier, and the same result applies. Executing all delayed applications of step (ii)
now results in contracting a number of edges already within C),, which therefore keeps C,
strongly contractible. This proves the first part of the lemma.

Now, going back to the normal sequencing of the algorithm, consider the min-link (a, b)
right before step (ii) in a fusion into C,. By construction, no other edge incident to (contracted)
b is cheaper than (a,b) relative to working costs; remember that all corrupted border edges
incident to b become bad, and so working and current costs agree. This shows that the edge
(a,b) is strongly contractible. O

Proof of Lemma 3.1: The computation of 7 corresponds to a sequence of contractions
of minors, which transforms Gj into a single vertex. Denote these minors by Si,S5s,... in
chronological order of their contractions. Note that either S; is of the form C, or it consists
of the multiple edges of some fusion edge (a, b).

Let G}, be the graph Gy minus all the edges discarded during step [3]. As we have observed
(see Remarks in previous section), the discarding of edges does not disconnect Gy, so Gj, still
spans all the vertices of Gy. Lemma 3.2 applies to C, at the time of its contraction. The
working costs of all edges within C), are frozen once and for all. Current costs of edges with
one endpoint in C, might change, but working costs can never decrease, so the lemma, still
applies relative to final working costs, ie, with each edge assigned its last working cost chrono-
logically. Unless specified otherwise, such costs are understood throughout the remainder of
our discussion.

Fix some S;. A vertex of S; is either a vertex of G or the contraction of some S; (j < 7). In
turn, the vertices of S; are either vertices of Gy or contractions of Sj, (k < j), etc. By repeated
applications of Lemma 3.2 (and again identifying graphs with their edge sets) it follows that
the MST of G is the union of all the MST (S;)’s: we call this the composition property. Keep
in mind that the S;’s might include bad edges and so the composition property does not
necessarily hold for the graphs of the form C, \ B. In fact, it is worth noticing that, for all
their “badness,” bad edges are useful for making contractibility statements.

In proving Lemma 3.1, we begin with the case where the edge e under consideration is
never discarded, ie, belongs to Gjy. Consider the unique S; that contains both endpoints of e
among its vertices. By induction on the correctness of msf, the fact that e is not in F' implies
that it is not in MSF (S; \ B). Since it is not bad, the edge e is then outside MST (S;), and by
the composition property, outside MST (G{)). Recall that this holds relative to final working
costs. Now, switch all edge costs to their original values. If changes occur, they can only be
downward. The key observation now is that, by not being bad, the edge e witnesses no change
and so still remains the most expensive edge on a cycle of Gf, with respect to original costs.
This shows that e is not in MST (G}), and hence MST (Gy), relative to original costs.

13

Assume now that e is not in Gj,. Before being discarded, e = (u,v) shared a common
endpoint v with a cheaper edge ¢/ = (u',v). In the case of a retraction, v and u' coincide,
while in a fusion, both are merged together through the contraction of a subgraph. In both
cases, v and ' end up in a vertex which, by repeated applications of Lemma 3.2, is easily
seen to be the contraction of a contractible subgraph of Gy, relative to working costs. By the
discarding rule, e and e’ are not corrupted and the former is more expensive than the latter. Tt
follows that e is outside MST (Gg). Again, observe the usefulness of bad edges: indeed, because
¢’ might become bad, we cannot conclude that e is outside MST (G \ B). This completes the
proof of Lemma 3.1. O

4 Bounding the Bad Edges

We bound the number of edges in the graph B, ie, the number of bad edges created during the
construction of 7 in step [3]. To prove the lemma below, we begin with a bound on the total
number of inserts. Recall that ny (resp. mg) denotes the number of vertices (resp. edges)
of GO.

Lemma 4.1 The total number of bad edges produced while building T is |B| < mo/2 + d3ny.
Lemma 4.2 The total number of inserts in all the heaps is at most 4my.

Proof: Edges are inserted for the first time into a heap during an extension. In fact all
extensions witness exactly mg inserts. To bound the number of reinserts, we provide each
edge with three credits when it is first inserted. At a currency rate of one credit per reinsert,
we show that the credits injected cover the reinserts.

We maintain the following invariant: For any j, any edge in H(j) has two credits; for any
i,7 and any vertex s outside the chain, the x edges of H(i,j) incident to s contain a total of
k + 2 credits (or, of course, 0 if k = 0). With its three brand-new credits the first insertion of
edge (r, s), which takes place in some H (i, k), easily conforms with the invariants.

Consider the case of a reinsert of (r, s) through retraction. If (r, s) comes from H(k —1,k)
or comes from H (k) but shares s with an edge in H(k —1, k), then its cluster of edges pointing
to s releases at least 3 credits, ie, kK + 2+ (zero or more credits from H (k)), for k > 0: one pays
for the insert into H(k — 1), while the other two are enough to maintain the credit invariant
for H(k — 1). Otherwise, (r,s) comes from H (k) and has two credits at its disposal, as it is
inserted into some H (i,k), where 1 < k — 1. After the insertion, the heap H (7, k) will contain
more than one edge pointing to s, and so only one credit is needed for the heap as (r, s) moves
into it. The remaining credit pays for the insert.

What we just did is to revisit the retraction procedure step-by-step and follow the move-
ment of credits alongside. We can do exactly the same for a fusion. Being so similar to a
sequence of retractions, the fusion operation leads to an almost identical discussion, which we
may omit. O

Let B(i,j) be the bad edges in the heap H(7,j) at the time of its disappearance (either
via melding or actual destruction). To avoid double-counting, we focus only on the edges of
B(i,7) that were not already bad while in B(#',j'), for any (i',j') lexicographically greater
than (i,7). Actually we can assume that i = 7', since for ¢’ > 7 all such edges are and thus
denied a chance to appear in B(i,j). We also have the bad edges from the heaps H ().

14

These are easy to handle because unlike H(x,*) those heaps are never melded together: By
Theorem 1.2 and Lemma 4.2, the total number of corrupted edges in all the H(x)’s at the
time of their destruction is at most 4mg/c. Thus, the total number |B| of bad edges satisfies:
(by abuse of notation, i, j is a shorthand for all pairs (node, descendant) in 7)

B < dmo/c+ Y |BG,)\ U BG.7)|- (2)

2] J'>yg

Define the multiplicity of H(i,7) to be the maximum number of edges in it that share the same
endpoint (outside the chain). Melding H (7, ;') into H(i,j) does not increase its multiplicity.
(That is precisely the reason why we keep separate heaps for each pair i,5.) An insert into
some H(i,j) during an extension sets the multiplicity to one. During a retraction, an insert
can increment the multiplicity by at most one, but then the heap is immediately melded into
H(i,j —1). It follows that the multiplicity of any H (x, %) is at most the height of 7", which is
itself at most d.

Any edge in H(i,l) that ends up in H(i,j) passes through all the intermediate heaps
H(i,1") created (1 < 1" <). So, with the summation sign ranging over the children j' of node
j in T, we find that the summand in (2) is equal to

|B(i,5)| — > |B(i,4")| + Y #bad edges deleted from H(i, ') during extensions. (3)
7' 7'

The last additive term comes from the fact that the only deletes from H (%, j') are caused by
extensions. Indeed, deletes occur after findmins: all the edges sharing the same endpoint with
the edge selected by findmin are deleted. As we just observed there are at most d of them in
each B(%,j). There are at most (‘HQ'I) < d? heaps H(x,*) at any time, so the total number of
edges deleted from B(i, j'), for all 4, j', is at most d®ngy. In view of (3), expanding (2) gives us
a telescoping sum resulting in

|B| < 4mg/c+d*ng + > |B(3,7)],

i,

where i’ denotes any child of node 7. The inserts that caused corruption within the H(i,4')’s
are all distinct, and so again by Theorem 1.2 and Lemma 4.2, the |B(%,7')|’s sum up to at
most 4mg/c. We conclude that |B| < 8mg/c + d®ng. (In fact, we are overcounting.) With c
large enough, Lemma 4.1 is now proven. O

5 Bounding the Running Time

We prove by induction on ¢ and n that msf(G,t) takes time at most bt(m + d3(n — 1)), where
b is a constant large enough (but arbitrarily smaller than ¢), and d is any integer large enough
so that n < S(¢,d)3. The basis case, t = 1, is easy. We have n < S(1,d)®> = 84> and the
computation takes time O(n?) = O(d3n) < b(m + d*(n — 1)). So we assume that ¢ > 1 and,
because of step [1], that n is large enough.

We claim that d is an upper bound on the height of 7, and so we can apply the results of
the previous section with the same value of d. Indeed, suppose that no fusion ever occurs. If
n = S(t,d)3, then d is precisely the height of 7 for reasons already explained (see paragraph
preceding Remarks in §2). If n < S(t,d)3, then obviously the construction terminates before

15

the root of T attains its target degree, and our claim holds. In the presence of fusions, the key
fact is that a fusion prunes a part of the existing 7 to create another one. Repeated fusions
create as many new trees, but each of them can be treated as a tree to which the fusion-free
case applies. Any one of them involves fewer than n vertices, so our claim holds.

The Boruvka phases in step [2] transform G into a graph Gy with ng < n/2¢ vertices and
mo < m edges. This transformation requires O(n + m) time. The complexity of building 7
in step [3] is dominated by the heap operations. By Lemma 4.2, there are O(mg) inserts, and
hence, O(mg) deletes and melds. There are ng — 1 edge extensions, each of them calling up
to O(d?) findmins. Each heap operation takes constant time so, conservatively, computing 7~
takes O(mg + d?ng) time plus the bookkeeping costs of accessing the right heaps at the right
time.

Bookkeeping is fairly straightforward, but two important points need to be understood:
one concerns the exclusive use of pointers, the other the identification of the heaps H (i, j) for
insertion. We do not use tables (arrays being disallowed from the model), and as alluded to
earlier, the notation H (4, j) is merely shorthand for H(z;,z;). For each node z;, we maintain
a linked list giving access to H(j) and the H (3, j)’s, with the nodes z; appearing in order of
increasing height. The correspondence between the heap H(%,j) and the node z; is enforced
by pointers linking them. (Recall that these z;’s need not be consecutive along the active
path.)

For each v adjacent to the current chain, we maintain the border edges incident to v in a
linked list sorted in order of nondecreasing height along the active path; this forms what we
call the height list of v. In addition, for each z, we maintain the border structure of z. This
allows us to find, in O(1) time, the node z whose C, is incident upon a given border edge.

1. If the number of border edges incident to C, is less than d, then we keep a pointer from
each of them to z.

2. Otherwise, we partition the border edges incident to C, into groups of size d (plus a
remainder group of size < d). Each edge points to a group representative, which itself
points to z. (In other words, we create a tree of height 2 with 2z at the root.)

The combination of height lists and border structures allows us to answer the following
question in constant amortized time: Given a border-edge (u,v) incident to C,, what is the
next 2’ after z, up the active path, such that v is adjacent to C,;? A minor technicality: Since
several edges in the height list might join the same C,, we might have to walk ahead in the list
to find z’. Close inspection reveals that the difficulty arises only during retraction or fusion,
when inserting into H (x,*) an edge formerly in H(x). In that case, all but one of the edges
of H(x) incident to C, are discarded, so the extra walk can be amortized over the discarded
edges. To avoid traversing the other edges incident to C,, which all come from H (x,), we
regroup them into a sublist within the height list. As it turns out, the question above about
finding 2’ is never asked with (u,v) being one of those edges so the sublist never needs to be
traversed, and the question can always be answered in constant amortized time.

Where all that is useful is in locating the heaps H (i, j) in which to insert edges (in extension
and retraction). In all cases, z; is fixed and we must insert edges into the appropriate H (3, j)’s.
For each edge, we must find the next z; up the active path such that C,, is adjacent to an
endpoint of the edge. As we just observed, this can be done in constant amortized time. So,
for fixed j, in one pass through the list of heaps H(i,j) we can identify which ones to select
for insertion in constant time per edge-to-be-inserted plus O(d) time in overhead.

16

What are the maintenance costs of border structures and height lists? We give a brief
sketch only, attempting mostly to explain why we use shallow trees for border structures. An
extension typically causes new edges to be added to the height lists of the vertices incident
to the extension edge. No border structure needs updating, however, except the one corre-
sponding to the newly created C,,. This requires time proportional to the number of new
edges considered. Note that deleting or discarding edges is trivial to handle in the case of
height lists, and can simply be ignored in the case of border structures. During a retraction
(or fusion), two or more C,’s collapse together. Height lists are easy to maintain. In the case
of border structures, the updating cost per C, is O(d) for reconfiguring plus 1/d per edge for
updating the root of the shallow tree (if any). The latter cost can be incurred at most d times
by a given border edge, since the height in 7 corresponding to its incident C, increases by
at least one at every retraction/fusion. This gives a per-edge cost of O(1); note that without
shallow trees, this cost would be a prohibitive O(d). There are at most d C,’s involved during
a given retraction or extension, so conservatively the reconfiguration costs of O(d) add up to
O(d?ng). All together, this gives bookkeeping costs of O(mg + d?ng). In sum, by choosing b
large enough, we ensure that

g(n +m + d?ng).

Turning now to step [4], consider an internal node z of 7. If d, = 1, we say that z is
full if its number n, of children (ie, # vertices in C,) is equal to S(¢,1)3 = 8. If d, > 1,
the node z is full if n, = S(t — 1, S(¢t,d, — 1)) and its children are also full. Given a full z,
the expansion of C, relative to Gy has a number N, of vertices equal to S(¢,d,)?; we do not
include the fusion subgraphs in the count. For z not to be full, the construction of C, must
have terminated prematurely, either because a fusion pruned a part of 7 including z or more
simply because the algorithm finished. Therefore, either z is full or else all its children but
(the last) one are. This shows that N, > (n, —1)S(t,d, —1)3, for all d, > 1. By construction,
the number of vertices in C, \ B is at most S(t — 1,S(¢,d, — 1))3, and so we can apply the
induction hypothesis and bound the time for msf(C, \ B,t — 1) by

time for step [2, 3] <

b(t — 1)(m. + S(t,d; = 1)*(n. — 1)) < b(t = 1)(m, + Ny), (4)

where m, is the number of edges in C, \ B. Accounting for fusions, recall that a vertex of C,
may not be the contraction of just one C,/, for some child z’ of z in T, but also subgraphs of
the form C,, where v is a node pruned from the active path of 7 together with its “fusion tree”
below. Fusion trees are treated separately, and so the inequality in (4) applies to any such v as
well. Over all nodes of 7 (and all fusion trees), we have > m, < mo—|B| and }_ N, < dny (at
most ng vertices per level), so the overall recursion time is bounded by b(t —1)(mo —|B|+dny).
time for step [4] < b(t —1)(mo — |B| + dno).
Finally, step [5] recurses with respect to the graph F'U B. Its number of vertices is ng < n <
S(t,d)® and F is cycle-free, so by induction,
time for step [5] < bt(ng — 1+ |B|+d?(no —1)).

Adding up all these costs gives a running time at most

b
btmo + b(% —mo +|B|) + 2btd*ng + 7” .

17

By Lemma 4.1, this is no more than

btm — b(m — mo)(1) + 3btd3ng + %” .

'3
Finally, using the fact that ny < n/2¢, we find that the complexity of msf(G,t) is bounded by
bt(m + d3(n — 1)), which completes the proof by induction.

When using msf to compute the MST of a connected graph with n vertices and m edges,
our particular choice of d ensures that d3n = O(m) and, as shown below, t = O(a(m,n)). It
follows that the MST of G is computed in time O(ma(m,n)) and Theorem 1.1 is thus proven.
O

Lemma 5.1 If d = ¢[(m/n)'/3] and t = min{i > 0|n < S(i,d)3}, then
t = O(a(m,n)).

Proof: Ackermann’s function A(7,j) is defined for any integers 4,j > 0 [15]:

A(0,5) = 24, for any j > 0;
A(;,0) = 0 and A(i,1) =2, for any i > 1;
A(Za]) = A(Z - laA(ZaJ - 1))5 for any 12> 1a .7 > 2a

and for any n,m > 0,
a(m,n) = min{i >1: A(3,4[m/n]) > logn}.
For¢>1and j > 4,
A(3i,5) = A(3i — 1, A(34,5 — 1)) > 240G 1) = 2AGI-LABLI=2),
Using the monotonicity of A, since A(37,5 —2) > j, we have
A(3i,7) > 2409, (5)

It is easily shown by induction that, for any u > 2,v > 3, A(u,v) > 2**! and so

A(3i,5) = A(3i — 1, A(3d,5 — 1)) > A(3i — 1,27) > A(3,27). (6)
Trivially, A(u — 1,v) < S(u,v), for any u,v > 1, which implies that

S(9a(m,n) +1,d) > A(9a(m,n),d).

Therefore, by (5, 6) and with d > 4,

S9a(m,n) +1,d) > 94(3a(m,n),d) > 2A(a(m,n),2d)
> gAl(mn)Alm/nl) -

and therefore the smallest ¢ such that n < S(t,d)? satisfies ¢t < 9a(m,n) + 1. O

18

References

[1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

Boruavka, O. O jistém problému minimdlnim, Priace Moravské P¥irodovédecké Spolecnosti,
3 (1926), 37-58. (In Czech.)

Chazelle, B. The soft heap: an approximate priority queue with optimal error rate, to
appear in J. ACM.

Chazelle, B., Rosenberg, B. The complexity of computing partial sums off-line, Internat.
J. Comput. Geom. and Appl., 1 (1991), 33—45.

Cheriton, D., Tarjan, R.E. Finding minimum spanning trees, STAM J. Comput., 5 (1976),
724-T742.

Dixon, B., Rauch, M., Tarjan, R.E. Verification and sensitivity analysis of minimum span-
ning trees in linear time, STAM J. Comput., 21 (1992), 1184-1192.

Fredman, M.L., Tarjan, R.E. Fibonacci heaps and their uses in improved network opti-
mization algorithms, J. ACM, 34 (1987), 596-615.

Fredman, M.L., Willard, D.E. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths, J. Computer and System Sciences, 48 (1993), 424-436.

Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs, Combinatorica, 6 (1986), 109-122.

Graham, R.L., Hell, P. On the history of the minimum spanning tree problem, Ann. Hist.
Comput., 7 (1985), 43-57.

Karger, D.R., Klein, P.N., Tarjan, R.E. A randomized linear-time algorithm to find mini-
mum spanning trees, J. ACM, 42 (1995), 321-328.

King, V. A simpler minimum spanning tree verification algorithm, Algorithmica, 18 (1997),
263-270.

Komléds, J. Linear verification for spanning trees, Combinatorica, 5 (1985), 57-65.

Nesetfil, J. A few remarks on the history of MST-problem, Archivum Mathematicum,
Brno, 33 (1997), 15-22. Prelim. version in KAM Series, Charles University, Prague, No.
97-338 (1997).

Sharir, M., Agarwal, P.K. Davenport-Schinzel sequences and their geometric applications,
Cambridge Univ. Press, 1995.

Tarjan, R.E. Efficiency of a good but not linear set-union algorithm, J. ACM, 22 (1975),
215-225.

Tarjan, R.E. Complexity of monotone networks for computing conjunctions, Annals Dis-
crete Math., 2 (1978), 121-133.

Tarjan, R.E. Data Structures and Network Algorithms, STAM, Philadelphia, PA, 1983.

Yao, A. An O(|E|loglog|V|) algorithm for finding minimum spanning trees, Inf. Process.
Lett., 4 (1975), 21-23.

19

