
Closest Pair and the Post Office Problem for Stochastic Points∗

Pegah Kamousi† Timothy M. Chan‡ Subhash Suri§

Abstract

Given a (master) set M of n points in d-dimensional Euclidean space, consider drawing a
random subset that includes each point mi ∈ M with an independent probability pi. How
difficult is it to compute elementary statistics about the closest pair of points in such a subset?
For instance, what is the probability that the distance between the closest pair of points in the
random subset is no more than `, for a given value `? Or, can we preprocess the master set M
such that given a query point q, we can efficiently estimate the expected distance from q to its
nearest neighbor in the random subset? These basic computational geometry problems, whose
complexity is quite well-understood in the deterministic setting, prove to be surprisingly hard in
our stochastic setting. We obtain hardness results and approximation algorithms for stochastic
problems of this kind.

1 Introduction

Many years ago, Knuth [12] posed the now classic post-office problem, namely, given a set of points
in the plane, find the one closest to a query point q. The problem, which is fundamental and arises
as a basic building block of numerous computational geometry algorithms and data structures [7],
is reasonably well-understood in small dimensions. In this paper, we consider a stochastic version
of the problem in which each post office may be closed with certain probability. In other words, a
given set of points M in d dimensions includes the locations of all the post offices but on a typical
day each post office mi ∈M is only open with an independent probability pi. The set of points M
together with their probabilities form a probability distribution where each point mi is included in a
random subset of points with probability pi. Thus, given a query points q, we now must talk about
the expected distance from q to its closest neighbor in M . Similarly, instead of simply computing
the closest pair of points in a set, we must ask: how likely is it that the closest pair of points are
no more than ` apart?

In this paper, we study the complexity of such elementary proximity problems and establish both
upper and lower bounds. In particular, we have a finite set of points M in a d-dimensional Euclidean
space, which constitutes our master set of points, and hence the mnemonic M . Each member mi

of M has probability pi of being present and probability 1 − pi of being absent. (Following the
post-office analogy, the ith post office is open with probability pi and closed otherwise.) These

∗The work of the first and the third author was supported in part by National Science Foundation grants CCF-
0514738 and CNS-1035917. The work of the second author was supported by NSERC. A preliminary version of the
paper has appeared in Proc. 12th Algorithms and Data Structures Symposium (WADS), pages 548–559, 2011.
†Department of Computer Science, UC Santa Barbara, CA 93106, USA.
‡Cheriton School of Computer Science, University of Waterloo, Ontario N2L 3G1, Canada.
§Department of Computer Science, UC Santa Barbara, CA 93106, USA.

1

probabilities are independent, but otherwise arbitrary, and lead to a sample space of 2n possible
subsets, where a sample subset includes the ith point with independent probability pi. We achieve
the following results.

1. It is #P-hard to compute the probability that the closest pair of points have distance at most
a value `, even for dimension 2 under the L∞ norm.

2. In the linearly-separable and bichromatic planar case, the above closest pair probability can
be computed in polynomial time under the L∞ norm.

3. Without the linear separability, even the bichromatic version of the above problem is #P-hard
under the L2 or L∞ norm.

4. Even with linear separability and L∞ norm, the bichromatic case becomes #P-hard in di-
mension d ≥ 3.

5. We give a linear-space data structure with O(log n) query time to compute the expected
distance of a given query point to its (1+ε)-approximate nearest neighbor when the dimension
d is a constant.

Related Work

A number of researchers have recently begun to explore geometric computing over probabilistic
data [1, 2, 14, 19]. These studies are fundamentally different from the classical geometric probability
that deals with properties of random point sets drawn from some infinite sets, such as points in unit
square [11]. Instead, the recent work in computational geometry is concerned with worst-case sets
of objects and worst-case probabilities or behavior. In particular, the recent works in [1, 2] deals
with the database problem of skyline computation using a multiple-universe model. The work of
van Kreveld and Löffler [14, 19] deals with objects whose locations are randomly distributed in some
uncertainty regions. Guibas et. al. [8] consider the behavior of fundamental geometric constructs
such as the Voronoi diagrams when the point generators are not known precisely but only given
as Gaussian distributions. Unlike these results, our focus is not on the locational uncertainty but
rather on the discrete probabilities with which each point may appear.

2 The Stochastic Closest Pair Problem

We begin with the complexity of the stochastic closest pair (SCP) problem in the plane, which asks
for the probability that the closest pair of points in the plane has distance at most a given bound `.
We use the notation d(P,Q) for the L2 distance between two sets P and Q. (When using the L∞
or L1 norms, we will use d∞(P,Q) and d1(P,Q).) Consider a set of points M = {m1,m2, . . . ,mn}
in the plane, called the master set. Each point mi is active, or present, with some independent and
arbitrary but known (rational-valued) probability pi. The independent point probabilities induce
a sample space Ω with 2n outcomes. Let S ⊂M denote the set of active points in a trial. Then an
outcome A ⊆ M occurs with probability Pr[S = A] =

∏
mi∈A pi

∏
mi 6∈A(1 − pi). We ask for the

probability that minmi,mj∈S d(mi,mj) ≤ `. We will show that this basic problem is intractable, via
reduction from the problem of counting minimum vertex covers in planar unit disk graphs. In order

2

to show that even the bichromatic closest pair problem is hard, we also prove that a corresponding
vertex cover counting problem is also hard for a bichromatic version of the unit disk graphs.

2.1 Counting Vertex Covers in Unit Disk Graphs

The problem of counting minimum cardinality vertex covers in a graph [13, 16, 18] is the following.
Given a graph G = (V,E), how many node-subsets S ⊆ V constitute a vertex cover of minimum
cardinality, where S is a vertex cover of G if for each uv ∈ E, either u ∈ S or v ∈ S. This
problem is known to be #P-hard, even for planar bipartite graphs with maximum degree 3 [16].
This immediately shows that counting the minimum weight vertex covers is also hard for this type
of graphs, as we can always assign the same weight to all the node, so that the minimum cardinality
vertex cover minimizes the weight as well. Throughout this paper, we simply use the term minimum
vertex cover instead of minimum weight vertex cover, and the term minimum cardinality vertex cover
is used otherwise.

Let #MinVC denote the problem of counting minimum weight vertex covers in a graph. We
will consider this problem on unit disk graphs, which are the intersection graphs of n equal-sized
circles in the plane: each node corresponds to a circle, and there is an edge between two nodes if
the corresponding circles intersect. The following theorem considers the complexity of #MinVC
problem on unit disk graphs.

Theorem 2.1. It is #P-hard to compute the number of minimum weight vertex covers in weighted
unit disk graphs, even if all the nodes have weight 1 or 2, and even if the distances are measured
in the L∞ metric.

Throughout this section, we assume that the disks defining unit disk graphs have radius 1. The
first step of the proof is the following well-known lemma of Valiant [17].

Lemma 2.2. A planar graph G = (V,E) with maximum degree 4 can be embedded in the plane
using O(|V |2) area in such a way that its nodes are at integer coordinates and its edges are drawn
so that they are made up of line segments of the form x = i or y = j, for integers i and j.

Our reduction is from the problem of counting minimum cardinality vertex covers in planar
bipartite graphs with maximum degree 3, which is #P-hard as proved by Vadhan [16]. Let G =
(V,E) be an instance of this problem and let m and n denote the number of edges and nodes of G,
respectively.

Let P be a planar embedding of G according to Lemma 2.2, and Gi be the graph obtained by
putting an even number 2Li of intermediate nodes on each edge of P , for a given parameter Li (see
Figure 1). Finally we assign weight 2 to all the intermediate nodes, and weight 1 to regular nodes
(the images of the nodes in G). We also assign weight 1 to all the nodes in G, so that a minimum
weight vertex cover of G also has minimum cardinality. The following lemma relates the weight of
minimum vertex covers in G and Gi.

Lemma 2.3. G has a minimum vertex cover of weight w if and only if Gi has a minimum vertex
cover of weight w + 2mLi.

Proof. For any edge uv ∈ E, let path(u, v) denote the path connecting the image of u to the image
of v in Gi. For each minimum vertex cover C in G with weight w, it can be extended to a vertex
cover of weight w + 2

∑
uv∈E Li = w + 2mLi in Gi by including every other intermediate node on

path(u, v) for each edge uv ∈ E.

3

Figure 1: A planar grid embedding of a graph with 2 intermediate nodes on each edge.

On the other hand, every minimum vertex cover Ci of Gi is also a minimum vertex cover for G,
when restricted to the regular nodes. Suppose not. Then there exists at least one path, path(u, v),
such that neither u nor v belongs to Ci. Consider the path in Figure 2(a). If u and v are not
selected (the first scenario), both a and b should be selected to cover the edges ua and bv. Half of
the remaining intermediate nodes are necessary and sufficient to cover the remaining edges (since
for any edge on the path at least one of its endpoints must belong to the vertex cover). The weight
of the nodes covering this path is therefore 2Li + 2. By including the node u and taking out a,
we still have a vertex cover whose weight is now reduced to 2Li + 1 (Figure 2(a), second scenario).
But this is a contradiction since Ci is a minimum weight vertex cover.

This shows that any minimum vertex cover for Gi contains a set of regular nodes which is a
vertex cover for G, plus Li intermediate nodes per each edge of G. The weight of Ci is therefore
minimized if the set of regular nodes in Ci is a minimum vertex cover for G.

b b b b bb bb b b b b bb bb

u a b v u a b vc d

× × × ×

× × × ×
× × × ×

× × × ×

b b b b bb bb

u a b vc d

× × × ×

× × × ××

× × × ××

1 :

2 :

3 :

1 :

2 :

1 :

2 :

(a) (b) (c)

Figure 2: Counting minimum vertex covers in Gi.

Let N(G) and N(Gi) denote the number of minimum vertex covers of G and Gi respectively.
For j = 0, . . . ,m, define Nj as the number of minimum vertex covers of G in which exactly j edges
of G have both (the images of) their endpoint covered, and m− j edges have one of their endpoints
covered. The following lemma relates the number of minimum vertex covers in G and Gi.

Lemma 2.4. Let G and Gi be the graphs defined above. Then we have

N(Gi) =
m∑
j=0

Nj(Li + 1)j , (1)

and the number of vertex covers of G is simply N(G) =
∑m

j=0Nj.

Proof. Consider the path in Figure 2(b), which is a path in Gi corresponding to an edge uv from
G plus 2Li intermediate nodes.

4

Let Ci be a minimum vertex cover for Gi. If only one of u and v belongs to Ci as in Figure 2(b),
then the only way to cover the remaining edges with minimum weight is to include every other
intermediate node in the vertex cover, starting from the selected node. Now consider the case where
both u and v belong to Ci as in Figure 2(c). The claim is that in this case there are exactly Li + 1
different ways to minimally cover the remaining edges. This is true for Li = 1, where we have two
intermediate nodes each of which can be selected, and it is easy to see that it also holds for Li = 2.
Now suppose this is true for Li ≤ k and consider the case where there are 2(k + 1) intermediate
nodes on the edge. See Figure 2(c). If neither a nor b is selected (first scenario), both c and d need
to be selected. Then the path connecting c to d has both its endpoints covered, and we are back to
the case where there are 2(k − 1) intermediate nodes, and there are exactly k ways to minimally
cover the remaining edges. If only a is selected (second scenario), then the path connecting a to b
has only one of its endpoints covered, and therefore there is only one way to cover the remaining
edges. The same happens if only b is selected (the third scenario).

Therefore the number of ways to minimally cover path(u, v), given that both its endpoints are
selected, is k+ 2 = (k+ 1) + 1. This completes the induction. We conclude that there are (Li + 1)j

different minimum vertex covers of Gi corresponding to each minimum vertex cover of G, in which
j edges of G have both their endpoint covered. This completes the proof.

What remains is to recover the values Nj from the value of N(Gi). We will need the following
lemma from [15] (see Section 2).

Lemma 2.5. Suppose we have v0, . . . , vn, b0 . . . , bn, related by the equation vi =
∑n

j=0 aijbj (i =
0, . . . , n). Further suppose that the matrix of the coefficients (aij) is Vandermonde, with parameters
µ0, . . . , µn which are distinct. Then given the values v0, . . . , vn, we can obtain the values b0, . . . , bn
in time polynomial in n.

Recall that a Vandermonde matrix M is in the form Mij = (µji)0≤i,j≤n (or its transpose) for a
given sequence of distinct values µ0, . . . , µn. (See [9, §5.1].)

If we compute the sum
∑m

j=0Nj(Li + 1)j for m+ 1 different values of Li, we end up with m+ 1
equations like equation (1) in Lemma 2.4, involving m + 1 unknowns. The matrix of coefficients,
(aij) is Vandermonde, where aij = (Li + 1)j . We can then use Lemma 2.5 to recover the values Nj

for j = 0, . . . ,m, and therefore the number of minimum vertex covers of G.
So far we know how to compute the number of minimum vertex covers of G in polynomial time,

if we can count the minimum weight vertex covers of Gi. But we are still missing the main piece.
In order to prove Theorem 2.1, the Gi’s need to be unit disk graphs. The rest of this section will
show how to embed the Gi’s as unit disk graphs in the plane for appropriate values of Li.

Let P , as defined before, be a planar embedding of G in the integer plane grid according to
Lemma 2.2. Let M ∈ O(n2) be an integer upper bound on the length of the longest edge of P , with
M ≥ m. First we scale the grid by the factor 80M (the length of the longest edge is now bounded
by 80M2). Next we place a number of intermediate nodes on all the edges, such that each edge
becomes a path consisting of edges of length 1 (short edges hereafter). This is always possible since
even after scaling the grid all the edges have integer lengths.

As before, for each edge uv ∈ E, path(u, v) denotes the path connecting the image of u to the
image of v in the resulting graph. For any given i = 0, . . . ,m, we transform each of these m paths
into a path consisting of exactly `i = 80M2 + 40iM short edges as follows: After the scaling, all
the paths have length at least 80M . On each path, we take a vertical or horizontal segment of
length 4j with j ≤ 5M , and replace it with the path in Figure 3 (the figure depicts the case of a

5

vertical segment being replaced; the horizontal case is symmetric). These paths are called (vertical
or horizontal) equalizing paths, each of which fits inside a 20M × 20M square. On each path, we
can select a horizontal or vertical segment that is at distance more than 20M + 1 away from any
node or corner of the path; this ensures that the equalizing paths are more than distance 1 apart
from one another.

Each vertical equalizing path consists of 2j horizontal segments of length 20M and 2j vertical
segments of length 2. The length of the whole path is therefore 40jM + 4j; in other words, the
increase in length is 40jM . By varying j from 0 to 5M , this increase can assume any multiple
of 40M between 0 to 200M2, and therefore it can be adjusted so that the length of path(u, v) is
exactly `i.

One remaining problem is that although all paths path(u, v) now have the same number `i − 1
of intermediate nodes, this number is odd. We resolve this problem by picking any line segment of
length 2 in path(u, v) and subdividing into 3 edges of length 2/3 (instead of 2 edges of length 1).
The resulting unit disk graph will contain short edges of length 1 and these new edges of length 2/3,
but no other edges. Now for each uv ∈ E, path(u, v) have 2Li intermediate nodes with Li = `i/2.

20M nodes
Repeats
j times

Figure 3: A vertical equalizing path.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Given G = (V,E), a bipartite planar graph of maximum degree 3, we con-
struct a series of m + 1 unit disk graphs Gi, i = 0, . . . ,m, where each Gi has exactly 2Li =
80M2 + 40iM intermediate nodes on path(u, v), for all uv ∈ E, and M is defined as before. We
assign weight 1 to all the nodes in G and their images in the Gi’s, while we assing weight 2 to all
the intermediate nodes of the Gi’s. Suppose we have an algorithm to count the minimum vertex
covers in unit disk graphs. We then use this algorithm to count the minimum vertex covers in all
the Gi’s, and use Lemma 2.5 along with Lemma 2.4 to recover the number of minimum weight (and
therefore cardinality) vertex covers of G. But counting the minimum cardinality vertex covers is
hard for bipartite graphs of maximum degree 3, which shows that counting the minimum weight
vertex covers is hard for unit disk graphs. This holds even for planar, bipartite unit disk graphs
since the Gi’s are bipartite and planar. The hardness result also holds if the distances are mea-
sured in the L∞ metric, since the Gi’s only have horizontal and vertical segments, and therefore
the distances do not change under the L∞ metric.

In the next section we introduce the class of Bichromatic Unit Disk Graphs, and show that
counting the vertex covers remains hard in this version of unit this graphs. This result will be
needed later to prove that the SCP problem is hard even for bichromatic point sets.

6

2.2 Bichromatic Unit Disk Graphs

We introduce the class of bichromatic unit disk graphs as the graphs defined over a set of points
in the plane, each colored as blue or red, with an edge between a red and a blue pair if and only
if their distance is ≤ 1. (We do not put edges between nodes of the same color regardless of the
distance between them.) The next theorem shows that counting minimum vertex covers remains
#P-hard for bichromatic UDGs.

Theorem 2.6. It is #P-hard to count the minimum weight vertex covers in a bichromatic unit
disk graph even if all the nodes have weight 1 or 2, and even if the distances are measured in the
L∞ metric.

Proof. Consider the graphs Gi for i = 0, . . . ,m constructed in the proof of Theorem 2.1. These
graphs are bipartite, and we can therefore color their nodes as blue and red such that there is no
edge between a red and a blue node. We can now apply the exact same reduction as in the proof of
Theorem 2.1, to show that counting the minimum weight vertex covers is #P-hard for bichromatic
unit disk graphs as well.

In the next section we study the close connection between the problem of counting the minimum
vertex covers in unit disk graphs and the stochastic closest pair problem.

2.3 Complexity of the Stochastic Closest Pair Problem

Let M = {m1, . . . ,mn} be a set of n points in the plane, where each mi ∈ M is present with
probability pi and absent with probability 1−pi. Let H be the (stochastic) unit disk graph defined
on M , with an edge between two points if and only if their distance is ≤ 1. In this graph, a subset
S of nodes is a vertex cover if and only if no two nodes in the complement of S are at distance
≤ 1. (In other words, all the edges are covered by S.) Therefore, computing the probability that
a random subset of nodes is a vertex cover in H amounts to computing the probability that the
closest pair of the complement of the random subset are at distance > 1.

With this intuition, we are now ready to prove the main result of this section.

Theorem 2.7. Given a set M of points in the plane, where each point mi ∈ M is present with
probability pi, it is #P-hard to compute the probability that the L2 or L∞ distance between the
closest pair is ≤ `, for a given value `.

Proof. The reduction is from the #MinVC problem for unit disk graphs in which all the nodes
have weight 1 or 2. Consider such a unit disk graph H. We assign probability 1− q to all the nodes
of weight 1, and probability 1− q2 to all the nodes of weight 2, for a value q to be determined later.
Let n1 and n2 be the number of nodes of weight 1 and 2 in H respectively.

Suppose there is a polynomial time algorithm for the SCP problem. We run that algorithm on
the nodes of H, to get the probability that the closest pair of the random subset are at distance
> 1, in other words, the probability that the complement of the random subset is a vertex cover.
Let P (H) denote this probability.

The probability that the complement of a random subset equals a fixed subset with j1 nodes of
weight 1, j2 nodes of weight 2, and total weight j = j1 + 2j2 is qj1(q2)j2(1− q)n1−j1(1− q2)n2−j2 ∈
qj(1−O(nq)). Thus,

P (H) ∈
2n∑
j=1

Cj · qj(1−O(nq)),

7

where Cj is the number of vertex covers of weight j.
Let k be the weight of the minimum vertex cover. Since the total number of subsets is 2n,

P (H) ∈ Ck · qk(1−O(nq)) +O(2n · qk+1(1−O(nq))) ⊂ (Ck ± o(1)) · qk

by choosing a sufficiently small value of q � 1/n2n. (Note that we can still make q have polynomial
number of bits.) We can find k by searching for the closest power of q to P (H). We can divide
P (H) by qk and round to the nearest integer to get Ck, the number of minimum weight vertex
covers in H. But Theorem 2.1 asserts that this problem is #P-hard, which shows that the SCP
problem is #P-hard as well.

The next theorem, which considers the bichromatic version of this problem, is based on the
same argument as above along with Theorem 2.6.

Theorem 2.8. Given a set R of red and a set B of blue points in the plane, where each point
ri ∈ R is present with an independent, rational probability pi, and each point bi ∈ B is present with
probability qi, it is #P-hard to compute the probability that the closest L2 or L∞ distance between
a bichromatic pair of present points is less that a given value `.

In the next section, we propose a polynomial time algorithm for a special case of the bichromatic
closest pair problem.

3 Linearly Separable Point Sets under the L∞ Norm

In the following, we show that when the red points are linearly separable from the blue points by
a vertical or a horizontal line, the stochastic bichromatic closest pair problem under L∞ distances
can be solved in polynomial time. We only describe the algorithm for the points separable by a
vertical line, noting that all the arguments can be adapted to the case of a horizontal line.

Let U = {u1, . . . , un} be the set of red points on the left side, and V = {v1, . . . , vm} the set of
blue points on the right side of a line. Each point ui ∈ U is present with probability pi, while each
point vj ∈ V is present with probability qj . We sort the red points by x-coordinate (from right to
left), and the blue points by y-coordinate (top-down). Let R[i, j, k] be the region defined by the
intersection of the halfplanes x ≤ 0, x ≥ x(ui)−1, y ≥ y(vj) and y ≤ y(vk), for y(vj) < y(vk) (Fig. 4
(a), where x(ui) and y(vj) denote the x-coordinate of the i-th red point and the y-coordinate of
the j-th blue point, respectively. By abuse of notation, we will also use R[i, j, k] to refer to the set
of (blue) points inside this region.

Let P [i, j, k] denote the probability that the subset Ui = {u1, u2, . . . , ui} of red points does not
have a neighbor within distance ≤ 1 in R[i, j, k]. The value we are interested in is P [n,m, 1], which
is the probability that the closest pair distance is > 1. We fill up the table for P [i, j, k] values using
dynamic programming, row by row starting from u1 (the rightmost red point).

Let B(ui) be the L∞ ball of radius 1 around ui. In the computation of the entry P [i, j, k], there
are 4 cases:

1. B(ui) contains the region R[i, j, k] (Fig. 4 (a)). In this case

P [i, j, k] = pi
∏

vt∈B(ui)

(1− qt) + (1− pi) · P [i− 1, j, k].

8

vk

vj

ui
R[i, j, k]

(a)

ui

(b)

vl

ui

(c)

ui

vh

(d)

ui

vl

vh

(e)

Figure 4: Different configurations of R[i, j, k] and B(ui).

2. B(ui) does not intersect with R[i, j, k] (Fig. 4 (b)). In this case, P [i, j, k] = P [i− 1, j, k].

3. The left half of B(ui) partially intersects with R[i, j, k]. If y(ui)− 1 < y(vk) (Fig. 4 (c)),

P [i, j, k] = pi
∏

vt∈B(ui)∩R[i,j,k]

(1− qt) · P [i− 1, j, l] + (1− pi) · P [i− 1, j, k],

where vl is the highest blue point in R[i, j, k] but outside B(ui).

If y(ui) + 1 < y(vk)) (Fig. 4 (d)), then

P [i, j, k] = pi
∏

vt∈B(ui)∩R[i,j,k]

(1− qt) · P [i− 1, h, k] + (1− pi) · P [i− 1, j, k],

where vh is the lowest blue point in R[i, j, k] but outside B(ui).

4. The left half of B(ui) is contained in R[i, j, k] (Fig. 4 (e)). In this case

P [i, j, k] = (1− pi) · P [i− 1, j, k] + pi
∏

vt∈B(ui)∩R[i,j,k]

(1− qt) · P [i− 1, j, l] · P [i− 1, h, k],

where vl and vh are defined as before. The subtlety is that the two events of Ui−1 having
no close neighbor in R[i − 1, j, l], and of Ui−1 having no close neighbor in R[i − 1, h, k] are
independent. Therefore we can multiply the corresponding probabilities. The reason is that
all the points in Ui−1 that potentially have a close neighbor in R[i − 1, j, l] must necessarily
lie below the line y = y(ui), while those potentially close to a point in R[i− 1, h, k] must lie
above that line. The two sets are therefore disjoint.

The base case (R[1, j, k], j, k ∈ {1, . . . ,m}) can be easily computed. The size of the table is
O(n3). The values

∏
vt∈B(ui)∩R[i,j,k](1 − qt) can be precomputed in O(n2) time for each point vi

(by a sweep-line approach for example). This brings the computation time of each table entry
down to a constant, and the running time of the whole algorithm to O(n3) time. This assumes a
nonstandard RAM model of computation where each arithmetic operation on large numbers takes
unit time. Otherwise, the running time should be multiplied by a factor proportional to the bit
complexity of the intermediate numbers, which is polynomial in n and the bit complexity of the
input probability values.

The next Theorem considers the problem for d > 2.

9

Theorem 3.1. Given a set R of red and a set B of blue points in a Euclidean space of dimension
d > 2, each being present with an independent, rational probability, it is #P-hard to compute the
probability that the L∞ distance between the closest pair of bichromatic points is less than a given
value r, even when the two sets are linearly separable by a hyperplane orthogonal to some axis.

Proof. Let d∞(R,B) be the minimum L∞ distance between all the bichromatic pairs, which lie in
the plane. It is always possible to make the two sets linearly separable in d = 3 by lifting all the
blue (or red) points from the plane by a small value ε < d∞(R,B). This does not change the L∞
distance of any pair of points. Therefore, an algorithm for solving the problem for linearly separable
sets in d > 2, is essentially an algorithm for the stochastic bichromatic closest pair problem, which
is #P-hard by Theorem 2.8. This completes the proof.

In the next section, we consider the stochastic version of the nearest neighbor search.

4 Stochastic Approximate Nearest Neighbor Queries

Given a stochastic set M of points in a d-dimensional Euclidean space, and a query point q, what is
the expected (L2) distance of q to the closest present point of M? In this section we target this prob-
lem, and design a data structure for approximating the expected value of d(S, q) = minp∈S d(p, q)
with respect to a random subset S of M , assuming that d is a constant. (Technically, at least one
point needs to be assigned probability 1 to ensure that the expected value is finite; alternatively,
we can consider the expectation conditioned on the event that d(S, q) is upper-bounded by a fixed
value.) We obtain a linear-space data structure with O(log n) query time. Although our method is
based on known techniques for approximate nearest neighbor search (namely, balanced quadtrees
and shifting [3, 4, 5]), a nontrivial adaptation of these techniques is required to solve the stochastic
version of the problem.

4.1 Approximation via a modified distance function ˜̀
As before, we are given a set M of points in a d-dimensional Euclidean space and each point is
present with an independent probability. Assume that the points lie in the universe {0, . . . , 2w−1}d.
Fix an odd integer k = Θ(1/ε). Shift all points in M by the vector (j2w/k, j2w/k, . . . , j2w/k) for
a randomly chosen j ∈ {0, . . . , k − 1}.

A quadtree box is a box of the form [i12
`, (i1 + 1)2`)×· · ·× [id2`, (id + 1)2`) for natural numbers

`, i1, . . . , id. Given points p and q, let D(p, q) be the side length of the smallest quadtree box
containing p and q. Let Bs(p) be the quadtree box of side length bbscc containing p, where bbscc
denotes the largest power of 2 smaller than s. Let cs(p) denote the center of Bs(p). Let [X] be 1
if X is true, and 0 otherwise.

Definition 4.1.

(a) Define `(p, q) = d(Bs(p), Bs(q)) + 2
√
ds with s = ε2D(p, q). Let `(S, q) = minp∈S `(p, q).

(b) r is said to be q-good if the ball centered at cε2r(q) of radius 2r is contained in B12kr(q).

(c) Define ˜̀(S, q) = [`(S, q) is q-good] · `(S, q).

Lemma 4.2.

10

(a) `(S, q) ≥ d(S, q). Furthermore, if `(S, q) is q-good, then `(S, q) ≤ (1 +O(ε))d(S, q).

(b) `(S, q) is q-good for all but at most d choices of the random index j.

(c) ˜̀(S, q) ≤ (1 +O(ε))d(S, q) always, and Ej [˜̀(S, q)] ≥ (1−O(ε))d(S, q).

Proof. Let p∗, p ∈ S satisfy d(S, q) = d(p∗, q) = r∗ and `(S, q) = `(p, q) = r.
The first part of (a) follows since `(p, q) ≥ d(p, q). For the second part of (a), suppose that r is

q-good. Since d(p∗, q) ≤ d(p, q) ≤ `(p, q) = r, we have d(p∗, cε2r(q)) < 2r, implying D(p∗, q) ≤ 12kr.
Then r = `(p, q) ≤ `(p∗, q) ≤ d(p∗, q) +O(ε2D(p∗, q)) ≤ r∗ +O(εr), and so r ≤ (1 +O(ε))r∗.

For (b), we use [6, Lemma 2.2], which shows that the following property holds for all but at
most d choices of j: the ball centered at q with radius 3r∗ is contained in a quadtree box with
side length at most 12kr∗. By this property, D(p∗, q) ≤ 12kr∗, and so r = `(p, q) ≤ `(p∗, q) ≤
d(p∗, q) +O(ε2D(p∗, q)) = (1 +O(ε))r∗. Then the ball centered at cε2r(q) of radius 2r is contained
in the ball centered at q of radius (2 +O(ε2))r < 3r∗, and is thus contained in B12kr∗(q).

(c) follows from (a) and (b), since 1− d/k ≥ 1−O(ε) (and d(S, q) does not depend on j).

By (c), Ej [ES [˜̀(S, q)]] approximates ES [d(S, q)] to within factor 1±O(ε). It suffices to give an

exact algorithm for computing ES [˜̀(S, q)] for a query point q for a fixed j; we can then return the
average, over all k choices of j.

4.2 The data structure: a BBD tree

We use a version of Arya et al.’s balanced box decomposition (BBD) tree [3]. We form a binary
tree T of height O(log n), where each node stores a cell, the root’s cell is the entire universe, a
node’s cell is equal to the disjoint union of the two children’s cells, and each leaf’s cell contains
Θ(1) points of M . Every cell B is a difference of a quadtree box (the outer box) and a union
of O(1) quadtree boxes (the holes). Such a tree can be constructed by forming the compressed
quadtree and repeatedly taking centroids, as described by Arya et al. (in the original BBD tree,
each cell has at most 1 hole and may not be perfect hypercubes). We will store O(1/εO(1)) amount
of extra information (various expectation and probability values) at each node. The total space is
O(n/εO(1)).

4.3 An exact query algorithm for ˜̀
In this section, we describe the algorithm for estimating ES [˜̀(S, q)], given a query point q. First
we extend the definition of ˜̀ slightly: let ˜̀(S, q, r0) = [`(S, q) ≤ r0] · [`(S, q) is q-good] · `(S, q).

Consider a cell B of T and a query point q ∈ B. Let R(Bc, q) denote the set of all possible
values for `(p, q) over points p in Bc, the complement of B. We solve the following extension of the
query problem (all probabilities and expectations are with respect to the random subset S):

Problem 4.3. For every r0 ∈ R(Bc, q), compute the values Pr[`(S ∩ B, q) > r0] and E[˜̀(S ∩
B, q, r0)].

It suffices to compute these values for r0 ≤
√
d|B|, where |B| denotes the maximum side length

of B, since they don’t change as r0 increases beyond
√
d|B|.

Lemma 4.4. The number of elements in R(Bc, q) that are below
√
d|B| is O(1/ε2d).

11

Proof. If p is inside a hole H of B, then D(p, q) ≥ |H|, so we can consider a grid of side length
Θ(ε2|H|) and round p to one of the O(1/ε2d) grid points without affecting the value of `(p, q).

If p is outside the outer box of B, then D(p, q) ≥ |B|, so we can round p using a grid of side
length Θ(ε2|B|). In this case the number of grid points for d(p, q) ≤ `(p, q) ≤

√
d|B| is O(1/ε2d) as

well.

We now describe the query algorithm. The base case when B is a leaf is trivial. Let B1 and
B2 be the children cells of B. Without loss of generality, assume that q ∈ B2 (i.e., q 6∈ B1). We
apply the following formulas, based on the fact that `(S ∩ B, q) = min{`(S ∩ B1, q), `(S ∩ B2, q)}
and that S ∩B1 and S ∩B2 are independent:

Pr[`(S ∩B, q) > r0] = Pr[`(S ∩B1, q) > r0] · Pr[`(S ∩B2, q) > r0]; (2)

E[˜̀(S ∩B, q, r0)]
=

∑
r≤
√
d|B2|

Pr[`(S ∩B1, q) = r] · E[˜̀(S ∩B2, q,min{r, r0})] + (3)

∑
r≤
√
d|B2|

Pr[`(S ∩B1, q) = r] · Pr[`(S ∩B2, q) > r] · [r < r0] · [r is q-good] · r (4)

+ Pr[`(S ∩B1, q) >
√
d|B2|] · E[˜̀(S ∩B2, q, r0)] (5)

+ E
[
[`(S ∩B1, q) >

√
d|B2|] · ˜̀(S ∩B1, q, r0)

]
· Pr[S ∩B2 = ∅]. (6)

(3) and (5) cover the case when `(S ∩B2, q) ≤ `(S ∩B1, q), and (4) and (6) cover the case when
`(S ∩ B1, q) < `(S ∩ B2, q). For (5), note that `(S ∩ B2, q) ≤ r0 already implies S ∩ B2 6= ∅ and
`(S ∩B2, q) ≤

√
d|B2|.

By recursively querying B2, we can compute all probability and expectation expressions con-
cerning S ∩ B2 in (2)–(6). Note that r0 ∈ R(Bc, q) ⊆ R(Bc

2, q), and in the sums (3) and (4),
it suffices to consider r ∈ R(Bc

2, q) since S ∩ B1 ⊂ Bc
2. In particular, the number of terms with

r ≤
√
d|B2| is O(1/ε2d), as already explained. For the probability and expectation expressions

concerning S ∩B1, we examine two cases:

• Suppose that q is inside a hole H of B1. For all p ∈ B1, D(p, q) ≥ |H| and `(p, q) ≥ Ω(ε2|H|),
so we can consider a grid of side length Θ(ε4|H|) and round q to one of the O(1/ε4d) grid
points without affecting the value of `(p, q), nor affecting whether `(p, q) is q-good. Thus, all
expressions concerning S ∩B1 remain unchanged after rounding q. We can precompute these
O(1/εO(1)) values for all grid points q (in O(n/εO(1)) time) and store them in the tree T .

• Suppose that q is outside the outer box of B1. For all p ∈ B1, D(p, q) ≥ |B1|, so we can
consider a grid of side length Θ(ε2|B1|) and round each point p ∈M∩B1 to one of the O(1/ε2d)
grid points without affecting the value of `(p, q). Duplicate points can be condensed to a single
point by combining their probabilities; we can precompute these O(1/ε2d) probability values
(in O(n) time) and store them in the tree T . We can then evaluate all expressions concerning
S ∩B1 for any given q by brute force in O(1/εO(1)) time.

Since the height of T is O(log n), this recursive query algorithm runs in time O((1/εO(1)) log n).
Therefore we arrive at the main result of this section.

12

Theorem 4.5. Given a stochastic set of n points in a constant dimension d, we can build an
O(n/εO(1))-space data structure in O((1/εO(1))n log n) time, so that for any query point, we can
compute a (1+ε)-factor approximation to the expected nearest neighbor distance in O((1/εO(1)) log n)
time.

5 Conclusion

We show that even elementary proximity problems become hard under the stochastic model, and
point to a need for new techniques to achieve approximation bounds. On one hand, the intractability
may seem unsurprising because the computations involve an exponential number of possible subsets.
But as we showed in a related work [10], for several fundamental geometric structures computing
the expectation is possible in polynomial time despite the overt summation of exponentially many
terms. However, it was also shown in the same paper that computing the expected length of
the minimum spanning tree is #P -Hard. Our current work continues the research begun in [10]
and attempts to delineate between computationally tractable and intractable for the most basic of
the geometric problems. We believe that our results can serve as building blocks for a theory of
geometric computation under a stochastic model of input.

References

[1] P. Afshani, P. K. Agarwal, L. Arge, K. G. Larsen, and J. M. Phillips. (Approximate) Uncertain
Skylines. In ICDT, pages 186–196, 2011.

[2] P. K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Indexing Uncertain Data. In PODS, pages
137–146, 2009.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An Optimal Algorithm
for Approximate Nearest Neighbor Searching Fixed Dimensions. J. ACM, 45:891–923, 1998.

[4] T. M. Chan. Approximate Nearest Neighbor Queries Revisited. Discrete and Computational
Geometry, 20:359–373, 1998.

[5] T. M. Chan. Closest-point Problems Simplified on the RAM. In Proc. SODA, pages 472–473,
2002.

[6] T. M. Chan. Polynomial-time Approximation Schemes for Packing and Piercing Fat Objects.
J. Algorithms, 46:178–189, 2003.

[7] M. De Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer, 2008.

[8] L. J. Guibas, J. S. B. Mitchell, and T. Roos. Voronoi Diagrams of Moving Points in the Plane.
In Proc. 17th International Workshop on Graph-Theoretic Concepts in Comptuter Science,
volume 570, pages 113–125. LNCS, 1992.

[9] G. H. Hardy, G. Polya, and J. E. Littlewood. Inequalities. Cambridge Press, 1952.

13

[10] P. Kamousi, T. M. Chan, and S. Suri. Stochastic Minimum Spanning Trees in Euclidean Spaces.
In Proceedings of the 27th annual ACM symposium on Computational geometry, SoCG ’11,
pages 65–74.

[11] D. A. Klain and G. Rota. Introduction to Geometric Probability. Cambridge, 1997.

[12] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-
Wesley, 1973.

[13] M.-S. Lin and Y.-J. Chen. Counting the Number of Vertex Covers in a Trapezoid Graph. Inf.
Process. Lett., 109:1187–1192, 2009.

[14] M. Löffler and M. J. van Kreveld. Largest and Smallest Convex Hulls for Imprecise Points.
Algorithmica, 56(2):235–269, 2010.

[15] J. S. Provan and M. O. Ball. The Complexity of Counting Cuts and of Computing the
Probability that a Graph is Connected. SIAM J. Comput., 12(4):777–788, 1983.

[16] S. P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM
Journal on Computing, 31:398–427, 1997.

[17] L. Valiant. Universality Considerations in VLSI Circuits. IEEE Trans. Computers, 30:135–140,
1981.

[18] L. G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

[19] M. J. van Kreveld, M. Löffler, and J. S. B. Mitchell. Preprocessing Imprecise Points and
Splitting Triangulations. SIAM J. Comput., 39(7):2990–3000, 2010.

14

