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Abstract 

The National Institute of Standards and Technology (NIST) opened a public competition on 
November 2, 2007, to develop a new cryptographic hash algorithm – SHA-3, which will augment 
the hash algorithms specified in the Federal Information Processing Standard (FIPS) 180-4, 
Secure Hash Standard (SHS). The competition was NIST’s response to advances in the 
cryptanalysis of hash algorithms.  
 
NIST received sixty-four submissions in October 2008, and selected fifty-one first-round 
candidates on December 10, 2008; fourteen second-round candidates on July 24, 2009; and five 
third-round candidates – BLAKE, Grøstl, JH, Keccak and Skein, on December 9, 2010, to 
advance to the final round of the competition. Eighteen months were provided for the public 
review of the finalists, and on October 2, 2012, NIST announced the winning algorithm of the 
SHA-3 competition – Keccak. This report summarizes the evaluation of the five finalists and the 
selection of the SHA-3 winner. 
 
KEY WORDS: Cryptographic hash algorithm; Cryptographic hash function; Cryptography; 
Cryptographic hash competition; SHA-3 competition. 
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1. Introduction 

1.1 Purpose of this Document 

This report summarizes the third and final round of the SHA-3 (Secure Hash Algorithm-3) 
Cryptographic Hash Algorithm Competition. The third round began on January 31, 2011, when 
the National Institute of Standards and Technology (NIST) posted the finalists’ submissions for 
the third round, and ended on October 2, 2012, when NIST announced the SHA-3 winner – 
Keccak. This report explains the evaluation and selection process. 

1.2 Background 

NIST opened a public competition on November 2, 2007, to develop a new cryptographic hash 
algorithm (referred to as SHA-3) to augment the hash algorithms specified in Federal Information 
Processing Standard (FIPS) 180-2, Secure Hash Standard1 [1]. The competition was NIST’s 
response to advances in the cryptanalysis of hash algorithms in recent years. An attack by Wang 
et al. [4], and extended by many others, introduced serious concerns about the security of the 
SHA-1 government standard hash algorithm when used for the generation of digital signatures 
and in other security applications that require collision resistance.  

NIST proposed a Draft Minimum Acceptability Requirements, Submission Requirements, and 
Evaluation Criteria for Candidate (Hash) Algorithms for public comment in a Federal Register 
Notice in January 2007 (FRN-Jan07) [5]. These requirements and evaluation criteria were 
updated, based on public feedback, and included in a later, second Federal Register Notice 
published on November 2, 2007 (FRN-Nov07) [6], which called for the submission of candidate 
algorithms and launched the “SHA-3” competition.  
 
The competition, modeled after the Advanced Encryption Standard (AES) Competition [7] in 
1997, generated great interest in the cryptographic community, and inspired numerous SHA-3 
entries from around the world. NIST received sixty-four entries by October 2008, and selected 
fifty-one first-round candidates in December 2008, fourteen second-round candidates in July 
2009, and five third-round candidates – BLAKE, Grøstl, JH, Keccak, and Skein, on Dec. 9, 2010, 
to advance to the final round of the competition. Table 1 lists these finalists and their submitters. 
 

Algorithm Designer 
BLAKE [8] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, Raphael C.-W. Phan 

Grøstl [9] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, 
Christian Rechberger, Martin Schläffer, Søren S. Thomsen 

JH [10] Hongjun Wu 
Keccak [11] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche 

Skein [12] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, 
Tadayoshi Kohno, Jon Callas, Jesse Walker 

Table 1. SHA-3 Finalists 

                                                      
1 FIPS 180-2 [1], Secure Hash Standard, was the government hash standard when the SHA-3 competition began; it was 
superseded by FIPS 180-3[2], Secure Hash Standard, in October 2008, and again by FIPS 180-4 [3], Secure Hash 
Standard, in March 2012. 
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NIST has published a report for the first and second round of the competition. These reports [13, 
14], and all the relevant information about the SHA-3 competition, are available at NIST’s hash 
competition website: http://www.nist.gov/hash-competition. 
 
For the third round of the competition, NIST also allowed the submitters of the remaining 
candidates to make minor modifications to their algorithms by Jan. 16, 2011. Such modifications 
are often referred to as “tweaks” by the cryptographic community. NIST posted the final tweaked 
submissions on January 31, 2011, and started the third round of the competition. 
 
The review process of the finalists spanned nineteen months, and included a final SHA-3 
Candidate Conference [15] held in March 2012. Throughout the competition, the cryptographic 
community provided an enormous amount of feedback to NIST. Most of the comments were sent 
to NIST or to the Hash Forum [16], which is a public email list, hash-forum@nist.gov, 
established to facilitate dialogue about the hash workshops that NIST held prior to the 
competition, and the SHA-3 competition. In addition, some organizers held hash workshops [17, 
18, 19, 20, 21, 22, 23], or set up public websites to facilitate cryptanalysis or performance 
benchmarking of the candidates, such as the SHA-3 Zoo [24], the ECRYPT Benchmarking of All 
Submitted Hashes (eBASH) [25], and the eXternal Benchmarking eXtension (XBX) [26] sites. 
Many of the cryptanalysis and performance studies were published as papers in major 
cryptographic conferences or leading cryptographic journals. ECRYPT II has also published two 
reports [27, 28] on the SHA-3 candidates prior to the finalists’ third-round tweaks. 
 
Based on the public feedback and internal review of the finalists, NIST selected Keccak as the 
SHA-3 winner. NIST made the selection announcement on October 2, 2012 [29], and officially 
ended the SHA-3 competition. Table 2 shows the competition timeline, including major events 
leading to the start of the SHA-3 competition. 
 

Date Event 
10/31-11/1/2005 Cryptographic Hash Workshop [30], NIST, Gaithersburg, Maryland. 
8/24-8/25/2006 Second Cryptographic Hash Workshop [31], UCSB, California. 

1/23/2007 
Issued the Federal Register Notice Announcing the Development of New Hash 
Algorithm(s) for the Revision of Federal Information Processing Standard 
(FIPS) 180-2, Secure Hash Standard [5]. 

11/2/2007 
Issued the Federal Register Notice Announcing a Request for Candidate 
Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) 
Family [6]. SHA-3 competition began. 

10/31/2008 SHA-3 Submission Deadline. 
12/10/2008 First-round candidates announced. The first round began. 
2/25-2/28/2009 First SHA-3 Candidate Conference [32], KU Leuven, Belgium. 
7/24/2009 Second-round candidates announced. The first round ended. 
9/28/2009 Second-round candidates posted for public review. The second round began. 
8/23-8/24/2010 Second SHA-3 Candidate Conference [33], UCSB, California. 
12/9/2010 SHA-3 finalists announced. The second round ended. 
1/31/2011 Third-round candidates posted for public review. The third round began. 
3/22-3/23/2012 Third SHA-3 Candidate Conference [15], Washington, D.C. 
10/2/2012 Keccak announced as the SHA-3 winner. SHA-3 competition ended. 

Table 2. SHA-3 Competition Timeline 

http://www.nist.gov/hash-competition
mailto:hashforum@nist.gov
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1.3 Organization of this Document 

This document is organized as follows. Section 2 summarizes the evaluation criteria specified in 
FRN-Nov07. Section 3 describes the selection process of the SHA-3 winner. Section 4 
summarizes the five finalists and their security analyses that are publically available. Section 5 
compares the software and hardware performance of the finalists. Section 6 discusses other 
consideration factors associated with the finalists. Section 7 concludes the report. 
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2. Evaluation Criteria 

Throughout the competition, NIST used the evaluation criteria specified in FRN-Nov07 [6] to 
evaluate the candidates. These criteria were discussed and further clarified at the First SHA-3 
Candidate Conference in KU Leuven, Belgium, in February 2009. In order of importance, NIST 
considered the security, cost, and algorithm and implementation characteristics of a candidate in 
its selection decision. 
  

2.1 Security 

FRN-Nov07 identified security as the first evaluation criterion, and listed the following as the 
major evaluation factors: 
 

(i) applications of hash functions;2  
(ii) specific requirements when hash functions are used to support Keyed-Hash 

Message Authentication Code (HMAC) [34], Pseudo Random Functions (PRFs), 
or Randomized Hashing; 

(iii) additional security requirements of hash functions; 
(iv) evaluations relating to attack resistance; and  
(v) other consideration factors. 

 
NIST studied the large amount of feedback received from the cryptographic community, and 
discusses the security analysis of the finalists in Section 4. 
 

2.2 Cost and Performance 

FRN-Nov07 identified cost as the second evaluation criterion, which includes:  
(i) computational efficiency, which refers to the speed of the algorithm; and  
(ii) memory requirements, which include the code size and the random-access 

memory (RAM) requirements for software implementations, as well as the gate-
counts for hardware implementations.  

 
For the cost and performance evaluations of the finalists, NIST studied the results obtained from 
several major benchmarking efforts. The candidates’ performance in both software and hardware 
implementations are compared in Section 5. 
 

2.3 Algorithm and Implementation Characteristics 

FRN-Nov07 also identified an evaluation criterion related to the flexibility and simplicity of a 
candidate’s design. Candidates with greater flexibility are preferable, such as flexibility in 
running efficiently on a wide variety of platforms, or flexibility in using parallelism, or 
instruction-set extensions, to achieve higher performance. Furthermore, a candidate would be 
judged on its relative design simplicity, with the intent to encourage easy-to-understand and easy-
to-analyze designs to provide more confidence in its security. 
 
These characteristics of the finalists are addressed in Sections 3, 4, 5, and 6, as appropriate. 
  

                                                      
2 In this report, the terms “hash function” and “hash algorithm” are used interchangeably. 
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3. Selection Process 

The selection of Keccak as the SHA-3 algorithm was a very difficult decision – all five finalists 
would have made acceptable choices for SHA-3. NIST’s decision was based on a number of 
considerations, particularly security, performance, and the desire for SHA-3 to complement the 
existing SHA-2 algorithms. In addition to rating highly with respect to these primary 
considerations, Keccak also benefited from a simple and elegant design, a great deal of flexibility 
in choosing parameters, and other features, such as a built-in authenticated-encryption mode. 
 

3.1 Security 

NIST compared the security properties of the finalists, based on the published design documents 
and cryptanalysis produced during the competition, and on the security proofs provided by both 
the designers and other researchers. This data was useful in making the decision, but it required 
some interpretation; each algorithm has its own mix of published attacks and design logic, and 
each has received a somewhat different depth of cryptanalysis. However, NIST was able to 
extract the following points from this information: 
 

a. No finalist has a published attack that, in any real sense, threatens its practical security, 
and each of the finalists has a security proof for its domain extender3 that shows that the 
security of the whole hash function is ultimately based on the security of its underlying 
components. 
 

b. NIST was able to estimate the security margins of the candidates, based on the largest 
number of rounds of the hash functions or underlying components that has been 
successfully attacked using collision-type attacks. By this metric, which is discussed in 
more detail in Section 4.1.3, Grøstl and JH have the smallest security margins, Skein has 
a somewhat larger security margin than Grøstl and JH, and BLAKE and Keccak have 
very large security margins. None of the candidates has an absolutely unacceptable 
security margin, but it would be difficult for NIST to select Grøstl or JH without 
seriously considering adding more rounds. 
 

c. There are also a number of distinguishing attacks and differential properties published on 
the finalists and their underlying component functions. It was not entirely clear how to 
interpret these results, but they largely left the same impression as the collision-type 
attacks: if distinguishers costing more than the claimed security strength of a 512-bit hash 
function are omitted, Grøstl and JH have differential properties that extend through most 
or all of the rounds, while the remaining three candidates only have distinguishers that 
extend through about half of their rounds. 

 
d. The cryptanalysis performed on BLAKE, Grøstl, and Skein appears to have a great deal 

of depth, while the cryptanalysis on Keccak has somewhat less depth, and that on JH has 
relatively little depth. 
 

e. While the tweaks on BLAKE, Keccak, and JH were sufficiently minor in that all the 
cryptanalysis performed throughout the competition applies to their final versions, Grøstl 
and Skein were tweaked more significantly to address attacks on their first- and second-
round versions. That said, even in the cases of Grøstl and Skein, most of the earlier 
cryptanalysis carries over to the final version with only minor modifications; only the 

                                                      
3 A definition for this term is provided in Section 4.1.2. 
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attacks targeted by the third-round tweaks are significantly affected, and in both cases, 
the tweaks appear to be effective in eliminating the relevant vulnerabilities. 
 

f. NIST also considered the security of the finalists against side channel analysis, but there 
was little available to distinguish between the finalists. While a case can be made that 
ARX-based (Modular Addition, Rotation, and eXclusive OR-based) designs like BLAKE 
and Skein may be more expensive to secure against side channel analysis than logic-
based designs like Keccak and JH, any of the candidates can probably be made secure 
against side channel analysis with sufficient effort on the implementation end. 

 
Keccak received a significant amount of cryptanalysis, although not quite the depth of analysis 
applied to BLAKE, Grøstl, or Skein. This cryptanalysis left Keccak with a huge security margin – 
only five out of its 24 rounds has been broken by a near-collision attack. Keccak’s large security 
margin, after significant cryptanalytic effort, suggests that Keccak will remain secure in the 
future. 
 

3.2 Performance 

NIST was fortunate to have a great depth of performance data on the five finalists that could also 
be compared with the performance data of the SHA-2 algorithms. This data included software 
implementations on many different kinds of Central Processing Units (CPUs), and hardware 
implementations in both Field Programmable Gate Arrays (FPGAs) and Application Specific 
Integrated Circuits (ASICs). All this data made simple comparisons very difficult; most 
algorithms excelled on some platforms and lagged on others. However, a few patterns emerged 
from the performance data, which affected NIST’s decision: 
 

a. All five finalists perform well enough to be usable in most applications.  
 

b. None of the five finalists is the best for every application, and none offers really 
compelling improvements over the SHA-2 algorithms. 

 
c. The ARX-based algorithms, BLAKE and Skein, perform extremely well in software.  

 
d. Keccak has a clear advantage in throughput/area performance in hardware 

implementations.  
 
e. Grøstl and JH are considerably slower than the other three algorithms in most software 

implementations.  
 
Keccak provides an excellent set of performance trade-offs – it is broadly competitive with SHA-2 
in software, while providing much better throughput/area performance in hardware.  
 

3.3 Other Algorithm and Implementation Characteristics 

In addition to the bare essentials of security and performance, NIST also considered other 
features, which was another evaluation criterion identified in FRN-Nov07. 
 
Keccak benefits from a very clean and elegant design, which is adaptable to a wide variety of 
circumstances. Its sponge domain extender makes it easy to analyze the security implications of 
changing the message block size to improve performance, and provides a mechanism for 
extending the output size to fit applications like RSA Full Domain Hash (RSA-FDH). Keccak 



7 

also provides an 800-bit version of its internal permutation, which, if studied further from a 
security perspective, may be vetted and approved by NIST at some time in the future. If this 
possibility is realized, the 800-bit permutation will increase the flexibility of Keccak even further. 
 
While several of the candidates provide additional functionality above and beyond the simple 
drop-in replacement for existing hash functions, Keccak’s built-in authenticated-encryption mode 
is one of the better “extras” offered and is a very natural extension of the sponge construction. 
 
Overall, Keccak’s elegant design, flexibility, and “extras,” like its authenticated-encryption 
mode, were points in its favor as the SHA-3 winner. 
 

3.4 Complementing SHA-2 

One additional consideration contributed to the selection of Keccak as the SHA-3 winner: SHA-3 
will be deployed into a world in which the use of SHA-2 is widespread, and will coexist with 
SHA-2 as an approved hash function. This makes a strong argument for an SHA-3 design that 
complements that of SHA-2.  
 

a. SHA-2 is a software-oriented ARX design, as are BLAKE and Skein. In terms of 
performance and implementation properties, these two algorithms are rather similar to 
SHA-2. 

 
b. Because SHA-2 is an ARX-based design with a key schedule, it has some important 

design elements in common with BLAKE and Skein, although neither is closely related 
to SHA-2. However, cryptanalytic tools that apply to SHA-2 in the future seem more 
likely to apply to BLAKE or Skein than to the other three finalists.  

 
c. Keccak is a hardware-oriented design that is based entirely on simple bit-oriented 

operations and moving bits around. Its performance and implementation properties are 
significantly different from those of SHA-2.  

 
Among all the finalists, NIST believes that Keccak provides the most advantages as an addition to 
NIST’s toolbox of cryptographic algorithms. Keccak's software performance is broadly 
comparable to that of the SHA-2 algorithms, but its hardware performance is much better, and 
Keccak does not need the 32- or 64-bit integer additions or key schedule that are required by 
SHA-2. 
 

3.5 Selection Conclusion 

NIST’s decision rested almost entirely on the generous contributions of time and effort by the 
cryptographic community. Multiple implementations of the algorithms in hardware and software 
made meaningful performance comparisons possible, and most of this work was done by 
volunteers. Analyzing the security of a new cryptographic hash function is extremely demanding, 
requiring hard work from people with rare expertise and talents. This analysis was provided by 
the members of the cryptographic community, including, but not limited to, the submitters of the 
SHA-3 candidates. Without this huge volume of published information, representing a great many 
years of skilled effort, NIST could never have run this competition. 
 
Based on the data available, all five finalists appear to be excellent hash algorithms, providing 
acceptable performance and security properties. Any of the five would have made an acceptable 
choice for SHA-3.  
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Keccak offers acceptable performance in software, and excellent performance in hardware. It has 
a large security margin, suggesting a good chance of surviving without a practical attack during 
its working lifetime. Keccak is also a fundamentally new and different algorithm that is entirely 
unrelated to the SHA-2 algorithms. For all these reasons, NIST chose Keccak as the new SHA-3 
algorithm. Keccak's bit-oriented design may facilitate better understanding in the future, but at 
present the newness of the design means it is somewhat less well-understood than the ARX or S-
box-based designs. 
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4. Security Analysis of the Finalists 
 
This section describes the security of the five finalists. It is organized as follows: Section 4.1 
gives an overview of the criteria that NIST used in comparing the depth and significance of 
published cryptanalysis results on the five finalists and includes several tables comparing the 
finalists according to these criteria. Section 4.2 summarizes the design and lists the published 
cryptanalysis results for each of the finalists. Section 4.3 gives NIST’s assessment of what 
conclusions can be drawn from the results described in the first two subsections. 
 

4.1 Security Overview 

Security is the most important criterion for a new hash function; performance or implementation 
advantages of a broken hash function are irrelevant. This section of the report discusses how 
NIST weighed the evidence regarding the security of each of the five finalists, and how this 
weighing helped determine the final selection of SHA-3.  
 
The submission packages of the five finalists, and the published analysis of the finalists during 
the four years of public review, provide significant information on their security. This 
information falls into six categories: 
 
a. Proofs of security relating to the hash functions' structure. These proofs typically show that 

the hash function has various good properties, assuming some good properties of the 
underlying compression function, block cipher, or fixed permutation. 
 

b. Cryptanalysis results on the hash function or its components that relate directly to the core 
security properties of a hash function: preimage-resistance, second-preimage-resistance, and 
especially, collision-resistance. Even when these attacks involve giving an attacker more 
power than they would have in an attack on the full hash function, as with semi-free-start 
collisions, these results are often the best indication available of how well the hash function 
will survive future attacks. The fraction of the hash function (or underlying component 
function) broken by these attacks can be used to calculate a security margin - the fraction of 
the hash function's rounds that are still unbroken. For the SHA-3 finalists and SHA-2, 
collision and near-collision attacks are the most informative source of information about the 
hash functions' security; the published preimage attacks have much higher required work,4 
and are, therefore, less worrisome. 
 

c. Theoretical distinguishers on the hash function or its components. These involve some 
property that would not be present in an ideal hash function or component, but which has no 
obvious relevance to any practical security concern about the hash function. Sometimes, 
using these properties even requires more work than the claimed security level of the hash 
function. 

 
d. Depth and maturity of cryptanalysis results. Some algorithms have received more 

cryptanalysis than others; some have analysis that seems to be noticeably more mature (for 
example, many different papers building on one another would indicate maturity). This is 
necessarily somewhat subjective; different cryptographers might come to somewhat different 
conclusions. A naïve approach might merely count the cryptanalysis papers. This is important 
in evaluating the meaningfulness of the security margins of the hash function; a hash function 

                                                      
4 This reflects the fact that a brute-force collision attack on a hash function requires only the square root of the work 
required for a brute-force preimage attack. 
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that has had little analysis may have a large security margin simply because few cryptanalysts 
have spent any time studying it. 

 
e. Tweak history of the finalists. Prior to the start of the second and third rounds of the 

competition, the designers of the remaining candidates were allowed to make minor changes, 
referred to as “tweaks,” to their designs. Some designers simply tweaked their algorithms by 
increasing the number of rounds, which does not invalidate previous analysis results; others 
chose to modify the internal structure of a component function to address a particular attack, 
or to improve some property of the hash function. Tweak history affects the meaningfulness 
of the security margin of a hash function in a way similar to that of the depth of cryptanalysis. 
If an algorithm has been tweaked in ways that invalidate previous cryptanalysis results, then 
the cryptanalysis on the final version of the algorithm is correspondingly less mature.  

 
f. Side channel analysis. Different algorithms have different implementation properties, and 

thus may have different susceptibility to side channel attacks, or may be more or less 
expensive to defend against such attacks. While most applications of hash functions do not 
need resistance against side channel attacks, some important ones (most notably MAC 
algorithms and key-derivation functions) do require this resistance, so differences in 
vulnerability to side channel attacks, or in the cost of defending against them, matter for the 
selection of SHA-3. 

 
No finalist was broken or seriously threatened by any attack published so far. All the finalists 
have proofs relating their security to ideal properties of their underlying compression function, 
permutation, or block cipher. Two of the finalists (Keccak and JH) have distinguishing attacks on 
their underlying primitives. However, the distinguishing attack on Keccak's permutation is far 
beyond the security level claimed by a 512-bit hash function. The security results by themselves 
did not disqualify any finalists, but they offered the best-available evidence for assessing the 
likelihood that future cryptanalysis may threaten these algorithms. 
 
4.1.1 Overview of Security Resources 

NIST’s understanding of the security of the finalist hash functions is based on the work of the 
cryptographic community, as it appears in published cryptanalysis and security-proof papers. 
Some of these papers were presented at the NIST-sponsored SHA-3 conferences; others were 
presented at other conferences. In general, the results have had some level of peer review, though 
it is always possible that incorrect results could have made it past the review. Some results 
provide concrete findings, such as collisions for reduced-round versions of the hash functions, 
which can be verified; others are too expensive to be implemented in practice. 
 
4.1.2 Domain Extenders and Proofs 

Hash function design can be broken into two parts: building a fixed-size component like a 
compression function or fixed permutation, and then using that fixed-size component to build a 
hash function that can process variable-length strings up to some huge maximum length. The 
construction used to build the full hash function is called a domain extender. The next two 
subsections discuss the analysis of the fixed-size components used in the finalist hash functions. 
This section discusses the analysis of the domain extenders of the finalists. Unlike the 
cryptanalysis results, the results on domain extenders are mainly built on proofs relating the 
properties of the full hash function to the properties of the underlying fixed-length components. 
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BLAKE, Grøstl, and Skein build their full, arbitrary-input-length hash function from a fixed-
input-length hash function called a compression function. At a lower level, the compression 
functions of BLAKE and Skein are based on block ciphers, whereas that of Grøstl is based on a 
pair of fixed permutations. The security properties of these hash functions can either be viewed as 
being inherited from their compression functions or directly from the underlying components of 
their compression functions. JH and Keccak build their full hash functions directly from a fixed 
permutation. In each case, the full hash function inherits its security properties from the properties 
of this permutation. 
 
Published proofs show that the security of all five finalists can be inferred from properties of their 
underlying building blocks. This kind of proof cannot guarantee that the hash function is secure, 
but it does show that certain kinds of weaknesses in the full hash function can only happen as a 
result of corresponding weaknesses in its underlying building blocks. Because of this, proofs of 
this kind guarantee security against generic attacks – attacks that only exploit the domain 
extender and not the internals of the underlying building blocks. Since cryptanalysts and 
designers spend most of their time considering the underlying building blocks, this is an 
important guarantee.  
 
Table 3 summarizes the security proofs for the finalists' and SHA-2’s domain extenders. All 
numbers in this table are in bits. The sizes of the key, block, and tweak are denoted by k, b and t, 
respectively, and L denotes the length of the target message in blocks. “Coll,” “Pre,” “2nd Pre,” 
and “Indiff” denote the approximate proven generic security against collision, preimage, second 
preimage, and indifferentiability attacks, respectively. References for the finalists’ security 
bounds are presented in Subsections 4.2.1.1 – 4.2.5.1. 
 
For the purpose of the SHA-3 decision, these results can be summarized as follows: 
a. All five finalists have indifferentiability proofs, which guarantee that the hash function resists 

generic attacks up to at least the complexity of a brute-force collision search, assuming that 
the underlying primitive is ideal.5 
 

b. Under the same assumption, all of the candidates except JH are proven to have near-optimal 
security relating to the core properties of collision, preimage, and second-preimage 
resistance. Even in the case of JH, the indifferentiability proof guarantees some generic 
security for these properties (the optimal security, in the case of collision search), and there is 
no known way for an attacker to exploit the JH domain extension to find preimages, or 
second preimages more efficiently than a brute-force search. 

 
Nothing in these results provides a strong justification for selecting or discarding any of the five 
finalists. However, these results are quite important for evaluating the finalists' security, as they 
show that the security of the full hash functions depends only on the security of the underlying 
primitives, which is where the overwhelming majority of the cryptanalytic effort has been 
focused so far. 
  

                                                      
5 Due to the length extension property, the indifferentiability bound for SHA-2 is 1. According to FRN-Nov07, SHA-3 
candidates were required to resist attacks exploiting this property, but this was not considered a requirement for earlier 
hash functions (i.e., those developed prior to the SHA-3 competition). Essentially all Internet protocols, in particular 
those using HMAC [34], are designed to be secure even if they use a hash function that has the length extension 
property. 
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Algorithm Domain 
Extender 

Underlying 
Primitive 

Primitive 
size 

Hash 
size 

Security 
Coll Pre 2nd Pre Indiff 

BLAKE HAIFA Block cipher 

k=512 
b=512 

224 
256 

112 
128 

224 
256 

224 
256 

128 
128 

k=1024 
b=1024 

384 
512 

192 
256 

384 
512 

384 
512 

256 
256 

Grøstl Grøstl A pair of 
permutations 

512 
512 

224 
256 

112 
128 

224 
256 256 – log2L 128 

128 
1024 
1024 

384 
512 

192 
256 

384 
512 512 – log2L 256 

256 

JH JH Permutation 1024 

224 
256 
384 
512 

112 
128 
192 
256 

224 
256 
256 
256 

224 
256 
256 
256 

256 
256 
256 
256 

Keccak Sponge Permutation 1600 

224 
256 
384 
512 

112 
128 
192 
256 

224 
256 
384 
512 

224 
256 
384 
512 

224 
256 
384 
512 

Skein UBI Tweakable 
block cipher 

k=512 
b=512 
t=128 

224 
256 
384 
512 

112 
128 
192 
256 

224 
256 
384 
512 

224 
256 
384 
512 

256 
256 
256 
256 

SHA-26 MD Block cipher 

k=512 
b=256 

224 
256 

112 
128 

224 
256 256 – log2L 1 

k=1024 
b=512 

384 
512 

192 
256  

384 
512 512 – log2L 1 

Table 3. Proven Generic Security7 of the SHA-3 Finalists and SHA-2 in Bits 

4.1.3 Cryptanalysis and Security Margin 

The most important security requirements for a hash function are collision and preimage 
resistance. Informally, collision-resistance means that it is very difficult to find two different 
input strings that yield the same message digest, while preimage-resistance means that it is very 
difficult to find an input string that yields a particular desired message digest. This subsection 
discusses the published attacks on the hash functions that relate to these core security properties 
of a hash function. In particular, the subsection focuses on the security against collision and 
related attacks, rather than on preimage attacks.  
 
Given the attacks published on the SHA-3 finalists, collision attacks are more informative about 
the ultimate security of the hash functions for three reasons. First, it is often possible to speed up 
the brute-force search of a preimage by a small number of bits using a clever representation of the 
internal state of the hash function and its computations – there are a number of results along these 
lines on the finalists, and while the techniques used are clever, it is difficult to see any 
implications of these attacks for the security of the hash functions. Second, brute-force preimage 
                                                      
6 SHA-2’s domain extender is optimally collision and preimage resistant under the ideal cipher model [35]. The 
security of the Merkle-Damgård (MD) domain extender against second-preimage attacks is n- log2L, where L is the 
length of the message in blocks [36], assuming the compression function behaves like a random oracle. 
7 Note that these security estimates ignore any constant factors in the proofs that are unrelated to the input and output 
sizes of the hash function and its components. 
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attacks on the SHA-3 finalists are extremely computationally demanding, requiring at least 2224 
compression function computations, and the published cryptanalytic preimage attacks typically 
have much higher complexities than the published collision and related attacks for this reason. 
And finally, for the SHA-3 finalists, the preimage attacks were not the attacks that covered the 
most rounds with more than a tiny advantage over a brute-force search. 
 
Table 4 shows the collision-type attacks that cover the largest number of rounds for each of the 
finalists, while maintaining an attack complexity less than that of a brute-force collision search. 
The best-known collision attack on SHA-2 is also shown, for reference. The column marked “CF 
Call” gives the time complexity of the best attack, relative to the computational cost of one 
execution of the hash algorithm’s compression function. 
 

Algorithm Attack Type Target Rounds Percent 
Broken CF Call Reference 

BLAKE Semi-free-start 
near collision 

Compression 
function 4/14 29 % 221 [37] 

Grøstl Semi-free-start 
collision 

Compression 
function 6/10 60 % 2120 [38] 

JH Semi-free-start 
near collision 

Compression 
function 26/42 62 % 2112 [39] 

Keccak Near collision Hash function 5/24 21 % Example 
given [40] 

Skein Semi-free-start 
near collision 

Compression 
function 32/72 44 % 2105 [41] 

SHA-2 Collision Hash function 24/64 38 % Example 
given [42] 

Table 4. Best Known Collision-type Attacks against the SHA-3 Finalists and SHA-2 

In many ways, these attacks are hard to compare with one another. For example, the best attacks 
on BLAKE, Keccak, and SHA-2 can be implemented in practice, whereas the best attacks on 
Grøstl, JH, and Skein would require huge computational resources to implement, and cannot be 
fully verified. The best attacks on Keccak and SHA-2 apply to the hash function as a whole, 
while the best attacks on BLAKE, Grøstl, JH, and Skein apply to their underlying compression 
functions, and give the attacker more control over the inputs to those functions than they would 
have in an attack on the full hash function. More fundamentally, comparing cryptanalytic results 
can favor algorithms that are not heavily analyzed, or algorithms that require the development of 
new techniques to analyze them. 
 
Despite these limitations, however, these results are what is available; they, along with some 
security arguments offered by the designers, are the basis for comparing the finalists' security 
against cryptanalysis. It is a truism that attacks only get better. The SHA-3 competition has 
brought a great deal of analysis to bear on the finalists, but the winner will inevitably be the focus 
of even more cryptanalytic effort, and so it must be assumed that the existing published attacks 
will improve over time.  
 
The first piece of information that can be taken from these results is that, after four years of 
intense analysis, no attack has come anywhere close to threatening the core security properties of 
any of the five finalists. This provides some reassurance about the SHA-3 process. If two or three 
of the five finalists had been broken or seriously threatened by now, this would raise questions 
about the community's ability to develop secure hash functions. 
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The second piece of information from these results is that there are differences in the size of the 
security margins of the different finalists, where the security margin is defined as the fraction of 
the hash or compression function that has not been successfully attacked. (For example, an attack 
on six rounds of a ten-round hash function would give a 40 % security margin.) Keccak has the 
largest security margin, with 79 % of its hash function still unbroken; JH has the smallest security 
margin, with 38 % unbroken. Comparing these security margins must be done carefully, given the 
different kinds of attacks, work factors, and amounts of cryptanalysis performed on the different 
candidates. Table 5 tries to summarize this picture. The depth of analysis is a rather subjective 
measure, based on NIST’s reading of the literature. This measure takes into account not only the 
number of cryptanalysis papers published, but also the depth and maturity of the analysis and the 
tools used to cryptanalyze the algorithm. The “depth of cryptanalysis” measure is described in 
somewhat more detail in Section 4.1.5. 
 

Algorithm Best 
Attack 

Security 
Margin Work Depth of Analysis 

BLAKE Semi-free-start near 
collision 71 % Practical High 

Grøstl Semi-free-start collision 40 % Impractical Very High8 

JH Semi-free-start near 
collision 38 % Impractical Low 

Keccak Near collision 79 % Practical Medium 

Skein Semi-free-start near 
collision 56 % Impractical High8 

SHA-2 Collision 62 % Practical Medium 

Table 5. Security Margins for the Five Finalists Based on Collision-type Attacks 

This way of looking at the cryptanalysis results is quite unfavorable to JH, which received 
relatively limited cryptanalysis, and still seems to have a rather small security margin. It is 
relatively favorable to BLAKE and Keccak (with large security margins, despite a reasonable 
depth of analysis), and also to Skein (with a relatively large security margin, despite a reasonable 
depth of analysis, and a best attack with an impractically high amount of work required). The 
picture for Grøstl is less clear; Grøstl has a relatively low security margin, but is the most deeply 
analyzed finalist, and its best attack requires an impractically high amount of work and applies 
only to its compression function. 
 
Considering this table alongside the performance of the different algorithms makes the picture 
somewhat clearer: JH and Grøstl are generally the two slowest algorithms in software. An 
extremely fast algorithm whose security margin is uncomfortably narrow most likely can simply 
be tweaked by adding rounds, and NIST explicitly stated in its call for submissions that it might 
adjust the number of rounds for the winner. This is not an appealing option for an algorithm 
whose performance is already marginal. If JH or Grøstl were selected, they would likely have to 
keep their relatively narrow security margins in order to maintain acceptable performance.  
 

                                                      
8 These two algorithms were significantly tweaked for the third round. Some of the cryptanalysis performed on the 
earlier versions of the algorithms no longer applies. 
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Considering the 512-bit versions of the hash functions gives very similar results; there are 
somewhat fewer results on 512-bit versions, but because brute-force attacks against a 512-bit 
hash function are more expensive than the corresponding brute-force attacks against a 256-bit 
hash function, more expensive analyses can be considered to be valid attacks, and this sometimes 
allows an attack to extend another round or two. 
 
4.1.4 Distinguishing Attacks and Differential Properties 

Many of the cryptanalytic attacks on the finalists do not directly attack the core hash function 
properties of collision- and preimage-resistance. Instead, they attempt to find some unexpected 
property of the underlying primitives (block ciphers and fixed permutations) on which the 
finalists are based. For example, there may be a predictable relationship between the XOR 
differences of two input messages and their corresponding message digests – i.e., a differential 
property. It is not at all clear how relevant these results are in evaluating the security of the 
finalists. These distinguishing attacks have no practical relevance in attacking the hash 
functions.  However, there is a good reason to give them at least some weight: all five finalists 
have proofs of security on their domain extenders, showing that if their underlying component 
functions behave in an ideal way, the full hash function will be secure according to some formal 
definition.  A theoretical distinguishing attack is a way of showing that these components do not 
behave in an ideal way, and thus potentially undermining these proofs. Table 6 shows the best-
known distinguishing attacks and differential-property analyses. 
 

Algorithm Target Rounds 
Fraction of 

Target 
Analyzed 

CF Call Reference 

BLAKE-256 Block Cipher 7/14 50 % 2232 [43] 

Grøstl-256 Permutation 9/10 90 % 2368 [44] 

JH Compression 
Function 42/42 100 % 2304 [39] 

Keccak 
Permutation 

 
Permutation 

24/24 
 

14/24 

100 % 
 

58 % 

21579 
 

2255.77 

[45] 
 

[46] 

Skein 

Compression 
Function 

 
Compression 

Function 

37/72 
 
 

36/72 

52 % 
 
 

50 % 

2511.2 
 
 

2454 

[47] 
 
 

[48] 

SHA-2 Hash 
Function 46/64 72 % 246 [49] 

Table 6. Best Known Distinguishing Attacks and Differential Properties for the Finalists and SHA-2 

Note that for BLAKE, Grøstl, and SHA-2, which have both 256- and 512-bit functions, this table 
applies only to the 256-bit functions. 
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4.1.5 Depth of Analysis and Understandability of Algorithms 

Another aspect of the published security results that NIST considered in the selection of SHA-3 
was how well understood the finalists seemed to be, and how understandable they ultimately 
appear to be.  
 
Evaluating the depth of analysis on each of the finalists is inherently somewhat subjective; 
different cryptographers may come to different conclusions when reading the literature. However, 
this evaluation is also necessary, because the security margins discussed above can be misleading 
if some algorithms have received little or no analysis, while others have been carefully 
scrutinized for weaknesses. More importantly, choosing a SHA-3 winner involves making a 
prediction that this winner is very unlikely to suffer some practical attack during its working 
lifetime. Unfortunately, the state-of-the-art in hash function cryptanalysis and design doesn't 
allow this prediction to be made with certainty. NIST had to rely on its own evaluation of the best 
attacks, and also of how much further the best published attacks might be pushed, with further 
analysis.  
 
It is easy, but rather misleading, to quantify the amount of analysis by counting the number of 
cryptanalysis papers published on each finalist. Certainly, NIST took notice of how many papers 
were published on each algorithm, but this metric can be misleading on many levels: finalists 
with substantial tweaks often had more papers published simply to apply old attacks to the 
tweaked algorithm; some algorithms may have attracted more relatively small results as opposed 
to a smaller number of deeper results; and algorithms with more weaknesses may even have 
attracted more papers attacking them. Instead, NIST considered the depth of cryptanalysis on the 
different finalists.  
 
The only finalist NIST believed to be seriously called into question by this analysis was JH, 
which has received much less analysis than the other finalists, and yet has a relatively small 
security margin. NIST also considered the depth of analysis in looking at security margins; the 
relatively large security margin of Keccak and the relatively small security margin of Grøstl 
partly reflect the difference in the intensity of cryptanalysis they received during the competition. 
Grøstl, Skein, and BLAKE received more analysis than Keccak, probably because of Grøstl's 
similarity with AES and several other SHA-3 candidates, and Skein’s and BLAKE's similarity 
with the large number of ARX-based hash functions meant that many existing techniques and 
tools existed for beginning the analysis.  
 
One common bit of feedback that NIST received from the community involved ARX vs. non-
ARX designs. Recall that an ARX design gets its security from the combination of addition, 
rotation, and exclusive OR operations. (Many ARX-based hash functions and ciphers include 
other elements, such as bitwise logical functions and variable rotates.) BLAKE and Skein are 
ARX designs, as are the existing SHA-2 hash functions. Some people in the cryptographic 
community feel that this kind of design is inherently hard to understand, and expressed a 
preference for non-ARX designs that may ultimately be better understood. It was not clear how 
much weight to give this feedback, given that at present, all widely used hash functions are ARX 
designs, and the two ARX-based finalists appear to be more extensively analyzed than Keccak or 
JH.  
 
4.1.6 Tweak History of the Finalists 

In the Federal Register Notice [6] that called for the SHA-3 algorithm submissions, NIST 
indicated that a submission package could include a tunable security parameter, such as the 
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number of rounds, which would allow the selection of a range of possible security/performance 
trade-offs. That parameter, the number of rounds, was indeed utilized by all the designing teams 
of the finalists, and was specified in their submission packages. Prior to the start of the second 
and third rounds of the competition, the designers of the remaining candidates were also allowed 
to make minor changes, referred to as “tweaks,” to their designs. Some designers simply tweaked 
their algorithms by increasing the number of rounds, which does not invalidate previous analysis 
results; others chose to modify the internal structures of a component function. These tweaks are 
summarized in Table 7. 
 

Algorithm Second-Round Third-Round 
Names Tweaks Names Tweaks 

BLAKE BLAKE-28  
BLAKE-32  
BLAKE-48  
BLAKE-64 

None BLAKE-224  
BLAKE-256  
BLAKE-384 
BLAKE-512 

Number of rounds increased 
from 10 to 14 for BLAKE-224 
and BLAKE-256; and from 14 
to 16 for BLAKE-384 and 
BLAKE-512. 

Grøstl Grøstl-0 None Grøstl Shift values in Q changed. 
 
Round constants in P and Q 
changed. 

JH JH None JH42 Number of rounds increased 
from 35.5 to 42.  

Keccak Keccak Message block size 
(rate) increased. 
 
Number of rounds 
increased from 18 
to 24.  

Keccak Padding rule simplified.  
 
Diversifier parameter removed. 
 
The restriction on the supported 
values of r removed.  

Skein Skein Rotation constants 
changed. 

Skein Key schedule parity constant 
changed.  

Table 7. Tweak History of the SHA-3 Finalists 

Of the finalists, BLAKE and JH were only tweaked to increase the number of rounds. This does 
not affect any cryptanalysis prior to the tweak and is, therefore, the most innocuous type of 
tweak.  

Keccak changed the block sizes and padding rules, which affects generic security, but left the 
underlying 1600-bit permutation unaltered. Keccak also increased the number of rounds from 18 
to 24. These tweaks are also fairly innocuous. All of the cryptanalysis on Keccak’s 1600-bit 
permutation remains valid, and the changes in generic security caused by the tweaks are well 
understood. 

Skein and Grøstl were both tweaked in ways that invalidated some cryptanalysis made prior to 
the final round. In each case, the third-round tweak was targeted at specific cryptanalysis. Skein’s 
tweak targeted attacks exploiting the rotational symmetry of the key-schedule parity constant, and 
Grøstl’s tweak targeted attacks exploiting the similarity of the P and Q permutations to one 
another. In both cases, cryptanalysis similar to the targeted attacks ceased to be a major threat, 
and attacks that were not targeted by the tweak needed some modification, but were, for the most 
part, readily adapted to apply to the final version. Skein was also modified in the second round in 
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a way that could potentially affect analyses done on the first-round version of Skein, but this 
tweak was not in response to any specific attack. 

4.1.7 Side Channel Attacks and Countermeasures 

4.1.7.1 Overview of Side Channel Attacks on Hash Functions 

Side channel attacks exploit the physical properties of an implementation of a cryptographic 
algorithm to learn some information about the algorithm’s internal state. For example, a given 
software implementation of a hash function might take slightly more or less time to process an 
input string, depending on the contents of the string. The side channels commonly considered in 
the literature are timing, power, and electromagnetic (EM) emissions. 

4.1.7.2 Applicability of Side Channel Attacks 

Side channel attacks are relevant only in a narrow subset of hashing applications. In many 
applications, such as digital signatures, the input to the hash function is not a secret, and 
therefore, side-channels on the hash function are not relevant. Side channel attacks can be used to 
reveal some secret information that has been processed by a hash function, but cannot be used to 
violate the core collision- and preimage-resistance properties of a hash function. Side channels 
are relevant when there is a secret value being processed by the hash function, such as a key-
derivation key or the key in a MAC computation, and when the device implementing the hash 
function can be observed carefully by an attacker. For example, a power-analysis attack is only 
practical when an attacker can precisely measure the power used during cryptographic 
computations – such attacks pose a lot more threat to smartcard applications than to server 
applications. 

One finalist, Keccak, has an interesting property that was first noticed internally at NIST and 
described in [50] (and presented in [51]): because the hash function does not have any non-
invertible steps, an attacker who learns the entire intermediate state for any HMAC-Keccak 
computation can use this to determine the original key used for the HMAC computation, and can 
forge arbitrary messages for this key. By contrast, the other four finalists and the SHA-2 
algorithms are somewhat less vulnerable; determining some arbitrary intermediate state of the 
HMAC computation can allow some forgeries (extensions of previously observed messages), but 
does not reveal the HMAC key or allow arbitrary forgeries. This property does not appear to 
NIST to have a major security impact, however. 

4.1.7.3 Published Side Channel Attacks and Analysis on the SHA-3 Finalists 

Side channel attacks work by finding some statistical relationship between things that an attacker 
can measure, such as the power or time required to do some computation, and some secret 
internal state of the algorithm. In general, a naïve implementation of a cryptographic algorithm is 
very likely to be vulnerable to a side channel attack, and indeed, side channel attacks were 
reported on straightforward implementations of all five SHA-3 finalists [52, 53]. Devices that 
need to resist these attacks introduce countermeasures to limit the amount of information leaked. 
The countermeasures can exist at various levels, from the design of transistors all the way up to 
the design of protocols. Some countermeasures are more or less algorithm-independent; others 
are specific to a particular kind of cryptographic algorithm.  

The reported side channel attacks on the SHA-3 finalists used power, EM analysis, and timing 
side channels. In broad terms, side channel attacks can be targeted at hardware (ASIC or FPGA) 
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implementations, low-end software implementations (on small microprocessors without memory 
caches), and high-end software implementations. In general, EM and power analysis are more 
difficult on hardware implementations than on software implementations [52].  

Based on [52, 53, 54, 55, 56], the SHA-3 finalists can be broken into three groups with respect to 
side channel attacks: the S-box-based design, the logical-operations-based designs, and the ARX-
based designs. 

Grøstl, which uses the eight-bit S-box from AES, is the only S-box-based design. There are 
countermeasures against side channel attacks that can be used to protect S-box accesses. Naïve 
high-end software implementations of Grøstl are vulnerable to cache-timing attacks related to 
those found against AES [57]. However, the use of the AES-NI instructions eliminates the timing 
channel, and there are efficient bit- and byte-slice implementations of Grøstl for high-end 
software [58] that prevent timing attacks, even without the AES-NI instructions. (These 
implementations would move Grøstl into the logical-operations category.)  

JH9 and Keccak use logical operations – these are probably the easiest algorithms to protect 
against side channel attacks, and the Keccak team proposed some techniques for protecting 
Keccak implementations from side channel attacks in [55].  

BLAKE and Skein, like the SHA-2 algorithms, are ARX-based designs, which require 32- or 64-
bit integer additions and rotates. These are probably the most expensive designs to protect from 
side channel analysis. 

Unfortunately, the published analyses offered very limited information about the difficulty of 
implementing each of the SHA-3 finalists in a way that is resistant to side channel attacks.  
 
One general technique for protecting an algorithm from side channel attacks is called masking 
[55], which involves dividing the secret values into “shares” and then operating on the shares 
independently. The more shares the variables are divided into, the higher the order of differential 
power analysis10 (DPA) the algorithm can be protected against. The type of operations that an 
algorithm requires determines how the shares are derived and recombined. The operations can be 
divided into two categories: logical and arithmetic. Creating shares for either of the operation 
types is straightforward; however, when the two operation types are mixed, a conversion must be 
performed to convert the shares from one representation to the other. Since Keccak and the bit-
slice implementation of JH only use logical operations, creating shares and using them is 
straightforward. However, the ARX-based algorithms (BLAKE and Skein) use a combination of 
logic and arithmetic operations; these algorithms require a great deal of computation for the 
masking to protect against SCA, which results in severe performance degradation. 
 

4.2 Finalist Profiles and Cryptanalysis 

This section provides a brief description of each finalist, including its basic building blocks, 
domain extender, and tunable parameters. Each description is followed by a summary of the 
existing security analysis, including the analyses of any previous versions of the algorithm. The 
inclusion of these analyses is intended to provide references as to why certain candidates were 
tweaked in order to address previously unknown vulnerabilities. As much as is feasible, the 
analyses are presented in chronological order. 
                                                      
9  While JH uses two 4x4-bit S-boxes, the suggested bit-sliced implementation of JH uses logical operations to 
implement these S-boxes rather than a table look-up. 
10 A powerful category of side channel attacks. 
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4.2.1 BLAKE 

BLAKE uses HAIFA [59] as its domain extender. The BLAKE compression function is based on 
a wide-pipe block cipher using a modified Davies-Meyer construction. The block cipher operates 
on an inner state that can be represented as a four-by-four matrix of words. BLAKE-224 and 
BLAKE-256 use a 512-bit-wide block cipher consisting of 32-bit words, while BLAKE-384 and 
BLAKE-512 use a 1024-bit-wide block cipher consisting of 64-bit words. The internal state is 
initialized using an Initialization Value (IV), a salt and a counter, and is updated using the G 
function, which is based on the ChaCha stream cipher [60]. The G function updates the columns 
and the disjoint diagonals of the state using ARX operations. The input-message words and 
constants are selected using round-dependent fixed permutations. The designers defined four toy 
versions for analysis purposes, namely: BLOKE, FLAKE, BLAZE, and BRAKE. 
 
To generate 224-, 256-, 384- and 512-bit message digests, four instances were proposed: 
BLAKE-28, -32, -48 and -64. For the final round of the competition, these functions were 
renamed to BLAKE-224, -256, -384 and -512; and the tunable parameter of BLAKE – the 
number of rounds – was increased from 10 to 14 rounds for BLAKE-224 and -256, and from 14 
to 16 rounds for BLAKE-384 and -512.  
 
4.2.1.1 Analysis of the BLAKE Domain Extender 

Andreeva et al. [61] proved that BLAKE-256 is secure against preimage, second-preimage and 
collision attacks up to 2256, 2256, and 2128 queries, respectively; similarly, BLAKE-512 is secure up 
to 2512, 2512, and 2256 queries against the above attacks if the underlying block cipher is structurally 
strong. Andreeva et al. [61] and Chang et al. [62] observed that the compression function of 
BLAKE does not behave ideally, even if its underlying block cipher is ideal. Then, Andreeva et 
al. [61] and Chang et al. [62] proved that, under the assumption that the block cipher is ideal, 
BLAKE-256 and BLAKE-512 are indifferentiable from random oracles up to 2128 and 2256 
queries, respectively; this means that they are secure against all nontrivial generic attacks up to 
2128 and 2256 queries, respectively.  
 
4.2.1.2 Pre-Round 3 Analysis 

The first public analysis of BLAKE was done by Li and Xu [63]. The authors found a method to 
control some of the intermediate hash words using message modification techniques, and 
presented free-start collision and preimage attacks for BLAKE, with the compression function 
reduced to 2.5 rounds. The time complexities are 296, 2112, 2160 and 2224 for the collision attack, 
and 2209, 2241, 2355 and 2481 for the preimage attack, for BLAKE-28, -32, -48, and -64, 
respectively. 
 
Guo and Matusiewicz [64] presented a near-collision attack for the compression function of 
BLAKE-32, reduced to four middle rounds, starting from round three, with complexity 256. The G 
function is linearized by replacing the modular addition with the XOR operation, and then 
rotation-invariant differences are introduced to the chaining value, the salt, the counter, and the 
message to obtain 24-bit near collisions.  
 
Aumasson et al. [65] proved that one round of BLAKE is a permutation of the message and 
presented an efficient inversion algorithm. The authors presented an improved preimage attack on 
1.5 rounds, with complexity 2128, and impossible differentials for the permutation with five and 
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six rounds for BLAKE-32 and -64, respectively. The authors also described near collisions for 
four of the middle rounds of the compression function of BLAKE-32. 
 
Sönmez Turan and Uyan [66] used a hill-climbing approach that introduced random differences 
to message blocks and showed practical near collisions with 47 and 72 bits of difference for the 
compression function of BLAKE-32, reduced to 1.5 and two rounds, respectively, with 
complexity 226. 
 
Vidali et al. [67] presented an efficient method for an arbitrary number of collisions for the full-
round BLOKE and an internal collision attack on BRAKE.  
 
Su et al. [37] used linear differential techniques to analyze the near-collision resistance of the 
compression function of BLAKE and showed near-collision attacks on 152, 396, and 306 bits for 
the compression functions of BLAKE-32, -64 and -64, reduced to four, four, and five middle 
rounds, with complexity 221, 216, and 2216, respectively. 
 
Ming et al. [68] studied the reversibility properties of the internal permutation of BLAKE. The 
authors presented some differential properties of G and G-1, and showed that BLAKE has strong 
resistance against differential attacks.  
 
Biryukov et al. [43] applied the boomerang attack to BLAKE-32 and obtained distinguishers on 
the compression function, reduced to seven rounds, and on the keyed permutation, reduced to 
eight rounds, with complexity of 2232 and 2242, respectively. The authors argued that the attack is 
applicable to the other versions of BLAKE as well. Leurent [69] noted that the characteristics 
used for the eight-round attack are incompatible.  
 
Table 8 summarizes the cryptanalysis results on BLAKE before its Round 3 submission. In this 
table and the summary-of-cryptanalysis tables to follow, a “SFS Collision” denotes a “Semi-Free-
Start Collision,” and “CF” stands for “Compression Function.” Attacks with an empty table entry 
for “Memory” have negligible memory complexity. 
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Target Attack type Output  Variant CF Call Memory Reference 
Hash function Preimage 224 2.5 rounds 2209  [63] 
Hash function Preimage 256 2.5 rounds 2241  [63] 
Hash function Preimage 384 2.5 rounds 2355  [63] 
Hash function Preimage 512 2.5 rounds 2481  [63] 
Hash function Collision 224 2.5 rounds 296  [63] 
Hash function Collision 256 2.5 rounds 2112  [63] 
Hash function Collision 384 2.5 rounds 2160  [63] 
Hash function Collision 512 2.5 rounds 2224  [63] 

CF Near collision 256 4 rounds 256  [64] 
Hash function Preimage 256 1.5 rounds 2128  [65] 

Block Cipher Impossible 
differential 224,256 5 rounds   [65] 

Block Cipher Impossible 
differential 384,512 6 rounds   [65] 

CF SFS near collision 256 2 rounds example  [66] 
Hash function Collision all BLOKE example  [67] 

CF SFS collision all BRAKE example  [67] 
CF Near collision 256 4 rounds 221  [37] 
CF Near collision 512 4 rounds 216  [37] 
CF Near collision 512 5 rounds 2216  [37] 
CF Distinguisher 256 7 rounds 2232  [43] 

Block Cipher Distinguisher 256 8 rounds 2242  [43] 
Table 8. Summary of Cryptanalysis Results on BLAKE Prior to its Round 3 Submission 

4.2.1.3 Round 3 Analysis 

Only a few cryptanalysis papers were published on the final version of BLAKE. However, since 
the only substantive change made for the third round of the competition was an increase in the 
number of rounds, previous analyses of BLAKE are still valid. 
 
Tuple cryptanalysis is a variant of structural cryptanalysis that uses ordered multisets. Aumasson 
et al. [70] presented a distinguisher, using Tuple cryptanalysis, on the four-round permutation of 
BLAKE-256, with time complexity of 264. 
 
Dunkelman and Khovratovich [71] used an iterative differential characteristic based on two 
different characteristics of the internal permutation, and combined it with a rebound process to 
find colliding pairs in the compression function, reduced to three rounds, with a complexity of 
260. The attack was extended to six rounds, with a complexity of 2456 and a memory requirement 
of 2354. 
 
Table 9 summarizes the cryptanalysis results on BLAKE’s Round 3 submission. 
 

Target Attack type Output  Variant CF Call Memory Reference 
Block Cipher Distinguisher 256 4 rounds 264  [70] 
Block Cipher Distinguisher 256 6 rounds 2456 2354 [71] 

Table 9. Summary of Cryptanalysis Results on BLAKE’s Round 3 Submission 
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4.2.2 Grøstl 

Grøstl is a wide-pipe Merkle-Damgård (MD) hash algorithm with an output transformation. The 
compression function is a novel construction, using two fixed 2n-bit permutations – denoted by P 
and Q – in parallel to produce a 2n-bit compression function. Intermediate chaining values are 
512 bits wide for Grøstl-256, and 1024 bits for Grøstl-512. The output transformation processes 
the final chaining state and discards half the bits of the result to yield an n-bit message digest. 
Grøstl-256 has ten rounds, while Grøstl-512 has fourteen rounds. 
 
The permutations, P and Q, are based on the structure of AES, reusing the AES S-box, but 
expanding the size of the block to 512 bits for Grøstl-224 and Grøstl-256, and to 1024 bits for 
Grøstl-384 and Grøstl-512 in a straightforward way. 
 
Grøstl was tweaked for the third round of the competition to eliminate the attacks on the original 
submission. 
 
4.2.2.1 Analysis of the Grøstl Domain Extender 

Andreeva et al. [73] showed that, if the underlying permutations P and Q are free from all 
structural weaknesses and are independent, Grøstl-256 is secure against preimage, second-
preimage and collision attacks up to 2256, 2256-log2L, and 2128 queries (where L denotes the length of 
the message in blocks). Similarly, Grøstl-512 is secure against the above attacks up to 2512, 2512-

log2L, and 2256 queries. Under the same assumptions, Grøstl-256 and Grøstl-512 are indifferentiable 
from random oracles up to 2256 and 2512 queries, respectively [74]; this guarantees the security of 
Grøstl-256 and Grøstl-512 against all nontrivial generic attacks up to 2256 and 2512 queries.  
 
In [75] Kelsey noted the importance of truncation in the output transformation of the Grøstl hash 
function. 
 
4.2.2.2 Pre-Round 3 Analysis 

Prior to the third round, Mendel et al. [76] showed a six-round (out of ten) semi-free-start 
collision on the Grøstl-256 compression function, with 2120 time and 264 memory complexity. 
Mendel et al. [77] improved this result and showed a six-round semi-free-start collision on the 
Grøstl-256 compression function, with 264 time and 264 memory complexity; a seven-round 
distinguisher on the permutation component of the Grøstl-256 compression function, with 255 
time complexity; and a seven-round distinguisher on the output transformation of Grøstl-256, 
with 256 time complexity. 
 
Gilbert and Peyrin [78] provided a seven-round semi-free-start collision on the Grøstl-256 
compression function that requires 2120 time and 264 memory; and an eight-round distinguisher for 
the Grøstl-256 compression function that requires 2112 time and 264 memory. 
 
Mendel et al. [79] also presented a four-round collision on the Grøstl-256 hash algorithm, 
requiring 264 time and memory; a seven-round semi-free-start collision on the Grøstl-256 
compression function, requiring 2120 time and 264 memory; a five-round collision on the 
Grøstl-512 compression function, requiring 2176 time and 264 memory; and a seven-round semi-
free-start collision on the Grøstl-512 compression function, requiring 2152 time and 264 memory. 
 
Peyrin [80] demonstrated a five-round collision on the Grøstl-256 hash algorithm that requires 279 
time and 264 memory; a six-round collision on the Grøstl-512 hash algorithm, requiring 2177 time 
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and 264 memory; a full-round distinguisher on the Grøstl-256 compression function, with 2192 
time and 264 memory complexity; a full-round distinguisher on the Grøstl-256 component 
permutations, with 2192 time and 264 memory complexity; an eleven-round distinguisher on the 
Grøstl-512 compression function, with 2640 time and 264 memory complexity; and an eleven-
round distinguisher on the Grøstl-512 component permutations, with 2640 time and 264 memory 
complexity. 
 
In addition, Ideguchi et al. [81] showed a six-round collision on the Grøstl-256 hash algorithm, 
requiring 2112 time and 232 memory; a seven-round semi-free-start collision on the Grøstl-256 
compression function, requiring 280 time and 264 memory; an eight-round semi-free-start collision 
on the Grøstl-256 compression function, requiring 2192 time and 264 memory11; a seven-round 
distinguisher on the Grøstl-256 component permutations, requiring 219 time, with no significant 
memory requirement; and an eight-round distinguisher on the Grøstl-256 component 
permutations, requiring 264 time and 264 memory. 
 
The attacks have improved over time, as the basic techniques (rebound attacks, super-S-box 
attacks, and differentials considered between the corresponding rounds of the P and Q 
permutations) are extended and refined. The time complexities of the rebound attacks on Grøstl 
by Peyrin [80] have been improved by a factor of about 210 by Naya-Plasencia [82]; however, this 
attack does not apply to the tweaked submission for the final round of the competition. 
 
Sasaki et al. [83] found semi-free-start collisions on Grøstl-512, reduced to seven rounds, with 
2152 time and 256 memory complexity. They also found a distinguishing attack on the internal 
permutations of Grøstl-256, reduced to eight rounds, with 248 time and 28 memory complexity.  
 
In a presentation [84] at FSE 2011, Boura et al. mentioned that techniques similar to those 
described in their paper [85] could be used to produce a zero-sum distinguisher with time 
complexity 2509 for the 512-bit permutations of Grøstl-256. 
 
Table 10 summarizes the cryptanalysis results on Grøstl before its Round 3 submission. 
  

                                                      
11 This is above the collision bound, and therefore, is listed as a distinguisher in Table 10. 
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Target Attack type Output  Variant CF 
Call Memory Reference 

CF  SFS collision 256  6 rounds  2120  264  [76] 
CF  SFS collision 224,256  6 rounds  264  264  [77] 

Permutation  Distinguisher  224,256  7 rounds  255   [77] 
Output transform Distinguisher  224,256  7 rounds  256   [77] 

Permutation Distinguisher 256 7 rounds 256  [78] 
Permutation  Distinguisher  256  8 rounds  2112  264  [78] 

CF  SFS collision  256  7 rounds  2120  264  [78] 
CF  Distinguisher  256  8 rounds  2112  264  [78] 

Hash function  Collision  224,256  4 rounds  264  264  [79] 
Hash function  Collision  384,512  5 rounds  2176  264  [79] 

CF SFS collision 256 7 rounds 2120  264  [79] 
CF SFS collision 384,512  7 rounds  2152  264  [79] 

Permutation Distinguisher 256 9 rounds 280 264 [80] 
Permutation Distinguisher 256 10 rounds 2192 264 [80] 
Permutation Distinguisher 512 11 rounds 2640 264 [80] 

CF  Distinguisher  256  9 rounds  280  264  [80] 
CF  Distinguisher  256  10 rounds  2192  264  [80] 
CF  Distinguisher  512  11 rounds  2640  264  [80] 

Hash function Collision 256 5 rounds 279 264 [80] 
Hash function Collision 512 6 rounds 2177 264 [80] 
Hash function  Collision  224  5 rounds  248  232  [81] 
Hash function  Collision  256  5 rounds  248  232  [81] 
Hash function  Collision  256  6 rounds  2112  232  [81] 

CF  SFS collision 224,256 7 rounds  280  264  [81] 
CF  Distinguisher 224,256 8 rounds  2192  264  [81] 

Permutation  Distinguisher  224,256  7 rounds  219   [81] 
Permutation  Distinguisher  224,256 8 rounds  264  264  [81] 

CF Distinguisher 256 10 rounds 2182 264 [82] 
Permutation  Distinguisher  256  10 rounds  2175  264  [82] 

CF  Distinguisher  512  11 rounds  2630  264  [82] 
CF  SFS collision  512  7 rounds  2152  256  [83] 

Permutation  distinguisher  256  8 rounds  248  28  [83] 
Permutation  Distinguisher  256  10 rounds  2509   [84] 
Table 10. Summary of Cryptanalysis Results on Grøstl Prior to its Round 3 Submission 

4.2.2.3 Round 3 Analysis 

In response to the differential attacks mentioned above [79, 80, 81], Grøstl was tweaked [72] for 
the final round to introduce more structural differences between the P and Q permutations, and to 
change the round constants and the shift values in Q. These changes have rendered the previous 
attacks ineffective. 
 
Schläffer [38] published the first cryptanalysis on the tweaked Grøstl and showed a semi-free-
start collision on the Grøstl-256 compression function, reduced to six rounds, with 2120 time and 
264 memory complexity. This paper also showed a semi-free-start collision on the six-round 
Grøstl-512, with 2180 time and 264 memory complexity. For collisions on the full hash function, 
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only three rounds have been successfully attacked, with 264, 264 and 2192 time complexities and 
negligible memory for Grøstl-224, Grøstl-256, and Grøstl-512, respectively. 
 
Using rebound cryptanalysis techniques, Jean et al. [44] discovered differential properties for up 
to nine rounds of the Grøstl-256 permutation, with 2368 time and 264 memory complexity; and up 
to ten rounds of the Grøstl-512 permutation, with 2392 time and 264 memory complexity. 
 
Khovratovich [86] studied the preimage resistance of the output transformation function of 
Grøstl-256, and found a biclique attack [47] for up to six rounds, with 2251 time complexity. 
 
Wu et al. [87] also published pseudo-preimage attacks on up to five rounds of Grøstl-256, with 
2245 time and 2230 memory complexity, and up to eight rounds of Grøstl-512, with 2507 time and 
2507 memory complexity. 
 
Table 11 summarizes the cryptanalysis results on Grøstl’s final-round submission. 
 

Target Attack type Output  Variant CF 
Call Memory Reference 

Hash function Collision 224,256 3 rounds 264  [38] 
Hash function Collision 512 3 rounds 2192  [38] 

CF  SFS collision  256  6 rounds  2120  264  [38] 
CF  SFS collision  384  6 rounds  2180  264  [38] 
CF  SFS collision  512  6 rounds  2180  264  [38] 

Permutation Differential  
Property 256 9 rounds 2368 264 [44] 

Permutation Differential 
property 512 8 rounds 2280 264 [44] 

Permutation Differential 
property 512 9 rounds 2328 264 [44] 

Permutation Differential 
property 512 10 rounds 2392 264 [44] 

Output 
transform Preimage 256 6 rounds 2251  [86] 

Output 
transform Preimage 256 5 rounds 2206 248 [87] 

Output 
transform Preimage 512 8 rounds 2495 216 [87] 

Hash function Pseudo-preimage 256 5 rounds 2245 2230 [87] 
Hash function Pseudo-preimage 512 8 rounds 2507 2507 [87] 

Table 11. Summary of Cryptanalysis Results on Grøstl’s Final-Round Submission 

4.2.3 JH 

The JH family of hash algorithms for different hash sizes is based on a single compression 
function, F8, which uses a fixed 1024-bit permutation, E8. In F8, a message block of 512 bits is 
XORed with the first 512 bits of the input of E8, and the last 512 bits of the output of E8. The 
permutation E8 uses two 4x4-bit S-boxes, S0 and S1, an eight-bit linear permutation L, and a 
permutation P8. Different members of the JH family are distinguished by the different IVs used, 
and the message digests are obtained by truncating the final output to the desired hash sizes. JH 
was tweaked after the second round by increasing the number of rounds from 35.5 to 42. 
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4.2.3.1 Analysis of the JH Domain Extender 

Several papers have analyzed the domain extender of JH. Bhattacharyya et al. [88], and Mendel 
and Thomsen [89] analyzed the preimage resistance of the JH domain extender from an 
information-theoretic point of view; however, the actual complexities of the attacks are no better 
than a brute-force search [90]. Bagheri [91] showed that a pseudo-collision of JH can easily be 
found, since JH’s compression function is invertible; however, since the IV of JH is a fixed 
constant that is determined by the message-digest size, the pseudo-collision attack is not 
considered to be a serious threat to JH. 

Bhattacharyya et al. [88] also showed that the indifferentiability security of the JH domain 
extender is guaranteed up to approximately 172 bits. 

Lee and Hong [92] showed that the JH domain extender achieved optimal collision resistance 
(256 bits for the 512-bit output size, and 192, 128, and 112 bits for the other three sizes).  

Andreeva et al. [73] have improved the second-preimage resistance of the JH domain extender 
from 172 bits to approximately 256 bits.  

Moody et al. [93] improved the indifferentiability security bound of the JH domain extender from 
172 bits to approximately 256 bits. 
 
4.2.3.2 Pre-Round 3 Analysis 

Turan and Uyan [66] used hill-climbing techniques to produce a semi-free-start near collision on 
ten rounds of JH’s compression function, with 223.24 time complexity. Rijmen et al. [94] proposed 
a semi-free-start collision attack for sixteen rounds of the JH hash function, with 2178.24 time and 
2101.12 memory complexity, and a semi-free-start near-collision attack for twenty-two rounds of 
JH’s compression function, with 2156.56 time and 2143.70 memory complexity. Naya-Plasencia [82] 
proposed a semi-free-start collision attack for sixteen rounds of JH’s compression function, with 
296.12 time and 296.12 memory complexity, and a semi-free-start near-collision attack for twenty-
two rounds of JH’s compression function, with 295.63 time and 295.63 memory complexity.  
 
Table 12 summarizes the cryptanalysis results on JH before its Round 3 submission. 
 

Target Attack type Output  Variant CF Call Memory Reference 
CF  SFS near collision  all  10 rounds  223.24   [66] 

Hash function  SFS collision  256  16 rounds  2178.24  2101.12  [94] 
CF  SFS near collision  256  19 rounds  2156.77  2143.70  [94] 
CF  SFS near collision  256  22 rounds  2156.56  2143.70  [94] 
CF  SFS collision 256  16 rounds  296.12  296.12  [82] 
CF  SFS near collision  256  22 rounds  295.63  295.63  [82] 
Table 12. Summary of Cryptanalysis Results on JH Prior to its Round 3 Submission 

4.2.3.3 Round 3 Analysis 

Naya-Plasencia et al. [39] extended their previous analysis to produce semi-free-start internal 
near collisions on 37 rounds of the JH compression function, with 2352 time and 257.6 memory 
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complexity, and used similar techniques to find differential characteristics for all 42 rounds of the 
E8 permutation, with 2304 time and 257.6 memory complexity. 
 
Table 13 summarizes the cryptanalysis results on JH’s Round 3 submission. 
 

Target Attack type Output  Variant CF Call Memory Reference 
Permutation Differential Property all 42 rounds 2304 257.6 [39] 
Permutation Differential Property all 42 rounds 2352 257.6 [39] 

CF SFS near collision all 37 rounds 2352 257.6 [39] 
CF SFS near collision all 26 rounds 2112 257.6 [39] 

Table 13. Summary of Cryptanalysis Results on JH’s Round 3 Submission 

4.2.4 Keccak 

Keccak follows the sponge construction model [95], with a 1600-bit permutation. The message 
block size varies according to the output size: Keccak-512 has a block size of 576 bits, Keccak-
384 has 832 bits, Keccak-256 has 1088 bits, and Keccak-224 has 1152 bits. In keeping with the 
standard terminology for a sponge construction, the message block size is referred to as r, for 
rate, and the difference between the permutation size and the message block size is referred to as 
c, for capacity.  
 
The Keccak team also defined a number of additional variants of Keccak. First, they defined a 
one-size-fits-all variant “Keccak,” with rate 1024 and capacity 576, that they believe can be used, 
in practice, for any output size. The Keccak team does not consider this the official submitted 
version for producing 512-bit and 384-bit outputs, since it does not provide the expected 
preimage-resistance. However, the Keccak team argues that all the attacks that arise from the 
reduced capacity have an unrealistically high complexity of at least 2288 operations, and “Keccak” 
with an output of 384 or 512 bits would be significantly faster than the submitted Keccak-384 and 
Keccak-512. The Keccak team also produced scaled-down versions of the Keccak permutation, 
with 25, 50, 100, 200, 400, and 800 bits, instead of 1600, and set up a cryptanalysis contest [96] 
challenging cryptanalysts to attack versions of Keccak with the capacity set to as few as 160 bits. 
 
The permutation can be considered as a substitution-permutation network with five-bit-wide S-
boxes, or as a combination of a linear mixing operation and a very simple nonlinear mixing 
operation.  
 
The recommended security parameter for Keccak is twenty-four rounds, which was tweaked, in 
the second round, from the eighteen rounds specified in the original submission. Additionally, the 
message block sizes of the 224-bit and 256-bit versions were increased from 1024 bits to 1152 
and 1088 bits, respectively, as part of the second-round tweak. Keccak was also tweaked in the 
third round, by simplifying the padding rule. 
 
4.2.4.1 Analysis of the Keccak Domain Extender 

Bertoni et al. [97] proved that Keccak-n is secure against preimage, second-preimage, and 
collision attacks up to 2n, 2n, and 2n/2 queries if the underlying permutation is ideal. Bertoni et al. 
[97] proved that, under the same assumption, Keccak-n is indifferentiable from a random oracle 
up to 2n queries, which means that Keccak-n is secure against all nontrivial generic attacks up to 
2n queries. 
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Gligoroski et al. [98] observed that if a particular second-preimage is found (most likely requiring 
a one-time effort equivalent to brute-force), then an arbitrary number of second-preimages can be 
found very easily for any message. 
 
4.2.4.2 Pre-Round 3 Analyses 

Aumasson and Khovratovich [99] attempted algebraic attacks against significantly reduced-round 
versions of Keccak by applying automatic cryptanalysis tools (a triangulation tool, and cube 
testers) to Keccak’s permutation. The analysis was limited to three- and four-round versions of 
Keccak, but the authors conjectured that structures may be observed in the permutation for up to 
ten rounds. The authors of [99] concluded that Keccak has a comfortable security margin to 
prevent structural distinguishers.  
 
Morawiecki and Srebrny [100] used SAT-solver techniques to find preimages for three rounds of 
Keccak, with 40 unknown message bits.  
 
Aumasson and Meier [46] first showed practical zero-sum distinguishers on nine rounds of the 
Keccak permutation, and impractical distinguishers on a sixteen-round variant. Boura and 
Canteaut [101] later extended this to eighteen rounds. However, at a complexity of 21370, this 
attack is only of theoretical interest. The Keccak team increased the number of rounds to twenty-
four after the initial distinguisher was announced. Responses to [46] and [101] from the Keccak 
team were provided in [102, 103]. Very high-complexity distinguishers continued to be 
published: Boura and Canteaut [104] attacked 20 rounds, with a complexity of 21586. Boura et al. 
[85] attacked all 24 rounds, with a complexity of 21590.  
 
Lathrop [105] was able to use a cube attack to conduct a key-recovery attack on a secret prefix 
Message Authentication Code (MAC), with a four-round Keccak variant.  
 
Table 14 summarizes the cryptanalysis results on Keccak before its Round 3 submission. 
 

Target Attack type Output  Variant CF Call Reference 
Permutation  Observations  all    [99] 

Hash function  Preimage  1024  3 rounds 234  [100] 
Permutation  Distinguisher  all  9 rounds  229.83  [46] 
Permutation Distinguisher all 14 rounds 2255.77 [46] 
Permutation  Distinguisher  all  16 rounds  21023.88  [46] 
Permutation  Distinguisher  all  18 rounds  21370  [101] 
Permutation  Distinguisher  all  20 rounds  21586  [104] 
Permutation  Distinguisher  all  24 rounds  21590  [85] 

Secret-prefix MAC  Key recovery  224  4 rounds  219  [105] 
Table 14. Summary of Cryptanalysis Results on Keccak Prior to its Round 3 Submission 

4.2.4.3 Round 3 Analyses 

Morawiecki [106] used SAT-solver techniques to find preimages for two rounds of Keccak, with 
80 unknown message bits, and to find collisions on two rounds of Keccak, with a 160-bit output. 
Both were contest versions, with capacity reduced to 160 bits. Morawiecki demonstrated the low 
attack complexity by actually performing the attack, rather than by computing a theoretical 
complexity. 
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Duan and Lai [45] improved the time complexity of the 24-round zero-sum distinguisher attack to 
21579. 
 
Duc et al. [107] applied rebound techniques to find a rebound differential property for eight 
rounds of the Keccak permutation, with a time complexity of 2491.47. 
 
Bernstein [108] used algebraic techniques to speed up a brute-force second-preimage search for 
up to eight rounds of Keccak. 
 
Naya-Plasencia et al. [109] presented a preimage attack on two rounds of Keccak-224 and 
Keccak-256, a collision attack on two rounds, and a near-collision attack on three rounds of 
Keccak-224 and Keccak-256. 
 
Dinur et al. [40] produced example collisions for Keccak-224 and Keccak-256, reduced to four 
rounds, and near collisions on five rounds. 
 
Table 15 summarizes the cryptanalysis results on Keccak’s Round 3 submission. 
 

Target Attack type Output  Variant CF Call Memory Reference 

Hash 
function Collision  160  

r={240,640,1440}, 
c=160,  

1, 2 rounds 
Example  [106] 

Hash 
function Preimage  80  

r={240,640,1440}, 
c=160,  

1, 2 rounds  
Example  [106] 

Permutation  Distinguisher  all  24 rounds  21579   [45] 

Permutation  Differential 
Property all  8 rounds  2491.47   [107] 

Hash 
function Distinguisher 224,256 4 rounds 225  [109] 

Hash 
function Near collision 224,256 3 rounds  225  [109] 

Hash 
function Collision 224,256 2 rounds 233  [109] 

Hash 
function 2nd Preimage 224,256 2 rounds 233 229 [109] 

Hash 
function 2nd Preimage 512 6 rounds 2506  2176  [108] 

Hash 
function 2nd Preimage 512 7 rounds 2507  2320  [108] 

Hash 
function 2nd Preimage 512 8 rounds 2511.5  2508  [108] 

Hash 
function Collision 224,256 4 rounds Example  [40] 

Hash 
function Near collision 224,256 5 rounds Example  [40] 

Table 15. Summary of Cryptanalysis Results on Keccak’s Round 3 Submission 
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4.2.5 Skein 

Skein is an iterative hash algorithm that is built on a tweakable block cipher – Threefish. 
Threefish is used to build the compression function of Skein using a modified Matyas-Meyer-
Oseas construction, which is then iterated using a domain extender similar to the HAIFA domain 
extender used by BLAKE. The designers refer to the whole construction as a Unique Block 
Iteration (UBI). The internal structure of Threefish is a 72-round substitution-permutation 
network using a 128-bit MIX function consisting of 64-bit addition, rotate and XOR operations, 
each used exactly once per MIX function. 
 
For the second round, Skein was tweaked by modifying the rotation constants, which the 
submitters felt had not been fully optimized for the first round of the competition. For the final 
round of the competition, Skein was tweaked by modifying a constant in the key schedule of 
Threefish to harden the function against rotational cryptanalysis. 
 
4.2.5.1 Analysis of the Skein Domain Extender 

Bellare et al. [110] proved that Skein-n is secure against preimage and collision attacks up to 
approximately 2n and 2n/2 queries, respectively, if the underlying tweakable block cipher (i.e., 
Threefish) is ideal. They also proved that, under the same assumption, Skein is indifferentiable 
from a random oracle up to 2256 queries, which means that Skein is secure against all nontrivial 
generic attacks up to 2256 queries. Andreeva et al. [73] proved that Skein-512 is second-preimage-
resistant up to 2512 queries, under the same assumption. 
 
4.2.5.2 Pre-Round 3 Analysis 

Early attacks on Threefish included a 33-round key-recovery attack by Chen and Jia [111], and a 
35-round distinguisher by Aumasson et al. [112]. McKay and Vora [113] published an attack on 
Threefish, using pseudo-linear functions to analyze the block cipher, yielding a 15-round key-
recovery attack. In addition, linear differential analysis by Su et al. [37] produced near collisions 
on 24 rounds of the Skein compression function.  
 
The most severe attacks on earlier versions of Skein exploited the near-rotational symmetries of 
its MIX function (where only the lack of a carry bit at either end of the 64-bit adder breaks the 
symmetry). The first of these attacks was the related-key, key-recovery attack of Khovratovich 
and Nikolic [114] on 39 rounds of Threefish-256, and 42 rounds of Threefish-512. Later, 
Khovratovich et al. [115] provided a rotational distinguisher, based on the concept of rotational 
collisions. By using what the authors described as a rebound attack, they extended the 
distinguisher to 53 and 57 rounds of the Skein-256 and Skein-512 compression functions, 
respectively. However, the Round 3 tweak, changing the key schedule constant from 
0x5555555555555555 to 0x1BD11BDAA9FC1A22, renders the rotational properties of the MIX 
function far less useful to the attacker. No comparable rotational attacks have been proposed on 
the final round version of Skein. 
 
Table 16 summarizes the cryptanalysis results on Skein before its Round 3 submission. 
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Target Attack type Output  Variant CF Call Memory Reference 
Block cipher Key recovery 512  32 rounds  2195  212  [111] 
Block cipher Key recovery 512  33 rounds  2324.6   [111] 
Block cipher Key recovery 512 34 rounds 2474.4  [111] 

CF Near collision  512  17 rounds  224   [112] 
Block cipher Impossible differential  512  21 rounds  -  [112] 
Block cipher Key recovery 512 26 rounds 2507.8  [112] 
Block cipher Key recovery 512  32 rounds  2312  271 [112] 
Block cipher Distinguisher 512 35 rounds 2478  [112] 
Block cipher Key recovery 256 15 rounds 2232  [113] 

CF Near collision  256  24 rounds  260   [37] 
CF Near collision  512  24 rounds  2230  [37] 
CF Near collision  1024  24 rounds 2395   [37] 

Block cipher Key recovery 256  39 rounds  2254.1   [114] 
Block cipher Key recovery 512  42 rounds 2507   [114] 

CF Distinguisher 256 53 rounds 2251  [115] 
CF Distinguisher 512 57 rounds  2503   [115] 

Table 16. Summary of Cryptanalysis Results on Skein prior to its Round 3 Submission 

4.2.5.3 Round 3 Analysis 

Several cryptanalysis papers have been published regarding the Round 3 version of Skein. 
Khovratovich et al. [47] published attacks using a splice-and-cut attack, augmented by a 
differential structure called a biclique. This resulted in a 22-round preimage attack on Skein-512, 
requiring 2511 compression-function calls, and a 37-round pseudo-preimage attack, requiring 2511.2 

compression-function calls. Khovratovich [86] also used bicliques to find collisions on 14 rounds 
of Skein-512, and 12 rounds of Skein-256, using 2254.5 and 2126.5 compression-function calls, 
respectively; and preimages on 14 rounds of Skein-256, using 2251.4 compression-function calls. In 
another attack paper, Yu et al. [41] used differential cryptanalysis to find semi-free-start near 
collisions on 32 rounds of Skein-256, using 2105 compression-function calls. Yu et al. [48] also 
published a 36-round distinguisher on the Skein-512 compression function, using 2454 
compression-function calls, and a 34-round key-recovery attack on Threefish-512, using 2424 
compression-function calls. 
 
Aumasson et al. [70] used Tuple cryptanalysis, which was also applied to BLAKE, to find a 
distinguisher on a 17-round version of Threefish. 
 
Table 17 summarizes the cryptanalysis results on Skein’s Round 3 submission. 
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Target Attack type Output  Variant CF Call Memory Reference 
Hash function Preimage 512 22 rounds 2511 26 [47] 
Hash function Pseudo-preimage 512 22 rounds 2508 26 [47] 
Hash function Pseudo-preimage 512 37 rounds 2511.2 264 [47] 
Hash function Collision 512 14 rounds 2254.5  [86] 
Hash function Collision 256 12 rounds 2126.5  [86] 
Hash Function Preimage 256 14 rounds 2251.4  [86] 

CF SFS near collision 256 32 rounds 2105  [41] 
CF Distinguisher 512 32 rounds 2104.5  [48] 
CF Distinguisher 512 36 rounds 2454  [48] 

Block Cipher Key recovery 512 34 rounds 2424  [48] 
Block Cipher Distinguisher 512 17 rounds 264 264 [70] 

Table 17. Summary of Cryptanalysis Results on Skein’s Round 3 Submission 

4.3 Security Summary 

No finalist was considered to be a clear winner or loser from the security analysis. While the 
details of the security proofs on domain extenders differ somewhat between finalists, all have 
proofs that relate the security of their full hash functions to the security of their underlying 
compression functions and fixed permutations. None of the published cryptanalytic attacks come 
anywhere close to threatening the security of any of the five finalists. The published 
distinguishing attacks are interesting, but do not have obvious implications for the security of the 
finalists.  
 
However, there are important differences between the finalists. JH and Grøstl have relatively 
small security margins that, when combined with their performance in software, probably cannot 
be addressed by increasing their numbers of rounds. Skein's security margin is a little larger, and 
could be further expanded by adding rounds, if necessary, given its excellent software 
performance. BLAKE and Keccak have very large security margins. Furthermore, JH and Grøstl 
have distinguishing attacks against them that reflect this difference – the best distinguishing 
attack on the JH permutation distinguishes all 42 rounds, and the best attack, on the underlying 
permutations of Grøstl, distinguishes 90 % of its rounds. By contrast, the only distinguishing 
attack on more than 14 of the 24 rounds of Keccak has a complexity that is far beyond any 
security bound expected of a 512-bit or shorter hash function, and Skein and BLAKE have no 
known distinguishing attacks that come close to threatening their full-round versions.  
 
Grøstl, Skein, and BLAKE have a large number of attack papers reflecting considerable depth of 
analysis, and Keccak has somewhat less, but still received considerable cryptanalytic attention. 
JH received significantly less analysis, and still has a relatively small security margin, suggesting 
that more analysis might further erode its security margin. Based on the available literature, JH 
does not appear to be very well-understood yet, and this influenced NIST’s selection of a winner. 
 
Another area where there has been some preliminary analysis of the security of the candidates is 
their resistance to side channel attacks. This area is somewhat difficult to analyze, since these 
attacks depend on the implementation of the algorithm, and not just the algorithm itself. As such, 
any algorithm can be implemented to be secure against side channel analysis if the implementer is 
willing to pay a large enough performance penalty. The challenges involved in defending against 
side channel analysis, however, vary among the finalists. Grøstl may be difficult to defend against 
cache-timing attacks on software platforms that do not have native support for the AES S-box in 
hardware. While the other finalists are unlikely to be vulnerable to timing attacks, they may still 
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need countermeasures to defend against power-analysis attacks, and in this respect, BLAKE and 
Skein may suffer somewhat, since it is somewhat harder to mask the modular addition 
instructions used in those algorithms. 
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5. Performance Comparison of the SHA-3 Finalists 

This section discusses the performance of the finalist candidates when implemented in software 
and hardware. 
 
All of the SHA-3 finalist candidates, as well as SHA-2, have four variants with 224-, 256-, 384- 
and 512-bit message-digest outputs. Skein and JH generate all four message-digest sizes with the 
same compression function, and therefore, all four run at about the same rate12. Keccak also uses 
a single compression function to generate all four output sizes, but the bigger the output, the 
smaller the message block that is processed by each compression-function call, and therefore, the 
bigger the message digest, the slower Keccak runs. BLAKE, Grøstl and SHA-2 use two different 
compression functions, one for 384- and 512-bit message digests, and another for 224- and 256-
bit message digests; these two hash-function variants usually run at different speeds on the same 
platform. 
 
Therefore, in the performance discussions, these algorithms will be referred to as: 

• BLAKE-256 and BLAKE-512 
• Grøstl-256 and Grøstl-512 
• JH  
• Keccak-224, Keccak-256, Keccak-384 and Keccak-512 
• Skein  
• SHA-256 and SHA-512 

 
In the performance discussion, whenever the name of an algorithm is used without a specific 
digest size attached, then the statement applies for all four digest sizes. 
 
5.1 Software Performance 

This section compares the performance of the SHA-3 candidate algorithms and SHA-2 when 
implemented in software on many of the most widely used current computing platforms. The 
general categories of computers considered are discussed below. 
 
5.1.1 Computer Systems – the Current Playing Field 

The software performance of the SHA-3 finalists has been measured in the following classes of 
commercially available computers: 
 
AMD6413: These machines are general-purpose Complex Instruction Set Computers (CISC) with 
a 64-bit-word orientation and Single Instruction Multiple Data (SIMD) vector units. They all run 
the 64-bit-oriented AMD64 instruction set architecture (ISA). AMD64 machines predominate 
today in desktop, laptop and netbook computers, as well as servers of all sorts. They typically 
have very large RAM memories, and increasingly have two or more independent “cores,” each 
capable of independently executing a program thread. Each core typically has superscalar, 
pipelined execution units supporting 64-bit-word integer, logic and floating-point operations and 
is able to simultaneously launch two instructions at each clock cycle. Typically, there is also a 

                                                      
12 This is perhaps not as good an assumption for hardware as for software, because different digest sizes have an effect 
on the area of the circuit, and possibly the clock rate as well, but the effect is usually small. 
13 This report adopts the “AMD64” nomenclature of the eBASH website. Other common designations for this 
instruction-set architecture are “x86-64” and “Intel-64”. This choice of names is for ease of comparison with the wealth 
of data on the eBASH website and does not indicate any NIST endorsement of any vendor or product for any purpose. 
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vector unit in each core. Since vector units were introduced for the x86 architecture in the 1990s, 
they have gone in stages from eight 64-bit registers to sixteen 256-bit registers for the latest-
announced products. The most recent machines have vector units that can simultaneously execute 
eight 32-bit operations or four 64-bit operations in a 256-bit vector register. Most desktop, laptop 
and server computers sold today are AMD64 machines. 
 
X86: These are the 32-bit predecessors of the AMD64 computers. Many legacy systems run on 
X86 computers, which now usually are AMD64 machines operating in the X86 mode. Most fairly 
recent examples include a vector unit and super-scalar execution units. 
 
ARM-NEON14: These machines run a relatively high-end implementation of the ARM ISA with 
a vector unit. The NEON vector instruction set uses registers that can be viewed as thirty-two 64-
bit registers or sixteen 128-bit registers. Many of the SHA-3 finalists benefit significantly from 
64-bit instructions or bit-slice implementations on wider words, and run markedly faster on the 
NEON-equipped ARM machines.  
 
32-bit RISC: These Reduced Instruction Set Computers (RISC) are scalar or super-scalar 
machines that are typically used today in a wide range of applications from smart phones, tablet 
computers, and appliances, such as GPS units and music players, to controllers and sensors 
embedded in many products. By far the most widely used RISC ISA is the ARM, which is widely 
licensed in a variety of “cores” that are incorporated in ASIC. Other legacy 32-bit RISC ISAs 
studied in the SHA-3 competition include the PowerPC (PPC), and MIPS (Microprocessor 
without Interlocked Pipeline Stages) ISAs.  
 
Embedded Microcontrollers: These are small computers, typically included on an ASIC with 
memory and other application-specific logic. In this category, the primary constraint is usually 
the RAM memory, although power may be another constraint. This is the most diverse category, 
and there are a number of ISAs, including low-end implementations of the 32-bit ARM, as well 
as sixteen and eight-bit microcontrollers. Applications for such computers include smart cards, 
sensors, smart meters, servo controllers, some RFID tags and a plethora of potentially networked 
appliances. 
 
5.1.2 Candidate Software Performance Studies 

Several studies have been done that compare SHA-2 and the SHA-3 finalists using programs 
written by a single programmer or a small team for a specific platform or language, or with a 
specific design goal. These include studies of optimized Java code running on a current AMD64 
computer [116], and optimized assembler code on the ARM11 processor [117], which is widely 
used in smart phones and tablet computers, but does not include the NEON vector engine. 
However, the vast bulk of the available SHA-3 finalist performance data was provided by two 
cooperative projects, eBASH (ECRYPT Benchmarking of All Submitted Hashes) [25], and XBX 
(eXternal Benchmarking eXtension) [26], both are part of the ECRYPT Benchmarking of 
Cryptographic System (eBACS) [118]. These two projects consolidated algorithm 
implementations from many different sources, ran them on many different computers and 
reported on their performance. NIST appreciates and is grateful for the significant efforts of all 
involved. 
 

                                                      
14 NEON is a 128-bit SIMD architecture extension for the ARM Cortex™-A series processors. 
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5.1.2.1 eBASH: General-Purpose Computers 

During the course of the SHA-3 competition, a large number of hash functions were 
benchmarked on general-purpose computers, and a significant amount of data on all of them can 
be found on the eBASH site (http://bench.cr.yp.to/ebash.html). Many C-language and some 
assembly implementations of all the finalists were submitted by different programmers to 
eBASH, then compiled with a range of different options and run on a large number of different 
computers. The best comparative presentation of the data for the SHA-3 finalists and SHA-2 is 
the “shootout” graphs [119] found at: http://bench.cr.yp.to/results-sha3.html, and NIST made 
extensive use of this data, which includes six graphs that summarize algorithm performance for 
various message lengths. In the shootout presentation, only the program with the best 
performance for each SHA-3 finalist on each computer is represented in the summary graphs. 
These summaries include data from fifteen AMD64 processor models, two X86 processor 
implementations, the PPC G4, four different ARM core designs and one MIPS32 implementation. 
In many cases, the eBASH benchmarks were run on several different computers with the same 
general processor model. 
 
Figures A1-A6 in Appendix A show the six eBASH summary graphs, as of September 10, 2012. 
Only the 512-bit and 256-bit variants are plotted. Throughput is stated in machine cycles-per-
byte, where fewer cycles indicate better performance. The fastest performance of the best 
algorithms on the latest machines is about six cycles per byte.  
 
One other feature of the eBASH website deserves special attention here. At 
http://bench.cr.yp.to/primitives-sha3.html, there is a table labeled “Which hash functions are 
measured? (SHA-2/SHA-3 excerpt),” which is a table of all the variants of all the SHA-3 
finalists, plus SHA-512 and SHA-256, and three “tree mode” implementations of BLAKE and 
Keccak that implement i-thread parallel implementations of the hash algorithms. The 
implementations that depend heavily on vector units are often given names that identify the type 
of vector unit: SSE (for Streaming SIMD Extensions), AVX (for Advanced Vector eXtensions), 
MMX15 for AMD64 or x86 machines, or NEON for ARM machines. 
 
The computers used in eBASH are classified into four of the five groups described above: 

• AMD64: use the AMD64 ISA and generally include a vector unit.  
• X86: use the 32-bit X86 ISA and may include a vector unit. 
• ARM-NEON: use the 32-bit ARM ISA with the NEON vector unit. 
• 32-bit RISC: use the following 32-bit RISC ISAs: ARM, MIPS or PPC. A vector unit is 

not used. 
 
To try to visually distill the complex graphs of the eBASH website into a simpler presentation, 
the performance of each algorithm is categorized into high, medium or low levels (shown as 
green, aqua, and red, respectively) for the four different classes of computers in Tables 18 and 19. 
A candidate’s performance on these platforms is marked at the specific cell with the platform 
identified, such that a reader can quickly grasp the candidate’s performance by reading across the 
algorithm row. 
 
Table 18 is for long messages (greater than 4096 bytes), while Table 19 illustrates shorter 
messages of 64 bytes. These are based on the eBASH “shootout” graphs for six different sizes of 
messages (long, 4096-bytes, 1536-bytes, 576-bytes, 64-bytes and 8-bytes). These simpler 
presentations are essentially “eyeball” judgments of relatively noisy data; the reader can study 
                                                      
15 MMX is a single instruction, multiple data (SIMD) instruction set designed by Intel and introduced in 1996. 

http://bench.cr.yp.to/ebash.html
http://bench.cr.yp.to/results-sha3.html
http://bench.cr.yp.to/primitives-sha3.html
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Figures A-1 through A-6 in Appendix A (the actual detailed eBASH shootout plots) to see how 
well the categorizations fit the data. The data for JH, in particular, seems erratic; this is apparently 
because the fastest JH vector code was completed very late, and had been run on some, but not 
all, the benchmark machines. This, however, makes little comparative difference, because even 
the fastest JH implementations are among the slowest of the algorithms. For each class of 
machine, the performance of the fastest algorithms ranged between four and eight times the speed 
of the slowest. When data points seem spread across both high and medium, or medium and low, 
crosshatching is used to draw attention to this. 
 
5.1.2.1.1 Long Messages 

Platform 
 
 
Algorithm 

High Performance Medium Performance Low Performance 
AMD64 X86 ARM-

NEON 
32-
bit 
RISC 

AMD64 X86 ARM-
NEON 

32-
bit 
RISC 

AMD64 X86 ARM-
NEON 

32-
bit 
RISC 

BLAKE-
512 AMD64  ARM-

NEON   X86  32-bit 
RISC     

BLAKE-
256 AMD64 X86 ARM-

NEON 
32-bit 
RISC AMD64        

Grøstl-
512     

AMD64 
(AES 
NI) 

   AMD64 X86 ARM-
NEON 

32-bit 
RISC 

Grøstl-
256     

AMD64 
(AES 
NI) 

   AMD64 X86 ARM-
NEON 

32-bit 
RISC 

JH     AMD64 X86 ARM-
NEON  AMD64 X86  32-bit 

RISC 
Keccak-
512         AMD64 X86 ARM-

NEON 
32-bit 
RISC 

Keccak-
256     AMD64 X86 ARM-

NEON 
32-bit 
RISC  X86   

Skein AMD64 X86 ARM-
NEON   X86  32-bit 

RISC     

SHA-512     AMD64 X86  32-bit 
RISC   ARM-

NEON  

SHA-256  X86 ARM-
NEON 

32-bit 
RISC AMD64        

 

 High Performance 

 Medium Performance 

 Low Performance 

 Performance straddling two categories 

Table 18. eBASH Performance Comparison for Long (> 4096-byte) Messages 

AMD64: Skein (all sizes) and BLAKE-512 are consistently the fastest algorithms and the only 
two algorithms that generally are faster than SHA-512 on AMD64 platforms. BLAKE-256 is also 
fast on the newer AMD64 platforms of one vendor with larger vector-register files [120], but is 
slower on most of the machines of the other major vendor. This may reflect differences in the 
vector units of the two vendors. Keccak-256, SHA-512 and SHA-256 are in the medium-level 
group, averaging about half the speed of the high-level group, along with Grøstl-512 and Grøstl-
256 on very new machines with the AES New Instructions (AES-NI). JH is also in the medium 
group for very recent AMD64 processors with 256-bit vector registers, but not for older 
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processors with 128-bit vector registers. Grøstl-512, Grøstl-256 (no AES-NI), JH and Keccak-512 
are in the low group, with performance only around ¼ of that of the high-performance group. 
 
X86: The high group includes BLAKE-256, and SHA-256, all of which are ARX-type 32-bit-
word algorithms. Skein does fairly well, straddling the high-medium groups, despite using 64-bit 
operations on a 32-bit machine. BLAKE-512, JH, Keccak-256 and SHA-512 have medium 
performance. The low group consists of Grøstl and Keccak-512.  
 
ARM - NEON: The high group consists of BLAKE, Skein and SHA-256, the medium group 
contains JH and Keccak-256, and the low group consists of Grøstl, Keccak-512 and SHA-512. 
The ability of the NEON vector unit to perform 64-bit operations may help Skein and BLAKE-
512 on this processor. 
 
32-bit RISC: The high-performance algorithms are BLAKE-256 and SHA-256; the medium 
group contains BLAKE-512, Keccak-256, Skein and SHA-512. Grøstl, JH and Keccak-512 are in 
the low group. 
 
5.1.2.1.2 64-byte Messages 

Platform 
 
 
Algorithm 

High Performance Medium Performance Low Performance 
AMD64 X86 ARM-

NEON 
32-
bit 
RISC 

AMD64 X86 ARM-
NEON 

32-
bit 
RISC 

AMD64 X86 ARM-
NEON 

32-
bit 
RISC 

BLAKE-
512 AMD64     X86 ARM-

NEON 
32-bit 
RISC     

BLAKE-
256 AMD64 X86 ARM-

NEON 
32-bit 
RISC AMD64        

Grøstl-
512         AMD64 X86 ARM-

NEON 
32-bit 
RISC 

Grøstl-
256     

AMD64 
(AES 
NI) 

   AMD64 X86 ARM-
NEON 

32-bit 
RISC 

JH     AMD64 X86 ARM-
NEON    ARM-

NEON 
32-bit 
RISC 

Keccak-
512     AMD64  ARM-

NEON 
32-bit 
RISC  X86   

Keccak-
256     AMD64 X86 ARM-

NEON 
32-bit 
RISC     

Skein AMD64 X86     ARM-
NEON 

32-bit 
RISC     

SHA-512     AMD64  ARM-
NEON 

32-bit 
RISC  X86   

SHA-256  X86 ARM-
NEON 

32-bit 
RISC AMD64        

 

 High Performance 

 Medium Performance 

 Low Performance 

 Performance straddling two categories 

Table 19. eBASH Performance Comparison for 64-byte Messages 

This comparatively small message size starts to show the effects of both fixed-per-message 
overhead and of different input block sizes, which range from 512 to 1088 bits. Average cycles-
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per-byte seem to be about twice that of long messages, but the ordering of algorithms has 
changed remarkably little. At this message size, Keccak-512 looks about as good in comparison 
to others as it ever will, since 64 bytes just fits, with padding, in a single message block and 
Keccak has no extra finalization round, while other algorithms either need two blocks, process a 
significantly larger-than-needed 128-byte message block or have an extra finalization round that 
has a bigger relative effect on short messages. 
 
AMD64: As with long messages, BLAKE and Skein lead all others. BLAKE-256 is in the high 
group on new machines with large vector-register sizes, but drops down into the medium group 
for older AMD64 machines. Grøstl-256 stays in the medium group with JH, Keccak-512, 
Keccak-256, SHA-512 and SHA-256, for machines that implement the AES-NI instructions, but 
falls into the low group on machines that do not implement the AES-NI instructions. Keccak-512 
is in the medium group with Keccak-256, because its relatively small 576-bit input block inputs 
the entire message in one block. Grøstl-512 is in the low group even with the AES-NI 
instructions, probably because of the extra overhead of its final “blank” round. 
 
X86: BLAKE-256, Skein and SHA-256 are in the high group on this 32-bit-word ISA. The 
medium group consists of BLAKE-512, JH and Keccak-256. Grøstl-256, Grøstl-512, Keccak-512 
and SHA-512 show low performance. 
 
ARM-NEON: The high-performance group consists of BLAKE-256 and SHA-256; the medium 
group consists of BLAKE-512, JH, Keccak-512, Keccak-256, Skein and SHA-512; and the low 
group consists of Grøstl-256 and Grøstl-512. 
 
32-bit RISC: BLAKE-256 and SHA-256, the two algorithms that use 32-bit modular addition 
extensively, are in the high group; BLAKE-512, Keccak-512, Keccak-256, Skein and SHA-512 
are in the medium-performance group, while Grøstl-256, Grøstl-512 and JH make up the low 
group. 
 
5.1.2.2 XBX: Embedded Microcontrollers 

Most of the data on embedded microcontrollers comes from the XBX effort; its homepage is at: 
http://xbx.das-labor.org/trac. XBX [26] focused on embedded computers, where it is usual to 
compile or assemble code on some development system, and then run it on a small computer or 
“microcontroller.” The XBX team collected and measured SHA-3 implementations on eight 
embedded platforms. Some of the 32-bit ARM processors benchmarked on XBX were as 
powerful as some of the machines tested by eBASH, and included vector units, while others were 
8- and 16-bit machines, characteristically used with very little memory. 
 
In contrast to eBASH, XBX gives the RAM and ROM requirements of the fastest 
implementations for each processor tested, and “area” versus speed plots, for each of the 
implementations measured. The area metric used in the XBX is: area = 4 × RAM + ROM. This is 
a heuristic based on the general observation that RAM memory requires about four times the area 
on a chip as ROM memory. In the larger systems used in eBASH, the memory required by hash 
algorithms is rarely an issue, but memory use is often an issue and sometimes the major 
constraint with embedded microcontrollers. In addition to XBX, [117] gives optimized 
implementations for all five finalists plus SHA-2 on the ARM-11 processor, which has been 
commonly used in cell phones, but has been supplanted by newer processors in high-end cell 
phones. 
 

http://xbx.das-labor.org/trac
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Eight-bit: Only one 8-bit microcontroller was tested, the Atmel ATmega128P. The smallest area 
and the best performance was attained by Grøstl-256, perhaps the only software case where 
Grøstl was the fastest algorithm. This probably is because of the eight-bit orientation of the AES 
operations used by Grøstl. BLAKE-256 was nearly as fast as Grøstl, but took somewhat more 
area. Keccak-256 was also compact and third in throughput. Interestingly, SHA-256 was 
comparatively big and slow, and SHA-512 had the worst overall performance of any algorithm. 
 
Sixteen-bit: Only one 16-bit microcontroller, the Texas Instruments’ MSP430FG4618, was tested. 
Overall, BLAKE-256 was fast and small, and SHA-256 was second. Grøstl-256 was small but 
fairly slow. Keccak-256 was a bit bigger than BLAKE-256 and somewhat faster than Grøstl-256, 
but no match for either BLAKE-256 or SHA-256. Keccak-256 requires a relatively small area 
and has reasonably good throughput. 
 
ARM (thumb instructions): This version of the ARM processor is a low-end microcontroller that 
only implements the 16-bit thumb instructions. The XBX authors consider small area to be the 
primary goal for this platform, and BLAKE and JH-256 are the two smallest algorithms. BLAKE-
256 and SHA-256 have the highest (very similar) throughputs, but the area requirement for SHA-
256 is higher than for BLAKE-256. Keccak has a fairly small area requirement, and Keccak-256 
is third in overall performance. Skein has the largest area requirement, and Grøstl-512 and JH are 
simply slow. 
 
32-bit RISC: This class includes several ARM processors running the regular 32-bit instructions 
(but without the NEON vector processor) and a 32-bit MIPS processor. Both XBX and [117] 
provide data for the 32-bit RISC processor. SHA-256 is the fastest algorithm overall, followed by 
BLAKE-256. Since these are both 32-bit-oriented ARX algorithms, it is expected that SHA-256 
and BLAKE-256 should be the fastest algorithms. Skein, BLAKE-512, Keccak-256 and SHA-
512 vie for third place, depending on the specific processor, while Grøstl-256, Grøstl-512 and JH 
are much (typically three to eight times) slower than SHA-256. BLAKE-256 and Grøstl-256 are 
usually the smallest algorithms in area. 
 
ARM with NEON: This is a relatively fast ARM core with the addition of a vector unit that 
supports 64-bit operations. With the addition of the vector unit, Skein becomes the fastest 
algorithm, followed fairly closely by BLAKE-256, BLAKE-512 and SHA-256, Skein is about 
twice as fast as Keccak-256, three times as fast as Keccak-512, and four to nine times the speed 
of JH and Grøstl. The overall results are similar to those on eBASH for ARMs with the NEON 
vector unit, although JH seems to do somewhat worse in the XBX benchmarks than is shown in 
the eBASH results. 
 
The XBX investigators give an overall ranking for embedded computers that factors in their 
understanding of whether the usual goal for the particular computer is throughput or minimum 
area. In that ranking, BLAKE is first, while Skein is in second place, but only slightly better than 
Keccak and Grøstl. The investigators did not include SHA-2 in this ranking; however, 
considering the good performance of SHA-256 on 32-bit RISC machines, if SHA-2 were 
included, it might beat Skein for second place, since there are four 32-bit platforms where SHA-2 
is the fastest algorithm, although rarely by a large margin. However, the smallest SHA-256 
implementations nearly always require somewhat more area than the smallest BLAKE-256 
implementations, so BLAKE-256 has the overall advantage over SHA-2. 
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5.1.3 Beyond The Superscalar 

The sophisticated superscalar arithmetic logic units (ALUs) of large-scale general-purpose 
computers attempt to extract as much parallel execution as they can from programs written as a 
single-thread sequence of instructions. Additional parallel execution may be explicitly 
programmed by taking advantage of multiple core processors that can run independent threads, or 
by using vector units that perform the same operation on a number of words in parallel. 
 
Most large-scale general-purpose processor chips today have between two and eight cores, each 
capable of executing an independent program thread. Since all of the SHA-3 finalists can be run 
efficiently as a thread on a single core, it seems obvious that very large files can be broken into n 
pieces and each piece hashed in parallel on separate cores in an n-core processor. The message 
digest of each separate piece may then be hashed in tree fashion. However, operating-system-
level interprocess synchronization may be expensive enough to limit the utility of this to very 
large files, and it is hard to see why one of the finalists would be better suited to parallel 
execution in separate process threads than any other finalist.  
 
Graphics Processor Units (GPUs) were not considered in the competition. GPUs are common on 
processors for laptop, desktop and even tablet computers. They are arrays of fairly specialized 
processors that are organized for stream processing, and are most commonly used for image and 
video rendering. Gaming and High-Definition video applications have driven GPU development. 
GPUs have been applied to cryptography, but more for cryptanalysis than for protecting data. 
GPUs may be well suited to applications that can be divided into many independent processes, 
such as password cracking, but it is hard to envision much near-term use of GPUs for data 
protection. 
 
Vector units with eight 64-bit registers became available in X86 machines in 1996. These 
machines could simultaneously perform one 64-bit or two 32-bit operations in a register. In 2012, 
the current generation of AMD64 machines has sixteen 256-bit registers. Current machines can 
simultaneously do four 64-bit operations or eight 32-bit operations in a register. The total size of 
the vector-register file has increased by a factor of eight in about 16 years.  
 
Vector units are both evolving rapidly and spreading from large-scale general-purpose computers 
to embedded computers. They are often the vehicle for the addition of new instructions, such as 
the AES extensions to the AMD64 instruction set. Vector units facilitate more efficient 
implementations of bit-slice designs, such as JH; of AES and algorithms that use the AES S-
boxes (e.g., Grøstl); and of BLAKE-256 on the more recent AMD-64 machines. On ARM 
machines that implement the Neon vector unit, they speed up most of the finalists. Some new 
instructions will be useful for hash functions; for example, rotate instructions are not available in 
most current vector processors, but are announced for inclusion in the next generation of AMD-
64 machines.  
 
Figures 1-3 graph the eBASH data for three recent AMD64-architecture processors that 
implement recent vector units operating on 256-bit vectors. In these graphs, each bar represents 
the mean cycles-per-byte for the fastest implementation of each algorithm on one of the three 
processors. Smaller bars mean faster throughput. The five finalist algorithms plus SHA-2 are 
plotted; however, in the case of Skein and JH, only one bar is plotted, because all four output 
sizes use the same compression function, and run at about the same rate. In these graphs, one 
designation is used for two or four message-digest sizes when they run at the same rate; one bar is 
plotted for each version with a different rate. For example, since BLAKE-256 and BLAKE-224 
run at the same speed, only BLAKE-256 is plotted, but all four digest sizes are plotted for 
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Keccak, because each runs at a different speed. For consistency with other algorithms, the 
nomenclature for Keccak has also been changed in this report from that used for eBASH, which 
generally labels the Keccak variants by their capacity; for example, the eBASH “keccakc512,” 
which outputs a 256-bit message digest, becomes “keccak-256” in Figures 1-3. 
 
It is reasonable to expect vector-register files to continue to grow, more instructions to be added, 
and to find more use of vector units, even in embedded systems. It seems too big an assumption 
to expect that because AES has inspired additional support instructions, that SHA-3 would also 
do so. If it did, that would likely be very far in the future, unless the instructions, like vector 
rotates, have more general uses than implementing hash functions alone. 
 
Figure 1 plots the cycles-per-byte of long messages for “h6sandy,” an Intel® Core i3-2310M16, 
which is a “Sandy Bridge” internal architecture processor with two 2100 MHz cores that is 
intended for laptop computers. Figure 2 plots cycles-per-byte of long messages for “sandy0,” an 
Intel Core i7-2600K, which is a Sandy Bridge four-core 3400 MHz processor that is intended for 
relatively high-end desktop computers. Figure 3 plots cycles-per-byte of long messages for 
“hydra6,” an AMD FX-8120, which is a “Bulldozer” internal architecture processor with four 
3100 MHz cores, also intended for desktop applications. The Intel Sandy Bridge processors 
implement the AVX vector instruction set, with sixteen 256-bit registers; the AMD Bulldozer 
processors implement the XOP vector instruction set, which is similar to the AVX instruction set, 
with some additional extensions, including, in particular, the 32- and 64-bit rotate operations. 
There is one significant difference between the two Sandy Bridge processors: sandy0 implements 
the AES-NI instructions, and h6sandy does not. The AES-NI instructions affect only the 
performance of Grøstl. 
 

 
Figure 1. SHA-3 Finalists Cycles/Byte on Sandy Bridge Laptop Processor with Current Vector Unit 

 
                                                      
16 The identification of certain products in this document does not imply recommendation by the US National Institute 
of Standards and Technology (NIST) or other agencies of the US Government, nor does it imply that the products 
identified are necessarily the best available for the purpose. 
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Figure 2. SHA-3 Finalists Cycles/Byte on Sandy Bridge Desktop Processor with Current Vector Unit 

 

Figure 3. SHA-3 Finalists Cycles/Byte on the Bulldozer Desktop Processor with Current Vector Unit 

Skein does not seem to benefit from the vector units, probably because of the different rotation 
constants used in its MIX operations, even though four parallel MIX operations occur in each 
round. Skein, however, is one of the fastest algorithms on all three of these machines, relying on 
their superscalar general-purpose ALUs.  
 
BLAKE logically allows parallel execution of four of its building-block G functions, with their 
rotates; unlike Skein, BLAKE’s four parallel rotates all use the same rotation values, facilitating 
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vectorization. On these machines with the most advanced vector units, BLAKE-256 (which uses 
32-bit words) becomes almost as fast as Skein-256, which uses 64-bit words and, in older 
AMD64 machines, has a bigger advantage over BLAKE-256. BLAKE-512 is slightly faster than 
Skein-512 on these newer machines, although Skein-512 has the advantage on older AMD64 
machines.  
 
Word rotation, used extensively by BLAKE, Skein and Keccak, is not usually a directly 
implemented instruction in current vector instruction sets, but it can be implemented by shifts and 
XORs. Keccak does relatively better on the Bulldozer, because only the Bulldozer implements 
vector-rotate instructions, giving about a factor of 1.7 speed improvement over older vector units 
[121]. BLAKE also benefits from the Bulldozer rotate instruction [120]. A single Skein thread 
probably will not be helped very much by a simple rotate instruction that rotates all words by the 
same amount. Grøstl is significantly helped by the AES-NI instructions and corresponding AES 
extension on the Bulldozer. JH clearly benefits from vector implementations, but still is among 
the slowest on all three processors.  
 
In addition to the five finalists and the SHA-2 algorithms described above, two “tree-modes,” 
Bblake-256 and keccak-256treed2, were implemented on all three processors, while another tree-
mode, Bblake-512, was implemented for the AMD FX-8120. These modes generate a single 512- 
or 256-bit message digest from two parallel streams using the regular compression function, and 
are examples of “Processing Multiple Buffers in Parallel” [122] or “multi-buffering” to increase 
performance; in these particular cases, this is done by dividing a single file into two parts to be 
hashed in parallel. The same technique can also be applied to two independent hash streams, as 
might occur on a server with many simultaneously active TLS connections. 
 
Gueron and Krasnov [123] have investigated “multi-lane” parallel hashing modes for SHA-256, 
and for a four-lane version of SHA-256 with 8192-byte messages on the Intel® Core™ i7-3770 
“Ivy Bridge”16 processor with the AVX vector instruction set, they obtained 5.46 clocks per byte. 
This is a little (5 % to 8 %) better than the results that they obtained for multi-lane versions of 
Blake-512 and Blake-256, and about 22 % better than a multi-lane version of Keccak. From their 
work it seems fair to conclude that, for large messages with a multi-lane hashing mode, or where 
multi-buffering allows the parallel execution of multiple hash operations, SHA-256 is very 
competitive in throughput, and that 32-bit-word-oriented algorithms (SHA-256 or Blake-256) can 
be as fast on big 64-bit-oriented processors as 64-bit-word algorithms, wherever multi-lane or 
multi-buffered execution is practical. These may be the bulk of cases where hash function 
performance is an issue. 
 
All of the candidates and SHA-2 potentially can benefit from a tree mode or multi-buffer 
implementations, although perhaps to varying degrees. The different rotation values that 
complicate vectorizing a single Skein thread should not matter in a multi-buffer implementation. 
However, there has not been enough work done on this to draw strong conclusions about which 
algorithms benefit most. In the future, NIST expects to consider a hashing recommendation for a 
standardized parallel hashing mode. 
 
5.1.4 Software Performance Summary 

Skein and BLAKE, the two ARX finalist candidates, have the best overall software performance. 
Only Skein and BLAKE seem to be faster than SHA-2 in most cases.  
 
Skein has the advantage of a single compression function for all four message-digest sizes, which 
reduces code size if all four message-digest sizes are required. Skein-256 has a small to moderate 
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performance advantage over BLAKE-256 on AMD64 platforms, which may, or may not, carry 
over to future 64-bit ARMv8 [124] processors if the processors adopt superscalar ALUs similar to 
the ones used in AMD64 processors. BLAKE-512 seems to gain a modest performance advantage 
over Skein-512 on more recent AMD64 machines by better fitting their vector units.  
 
On 32-bit machines (mainly ARM processors) without vector units, BLAKE-256 is the overall 
leader, although it has only a small throughput advantage over SHA-256. On ARMs with the 
NEON vector unit, Skein seems the fastest algorithm, followed fairly closely by BLAKE. 
 
On small embedded computers, BLAKE-256 has the best overall performance. BLAKE-256’s 
throughput is usually at or near the top, although occasionally slightly less than SHA-256, while 
BLAKE-256 generally has smaller memory requirements than SHA-2 and most of the other 
candidates. 
 
Keccak is reasonably fast for 224- and 256-bit message-digest sizes on a range of machines, but 
Keccak-512 is among the slower algorithms on most machines. Keccak benefits significantly 
from vector rotate instructions, which may become common on future processors. Like Skein, 
Keccak uses one compression function for all four digest sizes, and is amenable to compact 
implementations. 
 
Grøstl-256 seems to need special instruction-set support for AES S-boxes to achieve even the 
medium level of throughput performance on computers with a 64- or 32-bit word orientation. 
Even with such support, Grøstl-512 ranks near the bottom in throughput. However, on the one 
eight-bit microcontroller tested, Grøstl-256 was the fastest finalist and one of the most compact. 
 
JH seems to benefit from larger vector sizes, but even with vector instruction sets that allow 128-
bit operations, it is difficult to achieve a medium-level performance. JH may be more competitive 
on vector units with 256-bit or larger vector registers. 
 
5.2 Hardware Performance 

There are two major implementation technologies for cryptographic circuits: Field Programmable 
Gate Arrays and Application Specific Integrated Circuits. FPGAs are programmable devices that 
allow the quick implementation of logic circuits that can easily be tested and modified. They are 
mainly used for relatively low-volume products. ASICs are custom integrated circuits that are 
fabricated on a silicon wafer. The initial fixed costs for the design and fabrication of ASICs is 
higher and takes longer than for FPGAs, but the performance (throughput and energy-required-
per-message-bit, or energy-per-bit for short, to compute the hash of a message) of ASICs is much 
better than FPGAs. ASICs are also much less expensive than comparable FPGA implementations 
when a large number of ASICs are produced. The modern paradigm for implementing high-
volume electronics is a system on a chip: an ASIC with a processor, some memory and various 
support and external interface circuits, possibly including cryptographic hardware. The ASIC 
share of the market is considerably larger than the FPGA share, but there is still a significant 
FPGA market, since FPGAs reduce fixed costs, get products to market faster and changes are 
much easier during the design process. 
 
It was practical to conduct FPGA design studies of the SHA-3 finalists, where many variations on 
a design were implemented and their performance measured, but was much too expensive to do 
the same thing with ASICs. However, the relative performance of the finalist algorithms in ASICs 
and FPGAs are often, but not always, similar [125, 126]. In particular, a good correlation has 
been shown between results obtained using standard-cell CMOS 65nm UMC ASIC technology 



47 

and a 65nm high-performance Altera FPGA family Stratix III [125]. The similar correlation may 
not exist between a different ASIC technology and a different FPGA family, due to significant 
differences among various ASIC standard-cell libraries, and various internal architectures of 
modern FPGA families. 
  
The data obtained from ASIC implementations during the SHA-3 competition is particularly 
valuable, because ASICs will be used for high-volume applications. However, the performance 
data from FPGA studies gave more detailed insight into the effects of design trade-offs. The 
existing ASIC implementations of the SHA-3 finalists implement a full round of the algorithm, or 
even unroll several rounds; FPGA studies also provided insight into folded partial-round 
implementations and various unrolled or pipelined implementations. Some finalist algorithms use 
different compression functions for their 256- and 512-bit variants; in order to reduce the 
implementation cost, only the 256-bit ASIC implementations of the finalists were built. 
 
There are many hardware design trade-offs. While the memory required by a hash function in 
software is not usually a concern on any but very small processors, the area needed by a hardware 
hash-function implementation affects the space available for other functions on the integrated 
circuit and the price of the final product. Computers running software can exploit only certain 
patterns of parallel execution − for example, a word addition and a rotate at the same time, or 
adding or XORing the same value to several words in parallel. On the other hand, a circuit can be 
designed to simultaneously execute every operation where parallel execution is logically possible. 
However, parallel execution requires additional area on the chip, and many designs sacrifice 
parallel execution or do not unroll logic, when it would speed up the circuit, in order to save area. 
Reusing complex circuit elements saves area, but usually slows throughput and adds additional 
switching and control logic, so at some point, little or no area savings may result. The usual 
overall performance metric for a hardware hash-function implementation is throughput/area. 
 
The compression function of each of the SHA-3 finalists repeatedly executes a fairly simple 
round function. This is inherently a serial process. When the entire round is implemented in a 
single clock cycle, the result often gives the best throughput-to-area ratio, and this appears to be 
the case for SHA-2 and several of the finalists. However, the round functions themselves usually 
consist of repetitions of similar operations, so a round can be “folded” and only a part of the 
round implemented in a single clock cycle. At the other extreme, the round functions can be 
unrolled, and more than one round can be executed in a single clock cycle, but, while the circuit 
gets bigger because of the unrolling, the throughput usually does not get proportionately higher. 
Skein, in particular, benefits from unrolling because unrolling allows the rotation circuitry to be 
simplified, and because the delay of k consecutive additions is much smaller than k times the 
delay of a single addition, where k is an unrolling factor (typically 4). 
 
When several rounds or operations within a round are unrolled, it is possible to pipeline several 
independent hash-function streams by adding extra memory to the circuit, and this may improve 
the overall throughput/area ratio of the circuit, but not the maximum throughput of a single hash 
function stream. This is analogous to “multi-buffering” [122] software hash functions with vector 
units. Skein benefits from pipelining [127], as can BLAKE [125]. 
 
All the SHA-3 finalist candidates can be efficiently implemented with 32- and 64-bit logic or 
arithmetic operations in order to run well on contemporary, general-purpose computers. The time 
needed for a modular addition of the natural word size of a general-purpose computer is often as 
fast as bitwise logic operations. In hardware, this is not the case: word-length bitwise logic is 
faster than addition with its carry propagation delays. Therefore, the fastest hash function on a 
general-purpose computer is not necessarily the fastest hash function in hardware. 
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Of the five finalists, BLAKE and Skein are designed with multiple modular addition operations, 
while Keccak, Grøstl and JH are not. Not surprisingly, of these five algorithms, BLAKE and 
Skein have the best throughput on general-purpose computers, while Keccak, Grøstl and JH 
usually give better throughput/area performance on hardware implementations. SHA-2 also uses 
modular addition, but with more non-linear bitwise operations, and requires fewer adder circuits 
than either BLAKE or Skein. 
 
The George Mason University Cryptographic Engineering Research Group (GMU CERG) 
Database provided a website resource similar to the eBASH and XBX software benchmarking 
efforts. The GMU CERG Database consolidated results from all groups that had published results 
of the SHA-3 finalist hardware implementations, and had views of the ASIC Rankings [128] and 
the FPGA rankings [129]. 
 
5.2.1 High-Performance Implementations 

In the final round of the competition, there were three complete ASIC implementations of the 
256-bit versions of all five finalists and SHA-2. The studies were done by teams at GMU [125], 
The Eidgenössische Technische Hochschule Zürich (ETHZ) [130], and Virginia Tech (VT) [131]. 
The GMU designs were optimized for maximum throughput/area, while the ETHZ designs were 
optimized for throughput/area at a data rate of 2.488 Gbps (the rate of an OC-48 channel). Both 
the GMU and ETHZ designs were implemented on the same ASIC with a 65 nm CMOS 
technology, and the results were reported by Gürkaynak et al. [130]. The VT designs were 
optimized for throughput/area, implemented in a 130 nm CMOS technology and the results were 
reported by Gao et al. [131, 132] and summarized in [128]. 
 
It is difficult to directly compare the throughput of implementations with such different 
technologies, but areas are stated in kGate Equivalents (kGE), which are roughly comparable. To 
make a rough comparison of all three sets of designs, the method employed by Gaj et al. [125] in 
their “shootout” section was used to normalize the throughput/area and energy/bit results for the 
candidate implementations, relative to the SHA-256 implementation by the same group using the 
same technology. High throughput/area designs of SHA-2 seem to be well understood, and all 
three implementations seem to have roughly the same area in kGEs, so NIST considered that this 
approach was justified and allows a rough comparison of the performance of 65 nm GMU and 
ETHZ implementations with the 130 nm VT ASIC implementations on the same normalized 
scale. This comparison for throughput/area is somewhat unfair to the ETH implementations, 
because they were optimized for a specific throughput, not, for maximum throughput/area. 
 
Figure 4 below compares the areas for the designs, and Figure 5 compares their throughputs. 
Figures 6 and 7 give the normalized throughput/area and energy per bit. For these designs it is 
clear that only Keccak-256 is better than SHA-256 in throughput/area, by a factor between two 
and four. SHA-2 gives its best throughput/area performance with a smaller circuit than any of the 
finalists. Grøstl and Skein usually require significantly larger areas to achieve their best 
throughput/area ratios. In energy-per-bit consumed, Keccak and SHA-256 are roughly 
comparable, and better than the four remaining finalists. 
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Figure 4. Area in kGate Equivalents for Three 256-bit ASIC Implementations 

Comparable ASIC performance data is not available for the 512-bit finalists. It is obvious that 
BLAKE-512 and Grøstl-512 will roughly double in area; that the area of Keccak-512 will stay 
about the same, but the throughput will decrease to a bit more than half the rate of Keccak-256; 
and that the throughput of JH and Skein will stay about the same. The throughput of BLAKE-512 
and Grøstl-512 will be reduced by their increase over the number of rounds required for the 256-
bit variants, but increased by their larger message-block sizes. 
 
However, there is FPGA data to directly compare the speed differences between 256-bit and 512-
bit hash functions. Gaj et al. reported on a broad examination of high- and medium- speed FPGA 
implementations of the finalists [125], including folded, unrolled and pipelined implementations, 
and both 256-bit and 512-bit variants for four different FPGA devices. In their “shootout” section, 
they combined their data with that of implementations from all other published implementations, 
including Latif et al. [133], and selected the design with the best throughput/area for each of the 
algorithms and FPGA devices. Figures 8 and 9 below plot the throughput/area for the best 
implementations of each of the 256-bit and 512-bit finalists, normalized by the throughput/area of 
SHA-256 or SHA-512 to adjust for the performance differences among the FPGA devices. The 
best Keccak designs appear to have about a factor of two advantage over SHA-2 for both the 256-
bit and 512-bit hash functions. JH-256 and Grøstl-256 have very similar maximum 
throughput/area ratios that are very close to that of SHA-256. Skein-256 and BLAKE-256 have 
maximum throughput/area ratios of about half that of SHA-256. However, JH-512 is now clearly 
in second place behind Keccak-512, and is better than SHA-512, while Grøstl-512 and Skein-512 
are similar and a bit below SHA-512. BLAKE-512 is in last place, with a little better than half the 
throughput/area ratio of SHA-512. 
 
Clearly, in ASICs or FPGAs, and at 256-bits or 512-bits, Keccak has the best throughput/area 
ratio for medium- to high-performance implementations of the finalists, and is the only finalist 
that is generally better than SHA-2 in throughput/area. Keccak also has the most compact 
implementation of any of the finalists when they are optimized for throughput/area. In addition, 
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Keccak exhibits the lowest energy-consumption-per-message-bit of any of the finalists, and has 
about the same energy-per-bit requirement as SHA-2. 
 

 
Figure 5. Throughputs of Three 256-bit ASIC Implementations 

 
Figure 6. Normalized Throughput/area for Three 256-bit ASIC Implementations 
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Figure 7. Normalized Energy per Bit for Three 256-bit ASIC Implementations 

 

 

Figure 8. (Normalized) Best Throughput/area for 256-bit FPGA Implementations 
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Figure 9. (Normalized) Best Throughput/area for 512-bit FPGA Implementations 

5.2.2 Compact Implementations 

Extremely small or “lightweight” implementations perform differently from the high-
performance implementations discussed above, in that they do not implement a full round, rather 
they find some way to “fold” the round or to reuse the same circuitry several times to execute a 
round, and are harder to evaluate. For compact implementations, the first concern is with the area 
of the circuit: the application designer may want the smallest implementation that meets some 
throughput target, or may want the smallest implementation possible, and be willing to live with 
the performance that results. Several papers described lightweight implementations of the 256-bit 
versions of the finalists, and one lightweight study featured the 512-bit versions of the SHA-3 
finalists. 
 
Kavun and Yalçın [134] reported lightweight “word-serial” implementations for the five finalists 
in a 90 nm CMOS ASIC, with areas between 9.2 and 15.5 kGEs. The word-serial designs 
implemented a small number of word-sized logic circuits (such as 32-bit XOR, AND, modular 
addition or rotation) that were reused in a serial fashion, supplemented, where convenient or 
advantageous, by a few specialized logic circuits for parallel operations, such as the Skein 
permutation of 64-bit words or the Keccak π permutation. Their results are summarized in Table 
20. Their most compact implementation was for Grøstl-256, and the best throughput/area ratio 
was for BLAKE-256. The authors estimated that for an additional 2 kGE, they could have 
produced a Grøstl-256 implementation with about the same area and throughput as BLAKE-256, 
so BLAKE-256 and Grøstl-256 seem best suited to this kind of implementation. For comparison, 
the optimized throughput/area implementations of SHA-256 provided by Gürkaynak et al. [130] 
used around 25 kGE in area, so these implementations were around half the area of a high-
performance SHA-256 implementation. 
 
While most lightweight-implementation studies focused on 256-bit versions of the algorithms, 
Kerckhof et al. [135] implemented lightweight versions of the 512-bit variants of the finalists. All 
of these 512-bit implementations used a 64-bit internal path, which is a natural choice, as most of 
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the algorithms are designed to operate well on 64-bit processors. Grøstl-512 had the highest 
throughput/area ratio of any of the finalists, about five times that of Keccak and at least twice that 
of any other algorithm. The authors claimed that “the clear advantage of Keccak in a high-
throughput FPGA implementation context vanishes in a low area one.” 
 

Algorithm Word 
(bits) 

Area 
(kGE) 

Throughput 
(kbps@100kHz) 

Throughput/Area 
(Bps/GE) 

BLAKE-256 32 11.3 213 18.88 
Grøstl-256 32 9.2 40  4.32 
JH-256 32 13.6 36  2.61 
Keccak-256 64 15.2 91  5.96 
Skein-256 64 15.5 86  5.58 

Table 20. Compact ASIC “Word-serial” Implementations of the 256-bit Finalists 

Jungk [136] reported a study of constrained 256-bit implementations on the Virtex-5 FPGAs that 
made extensive use of distributed RAM in his implementations. The Keccak design is not folded 
along 64-bit Keccak “lanes,” but rather folded into units of eight 5-bit × 5-bit “slices.” Jungk 
concluded that the results hinted that Grøstl is the best overall performer for compact 
implementations when the throughput/area ratio is the most important consideration. Grøstl is 
followed by JH, Keccak, and BLAKE, which are close together, while Skein trails behind. When 
area is the most important consideration, JH appears to be the best, followed by BLAKE, Grøstl, 
Keccak and Skein. 
 
Kaps et al. [137] reported a GMU study on area-constrained FPGA implementations. The GMU 
study fixed two targets: one of 768 slices and another of 450 to 650 slices, plus one block of 
RAM for the Xilinx Spartan-3 FPGAs. GMU designed the highest throughput implementations of 
the 256-bit finalists and SHA-256 that they could under those constraints. Figure 10 shows the 
areas used for the GMU Spartan-3 implementations, while Figure 11 gives the throughput/area 
for the implementations. BLAKE-256 appears to be the clear throughput/area winner, followed 
by Grøstl-256 and then JH-256. Only BLAKE-256 and Grøstl-256 are better than SHA-256. 
Figure 12, from the Kaps presentation [137], plots the GMU designs (ported to a Virtex-5) and 
the Jungk designs in a throughput versus area chart. In this chart, the relative performance 
changes as the area doubles and triples. At the smaller sizes (around 500 slices), BLAKE is the 
fastest, but by 1200 slices, Grøstl-256 becomes the overall throughput/area leader. By about 1700 
slices, Keccak-256 passes Blake, but is still slower than Grøstl-256. In this range, Skein is the 
slowest algorithm, and JH, while better than Skein, seems to always require more area than the 
other three to achieve the same throughput. 
 
At et. al. [138] implemented Grøstl-256 and Grøstl-512 as well as AES-128, AES-192 and AES-
256 with an 8-bit data path that requires only 169 slices on a Virtex-6 FPGA. Because Grøstl uses 
the AES S-boxes and similar operations, much of the circuitry is shared, and including AES adds 
only 67 slices. 
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Figure 10. Area of GMU Compact Spartan-3 Implementations of the 256-bit Variants 

 

 
Figure 11. Throughput/Area for GMU Spartan-3 Implementations of the 256-bit Variants 
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Figure 12. Comparison of GMU Constrained Implementations Ported to Virtex-5 with Jungk [136] 
Implementations 

 
5.2.3 Discussion of SHA-2 and the SHA-3 Finalists 

The implementations of SHA-2 and each of the finalists is discussed below. 
 
5.2.3.1 SHA-2 

The SHA-2 algorithms use a conventional Davies-Meyer construction with a chaining variable of 
eight words and a message block input of sixteen words. SHA-256 uses 32-bit words, while 
SHA-512 uses 64-bit words in its design. Except for the word size and the number of rounds that 
is called for, the two compression functions are similar and rely on bitwise AND operations in the 
round function and modular addition, in the message expansion and the round function, for 
nonlinearity. Only two words of the chaining variable require recomputation during each round, 
and part of round i+1 can be pre-computed during round i. SHA-2’s round function has no 
symmetries that permit straightforward folding, but the whole round function is still quite 
compact, usually resulting in a fairly good throughput/area ratio, − as good as or better than any 
of the finalists except for Keccak. A “full” SHA-2 implementation is only a little bigger than 
many folded implementations of the SHA-3 finalists. SHA-2 provides a reasonably good 
benchmark for comparison with the finalists, because hardware implementation of SHA-2 has 
been well studied [139, 140, 141] and is apparently mature. Consequently, there seems to be less 
variation in the size and throughput of various implementations of SHA-2 by different 
investigators using the same devices, than for the SHA-3 finalists. Many of the investigators 
exploring hardware performance included SHA-2 for comparative purposes in their studies. To 
compare implementations by different investigators using different technologies or FPGA devices 
in a single chart, Figures 6 through 9 are normalized using the performance of SHA-2 for the 
same implementer and technology. 
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5.2.3.2 BLAKE 

In hardware, BLAKE is one of the most flexible SHA-3 finalists, since it can be folded vertically 
and horizontally by two or four, and pipelines readily within a single round. BLAKE gives the 
best performance of any algorithm for very compact FPGA implementations, and the same would 
probably be true for ASIC implementations. Like SHA-2, BLAKE has the advantage of two 
different compression functions to aid compact 256-bit implementations, one with 32-bit words 
and the other with 64-bit words. High-performance implementations of BLAKE in FPGAs or 
ASICs typically require about twice the size of SHA-2, with about the same throughput, so 
BLAKE’s throughput/area ratio is roughly half that of SHA-2. This ratio seems to hold for both 
BLAKE variants. When FPGA implementations of BLAKE are folded to be smaller than SHA-2 
(roughly half the size of SHA-2), they seem, at best, to give about half the throughput/area result 
of full SHA-2 implementations on the same FPGA device, and sometimes much less. 
 
5.2.3.3 Grøstl 

Grøstl relies on the eight-bit AES S-boxes for nonlinearity, and a Grøstl implementation can 
share circuitry with an AES implementation where both algorithms are needed [138, 142, 143]. 
Grøstl uses two very similar fixed permutations of either 512 or 1024 bits to build the round 
function for 256-bit and 512-bit variants, respectively. There are many possible design variations 
for Grøstl, more, perhaps, than any other finalist. Most designs take several times the area of 
SHA-2. However, Jungk [136] reported on a Grøstl-256 implementation that was folded eight 
ways on a Virtex-5 FPGA, with a size similar to a full SHA-256 implementation. This 
implementation gave about ¾ the throughput/area performance of the GMU SHA-2 
implementation on the Virtex-5, and a somewhat better performance than Jungk’s folded Keccak 
implementation on the Virtex-5. While high-performance Grøstl implementations seem to be 
quite large and nearly always have a lower throughput/area ratio than SHA-2, Grøstl is generally 
better than BLAKE and Skein in throughput/area. 
 
5.2.3.4 JH 

Like Skein, JH has a single compression function that is used by both 256-bit and 512-bit variants 
and, like Skein, the 256- and 512-bit hash functions run at about the same throughput rate. This 
means that 512-bit JH implementations are more competitive in throughput/area, compared to the 
other 512-bit algorithms than is the JH 256-bit implementation. JH can be readily folded and 
pipelined, and Jungk [136] and Kerckhof et al. [135] both reported highly folded FPGA 
implementations that were compact, but slow (compared to the BLAKE implementations with 
similar area). In the GMU FPGA throughput/area “shootout,” JH-256 has about the same result as 
SHA-256, while JH-512 is better than SHA-512, but worse than Keccak-512. 
 
5.2.3.5 Keccak 

The Keccak permutation has a 1600-bit state that can be viewed as a 5 × 5 array of 64-bit “lanes” 
or as sixty-four 5 × 5-bit “slices”. In software, the algorithm is conveniently implemented as 64-
bit logic operations, rotations, loads and stores. However, general-purpose computers cannot 
exploit most of the parallelism latent in the algorithm, and a full hardware implementation of 
Keccak is naturally highly parallelizable, resulting in a very good throughput/area ratio, typically 
about twice or more of the throughput/area ratio of a full-round SHA-2 implementation. Keccak 
is the only finalist that is consistently better than SHA-2 in throughput/area for high-performance 
hardware implementations. A full-round implementation of Keccak-256 in either ASICs or 



57 

FPGAs seems to be significantly (two to four times) bigger, but much faster (four to ten times) 
than SHA-256. Keccak-512 uses the same compression function as Keccak-256, and has about 
half the throughput rate, and SHA-512 gives a somewhat lower throughput/area measurement, so 
that Keccak-512 retains a reduced, but still substantial, throughput/area advantage over SHA-512. 
 
The results for compact implementations are more complex. Keccak can be folded either along 
the lanes or in units of 1, 2, 4, 8, 16 or 32 slices. Kerckhof et al. [135] implemented a lane-
oriented, folded version of Keccak with five 64-bit registers and a 64-bit barrel rotator, but got 
lower performance than the other four finalists and concluded that Keccak is inherently less 
suitable for compact FPGA implementation than the other SHA-3 finalists. However Jungk [136] 
studied compact FPGA implementations of the finalists and used an eight- (of 64) slice FPGA 
implementation of Keccak, getting a somewhat larger, but much faster, implementation that is 
second in his study only to Grøstl in throughput/area. This suggests that reasonably efficient, 
folded implementations of Keccak are possible, but such folded Keccak implementations have 
only about average performance.  
 
5.2.3.6 Skein 

A Skein round consists of four parallel MIX operations, each with one 64-bit modular addition 
operation, one 64-bit rotation and one 64-bit XOR operation. Skein has 72 rounds, with a three-
tier round structure: subkeys are added every four rounds, and the rotation pattern repeats every 
eight rounds. When the eight rounds are unrolled, no logic is required for the rotations. The 
maximum throughput/area performance of a non-pipelined Skein implementation seems to occur 
when four rounds are implemented in a single cycle. Walker et al. [127] reported on an ASIC 
design with two pipelined stages in eight rounds as a good hardware trade-off for a router or 
server processing multiple hash streams. The Skein round can be folded vertically, and Jungk 
[136] reported a Skein-256 implementation that used only three 32-bit adders, but this design was 
about the same size and five to seven times slower than the full-round implementations of SHA-
256 reported by Gaj et al. [125] on the same FPGA device. Overall, Skein lends itself to unrolled, 
pipelined implementations that can achieve high overall throughput; however, this approach 
requires a comparatively large area. Since the same compression function is used for both Skein-
256 and Skein-512, Skein-512 is more competitive in throughput/area. Skein is not a good choice 
for compact 256-bit hash function implementations or when it is implemented to maximize 
throughput/area (typically by unrolling four rounds), since it requires around three times the area 
of SHA-256.  
 
5.2.4 Hardware Performance Summary 

In high-performance implementations, Keccak is the clear throughput/area winner, and the only 
candidate that is better than SHA-2. Skein and BLAKE have the lowest maximum throughput to 
area ratio.  
 
In very compact implementations, if the assumption that a 256-bit variant would be preferred 
over a 512-bit variant is correct, then it would be expected that the two finalists with different 
256-bit and 512-bit compression functions, BLAKE-256 and Grøstl-256, would have an 
advantage; this appears to be the case for hardware implementations. However, the advantage is 
not entirely because of the separate compression functions − they are also very amenable to 
folding and pipelining, and it is probably easier to tailor their implementations to a specific size 
because of this flexibility. Reasonably efficient, folded or serial implementations of all of the 
algorithms seem achievable, but BLAKE and Grøstl seem the most flexible.  
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6. Other Considerations 

6.1 Intellectual Property 

One of the SHA-3 submission requirements is the Intellectual Property Statement. Each 
submission package needed to contain a set of signed statements to indicate that the submitted 
algorithm would be available worldwide on a royalty free basis during the competition, and 
remain so after the competition if the algorithm is chosen as the SHA-3 winner. These statements 
included: 

• Statement by the Submitter, 
• Statement by Patent (and Patent Application) Owner(s) (if applicable), and  
• Statement by Reference/Optimized Implementations' Owner(s).  

For the last two statements, separate statements were required if multiple individuals are 
involved. FRN-Nov07 [6] provides full details of these requirements. 
 
All of the SHA-3 finalist packages satisfied this requirement; and the designers have reconfirmed 
their commitment to this agreement in the last stage of the selection process. 
 

6.2 Other Features 

A number of candidate algorithms suggested ways that their submissions could be modified to 
produce added functionality above and beyond the ways that current hash functions are generally 
used. BLAKE’s domain extender incorporates a salt field, which could be used for more efficient 
randomized hashing, for example, and its compression function is built from a 512- or 1024-bit 
wide block cipher that could potentially be used on its own. Keccak’s sponge domain extender 
also provides a significant amount of flexibility. It can be fairly easily modified to produce a 
larger or smaller message digest, or to trade off bits of security against generic attacks for 
increased performance in a controlled way. The Keccak team also published an efficient way of 
using the Keccak permutation in an authenticated-encryption mode [144]. 
 
The Skein team probably devoted the most effort of any of the finalists towards developing extra 
functionality. In addition to the tweakable block-cipher, Threefish, which Skein is based upon, 
the Skein team also suggested ways that Skein could be used for a variety of applications 
including tree-mode hashing, a custom MAC construction, hashing the public key into message 
digests for signatures, a stream cipher, and a way of “personalizing” Skein for specific 
applications to avoid two different algorithms hashing the same data in ways that could be 
exploited by an attacker.  
 
The Skein team also published a paper [145] strongly advocating that NIST standardize similar 
extras, whatever the final SHA-3 winner is. The highest priority applications, according to the 
paper, were support for more efficient MAC constructions than HMAC, and support for 
nonstandard message-digest sizes. Other features listed as important were tree-based hashing, and 
hash-based signatures. Finally, the paper listed two more applications as “nice to have:” a 
standardized technique for “personalization,” and a hash-function-based authenticated-encryption 
mode. 
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7. Conclusion 

After a very long and complex evaluation process, NIST has selected Keccak as the winner of the 
SHA-3 Competition. It was chosen from a field of five very strong candidates, each of which 
provides some outstanding performance characteristics and design features. All five finalists 
appear to provide an adequate security margin, as well.  
 
Contrary to the fears leading up to the SHA-3 Competition, SHA-2 has held up well in the face of 
continued cryptanalysis. The new SHA-3 will need to compete with an existing algorithm (SHA-
2) that also offers very strong security and performance. Keccak was chosen, not just for its very 
strong overall security and performance, but because it offers exceptional performance in areas 
where SHA-2 does not, and because it relies on completely different architectural principles from 
those of SHA-2 for its security. 
 
Keccak has a large security margin, good general performance, excellent efficiency in hardware 
implementations, and a flexible design. Keccak uses a new “sponge construction” domain 
extender, which is based on a fixed permutation, that can be readily adjusted to trade generic 
security strength for throughput, and can generate larger or smaller hash outputs, as required. The 
Keccak designers have also defined a modified chaining mode for Keccak that provides 
authenticated encryption. 
 
NIST plans to augment the current hash standard, FIPS 180-4, to include the new SHA-3 
algorithm, and publish a draft FIPS 180-5 for public review. After the close of the public 
comment period, NIST will revise the draft standard, as appropriate, in response to the public 
comments that NIST receives. A final review, approval, and promulgation process will then 
follow.  Additionally, NIST may consider standardizing additional constructions based on the 
Keccak permutation, such as an authenticated-encryption mode, in the future.  Any such future 
standardization efforts will be conducted in consultation with the public, the Keccak design team 
and the larger cryptographic research community. 
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Appendix A – eBASH Shootout Plots 
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