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Abstract. We establish the first nontrivial lower bounds on time-space trade-offs for the selection
problem. We prove that any comparison-based randomized algorithm for finding the median requires
�(n log logS n) expected time in the RAM model (or more generally in the comparison branching
program model), if we have S bits of extra space besides the read-only input array. This bound is tight
for all S � log n, and remains true even if the array is given in a random order. Our result thus answers
a 16-year-old question of Munro and Raman [1996], and also complements recent lower bounds that
are restricted to sequential access, as in the multipass streaming model [Chakrabarti et al. 2008b].

We also prove that any comparison-based, deterministic, multipass streaming algorithm for finding
the median requires �(n log∗(n/s) + n logs n) worst-case time (in scanning plus comparisons), if we
have s cells of space. This bound is also tight for all s � log2 n. We get deterministic lower bounds
for I/O-efficient algorithms as well.

The proofs in this article are self-contained and do not rely on communication complexity tech-
niques.
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1. Introduction

Time–Space Lower Bounds. Lower bounds on time–space trade-offs have been the
subject of extensive study for over four decades [Cobham 1966]. The earliest work
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26:2 T. M. CHAN

of which the present article is a direct descendant is perhaps the paper by Borodin
et al. [1981], which considered the sorting problem in a comparison RAM model
(or more generally in the “comparison branching program” model), where the
n input elements reside in a read-only array permitting random access, and the
algorithm can inspect the input elements only through comparisons of pairs of
elements. They proved that if an algorithm is allowed S bits of extra space, then
it must require �(n2/S) time. A matching upper bound on the comparison RAM,
for all log n < S < n/ log n, was only discovered in the last decade by Pagter
and Rauhe [1998]. Refining a further result by Borodin and Cook [1982], Beame
[1991] proved that the �(n2/S)-time lower bound holds for sorting O(log n)-bit
integers, in a very general model of computation that goes beyond comparison-
based algorithms (namely, in the “R-way branching program” model). This result
applies to randomized algorithms as well, and to the weaker problem of outputting
the unique elements of the array in arbitrary order.

Lower bounds for problems with smaller output size are even more challenging.
For the problem of simply deciding whether all elements are distinct, Borodin et al.
[1987] obtained the first lower bound of �(n3/2/

√
S) time for any S ≥ log n in the

comparison RAM (or comparison branching program) model. This lower bound
was subsequently improved by Yao [1994] to �(n2−O(1/

√
log n)/S).

Since these classical results, new communication-complexity-style proof tech-
niques have emerged that led to the nontrivial time–space lower bounds for deci-
sion problems, like element distinctness, for the first time under general computa-
tional models (R-way branching programs) beyond comparison-based algorithms
[Ajtai 1999, 2002; Beame et al. 2001, 2003]. These impressive “modern” tech-
niques pave the way for proving general lower bounds for other problems. How-
ever, we remark that time–space lower bounds in the traditional comparison-based
setting are still far from completely understood. As one open question, for exam-
ple, can Yao’s lower bound on the element distinctness problem be improved to
�(n2/S) in the comparison RAM model? The present article will return to these
original types of lower bound questions, but for one very basic problem that has
(surprisingly) not been previously examined in this context, namely, the selection
problem.

Selection. There have actually been several papers exploring upper bounds, that
is, algorithms, for the selection problem with space restrictions. To be consistent
with the literature, we use s to denote the number of extra storage cells in addition
to the read-only input array, where each cell can hold O(log n) bits or (a pointer
to) an input element; in other words, think of S as s log n. Building on Munro
and Paterson’s work [1980], Frederickson [1987] gave a deterministic selection
algorithm on the comparison RAM that runs in O(n log∗ n + n logs n) time for any
s = �(log2 n). Though not stated in the paper, it is not hard to reduce the first
term to O(n log∗(n/s)); in particular, this meets the standard linear time bound for
selection when there is no space restriction, that is, when s = �(n). The iterated-
log term dominates if s = �(nε), for example. Munro and Raman [1996] and
Raman and Ramnath [1999] have also given nontrivial upper bounds for the case of
very small s: for example, O(n1+ε) time for a constant s, and O(n log2 n) time for
s = �(log n). (We emphasize that throughout our discussion, the input is read-only;
if swaps of array elements are allowed, then there are in-place selection algorithms
that run in linear time using O(1) extra cells [Lai and Wood 1988].)
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If each permutation of the input is equally likely, Munro and Raman [1996]
have shown a much better upper bound of O(n log logs n) average time for all
s exceeding a constant. For example, if s = �(nε), the bound is linear. In the
Appendix, we observe that the random-order input assumption can be eliminated
by using randomization within the algorithm; the resulting randomized algorithm
still achieves O(n log logs n) expected time. Munro and Raman [1996] wondered
(naturally) about the optimality of their results at the end of their paper.

To the author’s knowledge, investigations into time–space trade-off lower bounds
for the selection problem have been overlooked in the past. Perhaps a reason is that
the dependence on S is less dramatic here than in, say, the sorting problem. On the
other hand, one may argue that the trade-off results for selection are more practically
relevant than those for sorting, because we can get close-to-linear running time.

Main Result. We prove that any randomized algorithm for the selection problem
requires �(n log logS n) expected time for the comparison RAM (or comparison
branching programs). Thus, this completely resolves the randomized, comparison-
based complexity of the problem, since it matches the aforementioned upper bound,
for all S � log n. In particular, the result rules out the possibility of a linear-time
(randomized or deterministic) selection algorithm with polylogarithmic (or more
generously 2O(log1−ε n)) space. The lower bound holds for randomly ordered input.

We believe the result is interesting, despite its restriction to comparison-based
algorithms, because (i) tight time–space lower bounds for the RAM are few and far
between, and (ii) historically, the sorting and selection problems, as well as exten-
sions to problems in computational geometry, have been more popularly studied
from the comparison-based perspective; for example, see all the often-cited papers
on selection [Blum et al. 1973; Schönhage et al. 1976; Bent and John 1985; Cunto
and Munro 1989; Dor and Zwick 1999, 2001].

Multipass Streaming. Though our main result might seem “old-fashioned” (it
could well have been discovered in the 80’s or early 90’s), the original motivation
of the present article actually stems from more topical concerns, on streaming
models for massive datasets. Specifically, we are interested in multipass streaming
algorithms, that is, algorithms that scan through the entire read-only input, from
beginning to end, in a multiple number of passes; the algorithm can at any time
keep only a small amount of extra space.

Recently, Chakrabarti et al. [2008b] (see also Chakrabarti et al. [2008a]) answered
a 30-year-old question from Munro and Paterson’s seminal paper [1980] on stream-
ing, by proving that the selection problem for a randomly ordered stream requires
�(log logs n) passes with high probability. Our proof can be easily modified to yield
the same lower bound in the comparison-based setting. So, in a sense, our proof is
stronger and demonstrates that the reason for the log log behavior is due not to lim-
itation of sequential access but solely to the time–space relationship. On the other
hand, Chakrabarti et al.’s [2008b] proof, of the communication-complexity variety,
applies to the most general model that goes beyond comparison-based algorithms,
and holds for O(log n)-bit integer input. (Still, a look at Munro and Paterson’s
paper [1980] reveals that the interest at the time was entirely on comparison-based
algorithms.)

Actually, the real starting point of this research is on another question in-
spired by Munro and Paterson’s paper [1980], this time about their deterministic
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multipass selection algorithm. In streaming, analyses have (rightly) focused on
two parameters, the number of passes and space, but what about the total process-
ing time (which includes the time for not just the scans but also other operations
such as comparisons)? For example, with s = �(nε) space, Munro and Paterson’s
[1980] algorithm takes only O(1) passes, but on closer inspection requires more
than linear amount of work. Frederickson’s improvement [1987] is basically an
O(p)-pass algorithm that runs in almost-linear O(n log(p)(n/s)) time, for any p up
to a constant times log∗(n/s), when s = �(nε). Chan and Chen [2007], unaware
of Frederickson’s work, obtained a similar deterministic multipass result for the
2D linear programming problem. Can this almost-linear time bound be reduced
to O(n)?

We answer this question in the negative: among deterministic multipass algo-
rithms, Frederickson’s [1987] is basically optimal. Although we are unable to prove
a better deterministic lower bound for the selection problem in the comparison RAM
model, we can get such a lower bound in the multipass model: any selection algo-
rithm must either take �(p) passes or perform �(n log(p)(n/s)) comparisons, for
any p. Since Munro and Paterson [1980] already showed a lower bound of �(logs n)
passes for comparison-based algorithms when s = o(nε), we can conclude that any
multipass deterministic selection algorithm must take�(n log∗(n/s)+n logs n) time
in scanning or in comparisons. This matches Frederickson’s [1987] upper bound
for all s � log2 n. In particular, the result rules out the possibility of a linear-time,
deterministic, multipass algorithm even with space up to s = O(n/ log(c) n) for any
constant c. A similar result holds for 2D linear programming but will be reported
elsewhere.

Techniques. Standard techniques for proving comparison-based lower bounds,
such as decision trees and adversary arguments, are usually not sufficient to get
lower bounds for space-restricted RAM algorithms. The elegant proofs by Beame
[1991] and Borodin et al. [1987] make use of probabilistic/counting arguments, by
considering a uniformly distributed input (and as a by-product their lower bounds
hold for randomized algorithms by Yao’s principle). The proof of our randomized
lower bound on the RAM is of the same kind, though more technical effort and
new ideas are required.

Our deterministic lower bound on the multipass model in contrast uses a direct
adversary argument to construct a bad input and is short. For this reason, we de-
scribe this proof first, in Section 2. This deterministic proof is simple enough to be
presentable to undergraduate students, for instance, yet nontrivial enough to yield
the iterated-log bound.

In Section 3, we also present an adaptation of this proof for an intermediate model
that is more powerful than the multipass model and allows random access but only
in blocks, as in I/O-efficient algorithms. The iterated-log behavior must still occur
in the number of block accesses (I/Os) or in the number of comparisons, provided
the block size is sufficiently large (superpolylogarithmic). This proof combines
both uniformly distributed input and adversarially chosen input strategies in an
interesting way, and is a good preparation of the proof of our final main result on
the RAM in Section 4. If one is only interested in the main randomized RAM proof,
though, one can go directly to Section 4 after reading Section 3.1 through 3.2.

In the rest of the article, we switch to using N for the size of the given array. We
ignore floors and ceilings for simplicity.
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2. A Deterministic Iterated-Log Lower Bound in the Multipass Model

As noted, our deterministic multipass lower bound has a short, neat proof (which
would make a good introduction to adversary arguments). Munro and Paterson’s
[1980] already gave a simple, adversary-based proof of an �(logs N )-pass deter-
ministic lower bound. Our proof is in a similar spirit, but is a little more challenging,
taking into account the number of comparisons made.

THEOREM 2.1. Any deterministic comparison-based median finding algorithm
in the multipass streaming model that uses s storage cells must require �(p) passes
or �(N log(p)(N/s)) comparisons in the worst case, for any p.

PROOF. Let A denote the given algorithm, which takes at most T comparisons.
We describe an adversary strategy to construct a bad real-valued input for A. The
adversary will simulate A and, along the way, maintain an interval Ix for each
element x , with the property that we could set x to any value in Ix without affecting
the flow of A up to this point. Some elements x may be fixed, in which case the
interval Ix associated with x degenerates to a single point.

At the beginning of a pass, assume that we have n elements having the same
interval I , that is, each such element x has Ix = I , where n > 8s. Assume that the
remaining elements have been fixed to values outside I , so that the median of the
elements in I gives the overall median. Let |I | denote the length of an interval I .

(1) We first simulate the pass of A until n/2 elements in I are encountered. Each
time A performs a comparison, say, between x and y, the adversary resolves
the comparison as follows: if the midpoint of Ix is at most the midpoint of Iy ,
then set Ix to the left half of Ix , set Iy to the right half of Iy and declare “less
than”; the other case is symmetric. As soon as |Ix | drops below |I |/28T/n , the
adversary fixes x to an arbitrary value in Ix . The adversary also fixes the values
of the at most s elements remaining in memory at the end of this step.

(2) Observe that the number of elements that can participate in more than 8T/n
comparisons is at most n/4, since the total number of comparisons is at most
T . It follows that the number of elements just fixed is at most n/4 + s, so at
least n/4 − s > n/8 of the n/2 elements in I encountered are still unset. For
each of these unset elements x , shrink Ix so that it equals one of the 28T/n

subintervals of I of length |I |/28T/n . Pick the subinterval I ′ that is the most
popular, occurring n′ ≥ (n/8)/28T/n times. Further shrink all Ix = I ′ to a
common subinterval that avoids any of the values fixed previously.

(3) Now, the adversary can set the remaining n/2 elements in I to appropriate
values and force the answer to be the median in I ′, by equalizing the number
of elements left of I ′ and right of I ′. We can then complete the simulation of
the pass of A.

Through this process, we have ensured that the number of passes satisfies

P(n) ≥ P((n/8)/28T/n) + 1 if n > 8s.

Changing variables with P ′(m) := P(T/m), the recurrence P ′(m) ≥ P ′(8m28m)+
1 for m < T/(8s) implies P ′(m) = �(log∗(T/s) − log∗ m). So the number of
passes must be P(N ) = �(log∗(T/s) − log∗(T/N )), which is �(p) if T =
O(N log(p)(N/s)).

ACM Transactions on Algorithms, Vol. 6, No. 2, Article 26, Publication date: March 2010.



26:6 T. M. CHAN

3. The Iterated-Log Lower Bound in an I/O Model

The preceding proof already fails to imply �(N log∗(N/s)) time if we extend the
model slightly so that a pass can start or end at arbitrary positions of the array (since
in the proof, the elements in I occur in prefixes of the array whose sizes decrease
geometrically). In this section, we provide a proof that works in a more powerful
I/O model. Here, the algorithm can access any block of B contiguous elements of
the read-only array with a single I/O operation for a fixed B < s. For example,
one scan over the entire array can be done in O(N/B) I/Os. The algorithm can
still keep at most s storage cells at any time. Some previous work has addressed
lower bounds in various versions of the I/O model (e.g., see Arge and Pagter
[2000]). Here, we rule out the possibility of a selection algorithm that simultane-
ously uses O(N/B) I/Os and makes O(N ) number of comparisons, if B is not too
small.

As hinted at in the Introduction, the proof requires more than just an adversary
argument approach. In addition, we adopt the probabilistic method. While these
two approaches may seem incompatible at first, our idea is to take a random input
initially, and then alter the values of a subset of the elements by an adversary,
yielding the final bad input.

Let A denote the given algorithm. For simplicity, assume N is a power of 2;
the default base of logarithm is 2. From now on, an interval will refer only to an
interval of the form [N j/2k, N ( j + 1)/2k) where k ∈ {0, 1, . . . , log N } and j ∈
{0, 1, . . . , 2k −1}; we say the interval has depth k.1 Let nI and dI denote the length
and depth of I , respectively. Intervals in the usual sense will instead be referred
to as ranges. The abbreviation “w.h.p.” means “with probability 1 − O(1/N c0 )”
where the constant c0 can be made arbitrarily large.

3.1. THE ADVANTAGES OF RANDOM INPUT. We start with an array of N random
real-valued elements, independent and uniformly distributed from [0, N ).

LEMMA 3.1. For random input, the following holds w.h.p.: for every interval
I with nI > log N, the number of elements in I is nI ± O(

√
nI log N ).

PROOF. The number of elements in I is a sum of independent 0-1 random
variables, with overall mean nI and variance O(nI ). For a fixed I , the condition
thus holds w.h.p. by the standard Chernoff bound. The lemma follows since there
are only polynomially number (O(N log N )) of different I ’s.

We say that an I/O operation encounters an element x if the block involved in the
operation contains x . Consider the subset of all elements in an interval I . Intuitively,
because the input is random, the subset is “scattered” throughout the array, and so
one would need �(N/B) I/O operations in order to encounter a constant fraction of
the elements in I . This fact is justified formally by the following lemma, assuming
that the number of elements in I is sufficiently large.

LEMMA 3.2. For random input, the following holds w.h.p.: for every interval
I with nI > (N/B) log N, one I/O operation can encounter at most O(BnI /N )
elements in I .

1 Such intervals are sometimes called dyadic intervals.
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PROOF. For a fixed I and a fixed block, the number of elements in I from
the block is at most O(BnI /N ) w.h.p. by the Chernoff bound (since BnI /N =
�(log N )). The lemma follows since there are only polynomially number of differ-
ent I ’s and different blocks.

Although deterministic constructions can easily guarantee the previous two lem-
mas, we want the input to satisfy additional properties as explained in the next
subsection.

3.2. A BIT-REVEALING SCHEME. In the proof in Section 2, cutting an element’s
interval in half is essentially equivalent to revealing an additional bit of the element:
a 0 bit corresponds to taking the left half, and a 1 bit corresponds to taking the right
half. There, we resolve a comparison by adversarily setting at most one bit from
each of the two elements involved. Here, we observe that a random setting of bits
is just as good.

It is worth mentioning that our proof is a perfect illustration of the so-called
“principle of deferred decision” [Motwani and Raghavan 1995]. We view the prob-
ability space differently at this point: instead of viewing the input elements as
chosen uniformly at random from the beginning, we reveal the random bits of (the
binary representation of) the elements one by one, in an order that is determined as
the process unfolds.

Formally, assume that a prefix of each element’s binary representation has previ-
ously been revealed. In simulating A, suppose A performs a comparison between
x and y. Write x = x1x2 · · · and y = y1 y2 · · · in binary, and suppose the prefixes
x1 · · · x j and y1 · · · yk have been revealed. If x� 	= y� for some � ≤ min{ j, k}, then
the comparison has already been resolved. Otherwise, if j < k, we reveal the next
bit x j+1 of x , and if x j+1 	= y j+1, the comparison is resolved. The case j > k is
symmetric. If j = k, we reveal both the next bits x j+1 and yk+1, and if they are
different, the comparison is resolved. If the comparison is not resolved, we repeat
the preceding procedure, moving on to the next bits.

The following lemma shows that a comparison can be resolved by revealing only
a constant number of bits on average.

LEMMA 3.3. Assume that for each input element, some prefix of its binary
representation has been fixed, but the remaining bits of the input are random,
independent, and uniformly distributed. Fix a current state ofA. Then the following
holds w.h.p. for T ≥ log N: a sequence of T comparison steps of A can reveal at
most O(T ) additional bits of the input.

PROOF. In the preceding, the probability that a random bit x j+1 is different
from a fixed bit y j+1 (or another random bit yk+1) is 1/2. Thus, the number of bits
revealed during a comparison is a geometrically distributed random variable with
mean 2. The total number of bits revealed in T comparisons is a sum of independent
such variables with overall mean 2T . By a Chernoff bound, the number has to be
O(T ) w.h.p. (Put another way, for a constant c > 2, a sequence of cT coin tosses
has to produce at least T heads w.h.p.)

To prepare for the overall proof, we make a few definitions.
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Definition 3.4.

—We say that a bit of an element has depth k if it is the kth most significant bit of
the element. (Notice that all elements in the same depth-k interval have the same
prefix of bits up to depth k.)

—A bit of an element is in the interval I if the element is in I and the bit has depth
greater than dI .

—An element in I is constrained in I if it has a revealed bit in I . Otherwise, the
element is free in I .

Remark. There is another, less algorithmic way of describing which bits are
revealed by the preceding scheme. Define the depth of a comparison between x and
y as the depth of the most significant bits of x and y that differ. For an element x ,
the number of bits revealed in x is precisely the largest depth of all comparisons
that x has participated in up to this moment.

3.3. THE OVERALL PROOF BY ADVERSARIAL ALTERATION.

THEOREM 3.5. Any deterministic comparison-based median-finding algorithm
in the I/O model that uses s storage cells must require �(pN/B) I/O operations or
�(N log(p)(N/s)) comparisons in the worst case for any p, if B > log N log(b) N
for some constant b.

PROOF. Let T be the worst-case number of comparisons made by A. We work
with a random input, whose bits are revealed in various phases as we simulate A.
At the beginning of a phase, assume that all bits up to depth d of all elements have
been revealed, and let I be the length-n, depth-d interval that contains the answer,
where n > max{100s, N/ log(b) N } and d = log(N/n). If we have not quit yet, we
ensure that the following conditions are true:

(I) there are at least 0.7n free elements in I , and
(II) the answer is the median of the elements in I .

The presence of free elements means that the answer is not yet determined and
A has not yet finished. The adversary may alter the values of certain elements, but
we ensure the invariant that at the beginning of the phase, all elements in I are
unaltered, and the current subset of elements in I is exactly the same as the original
subset of elements in I , so that the lemmas in Section 3.1 are still applicable to
the interval I . Furthermore, the adversary will only alter elements in a way so that
comparisons made in the past still have the same outcomes.

During the phase, we proceed as follows.

(1) We simulate the next steps ofAuntil δN/B I/Os have been performed, revealing
bits along the way according to the scheme in Section 3.2. We check that
this simulation encounters at most 0.1n elements in I , including the at most
s < 0.01n elements in memory at the beginning of the phase. If false, we quit.
By Lemma 3.2, we do not quit here w.h.p. if δ is a sufficiently small constant.
Let F be the elements that remain free in I at this point. Then |F | ≥ 0.6n.

(2) We check that the total number of bits revealed in I so far is at most cT . If
false, we quit. By Lemma 3.3, we do not quit here w.h.p. if c is a sufficiently
large constant.
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(3) Set n′ = n/25cT/n and d ′ = d + 5cT/n. For each constrained element in a
depth-d ′ subinterval of I , the number of its bits revealed in I must be at least
d ′ − d = 5cT/n. It follows by (2) that the number of such elements is at most
0.2n. Therefore, there must exist a depth-d ′ subinterval I ′ of I that has at most
0.2n/(n/n′) = 0.2n′ constrained elements in I ′.

(4) Next, we reveal all bits up to depth d ′ of all elements. We check that I has
n ± o(n) elements and I ′ has n′ ± o(n′) elements. If false, we quit. By Lemma
3.1, we do not quit here w.h.p.

(5) By (3) and (4), the number of free elements in I ′ is at least 0.8n′ −o(n′), which
exceeds 0.7n′. So we have established (I) for the interval I ′.

(6) Furthermore, by (1) and (4), the number of elements in F − I ′ is at least
0.6n − n′ − o(n′), which exceeds half of the number of elements in I . The
adversary can then alter the elements in F − I ′ to appropriate values in I − I ′
and force the answer to be the median in I ′, by equalizing the number of
elements left of I ′ and right of I ′. So, we have established (II) for I ′. All
invariants have now been maintained to begin the next phase.

W.h.p., the number of phases thus satisfies the recurrence

P(n) ≥ P(n/25cT/n) + 1 if n > max{100s, N/ log(b) N }.
As in the proof of Theorem 2.1, w.h.p., the number of phases must be �(p) if
T = O(N log(p)(N/s)). We conclude the existence of some input instance requiring
that �(pN/B) I/Os if T = O(N log(p)(N/s)).

Remark. The result holds even if elements in a block are not necessarily contigu-
ous, as long as the number of different possible blocks is polynomially bounded in
N . In the case of blocks of contiguous elements, the extra log factor in the restriction
on B can probably be reduced, by being more careful (in Lemma 3.2).

4. A Randomized �(N log logS N ) Lower Bound in the RAM Model

For the proof of our randomized lower bound on the RAM, we abandon the adver-
sary altogether and work entirely with an independent, uniformly distributed input.
Consequently, the result automatically applies to randomly ordered input. By Yao’s
principle, it suffices to consider the complexity of a deterministic algorithm A over
this random input. Our proof can be restated in the comparison branching program
model, but we will not elaborate, to avoid more definitions. Assume that A uses S
bits of space and that S = ω(log N ), without loss of generality.

4.1. AN ENCOUNTER LEMMA FOR THE RAM. We first give an analog of Lemma
3.2 for the RAM. We say that a computational step encounters an element x if
the algorithm reads the memory location holding x . The next lemma exploits the
advantage of random input and the fact that small-space algorithms can have only
a small number of possible states. The proof of the lemma is in a similar style as in
some previous papers like Beame [1991], Borodin et al. [1987], and Yao [1994].

LEMMA 4.1. For random input, the following holds w.h.p.: for every interval I
and every state of A, a sequence of SN/nI steps of A can encounter at most O(S)
elements in I .
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PROOF. Fix a state. Let x (1), x (2), . . . be the elements encountered byA starting
at this state, in order of the times of their first encounters. Observe that x ( j) is
uniformly distributed and independent of x (1), . . . , x ( j−1). Thus, for a fixed I , the
number of elements of x (1), . . . , x (SN/nI ) in I is a sum of independent 0-1 random
variables, with overall mean S. For a fixed state and a fixed I , the condition thus
holds with probability at least 1 − 2−c0 S by the standard Chernoff bound where the
constant c0 can be made arbitrarily large. The lemma follows since there are O(2S)
number of different states and polynomially number of different I ’s.

4.2. ANOTHER BIT-REVEALING LEMMA. Our proof will again rely on the
principle of deferred decision and the process of revealing bits as described in
Section 3.2. However, Lemma 3.3 is not sufficient, and we now need a different
bound on the number of bits revealed.

LEMMA 4.2. Assume that for each input element, some prefix of its binary
representation has been fixed, but the remaining bits of the input are random,
independent, and uniformly distributed. Fix a current state of A. Then the fol-
lowing holds w.h.p.: for every interval I , a sequence of SN/nI steps of A can
reveal at most O(S log S) additional bits in I , or the condition in Lemma 4.1
fails.

PROOF. Let (‡) denote the condition in Lemma 4.1. If (‡), we know that there
can be at most O(S2) nonredundant comparisons between elements in I . Since
only such comparisons can reveal bits in I , we can apply Lemma 3.3 to bound the
number of additional revealed bits in I by O(S2) w.h.p., which unfortunately is not
good enough for our purposes. However, if for the sake of intuition, we consider the
scenario where initially no bits have been revealed and we know which of the O(S)
elements are to be encountered, it is not difficult to see that only O(S log S) bits
are needed to determine the total order of these O(S) elements w.h.p. For a formal
proof of the O(S log S) bound, we adopt a “preemptive” strategy that attempts to
make more comparisons early on, in order to make future comparisons redundant,
as we now explain.

Fix I . Consider the following process we call PI : First reveal all bits of depth
up to dI of all elements, and reveal all elements not in I . We simulate the SN/nI
steps of A while maintaining a sorted list L of all elements in I encountered so far.
Whenever we encounter an element x in I for the first time while running A, we
insert x to L by performing a binary search. This requires O(log |L|) comparisons,
which are resolved by revealing bits as we proceed. When A actually makes a
comparison, say, between x and y, the two elements x and y have already been
inserted to L and the comparison can be resolved without revealing any more
bits.

Since PI resolves more comparisons than A, the number of additional revealed
bits in I by A is at most the number of additional revealed bits in I by PI in every
input instance. The number of nonredundant comparisons made byP is O(S log S),
since |L| = O(S), if (‡). By Lemma 3.3, w.h.p. the number of additional revealed
bits in I by PI in every input instance is O(S log S) or (‡) is false. Our lemma
follows since there are polynomially number of different I ’s.

4.3. THE OVERALL PROOF. We will finally present the proof of the main result,
after first isolating some technical probabilistic facts. Unlike in Section 3.3, we
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cannot alter the free elements to force the answer to lie in a particular subinterval,
but have to let the answer fall where it may “naturally”. Fortunately, there is enough
variability in nature, as quantified in the following statements.

PROPOSITION 4.3. Fix k. In the range I = [0, n), fix n/2 elements and add n/2
independent and uniformly distributed random elements. Let x∗ be the overall kth
smallest element. Then

(i) we can find a range J of length O(
√

bn) such that Pr{x∗ ∈ J } ≥ 1 − 2−�(b);
(ii) for each fixed range J ′ ⊆ [n/a, (1 − 1/a)n] and fixed k ′,

Pr{x∗ is the k ′th smallest element in J ′} = O(
√

a/n).

PROOF. (i) Let μ(x) denote the expected number of elements in [0, x), that is,
let μ(x) be equal to xn/2 plus the number of fixed elements in [0, x). Pick x0

so that μ(x0) = k. Set J = [x0 − √
bn, x0 + √

bn].
Observe that μ(x0) − μ(x0 − √

bn) is at least n/2 · √
bn/n = √

bn/2. The
number of elements in [0, x0 − √

bn) is a sum of n independent 0-1 random
variables (the fixed ones would have 0 variance), with overall mean μ(x0 −√

bn) ≤ k − √
bn/2. By the standard Chernoff bound, this number is greater

than k with probability at most 2−�(b). Thus, the probability that x∗ is to the
left of J is at most 2−�(b). The case where x∗ is to the right of J is symmetric.

(ii) Let p be the length of the left portion of I − J ′ divided by n. Note that
1/a ≤ p ≤ 1 − 1/a. Let k ′′ be the number of fixed elements to the left of
J ′. Then x∗ is the k ′th smallest in J ′ iff the number of random elements to
the left of J ′ is precisely j := k − k ′ − k ′′. The probability of this event is(n/2

j

)
p j (1 − p)n/2− j , which is maximized when j ≈ pn/2. The maximum is at

most O(1/
√

min{pn, (1 − p)n}), for example, by Stirling’s formula.

THEOREM 4.4. Any randomized median-finding algorithm in the comparison
RAM model that uses S bits of space must require �(N log logS N ) expected time.

PROOF. Let a and b be parameters to be set later, which are nonconstant but
small, for example, o(log N ). Consider a random input. Let n0 = N , ni+1 = n1/4

i ,
and di = log(N/ni ), for i = 1, . . . , t , where nt > max{S/δ, log3 N }. We simulate
A for t phases each of δN steps, revealing bits along the way according to the
scheme in Section 3.2. Let Ii be the depth-di interval that contains the answer.
Suppose the answer, denoted x∗, is the ki th smallest in Ii .

Call an interval I good if there are at least 0.6nI free elements in I , or bad
otherwise. For each i , let (†)i be the following conjunction of events:

(I)i at the beginning of the i th phase, Ii is good, and
(II)i ki ∈ [ni/a, (1 − 1/a)ni ].

The presence of free elements means that if (†)i is true, A cannot finish be-
fore phase i . We will bound the probability that (†)i+1 is false when (†)i is
true.

First let (*) be the following conjunction of events: for every interval I with
nI > max{S/δ, log3 N },
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(III) the number of elements in I is nI ± o(nI /a),
(IV) the simulation of the δN steps in each phase encounters at most 0.1nI elements

in I , and
(V) the entire simulation, of at most δt N steps, reveals at most O(tn I log S) bits

in I .

By Lemmas 3.1, 4.1, and 4.2, (*) holds w.h.p. if δ is a sufficiently small constant.
We proceed as follows:

(1) Fix all bits up to depth di of all elements and fix all bits revealed up to the end
of phase i . Then we know Ii , ki , and whether (†)i holds. Assume (†)i . By (I)i ,
at least 0.6ni elements are free in Ii at the beginning of phase i . By (IV), after
the phase, at least ni/2 elements remain free in Ii if (*).

(2) Further fix the constrained elements in Ii but leave ni/2 free elements in Ii
random.

By Proposition 4.3(i), there exists a range J of length �(
√

bni ) such that
Pr{x∗ ∈ J or not (*)} ≥ 1−2−�(b). By (II)i and (III), we may assume J satisfies
the property that the length of either portion of I − J is �(ni/a). We may further
assume that J is a union of two intervals {Jj } of length �(

√
bni ).

(3) By (V), the total number of bits revealed in Jj is at most O(t
√

bni log S) if
(*). For each constrained element in a depth-di+1 subinterval of Jj , the number
of its revealed bits in Jj must be at least di+1 − dJj = �(log(

√
bni/ni+1)) =

�(log ni ), since ni+1 = n1/4
i . Thus, the number of bad depth-di+1 subintervals

in Jj must be at most O
(

t
√

bni log S
ni+1 log ni

)
if (*).

(4) For each fixed depth-di+1 subinterval J ′ of J ,

Pr{x∗ ∈ J ′ and (*)} = O(ni+1

√
a/ni )

by Proposition 4.3(ii) where we sum over all k ′ = 1, . . . , ni+1 + o(ni+1/a).
Thus,

Pr{(not (I)i+1) and (*)}
≤

∑
bad depth-di+1 J ′ ⊆ J

Pr{x∗ ∈ J ′ and (*)} + Pr{x∗ 	∈ J and (*)}

= O
(

t
√

bni log S
ni+1 log ni

· ni+1

√
a/ni + 2−�(b)

)
= O

(√
ab t/ logS ni + 2−�(b)

)
.

(5) On the other hand, for each fixed depth-di+1 subinterval J ′ of J ,

Pr{x∗ ∈ J ′ and ki+1 	∈ [ni+1/a, (1 − 1/a)ni+1] and (*)} = O((ni+1/a)
√

a/ni )

by Proposition 4.3(ii) where we sum over all k ′ = 1, . . . , ni+1/a and k ′ =
(1 − 1/a)ni+1, . . . , ni+1 + o(ni+1/a). Thus,

Pr{(not (II)i+1) and (*)}
≤

∑
depth-di+1 J ′ ⊆ J

Pr{x∗ ∈ J ′ and ki+1 	∈ [ni+1/a, (1 − 1/a)ni+1] and (*)}

+ Pr{x∗ 	∈ J and (*)}
= O

(√
bni

ni+1
· (ni+1/a)

√
a/ni + 2−�(b)

)
= O

(√
b/a + 2−�(b)

)
.
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Set b = t and a = 2t , for example. We conclude that

Pr{(not (†)i+1) and (†)i and (*)} ≤ 2O(t)/ logS ni + 2−�(t).

All the preceding probability statements are originally conditioned to the bits that
have been fixed, but we may now infer that the conclusion holds unconditionally.

Summing over i = 1, . . . , t and recalling that ni = N 1/4i
, we can bound the

probability that some (†)i is false by O(2O(t)/ logS N + 2−�(t) + N−c0 ). For t =
ε log logS N with a sufficiently small ε, this probability is O(logS N )−�(1). There-
fore, A takes �(N log logS N ) time with probability at least 1 − O(logS N )−�(1),
which is �(1) (we may assume logS N = ω(1), for otherwise we have nothing to
prove). In particular, the expected running time must be �(N log logS N ).

5. Final Remarks

A fascinating open problem is to prove a deterministic �(N log∗ N )-time lower
bound for selection on the comparison RAM for, say, S = N ε. Most of the relevant
comparison-RAM lower bound techniques simply consider a randomly generated
input, but these cannot work here because for S = N ε, the randomized time com-
plexity is �(N ). One likely has to combine random input with adversary argu-
ments as in Section 3, but the proof of the starting lemma, Lemma 4.1, already
fails for subtle reasons: The way that some elements are altered might acciden-
tally leak information that could allow the algorithm to encounter the elements in
a given interval more quickly. Although intuitively this seems unlikely since the
adversary is doing the alteration, ruling out this possibility rigorously seems quite
difficult.

Another reason that the aforesaid open problem is interesting is that it is inherently
about comparison-based algorithms (and so communication complexity techniques
like Chakrabarti et al. [2008b] do not seem to apply). For O(log N )-bit integers, it
is not difficult to modify Munro and Paterson’s multipass algorithm [1980] to get
a deterministic O(N )-time algorithm with O(N ε) space, by using radix-sort at the
base levels.

A related question is to prove a deterministic �(N logS N )-time lower bound on
the comparison RAM for, say, S polylogarithmic. This would, in a sense, extend the
�(logS N )-pass, deterministic lower bound of Munro and Paterson’s [1980] (and a
similar, noncomparison-based, deterministic lower bound of Guha and McGregor
[2007]) for multipass algorithms.

By a technique of Moran et al. [1985], we can extend the types of comparisons
allowed for our lower bounds, by allowing arbitrary (algebraic or nonalgebraic)
predicates over a constant number of input elements. Although Moran et al.’s [1985]
technique was originally for decision trees, it is easy to see that it applies to branch-
ing programs as well. (Basically, given N , the technique applies Ramsey’s theorem
to construct a subdomain D ⊂ IR so that for any predicate encountered along any
computation path, the predicate reduces to direct comparisons when the arguments
are restricted to lie in D.)

It is interesting to note that while selection and low-dimensional linear program-
ming appear to have similar complexities in regards to streaming algorithms, they
are different on the RAM: Chan and Chen [2007] have obtained a randomized
RAM algorithm for linear programming in fixed dimensions that runs in O(n)
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expected time with logarithmic space, but our lower bound says this is not possible
for selection.

Finally, with current communication complexity techniques, could one hope for
a proof of the randomized �(N log logS N ) lower bound for selection on the general
R-way branching program model?

Appendix: A Randomized O(N log logs N ) Algorithm

Munro and Raman [1996] showed that the selection problem can be solved on
the comparison RAM with O(s) storage cells in O(N log logs N ) expected time,
provided that each permutation of the input is equally likely. We observe that this
assumption can be removed by randomizing the algorithm. The observation is
simple, but appears new.

As in Munro and Raman’s paper [1996], the algorithm is just a variant of Floyd
and Rivest’s [1975] standard random sampling algorithm. We will follow the ver-
sion from Section 3.3 of Motwani and Raghavan’s textbook [1995]. An apparent
difficulty is that we do not have space to store a random sample. (This wasn’t a
problem for randomly ordered input, since a prefix would make a good sample.)
The key is to realize that we do not need a sample of totally independent elements,
but only pairwise independent elements, if we use an analysis based on second
moments (Chebyshev’s inequality), as was done in Motwani and Raghavan [1995],
rather than Chernoff’s inequality. The resulting sample can then be specified in O(1)
space by standard constructions (“2-point sampling”; see Section 3.4 of Motwani
and Raghavan [1995]). Of course, the utility of such constructions is well known,
for example, in reducing the amount of random bits or derandomizing algorithms,
but still the application in this context is interesting.

For completeness, we spell out the entire pseudocode. We first assume N is
prime, by increasing N by at most a constant factor and implicitly padding the
array A[0, . . . , N − 1] with extra infinities. Initialize I = (−∞, ∞) and repeat the
following.

(1) Let n be the number of elements in I . If n ≤ s, return the kth smallest in I
directly.

(2) Choose random a, b ∈ {0, . . . , N − 1}. Let R = {A[(aj + b) mod N ] : j =
1, . . . , N/n1/4}.

(3) Let k− = max{k/n1/4 −√
n, 1} and k+ = min{k/n1/4 +√

n, n}. Compute the
k−th smallest x− and k+th smallest x+ of the elements in R ∩ I .

(4) Let �− be the number of elements in I ∩ (−∞, x−] and �+ be the number of
elements in I ∩(−∞, x+]. Check that �− > k, �+ ≤ k, and �+−�− ≤ 4n3/4+2.
If false, go back to line 2.

(5) Set I = I ∩ (x−, x+] and k = k − �−.

For line 3, we can use a variant of the standard randomized quickselect algorithm,
which requires an expected O(log |R ∩ I |) passes over the elements in R. The
implementation takes expected time O(|R| log |R ∩ I |) = O((N/n1/4) log n) =
O(N ) and space O(1). Note that R is not stored explicitly. Line 4 takes O(N ) time.

The conditions in line 4 hold with probability 1 − O(n−1/4) by virtually
the same analysis as in Motwani and Raghavan [1995], because the variables
{(aj + b) mod N : j = 1, . . . , N/n1/4} are pairwise independent.
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The total expected time satisfies the recurrence T (n) = T (O(n3/4)) + O(N ) for
all n > s, and solves to T (N ) = O(N log logs N ).
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