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Abstract. Side channel cryptanalysis techniques, such as the analysis
of instantaneous power consumption, have been extremely e�ective in
attacking implementations on simple hardware platforms. There are sev-
eral proposed solutions to resist these attacks, most of which are ad{hoc
and can easily be rendered ine�ective. A scienti�c approach is to create
a model for the physical characteristics of the device, and then design
implementations provably secure in that model, i.e, they resist generic
attacks with an a priori bound on the number of experiments. We pro-
pose an abstract model which approximates power consumption in most
devices and in particular small single{chip devices. Using this, we pro-
pose a generic technique to create provably resistant implementations for
devices where the power model has reasonable properties, and a source
of randomness exists. We prove a lower bound on the number of exper-
iments required to mount statistical attacks on devices whose physical
characteristics satisfy reasonable properties.

1 Introduction

Side channel cryptanalysis i.e., cryptanalysis using information leaked during
the computation of cryptographic primitives has successfully been used to break
implementations on simple platforms such as chip{cards[1, 2, 8]. It has been
claimed [2] that in chip{card like devices, all straightforward implementations
are susceptible to attack by power analysis techniques. Analogous to timing
attacks[1], simple power attacks, where the adversary extracts key bits by iden-
tifying the execution sequence from the instantaneous power consumption, are
easier to protect against by making the execution sequence independent of the
key bits. Di�erential and Higher order Di�erential power attacks, on the other
hand are extremely powerful and di�cult to protect against. These attacks rely
on the ability of the attacker to create two di�erent statistical distributions on
the values being manipulated during a single instruction (or a set of instructions)
based on known input/output and guesses of few key bits. If these distributions
can be distinguished, using statistical tests on instantaneous power samples ( or
any other side channel), then the attacker can verify the key guesses.

Due to the wide{ranging impact of these attacks, there have been several
proposed commercial implementations which claim to resist these and similar
attacks. Without rigorous justi�cation, several of these solutions are ad{hoc
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and based on simplistic techniques such as probabilistically reordering execution
paths. It is our view that such approaches essentially miss the import of these
attacks and their underlying basis. Furthermore, these simple countermeasures
can be nulli�ed by signal processing. Instead, we propose that the focus should
be on sound scienti�c approaches to this problem i.e. develop an accurate and
abstract model of the problem and identify rigorously proven techniques which
can be used as e�ective countermeasures. A realistic goal for a sound and e�ec-
tive countermeasure is to provably resist all generic attacks by an adversary who
is allowed to perform and observe at most an a priori �xed number of adaptively
chosen operations. Generic attacks are those that use functional speci�cations
and generic physical characteristics and do not depend on speci�c implemen-
tations and devices. Typically, simple single chip devices and the keys within
them are short{lived and the number of key{dependent operations performed
by them over their lifetime is also limited. A countermeasure secure against an a
priori bound on the number of experiments, can be used in practice by explicitly
enforcing this upper bound in the devices themselves.

In this paper, we propose a general, simpli�ed model for the power consump-
tion in simple devices, and use this to restate the basis of these attacks and
to analyze countermeasures. We examine ad{hoc approaches which have been
proposed and discuss why they are easy to defeat. A general technique is then
proposed as a countermeasure against statistical attacks in devices where the
power model is reasonable and a source of randomness is available. This tech-
nique is based on well known secret sharing schemes where each bit of the original
computation is divided probabilistically into shares such that any proper subset
of shares is statistically independent of the bit being encoded and thus, yields
no information about the bit. Computation of cryptographic primitives is done
accessing only the random shares at each point, with intermediate steps com-
puting only the shares of the result. Splitting the bit into multiple probabilistic
shares ampli�es the uncertainty of the adversary at each point and forces him to
work with the joint distributions of the signal at the points where the shares are
being accessed. For computation of common cryptographic primitives, simple
sharing schemes based on XOR and addition modulo 28 can be used.

We make realistic assumptions about the power consumption model for de-
vices with respect to the uncertainty of the adversary at each point, and analyze
the e�cacy of this technique to withstand power analysis attacks. Using this,
we rigorously prove lower bounds on the number of observations required to sta-
tistically distinguish distributions, de�ned in power attacks, using observations
on power samples. Our lower bounds are exponential in the number of shares
that each bit (or byte ) of the computation is encoded by. The models and lower
bounds are initial steps in developing a formal framework for the problem of
computation in the presence of the information leaked due to the observations
on the physical characteristics of devices. Only solutions which can be proved se-
cure in a formalized model should be considered for implementation. Substantial
e�ort is still required to �nd more appropriate models and stronger analysis.

Section 2 describes a formalization of a general power consumption model.
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Section 2.1 restates power analysis attacks in this framework. In section 3, we
analyze countermeasures, examine simple ad-hoc solutions which are ine�ective,
and propose the secret sharing scheme as a general countermeasure against these
attacks. In Section 3.4, we make realistic approximations on the model and rigor-
ously prove lower bounds on the number of samples needed to mount di�erential
power attacks against implementations with this countermeasure.

2 Power Model and De�nitions

CMOS devices consume power only when changes occur in logic states, while
no signi�cant power is needed to maintain a state. Examples of changes include
changes in the contents of the RAM, internal registers, bus-lines, states of gates
and transistors etc. In simple chips almost all activity is triggered by an inter-
nal/external clock edge and all activity ceases well before the next clock edge.
A few processes, such as on-chip noise generators, operate independently of the
clock and consume a small, possibly random amount of power continuously. Each
clock edge triggers a sequence of power consuming events within the chip, as dic-
tated by the microcode, bringing it to the next state. This sequence depends on
parts of the current state of the processor and parts of the state of other sub-
systems accessed in that cycle. We de�ne relevant state bits as the bits of the
overall state which determine the sequence of events, and hence the power, dur-
ing a clock cycle. Depending on the cycle, the relevant state bits could include
bits of internal registers, bits on internal and external buses, address bits and
contents of memory locations being accessed etc.

The instantaneous power consumption of the chip shortly after a clock edge
is a combination of the consumption components from each of the events that
have occurred since the clock edge. Each event's timing and power consumption
depends on physical and environmental factors such as the electrical properties
of the chip substrate, layout, temperature, voltage etc., as well as coupling e�ects
between events of close proximity. As a �rst approximation, we ignore coupling
e�ects and create a linear model, i.e., we assume that the power consumption
function of the chip is simply the sum of the power consumption functions of all
the events that take place.

Consider a particular cycle of a particular instruction in the execution path
of some �xed code. At the start of the cycle, the chip is in one of several relevant
states (determined by the value of the relevant state bits) depending on the input
and processing done in earlier cycles. Let S denote the set of possible relevant
states when control reaches this cycle and let E be the set of all possible events
that can occur in a cycle. For each s 2 S, and each e 2 E , let occurs(e; s) be the
binary function which is 1 if e occurs when the relevant state is s and 0 otherwise.
Let delay(e; s) be the time delay of the occurrence of event e in state s from
the clock edge and let f(e; t) denote the power consumption impulse function of
event e with respect to time t (t = 0 when e occurs and f(e; t) = 0 for t < 0).
In our linear model, P (s; t), the power consumption function of the chip in that
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cycle with state s and time t after the clock edge can be written as

P (s; t) =
X
e2E

f(e; t � delay(e; s)) � occurs(e; s)

Due to the presence of noise and asynchronous power consuming components, a
better model is:

P (s; t) = Nc(t) +
X
e2E

(f(e; t � delay(e; s) +Nd(e; s)) +N (e; t)) � occurs(e; s)(1)

where N (e; t) is a Gaussian noise component associated with the power con-
sumption function of e, Nd(e; s)) is a Gaussian noise component a�ecting the
delay function and Nc is the Gaussian external noise component.

2.1 Statistical Power Attacks

Equation 1 shows the strong dependence between the power consumption func-
tion and the relevant state which is the basis of all statistical power attacks.
Let P1 and P2 be two di�erent probability distributions on the relevant state
before the clock edge of a certain cycle. From equation 1, it is very likely that
the distribution of the instantaneous power when the state is drawn from P1 will
be di�erent from the distribution of the instantaneous power when the state is
drawn from P2. This di�erence and the distinguishability of di�erent distribu-
tions by statistical tests on power samples, is the basis for Di�erential Power
attacks (DPA). Simple distributions are su�cient to mount these attacks. For
example, in the DPA attacks described in [2], P1 and P2 are very simple: P1 is
the uniform distribution on the set of all relevant states which have a particular
relevant state bit 1 and P2 is the uniform distribution on the set of all rele-
vant states which have the same bit 0. The di�erence in the power distribution
for these two cases represents the e�ect of that particular relevant state bit on
the net power consumption. This can be used to extract cryptographic keys by
guessing parts of keys, using this to predict a relevant state bit and de�ning the
distributions as described above. Higher order di�erential attacks are those in
which the distributions P1 and P2 are de�ned over multiple internal state vari-
ables and where the adversary has access to multiple side channels. Appendix 1
shows an example of distributions induced in the power consumption signal by
distributions on the relevant state, for an actual chip{card.

In de�ning security against statistical attacks we use the strongest possible
notion: using the side channel, with high probability, the adversary should not
be able to predict with even a slight advantage, any bit that he could not predict
from just the knowledge of inputs, outputs and program code. In using the side
channel, the adversary is limited to trying to distinguish distributions which he
can a�ect by choice of inputs and selection based on outputs. These are limited
to distributions on bits such as bits in the algorithm speci�cation e.g., bits of the
key, bits which depend directly on the key and the input etc. Also, in an attack
against the implementation the adversary could a�ect deterministic temporary
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variables, registers etc. We informally de�ne the set of realizable distributions
which the adversary can directly a�ect as follows:

De�nition1. A distribution on state bits is realizable if the adversary can in-
duce the distribution by suitable choice of inputs and selection based on outputs.
In particular, this excludes distributions of state bits which result from explicit
randomization introduced in the implementation outside of the speci�cation.

The ability to distinguish any two realizable distributions is potentially advanta-
geous to the adversary. Using standard notations ( see for example[7]) we de�ne
the distinguishing probability of an adversary as follows:

De�nition2. Let M be a binary valued adversary who adaptively chooses k in-
puts and has access to the side channel signals for the corresponding operations.
Let B1 and B2 be any two realizable distributions on the bits of a computa-
tion, and D1 and D2 the distributions induced on the side channel signals, by
the choice of inputs and B1 and B2 respectively. Let MD denote M 's output
when given k input/output pairs and corresponding side{channel samples from
a distribution D. The distinguishing probability of M when given samples from
distributions D1 and D2 is jPr(MD1 = 1)� Pr(MD2 = 1)j: M is said to distin-
guish B1 from B2 using k side-channel samples, if the distinguishing probability
of M , on D1 and D2, is at least some constant c.

Using this de�nition of adversaries, we de�ne a secure computation. We intend
to capture extra information that the adversary obtains from the side channel.

De�nition3. A computation is said to be secure against N sample side channel
cryptanalysis, if for all adversaries M and all realizable distributions B1 and B2,
if M can distinguish B1 from B2 using fewer than N samples, then M can
distinguish B1 and B2 without the side channel.

The attacks described by [2] can be restated as using the side channel to distin-
guish distributions B1 and B2 which correspond to almost uniform distributions
on a few relevant state bits, with a particular state bit ( depending on the input
and key ) being 0 and 1 respectively. There the adversary bases its decision by
comparing the mean of the given samples, with some known threshold.

3 Countermeasures to Power Analysis

Using these formal de�nitions of side channel cryptanalysis, we discuss gen-
eral countermeasures against such attacks. First, we examine several ad{hoc
approaches to �xing this problem, which, we believe, miss the import of these
attacks and can easily be rendered ine�ective. We present a probabilistic encod-
ing scheme with which we can e�ectively perform secure computations. Based on
realistic approximations of the power models of Section 2 we prove lower bounds
on the number of samples required to distinguish distributions.
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3.1 Ad{hoc Approaches

Due to the commercial impact, several ad-hoc solutions are currently being im-
plemented and claim to be resistant to these statistical attacks. Unfortunately,
most can be defeated by signal processing in conjunction with only moderately
more samples. Allowing for about 1 million possible experiments, it is reasonable
to assume that the adversary can exploit every relevant state bit in any instruc-
tion to mount a statistical attack, provided he can e�ciently predict that bit in
a signi�cant fraction of the runs based on the code speci�cation, known inputs
and small number of guesses for parts of the key.

Some approaches to protecting computation use simple countermeasures such
as \balancing", i.e., try to negate the e�ects of one set of events by another \com-
plementary" set. For example, by ensuring that all bytes used in computation
have Hamming weight 4, one can try to negate the e�ect of each 1 bit by a
corresponding 0 bit. Such approaches fail at high resolution and large number of
samples, because the power consumption functions and timing of two \comple-
mentary" events will be slightly di�erent and the adversary can maximize these
di�erences by adjusting the operating conditions of the card. Another popular
approach is to randomize the execution sequence i.e. keep operations the same,
but permute the order e.g. in DES, the S{boxes are looked up in a random order.
Unless this random sequencing is done extensively throughout the computation,
which may be impossible since the speci�cation forces a causal ordering, it can
be undone and a canonical order re{created by signal processing. Attacks can
be mounted on the re{ordered signals. Even if the entire computation cannot be
canonically reordered, it is su�cient to identify \corresponding" sample points
in di�erent runs so that a signi�cant fraction are samples from the same power
function P for the same cycle. All statistical attacks that work for P are also ap-
plicable to \corresponding" points, although more samples would be needed due
to \noise" introduced by unrelated samples. In the case of permuted S-boxes, if
the permutation is random, in 1

8 of the runs S-box 1 is looked up �rst, and in the
remaining samples, the signal at this point, corresponding to di�erent lookups,
is essentially random. Thus, even with no reordering, we now have a signal which
is attenuated by a factor of 8. Mounting the original attack with 64 times the
number of samples yields the same results. Elementary reordering substantially
reduces this factor. A similar countermeasure in hardware is typically achieved
by making instructions take a variable number of cycles or by having the cycles
be of varying length( see [4]). Once again, it is very easy to negate all these
countermeasures with signal processing.

3.2 A general countermeasure

A general countermeasure is to ensure that the adversary cannot predict any
relevant bit in any cycle, without making run{speci�c assumptions independent
of the actual inputs to the computation. This makes statistical tests involv-
ing several experiments impossible, since the chance of the adversary making
the correct assumptions for each run is extremely low. While this yields secure
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computation, it is not clear how one can do e�ective computation under this
requirement since no bit depending directly on the data and key can be manip-
ulated at any cycle. In some cases the function being computed has algebraic
properties that permits such an approach, e.g., for RSA one could use blinding
[1, 3] to partially hide the actual values being manipulated. Another class of
problems where this is possible is the class of random self{reducible problems
[9]. Such structure is unlikely to be present in primitives such as block ciphers.

3.3 Encoding

The encoding we propose is to randomly split every bit of the original com-
putation, into k shares where each share is equiprobably distributed and every
proper subset of k � 1 shares is statistically independent of the encoded bit.
Computation can then be carried securely by performing computation only the
shares, without ever reconstructing the original bit. Shares are refreshed after
every operation involving them to prevent information leakage to the adversary.

To �x a concrete encoding scheme, we assume that each bit is split into
k shares using any scheme which has the required stochastic properties. For
instance, bit b can be encoded as the k shares b�r1, r2, : : : , rk�1, r1� : : :�rk�1,
where the ris are randomly chosen bits. Furthermore, assume that each share is
placed in a separate word at a particular bit position and all other bits of the
share word are chosen uniformly at random.

In practice, it would be more useful, if each word of computation is split
similarly into k shares. In that case, other schemes of splitting into shares based
on addition mod 28, subtraction mod 28 would also be viable. Encoding bytes of
data manipulated by splitting them into shares would yield the optimal perfor-
mance. Ignoring the initial setup time, the performance penalty in performing
computation using just the k shares is a factor of k. Our results which have been
proved based on the bit encoding scheme would also work for this case but the
bounds they yields are based only on the characteristics of the noise within the
chip, and hence may not be optimal. This is discussed brie
y after the analysis
for the bit encoding case. The results and analysis we present here can serve as
a framework in which to prove results for the byte encoding scheme.

The method to encode the bit in secret shares should be chosen based on the
computation being protected. For instance, for an implementation of DES, the
XOR scheme is ideal since the basic operations used are XOR, permutations,
and table lookups. Table lookups can be handled by �rst generating a random
rearrangement of the original table since a randomized index will be used to look
up the table. This step increases the overhead beyond the factor of 2.

In practice, the splitting technique needs to be applied only for a su�cient
number of steps into the computation until the adversary has very low proba-
bility of predicting bits, i.e., till su�cient secret key dependent operations have
been carried out. Similar splitting also has to be done at end of the computation
if the adversary can get access to its output. For instance, in DES, one needs to
use the splitting scheme only for the �rst four and last four rounds.
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3.4 Analysis

We analyze the encoding scheme described above, by making reasonable assump-
tions on distribution of side channel information and prove that the amount of
side channel information required grows exponentially in k, the number of shares.
For concreteness we �x the XOR bit encoding scheme and consider the instanta-
neous power consumption at some time instant in a cycle manipulating a share.
The relevant state in that cycle will not only include a share of the bit, but also
all the other random bits in the word. It is quite reasonable to assume that the
contributions of all bits in the word will be similar in magnitude. From equation
(1), expanding occurs(e; s) as a linear form over the bits of s, the instantaneous
power consumption when a particular share is being manipulated will be

P = b� s0 + P � s0 + R

where b is the contribution of just the shared bit s0, P � s0 is the distribution of
power contributions of events which require s0 and other state bits and �nally,
R is the distribution of events which are independent of the bit s0. In operations
such as load, store and XOR, if s0 is a bit in a word being manipulated, the
factor P can be viewed as a small perturbation on the real value b. In simple
operations there is no \interaction" between the di�erent bits of the value being
manipulated and an approximation, we will ignore the contribution of the vari-
able P . The random variable R is typically much larger than b since it includes
the sum of similar contributions from all other bits. For most operations, R is
the sum of almost independent distributions which is very well approximated
by the Normal Distribution. Thus, we make the realistic assumption, which has
been empirically tested as shown in Appendix 1, that R has a normal distribu-
tion with mean � and variance �2. The results we prove can also be shown to
hold in the case that R is the sum of i.i.d's, which is the case for operations such
as load, store, XOR. Further work needs to be done to analyze more complex
and precise distributions which model all chip{card operations such as multiply
where there is interaction between the bits being manipulated and it is unlikely
that one can ignore the contribution of the variable P .

Assume that in each sample the adversary has access to the k signal values
corresponding to the power consumption at instructions which access the shares
b�r1; r2; : : : ; rk�1; r1�r2 : : :�rk�1. Rewrite these bits as r1; :::rk, with r1�: : :�
rk = b. Denote the distribution of the instantaneous power consumption signal
at these points by random variables Z1; Z2; :::Zk. Also, let Zi = Ai +Xi, where
Ai is the contribution due to the bit in concern and Xi is the additive factor
which follows the distribution R. By the de�nition of the encoding, Ai takes
values 0 and 1 with probability 1

2 each. Any noise in the contribution due to Ai

can be absorbed in R without a�ecting the distribution of R since R is typically
much bigger than b. Thus, the power contribution due to Ai is 1 if ri = 1 (and
0 if ri = 0). It is important to note that the Ai's are not independent since
A1 � :::�Ak = b .

In de�ning distributions that an adversary can try to distinguish using inputs,
outputs and the side channel information, note that the adversary can not control
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the randomizing variables ri's. Thus, the only realizable distributions are those
with the value of the bit b being 0 and 1 i.e. distributions D1 and D2 where: a
random variable Y sampled from D1 is given by

hA1 +X1; : : : ; Ak +Xki
with the condition that A1� :::�Ak = b, while a random variable sampled from
D2 is given by

hA1 +X1; : : : ; Ak +Xki
with the condition that A1 � : : :� Ak = 1 � b. This is more general than the
encoding scheme speci�ed above. It corresponds to the intuition that using �
and k random bits there are several ways to split a bit into shares e.g. a three
way split of a bit b can be speci�ed as b� r1, r2, r1� r2 or as b� r1� r2, r1, r2.

Let M be an adversary trying to distinguish the two distributions D1 and
D2. It gets a sequence T of m samples, sampled from either D1 or D2, each
element of which is a k tuple of signal values at the k points that the shares
are accessed. If S1; : : : ; Sk are random variables denoting these values let S =
(S1 � �) � � � � � (Sk � �) where � is the mean of the distribution R. S has a
slightly di�erent mean ( with the di�erence of 1

2(k�1)
) under distributions D1

and D2 and with a variance of approximately (�2)k. Using standard techniques,
it is easy to show that an adversary given (2�2)k samples can distinguish the
two distributions using the statistic S. Thus, approximately nk samples are
su�cient, where n = �2. We are interested in lower bounds on the number of
samples required to distinguish the distributions. Our central result is:

Theorem4. Let � be a constant. Given distributions D1 and D2 de�ned above,
any adversary which has access to m < n

k
2�4� samples (n = �2) from one of

these two distributions, has probability at most n�� of distinguishing D1 and D2.

Note that this not a tight lower bound and we conjecture that nk is the tight
bound. We sketch the proof for the case k = 2 and the general proof can be
done along the same lines. We require the following basic facts from probability
theory.

3.5 Probability Theory Basics

The density function of Normal distribution with mean � and variance �2 is

�(x) =
1p
2��

e�
1
2 (

x��

�
)2

The corresponding distribution function is de�ned as

N (x) =

Z x

�1
�(x)dx

The following inequality is useful (see for example [5]):

N (x) <
�2

�� x
�(x)
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Theorem5. Cherno� Bound: Let Sn = X1 + :::+Xn where the Xis are inde-
pendent and are 1 and 0 with probability p and q = 1 � p. For p < a < 1, and
b = 1� a,

Pr[Sn � na] � e�nK(a;p)

where K(a; p) = a log(ap ) + b log( bq ).

3.6 Lower Bound for 2 way Split

In this section we outline a proof of Theorem 4 with k = 2. Our proof uses several
techniques and ideas from Naor et. al [6]. The realizable distributions D1 and
D2 which the adversary has to distinguish are de�ned on the space P = R�R,
where R is the set of reals. If Y is the random variable sampled from one of these
distributions, in D1, Y = hA +X1; A + X2i and Y = hA + X1; (1 � A) + X2i,
where X1; X2 are random variables with normal distribution with parameters �,
� and A is a uniform binary random variable.

Let M be an adversary trying to distinguish D1 and D2. By assumption, M
�xes a certain precision � and divides the area R�R into squares of length �,
where � < 1p

n
without loss of generality. All inputs in a particular square are

treated identically. When we refer to hu; vi 2 R � R, we identify u and v with
the boundaries of the intervals containing them and thus identify hu; vi with the
the �� � square containing it.

Let m = n1�4��, where � is a constant. We show that no adversary can
distinguish between sequences with at most m samples, sampled according to
D1 and D2. In the following exposition, T is a random variable denoting a
randomly drawn sequence, and s denotes a possible value of T . The outline of
the proof is as follows: We �rst de�ne a set of bad sequences (de�nition 6 below).
Then we show (in Lemma 8) that under distributions D1 and D2 the probability
that a sampled sequence T is bad i.e. the probability of the event BADT is very
small. Restricting ourselves to sequences which are not bad, we show that the
probability that the randomvariable T has a particular value s is almost the same
whether we are sampling according to D1 or D2. In particular, in Lemma 10 we
show that PrD1 (T = sj:BADT ) > �n �PrD2 (T = sj:BADT ), where �n is close
to 1, from above. Similarly, we show that the probability of a sequence which
is not bad, when sampled according to D2 is at least ��1n times its probability
under D1. In other words, the occurrence probability of a sequence that is not
bad, is almost the same under both distributions. Putting it all together, we
then show that the adversary cannot distinguish the distributions using fewer
than m samples. We begin with the de�nition of bad sequences.

De�nition6. Let fs(x; y), x; y 2 R, be the number of times that hx; yi appears
in sequence s. We call a sequence s a bad sequence if either (1) fs(��u; ��v) > 0,

for u; v > n(0:5+�) or (2) fs(��u; ��v) > n2

(uv+1) �n�c, for other values, u; v > 0.

Here c = 1� 3�.

In the above de�nition and in the rest of the proof we have ignored the cases
when u; v < 0 and these can be treated symmetrically.
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De�nition7. De�ne maxf (�� u; �� v) = 0 , for u; v > n(0:5+�) and maxf (��
u; �� v) = n2

(uv+1 )
� n�c , for all other values u; v � 0.

This the maximum possible number of times that hu; vi occurs in a sequence
which is not bad. Denote the random sequence of m two tuples as T = T1T2:::Tm
and denote s = s1s2:::sm.

Lemma8. PrD1;D2(BADT ) < e�n
�

i.e. under either distribution, the set of bad
sequences is negligibly small.

Proof: We consider the two cases in the de�nition of a bad sequence separately.
The probability that the random variable distributed according to N (�; �) takes
on a particular value � � x is given by N (� � x) � N (� � x � �), which for
small values of � can be approximated by � � �(�� x). Using this approximation
and taking into account the contribution of the binary valued random variable,
under either distribution D1 or D2 the probability that si = h�� u; �� vi can
be approximated by probability

p =
d�2

(2��2)
� e� 1

2 (
u2+v2

�2
) (2)

where d is a small constant close to 1. Since the elements of the sequence are
sampled independently, by the Cherno� bound (section 3.5), the probability Puv
that fs(� � u; �� v) > n2

(uv) � n�c is about e�m�K(a;p), where a = n�c

(uv+1) . Since

1� a is close to 1, K(a; p), a simple calculation shows that

Puv � (
p

a
)ma � ( 1� p

1 � a
)m < (

d�2uvm

2��2n2�c
)
n2�c

uv � en1�c < (
�2e

n2�
)(

n2�c

(uv+1) )

Since there are
p
n2

�2 possible values of u; v, the total probability of BAD in case
(2) is at most

n

�2
� �2( n2�c

(uv+1) )

which is exponentially small as uv < n1+2� .
For case (1) of the de�nition of bad sequences, let si be the two tuple hsi1; si2i.

For each i, using the inequality on Normal distribution in Section 2,

N (�� n0:5+�) <
�2

n0:5+�
e�

1
2 (

n0:5+�

�
)2

Thus Pr(si1 < �� n0:5+�(n)) < e�(n
2��logn). The probability that the sequence

is bad according to case (1) is at most m times this small probability. 2

Thus the space of bad sequences is very small. We now argue that for sequences
that are not bad, the probability of occurrence is the same under both distribu-
tions. Denote PrD1 (Ti = h��u; ��vi), byXu;v. Also, let PrD2(Ti = h��u;��vi)
be Xu;v+�u;v. The di�erence �u;v is due to the contribution of the binary val-
ued random variable. The following lemma bounds �u;v.
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Lemma9. For small �, �u;v

Xu;v
� uv

�4 .

Proof: This can be seen through the following sequence of approximations and
identities. The �rst approximation follows from the de�nition of D1 and D2 and
by choice of small �.

�u;v � 1

2
� (�(� � u)�(�� v) + �(�� u� 1)�(� � v � 1)

��(� � u� 1)�(�� v) � �(� � u)�(� � v � 1)) � �2

=
1

2
� �2 � (�(�� u)� �(�� u� 1)) � (�(� � v) � �(�� v � 1))

=
�2

2
� 1

(
p
2��)2

� (e� 1
2 (

u
�
)2 � e�

1
2 (

u+1
�

)2) � (e� 1
2 (

v
�
)2 � e�

1
2 (

v+1
�

)2)

� �2

2
� 1

2��2
� ( u
�2

� e� 1
2 (

u
�
)2) � ( v

�2
� e� 1

2 (
v
�
)2)

� d

2
�Xu;v � uv

�4

The second last inequality follows from the power series expansion of ex. The
last inequality and the constant d are from (2). Thus the claim follows. 2

Lemma10. The probability of occurrence of a sequence that is not bad is almost
the same under both distributions. In particular, ��1n �PrD1 (T = sj:BADT ) <
PrD2(T = sj:BADT ) < �n � PrD1(T = sj:BADT ), where �n = 1 + (2n)��.

Proof: We just show that

jPrD2(T = sj:BADT )�PrD1
(T = sj:BADT )j < PrD1

(T = sj:BADT )�n�c
p
n :

This follows by:

jPrD2(T = sj:BADT )� PrD1
(T = sj:BADT )j

= j�u;v(Xu;v +�u;v)
fs(u;v) � �u;v(Xu;v)

fs(u;v)j
= �u;vX

fs(u;v)
u;v � j(�u;v(1 +�u;v=Xu;v)

fs(u;v))� 1j
� �u;vX

fs(u;v)
u;v � j(�u;v(1 +�u;v=Xu;v)

maxf (u ;v))� 1j
� �u;vX

fs(u;v)
u;v � j(�u;v(e

n�c ))� 1j
� �u;vX

fs(u;v)
u;v � j((en�c )m)� 1j

� �u;vX
fs(u;v)
u;v � j(en�� )� 1j

� (�u;v X
fs(u;v)
u;v ) � (2n)��

= PrD1(T = sj:BADT ) � (2n)��

The �rst two equalities are by de�nition 6 and the fact that (1 + x)1=x < e,
for x > 0. Although the number of u; v pairs can be about (n=�2), the third
inequality is true because the number of u; v for which fs(u; v) > 0 is at most
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m. The �fth inequality follows by the power series expansion of ex, from which
it can be shown that for x < 1, ex < 1 + 2x. 2

Proof ( of Theorem 4 ) We put together the various pieces to show that an
adversary M cannot distinguish these two distributions. Let M be a binary
valued adversary and let M (s) denote the output ofM on input s, a sequence of
samples. Note that if C is any condition on the random variables, by de�nition

Pr(MD = 1 jC) = �sPrD(T = s jC) � Pr(M (s) = 1) and T = s) (3)

By de�nition,

jPr(MD1 = 1)� Pr(MD2 = 1)j =
jPr(MD1 = 1j:BADT ) � PrD1

(:BADT )

� Pr(MD2 = 1j:BADT ) � PrD2
(:BADT )

+ Pr(MD1 = 1jBADT ) � PrD1
(BADT )

� Pr(MD2 = 1jBADT ) � PrD2
(BADT )j

� jPr(MD1 = 1j:BADT ) � (PrD1
(:BADT )� �n � PrD2

(:BADT ))j
+ jPr(MD1 = 1jBADT ) � PrD1

(BADT )

� Pr(MD2 = 1jBADT ) � PrD2
(BADT )j

where ��1n � �n � �n. This follows from the observation (3) and Lemma 10.
Since �n is close to one, and PrD1;D2 (:BADT ) is also close to one, the �rst sum-
mand on the right of the above inequality is close to zero. The second summand
is also close to zero as PrD1;D2(BADT ) is close to zero by lemma 8. Thus, the
distinguishing probability is close to zero. 2

Similarly we can show:

Theorem11. Let D1 and D2 be as before but with the noise being the sum of
n identically and independently distributed binary variables (with p = 1

2). Any

adversary which has access to nk=2�4� samples, has probability at most 1
n�

of
distinguishing D1 and D2.

3.7 Encoding Bytes

For practical computation, we would use the encoding scheme of splitting each
relevant byte of the computation into k shares. It is clear from our proof tech-
niques that if there was enough additional noise in the power signals to e�ectively
mask the byte values, then the same proofs will go through for the byte encoding
scheme. It seems unlikely to happen in limited devices. It may be possible to
extend our proof techniques to account for the fact that there is uncertainty on
the value of a byte being manipulated given its power signal even without any
additional noise.
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4 Conclusions and Directions

We have presented a simpli�ed initial step into the formal analysis of computing
in the presence of loss of entropy due to leaked side channel information. Our
lower bounds on the amount of side channel information required are proved
for reasonable approximations of the actual distributions. Substantial e�ort is
required to �nd more e�ective and general countermeasures against such at-
tacks. Besides proving implementations secure from power attacks, this frame-
work could also be used to design ciphers and other primitives which readily
admit a secure, e�cient implementation.
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6 Appendix 1: Power distribution example
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Fig. 1. Power distributions when loading random bytes from RAM

Figure 1 shows three distinct distributions of the instantaneous power consump-
tion of a commonly available chip in the middle of a cycle which loads the value
of a RAM byte into the accumulator. These correspond to three di�erent distri-
butions on the value of that particular RAM byte. All three power distributions
are plotted on a \normal scale" and each distribution shows up as a thick line
in this plot, which means all these three power distributions are close to nor-
mal. The middle line corresponds to the power distribution when the RAM byte
is drawn uniformly at random. It has a mean of 0 (we have shifted all power
readings by an additive constant to enforce this). The top line corresponds to
the power distribution when the RAM byte is uniformly chosen from all bytes
with MSB of 1. It has a mean of �25. The bottom line corresponds to the power
distribution when the RAM byte is uniformly chosen from all bytes with MSB
0. This has a mean of +25.
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