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Abstract. Starting with Munro and Paterson (1980), the selection or
median-finding problem has been extensively studied in the read-only
memory model and in streaming models. Munro and Paterson’s deter-
ministic algorithm and its subsequent refinements require at least poly-
logarithmic or logarithmic space, whereas the algorithms by Munro and
Raman (1996) and Raman and Ramnath (1999) can be made to use just
O(1) storage cells but take O(n1+ε) time for an arbitrarily small constant
ε > 0.
In this paper, we show that faster selection algorithms in read-only mem-
ory are possible if the input is a sequence of integers. For example, one
algorithm uses O(1) storage cells and takes O(n lgU) time where U is
the universe size. Another algorithm uses O(1) storage cells and takes
O(n lgn lg lgU) time. We also describe an O(n)-time algorithm for find-
ing an approximate median using O(lgε U) storage cells.
All our algorithms are simple and deterministic. Interestingly, one of
our algorithms is inspired by ‘centroids’ of binary trees and finds an
approximate median by repeatedly invoking a textbook algorithm for
the ‘majority’ problem. This technique could be of independent interest.

1 Introduction

The topic of this paper is the classical selection problem, where we want to
find the k-th smallest element of an input sequence of n elements for a given
number k. (The median corresponds to the k = dn/2e case.) Specifically, we are
interested in space-efficient algorithms in the read-only memory model, where
the input is a read-only array and we want to minimize the amount of extra
space needed in addition to the input array.

Selection in read-only memory has been studied since Munro and Paterson’s
pioneering work on streaming algorithms [13]. Their deterministic algorithm runs
in O(n lgs n + n lg s) time using O(s) storage cells, for any given s = Ω(lg2 n).
Frederickson [9] refined the running time to O(n lgs n+n lg∗ s). (This bound has
been recently improved [8] slightly in the extreme end when s approaches n/ lg n.)
All these algorithms work by finding an ‘approximate median’ in one pass, which
is used to find the exact median or the k-th smallest element over several passes.



The space of one-pass streaming algorithms for approximate medians has been
improved to O(lg n) cells by Greenwald and Khanna [11]; this could potentially
extend the range of allowed values for s to Ω(lg n).

However, for small, sublogarithmic space, the best time bound increases dra-
matically. Munro and Raman [14] gave an O(2ssn1+1/s)-time algorithm, and this
was improved to O(sn1+1/s lg n) by Raman and Ramnath [15], for any s from 1
to lg n.

If randomization is allowed, much better results are possible. Chan [6] pro-
vided a matching upper and lower bound of Θ(n lg lgs n) on the expected running
time for all s from 1 to n. Our focus here, however, will be on deterministic al-
gorithms only.

All the above results are in the comparison model. In this paper, we study
the selection problem in the setting where the input elements are integers in
[U ] := {1, 2, . . . , U}. Our model of computation is the word RAM model where
standard (arithmetic, shift and bitwise logical) word operations can be performed
in constant time. We assume that each word is w bits long, and w is at least lg n
and lgU , so that a pointer or input integer can fit in a word. We assume that
each memory cell can store a word.

The case of integer input is standard when studying general lower bounds,
for example, for sorting in the read-only memory model [1, 3], and randomized
selection in the streaming model [5]; these lower bounds often match or nearly
match their corresponding upper bounds in the comparison model. In contrast,
we show that the integer assumption makes a big difference for the deterministic
selection problem in read-only memory with small space. Our results are the
following:

1. a selection algorithm using O(n lgs U) time and O(s) words of space for any
s from 1 to n;

2. a selection algorithm using O(n lg n lgs lgU) time and O(s) words of space
for any s from 1 to lgU .

The first algorithm, presented in Section 2, is very simple and works well
when the universe size U is polynomially bounded. For example, for s = 1 and
U = nO(1), the running time is O(n lg n), which is significantly faster than those
of Munro and Raman or Raman and Ramnath for constant s. For s = lgε n and
U = nO(1), the running time is O(n lg n/ lg lg n), where ε denotes an arbitrarily
small positive constant. For s = nε and U = nO(1), we get linear running time,
eliminating the iterated logarithmic factor from Frederickson’s result.

The second algorithm, presented in Section 3, is less sensitive to U and beats
previous algorithms for a wider range of universe sizes. On our way to obtaining
this second result, we also give

3. an approximate median algorithm using O(n lgs lgU) time and O(s) words
of space for any s from 1 to lgU .

For s = 1, the time bound is O(n lg lgU). For s = lgε U , it is linear. The
algorithm makes a clever use of a well-known algorithm, first published in [4]
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(discovered in 1980) to find the majority of a sequence of bits. To speed up this
algorithm, we give a procedure to find the majority at several prefix lengths
of the given sequence simultaneously in linear time. The resulting linear-time
algorithm for approximate median is relatively simple and self-contained, and
immediately implies a new deterministic linear-time algorithm for selection in
the traditional, non-space-efficient setting, when the input elements are integers.
This may be of independent interest, as the standard deterministic linear-time
algorithm for selection [2] requires a doubly recursive structure, which the new
algorithm manages to avoid.

When the two algorithms are combined, it is possible to obtain, for example,
a selection algorithm that uses O(1) words of space and whose running time is
guaranteed to be at most O(n lg1+ε n) regardless of the universe size U . This
consequence is noted in Section 4.

We should mention that at least one prior work on approximate medians has
also addressed upper bounds for the integer case: Shrivastava et al. [16] gave one-
pass streaming algorithms for maintaining approximate quantiles using O(lgU)
words of space. There are some similarities, but our approach is simpler, besides
being more space-efficient (they maintained information about the trie induced
by the binary representations of the numbers, whereas we maintain just one path
in the trie, since we do not need all approximate quantiles). Like many other
works in streaming algorithms, they were less interested in analyzing the total
running time. It is conceivable that some of the previous streaming algorithms
on approximate medians could be sped up in the integer case by using advanced
data structures such as the fusion tree [10]. Our algorithms however do not
require such complicated data structures.

2 An O(n lgs U)-time algorithm

We assume that the input integers are in the range [U ], and the aim is to find
the k-th smallest element in the sequence of n integers. We give a very simple
selection algorithm in read-only memory that takes O(n lgU) time using O(1)
space.

The algorithm goes through lgU stages where in stage i, we determine the
i-th bit of the solution. At the first stage, we simply count the number of input
integers with leading bit 0 and leading bit 1 and based on k, we determine the
first bit of the answer, and update k to be the new rank of the element to be
found among those input integers with the leading bit same as that of the answer.

We repeat the same procedure in the i-th stage, for i > 1 (having computed
the i−1 bits of the answer) by counting how many integers, among those match-
ing the first i− 1 bits of the answer, have the i-th bit 0 and how many have the
i-th bit 1, updating k and recursing appropriately. Thus we immediately obtain
the following result:

Theorem 1. Given a sequence of n integers in the range [U ], we can find the
k-th smallest element of the sequence using O(lgU) passes, in O(n lgU) time
using O(1) words of space, in read-only memory.
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If we have s = 2b extra cells available, then we can read b bits of the input
in each pass counting the number of inputs with each b-bit value using the 2b

counters, and finding b bits of the answer at each stage. The number of stages
is thus reduced to O((lgU)/b). To ensure O(n) run time for each pass, we limit
the number of counters s to n. This results in the following theorem.

Theorem 2. Given a sequence of n integers in the range [U ], we can find the
k-th smallest element of the sequence using O(lgs U) passes in O(n lgs U) time
using O(s) words of space, in read-only memory for any s ≤ n.

3 An O(n lg n lgs lg U)-time algorithm

Our next approach solves the selection problem by designing better algorithms
for finding an approximate median—specifically, an element whose rank is be-
tween n/4 and 3n/4. The connection between exact selection and approximate
median is well known. Given an algorithm for the latter problem, we can apply
it to find an approximate median m for the subsequence of all input elements
inside a current interval [`, r] that contains the answer; we can then compute the
rank of m in one additional pass, and then shrink [`, r] to either [`,m] or [m, r],
depending on whether the rank of m is greater or less than k. After about lg4/3 n
iterations, the interval will be shrunk to a single point. If the given approximate
median algorithm makes P passes over the input, has running time proportional
to the cost of the P linear scans, and uses O(s) space, then the overall algorithm
has running time O(nP lg n) and uses O(s) space.

We first present a simple algorithm to find an approximate median using
O(lg lgU) passes and O(1) space. Our idea is inspired by the standard con-
struction of a ‘centroid’ of a binary tree (namely, the trie formed by the binary
representations of the input integers).

Theorem 3. An approximate median from a range of [U ] can be found in
O(lg lgU) passes and O(n lg lgU) time in read-only memory using O(1) words
of space. Hence the k-th smallest element can be found in O(n lg n lg lgU) time
in read-only memory using O(1) words of space.

Proof. The idea is to find the longest prefix p such that the number of integers
in the input sequence whose binary representations starts with p is more than
n/2. Let m0 and m1 be the smallest input integer with prefix p0 and prefix p1
respectively, and let m2 be the largest input integer with prefix p1. Let r0, r1, r2
be the ranks of m0,m1,m2 respectively. As r1 − r0 ≤ n/2, r2 − r1 ≤ n/2, and
r2−r0 ≥ n/2 (due to the choice of p), it is easy to see that at least one of r0, r1, r2
must lie in [n/4, 3n/4]. So, we can report one of m0,m1,m2 as an approximate
median.

Now, to find this longest prefix p, we use a standard binary-search over the
lengths. We maintain an interval containing the desired prefix length (which is
the entire length of lgU to start with). We take the midpoint of the interval, and
if we find that this length has no element that occurs more than n/2 times (i.e.,
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has no majority element), then we replace the interval with its lower half, else we
replace the interval with its upper half. The number of iterations is O(lg lgU).

At each prefix length, we need to decide whether a majority element exists
in of a list of n elements. There is a well-known ‘textbook’ algorithm that solves
the majority problem in O(n) time, in two passes. We include a brief description,
as it will be useful later. In the first pass, the pseudocode below finds a possible
candidate p for the majority of A[1], . . . , A[n]:

1. initialize c = 0
2. for t = 1, . . . , n:
3. if c = 0 then set p = A[t]
4. if A[t] = p then increment c else decrement c

The claim is that after each iteration t,

(∗) if the majority of A[1], . . . , A[t] exists, then it must be p.

This can be seen from the following invariants: Let t′ be the last value such
that c = 0 at the end of iteration t′. Then

(a) A[1], . . . , A[t′] do not have a majority; and
(b) c = [# of times p occurs in A[t′ + 1], . . . , A[t]] −

[# of times p does not occur in A[t′ + 1], . . . , A[t]] ≥ 0.

By (b), the majority of A[t′+1], . . . , A[t] is p if c > 0, and does not exist if c = 0.
Together with (a), this implies that (∗), because of the following property: the
majority of the concatenation of two lists, if it exists, must be the majority of
one of the two lists.

After computing the candidate majority p, we can in a second pass compute
its frequency and then check whether it is more than n/2. Once we find the
longest prefix p, we find m0,m1 and m2 and their ranks r0, r1 and r2 respectively
in two additional passes in O(n) time. ut

We show how to speed up the preceding algorithm when we allow a little
more space:

Theorem 4. An approximate median can be found in O(n lgs lgU) time using
O(s) words of space in read-only memory for any s ≤ lgU . Hence the k-th
smallest element can be found in O(n lg n lgs lgU) time using O(s) words of
space in read-only memory.

Proof. We speed up the preceding binary search with an ‘s-ary search’, which
reduces the number of iterations to O(lgs lgU). This requires extending the
majority algorithm to compute majority candidates for s length values simulta-
neously, in two passes. More precisely, let A[1], . . . , A[n] be the input array, let
`1, . . . , `s be s given lengths in increasing order, and let πi(p) denote the length-
`i prefix of the binary representation of p. We want to compute a candidate for
the majority of πi(A[1]), . . . , πi(A[n]) for every i = 1, . . . , s.
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The pseudocode for the modified majority algorithm is given below. The
key is to observe that we can make the s majority candidates to be prefixes of
one common string p. This requires one subtle twist in the algorithm, where a
counter may in one particular case stay at zero without being incremented or
decremented:

0. initialize c1, . . . , cs to 0, p to 0
1. for t = 1, . . . , n:
2. find the smallest j with πj(A[t]) 6= πj(p)
3. if cj = 0 (or j does not exist) then
4. set p = A[t] and increment c1, . . . , cs
5. else increment c1, . . . , cj−1
6. decrement the nonzero entries of cj , . . . , cs

Correctness. The claim is that after each iteration t, for each i,

(∗) if the majority of πi(A[1]), . . . , πi(A[t]) exists, then it is πi(p), and ci 6= 0.

Let ti be the last value such that ci = 0 at the end of iteration ti. Then the
following three invariants are true:

(a) πi(A[1]), . . . , πi(A[ti]) do not have a majority;
(b) ci = [# of times πi(p) occurs in πi(A[ti + 1]), . . . , πi(A[t])] −

[# of times πi(p) does not occur in πi(A[ti + 1]), . . . , πi(A[t])] ≥ 0;
(c) c1 ≥ c2 ≥ · · · ≥ cs.

First we argue that (∗) follows from the three invariants. By (b), the majority of
πi(A[ti + 1]), . . . , πi(A[t]) is πi(p) if ci > 0, and does not exist if ci = 0. Together
with (a), this implies (∗).

It is straightforward to verify that the invariants are preserved in the case
when lines 3–4 are executed (here, cj = · · · = cb = 0 by (c)). So consider the cj 6=
0 case instead when lines 5–6 are executed. It is straightforward to see that the
invariants are preserved for any index i where ci is incremented or decremented.
The remaining subcase is when i > j and ci is zero, and is not decremented, but
stays at zero. Then a majority of πi(A[1]), . . . , πi(A[t − 1]) does not exist. To
maintain (a), we need to confirm that a majority of πi(A[1]), . . . , πi(A[t]) does
not exist. Assume otherwise. Then this majority must be πi(A[t]). This would
imply that the majority of πj(A[1]), . . . , πj(A[t]) is πj(A[t]), but this majority
can only be πj(p): a contradiction with πj(A[t]) 6= πj(p).

Implementation. Line 2 can be performed in O(1) time by taking the exclusive-or
of A[t] and p and identifying the most significant 1-bit (a commonly encountered
operation, which is known to be reducible toO(1) standard word operations [10]).
Lines 4, 5, and 6 require increment/decrement operations on length-s vectors,
which can be done using a known data structure for dynamic counting by Di-
etz [7]. Because s is small, however, the data structure can be greatly simplified
and we can give a short description.

6



The idea is to express (cs, . . . , c1) as a sum (c′s, . . . , c
′
1)+(δs, . . . , δ1), where the

first vector does not change often and the second vector is kept small. Specifically,
after a round of s−1 iterations, we reset c′i = max{ci−s, 0} and δi = ci−c′i ≥ 0;
the amortized cost of the reset is O(1). During a round, updates are applied to
the δi’s. Then δi < 2s at all times, so (δs, . . . , δ1) can be packed in one word
provided that s lg s = o(lgU). If s lg s = Ω(lgU), we can change s to

√
lgU , for

example, and the result is the same because O(n lgs lgU) is the same as O(n).
Testing whether ci = 0 is equivalent to testing whether δi = 0. Line 4 corresponds
to adding a constant (1, . . . , 1) to (δs, . . . , δ1) and lines 5–6 correspond to adding
a vector of the form (0, . . . , 0, 1, . . . , 1) and subtracting a vector of the form
(0, . . . , 0, 1, . . . , 1, 0, . . . , 0). These reduce to O(1) standard arithmetic operations
on words. Before we decrement, we need to identify the smallest i with δi = 0;
this reduces to finding the most significant 1-bit in (δs, . . . , δ1).

Thus, the algorithm can be implemented to run in O(n) time. It uses O(s)
words of space for storing p and (cs, . . . , c1).

After computing the candidate majorities πi(p), we can in a second pass
compute their frequencies fi: initialize f1, . . . , fs to 0, and for each t = 1, . . . , n,
find the smallest j with πj(A[t]) 6= πj(p) and increment f1, . . . , fj−1. By the
same approach, the second pass takes O(n) time as well. We can then check
which of the frequencies are more than n/2. ut

4 Final Remarks

We have shown that the selection problem for integers in read-only memory can
be solved deterministically in O(min{ndlgs Ue, n lg ndlgs lgUe) time with O(s)
storage cells. Actually in all our algorithms, all but a constant number of cells in
the extra memory store O(lg n)-bit pointers or counters rather than O(lgU)-bit
integers. Thus, the space used in bits is O(lgU + s lg n).

For example, we can set s = lgU/ lg n to ensure O(lgU) bits of space, and a

time bound of O(min
{
n lgU

lg(lgU/ lgn) , n lg n lg lgU
lg(lgU/ lgn)

}
). Notice that the second

term is O(n lg n) when lgU ≥ lg1+ε n. On the other hand, when lgU ≤ lg1+ε n,
the first term is at most O(n lg1+ε n). So, a combination of our two approaches
yields an algorithm that uses O(1) words of space and always runs in at most
O(n lg1+ε n) time—a bound independent of U .

A remaining question is whether there is a deterministic selection algorithm
for integers in read-only memory that uses O(1) words of space and runs in
O(n lg n) time (or better) for all U . Another question is to what extent can
our approximate median algorithm be improved; for example, is there a deter-
ministic linear-time algorithm using O(1) words of space in read-only memory?
Also, in the comparison model, the best deterministic algorithm with O(1) space
currently requires O(n1+ε) time in read-only memory [14, 15]. Can one prove a
matching lower bound? This question appears difficult.

Finally, as was mentioned in the introduction, if randomization is allowed,
Θ(n lg lgs n) expected time algorithm is possible using O(s) storage cells for
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general input. Can one extend the Ω(n lg lgs n) lower bound proof [6] to a non-
comparison model in the case when the input is a sequence of integers?
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