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Abstract. We consider the problem of finding a planar embedding of a
graph at fixed vertex locations that minimizes the total edge length. The
problem is known to be NP-hard. We give polynomial time algorithms
achieving an O(

√
n logn) approximation for paths and matchings, and

an O(n) approximation for general graphs.

1 Introduction

Suppose we want to draw a planar graph and the vertex locations are specified.
Such a planar drawing always exists, although not necessarily with straight line
edges. Pach and Wenger [1] showed how to construct a drawing using O(n) bends
on each edge, where n is the number of vertices. We consider an equally natural
optimization criterion—to minimize the total edge length.
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Fig. 1. A puzzle from Loyd [2]—connect each house to the opposite gate with non-
crossing paths. On the left is the minimum length solution to an asymmetric version.

For example, Figure 1 shows a puzzle disseminated by Sam Loyd [2, p. 27].
The goal is to connect each house with the gate opposite its door via non-crossing



paths. There are two distinct solutions but if the points are shifted as shown on
the right in Figure 1, there is a unique shortest solution.

In this example the fixed outer wall plays a significant role, so the example
demonstrates a more general problem—to extend a planar drawing of a subgraph
to a planar drawing of the whole graph minimizing the total length. Fixed edges
in the drawing act as obstacles. We call this Minimum Length Planar Drawing
of Partially Embedded Graphs.

Angelini et al. [3] gave a linear time algorithm to decide if a planar drawing
of a subgraph can be extended to a planar drawing of the whole graph. Our
problem is the optimization version, to minimize the total edge length.

We will restrict attention to the case where all vertex positions are fixed.
Furthermore, most of our results are for the case when none of the edges are
fixed. We call this Minimum Length Planar Drawing [or Embedding] at Fixed
Vertex Locations. This problem is very interesting even for special graphs such
as matchings and paths.

When the edges to be added form a matching, the problem is to join spec-
ified pairs of points via non-crossing paths of minimum total length. The case
when there are no obstacles was considered by Liebling et al. [4] in 1995. They
gave some heuristics based on finding a short non-crossing tour of the points
and then “wrapping” the matching edges around the tour. We use this same
technique for our approximation results. They also proved that for points in the
unit square a shortest non-crossing matching has length O(n

√
n) and there are

examples realizing this bound. The lower bound (due to Peter Shor) relies on the
existence of expander graphs with large crossing number. In 1996 Bastert and
Fekete [5] proved that the problem is NP-hard, even with no obstacles. There is
also substantial work on the case where there are obstacles (i.e. when some edges
are fixed)—specifically when the points lie on the boundary of a polygon [6], or
multiple polygons [7] (in which case the run time is exponential in the number
of polygons). We give more details below in Section 1.1, and also discuss related
work on finding “thick” paths that are separated from each other.

The problem of Minimum Length Planar Embedding at Fixed Vertex Loca-
tions is also interesting when the graph we want to embed is a path. This version
of the problem was formulated by Polishchuk and Mitchell [8]. Their main goal
was to find a minimum length tour that visits a given sequence of convex bodies
in Rd (see [9] for the planar case), without regard to whether the path is self-
intersecting, but in their conclusion section they ask about finding a minimum
length non-crossing tour for a sequence of points.

Our Contributions. We give polynomial time approximation algorithms for
Minimum Length Planar Embedding at Fixed Vertex Locations. In the case of
general planar graphs we achieve an approximation ratio of O(n). In the case
of a matching or a path we achieve an approximation ratio of O(

√
n log n). Our

main technique is to route graph edges around a carefully chosen path or tree
defined on the input points in the plane.



1.1 Related Work

Bastert and Fekete [5] prove that Minimum Length Planar Drawing at Fixed
Vertex Locations is NP-hard when the graph is a matching.

Patrignani [10] proved that it is NP-hard to decide if a planar drawing of a
subgraph can be extended to a planar straight-line drawing of the whole graph.

Papadopoulou [6] gave an efficient algorithm for finding minimum length
non-crossing paths joining pairs of points on the boundary of a polygon. In this
case each path is a shortest path, but Papadopoulou finds them more efficiently
than the obvious approach. Erickson and Nayyeri [7] extended this to points on
the boundaries of h polygonal obstacles. Their algorithm has a running time
that is linear for fixed h, but grows exponentially in h.

The difficulty with multiple polygons is deciding which homotopy of the paths
gives minimum length. If the homotopy is specified the problem is easy [11, 12].

In the aforementioned results on shortest non-crossing paths, one issue is that
paths will overlap in general even though crossings are forbidden (see Figure 1 for
an example). In practical applications we often need paths that are disjoint and
maintain some minimum separation from each other. This issue is addressed
in papers about drawing graphs with “thick” edges. Duncan et al. [13] show
how to find thick shortest homotopic paths. Polishcuk and Mitchell [14] show
how to find shortest thick disjoint paths joining endpoints on the boundaries of
polygonal obstacles (with exponential dependence on the number of obstacles).
They also show hardness results, including hardness of approximation.

In our problem the correspondence between the vertices and the fixed points
in the plane is given. There is a substantial body of work where the correspon-
dence of vertices to points is not fixed. Cabello [15] showed that it is NP-hard
to decide if there is a correspondence that allows a straight-line planar drawing.
Many special cases have been classified as polynomial time or NP-complete. A
related problem is to find small universal point sets on which all planar graphs
can be straight-line embedded (see [16]).

A problem related to minimum length planar embedding at fixed vertex
locations is to draw planar graphs so that each edge is a monotone path of axis-
parallel line segments. Any such path is a shortest path in the L1 or Manhattan
metric, and these drawings are called Manhattan-geodesic embeddings. This
concept was introduced by Katz et al. [17]. They considered the case where the
graph is a matching and showed that the problem is NP-hard when the drawing
is restricted to a grid, but solvable in polynomial time otherwise.

We restricted the general problem of extending a partial planar embedding
to the case where all vertex positions are fixed. The case where some vertices are
free to move is also very interesting and is related to work on Steiner trees with
fixed tree topology [18] and Steiner trees with obstacles [19]. Finally, one may
consider drawing graphs at fixed vertex locations but allowing edges to cross.
This is interesting and non-trivial when crossings must have large angles [20].

For other geometric graph augmentation problems see the survey by Hurtado
and Tóth [21].



1.2 Definitions and Basic Observations

We consider the following problem called Minimum Length Planar Embedding
at Fixed Vertex Locations: Given a planar graph G = ({v1, . . . , vn}, E) and a
set of points P = {p1, . . . , pn}, find a planar embedding of G in the plane that
places vertex vi at point pi and minimizes the total edge length.

Edges of the embedding are allowed to overlap, but they must be non-crossing
(i.e. infinitesimally deformable into disjoint paths). In the following we will refer
to the vertices and their respective fixed locations interchangeably. The Eu-
clidean distance between two points p, q ∈ R2 is denoted d(p, q).

Observation 1. L =
∑

(vi,vj)∈E d(pi, pj) is a trivial lower bound for the total
length of any planar embedding of graph G at fixed vertex locations P .

One approach for finding short embeddings at fixed vertex locations is to draw
each edge (vi, vj) as a curve whose length is within a constant factor of distance
d(pi, pj). Unfortunately such a planar drawing does not always exist; see Fig. 2.
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Fig. 2. Example for which any solu-
tion contains at least one edge of length
greater than k = n/2− 1.

Fig. 3. Example for which any optimal
solution contains no straight line edges.

The example in Fig. 3 shows an instance where no straight line edge is in-
cluded in any optimal solution, which means that obvious greedy algorithms for
the problem fail. This was first observed by Liebling et al. [4].

Note that any edge of an optimal embedding bends only at vertex locations.
Thus any optimal embedding lives in some underlying triangulation of the point
set. Given the triangulation, the problem becomes that of finding short non-
crossing paths in a planar graph. This problem was first proposed by Takahashi
et al. [22] who considered the case of terminal points on two faces. Erickson
and Nayyeri [7] say that the general problem is NP-hard, citing Bastert and
Fekete [5]. Unfortunately, we cannot find this result in the version of the report
that we have.

Instead of fixing the underlying triangulation, we use a carefully chosen path
or tree as the layout for our embeddings.



2 Embedding a Path or Matching

In this section we give polynomial time approximation algorithms for the case
where G is a path or a matching. Our starting point is a 1-dimensional version
of the problem that will be the basis for all further results. We give a polynomial
time (exact) algorithm for the case where G is a path, and the points lie on a
line. We note that Liebling et al. [4] apparently knew the analogous result for
the case when G is a matching, since they say that the edges of a matching can
be “wrapped around” any non-self-intersecting tour of the points. They give no
details of how to do the wrapping, and we consider the details worth explaining.

v1 v2 v3

v4 v6 v5

Fig. 4. A minimum length embedding of a path on fixed points that lie on a line. Edges
are drawn with gaps between them for clarity only.

Lemma 1. There is a polynomial time algorithm to find a minimum length
embedding of a path on fixed vertex positions that lie on a line.

Proof. Without loss of generality, assume that all the points lie on a horizontal
line. See Fig. 4. This allows us to speak of “above” and “below”. We draw the
edges in order along the path. Draw edge (vi, vi+1) as a curve from point pi
to point pi+1 that stays below all edges drawn so far, but stays above all later
points pj , j > i + 1. This ensures that later edges of the path can reach their
endpoints without crossing earlier edges. ut

As noted by Liebling et al., this idea of “weaving” the edges through the
points can be extended to the the case where the points lie on a simple (i.e. non-
self-intersecting) curve in the plane. (In fact, the idea even extends to a tree,
as we shall see in Section 3.) If one can find a simple curve C passing through
every point in P , then “weaving” the edges of the path along the curve creates
a path of length at most

n−1∑
i=1

dC(pi, pi+1), (1)

where dC(pi, pi+1) denotes the length of the subcurve of C from pi to pi+1. This
sum is trivially upper-bounded by n times the length of C.

We can choose the curve C to be an O(1)-approximation to the minimum-
length Hamiltonian path (i.e., the traveling salesman path) for P (e.g., the
simplest option would be the standard 2-approximate solution obtained from
the minimum spanning tree). Since the length of the traveling salesman path
is a lower bound for the problem in the path case, this would give an O(n)-
approximate solution overall.



Fig. 5. The curve that is used as routing layout for embedding paths and matchings.

In Section 3 we will extend this idea to obtain an O(n) approximation for
general planar graphs. In the remainder of the current section we show how to
improve the approximation factor for a path or matching by choosing a better
curve C. The property we need is that points that are close in the plane are
close on the curve. The idea is to use a construction based on shifted quadtrees,
similar to certain well known families of space-filling curves such as the Z-order
curve or the Hilbert curve.

Let D0 be the diameter of P . Without loss of generality, assume that P ⊂
[0, D0]2. We initially shift all the points in P by a random vector v ∈ [0, D0]2.
Now, P ⊂ [0, 2D0]2.

Given a square S, the following procedure returns a simple polygonal curve,
with the property that the curve starts at one corner of S, ends at another
corner, and stays inside S while visiting all points of P ∩ S.

Curve(S):

1. if |P ∩ S| ≤ 1 then
2. return a curve with the stated property, using at most 2 line segments
3. divide S into 4 subsquares S1, . . . , S4

4. for i = 1, . . . , 4, compute Ci = Curve(Si)
5. return a curve with the stated property by joining C1, . . . , C4,

using O(1) connecting line segments

Slight perturbation may be needed in line 5 to ensure that we obtain a simple
curve. There is flexibility as to which corner we choose to start or end. (If we
always start at the upper left corner and end at the lower right corner, the
construction is similar to the Z-order curve. If we choose starting and ending
corners to be adjacent in a manner similar to the Hilbert curve instead, the
connecting line segments in line 5 may even be avoided; see Fig. 5. The main
difference with standard space-filling curves is that we terminate the recursion
as soon as we reach a square containing zero or one point.)

Lemma 2. The length of the curve returned by Curve(S) is at most O(DS
√
nS),

where nS = |P ∩ S| and DS is the side length of S.



Proof. Let Li be the sum of the lengths of all line segments generated in line
2 or 5 at the i-th level of the recursion. The squares at the i-th level have side
length DS/2

i, and the number of squares at the i-th level is upper-bounded by
both 4i and nS . Thus,

Li ≤ O(DS/2
i) ·min{4i, nS} = O(min{DS2i, DSnS/2

i}).

The total length of the curve is then at most

∞∑
i=0

Li ≤
d(1/2) lognSe−1∑

i=0

DS2i +

∞∑
i=d(1/2) lognSe

DSnS/2
i = O(DS

√
nS). ut

We now let C be the curve returned by Curve(S0) with S0 = [0, 2D0]2. All
the squares generated by the recursive calls are quadtree squares.

Define D(p, q) to be the side length of the smallest quadtree square enclosing
p and q. Note that D(p, q) ≥ d(p, q)/

√
2. It is known that after random shifting,

D(p, q) approximates d(p, q) to within a logarithmic factor in expectation (e.g.,
see [23, Lemma 5.1]). We include a quick proof for the sake of completeness.

Lemma 3. For a fixed pair of points p, q ∈ P ,

E[D(p, q)] ≤ O(log(D0/d(p, q))) · d(p, q).

Proof. D(p, q) > D0/2
i if and only if pq crosses a horizontal or vertical grid line

in the grid formed by the quadtree squares of side length D0/2
i. The probability

that this happens is O
(

d(p,q)
D0/2i

)
. Thus,

E[D(p, q)] ≤ O

dlog(D0/d(p,q))e∑
i=0

d(p, q)

D0/2i
·D0/2

i

 ≤ O(log(D0/d(p, q))) · d(p, q).

ut

Lemma 4. For a fixed pair of points p, q ∈ P ,

E[dC(p, q)] ≤ O(
√
n log(D0/d(p, q))) · d(p, q).

Proof. The portion of the curve C from p to q lies inside a quadtree square with
side length D(p, q). Thus, by Lemma 2, dC(p, q) is at most O(D(p, q)

√
n). The

conclusion then follows from Lemma 3. ut

Theorem 2. For a path G with fixed vertex locations, there is a polynomial-time
randomized algorithm which computes a planar embedding of expected length at
most O(

√
n log n) · L where L =

∑
(p,q)∈E d(p, q).

Proof. By (1) and linearity of expectation, we obtain an embedding of expected
length at most (1+ε)

∑
(p,q)∈E E[dC(p, q)]. By Lemma 4, this quantity is at most∑

(p,q)∈E

O(
√
n log(D0/d(p, q))) · d(p, q) ≤ O(

√
n log(nD0/L)) · L



because the logarithm function is concave. The theorem follows since L ≥ Ω(D0)
for the case of a path G. ut

Since L is a lower bound on the optimal cost, we obtain an O(
√
n log n)-

approximation algorithm for the case of a path G. For the case of a matching,
we obtain the same result with just slightly more effort:

Theorem 3. For a matching G with fixed vertex locations, there is a polynomial-
time randomized algorithm which computes a planar embedding of expected length
at most O(

√
n log n) · L where L =

∑
(p,q)∈E d(p, q).

Proof. We can use essentially the same algorithm. The cost of the solution is still
bounded by (1) and the same analysis goes through, except that L ≥ Ω(D0) may
no longer be true.

Observe that if there is a vertical line that separates the line segments {pq :
(p, q) ∈ E} into two nonempty parts, then we can just recursively compute a
planar embedding on both sides, since each embedding can be shrunk to lie
within the minimum (axis-aligned) bounding box of its points. We may thus
assume that no such vertical separating line exists, which implies that L is at
least the width of the bounding box of P . Similarly, we may assume that no
horizontal separating line exists, which implies that L is at least the height of
the bounding box of P . These two assumptions imply L ≥ Ω(D0) and we may
proceed as before. ut

Remarks. To obtain a time bound not sensitive to the bit complexity of the
input, we can adopt a variant of the method where we compress long chains of
degree-1 nodes in the tree (called the compressed quadtree), to ensure that the
number of recursive calls is O(n).

On the other hand, if input coordinate values are O(log n) bits long, we can
derandomize the algorithm in polynomial time by trying all possible shifts.

The upper bound relative to L in Theorems 2 and 3 is tight up to a logarith-
mic factor: Liebling et al. [4] provide examples (due to Peter Shor) with points in
the unit square for which any shortest non-crossing matching has lengthΩ(n

√
n),

proving a lower bound of Ω(
√
n) · L.

3 Embedding General Planar Graphs

In this section we give an O(n)-approximation algorithm for constructing a pla-
nar embedding of a planar graph G at fixed vertex locations P .

The construction is based on the algorithm by Pach and Wenger [1] for finding
a planar polygonal embedding of a graph with fixed vertex locations and with
O(n) bends per edge. Pach and Wenger draw the edges of the graph by tracing
around a tree of n edges drawn in the plane. Each edge of the graph is drawn as
a curve that walks around the tree a constant number of times, which gives the
bound of O(n) bends per edge. For their tree Pach and Wenger use a star with
a leaf at each vertex.



In our case we want to bound the length of each edge, which can be done
by bounding the length of the tree. We cannot use a star; instead, we will use a
tree that is a subset of the (non-planar) drawing of G where each edge is drawn
as a straight line segment. This ensures that the tree has total length at most
L =

∑
(p,q)∈E d(p, q). Because of connectivity issues, we will actually use a set

of disjoint trees:

Lemma 5. Given a graph G, and fixed vertex locations P , we can construct in
O(n2) time an embedded forest F with O(n) vertices and total length at most L,
such that for every edge (p, q) in G, p and q are in the same tree of F .

Proof. We construct the forest F iteratively by adding edges of the graph one
by one. For each edge (p, q) ∈ E we will add some subsegments of the line
segment pq to F . The forest will be a subset of an arrangement of O(n) lines.
The arrangement can be constructed in O(n2) time [24]. Consider edge (p, q). If
p and q are already in the same tree of F , we are done. Otherwise consider the
line segment pq. It crosses at most n segments of F , and these crossing points
subdivide it into p = p1, p2, . . . , pk = q with k ≤ n. We treat these segments one
by one in order. Consider segment pipi+1. If pi and pi+1 are already in the same
tree of F , we are done. Otherwise we add segment pipi+1 to F . Fig. 6 illustrates
this idea. We use a union-find data structure to test if points are in the same
tree of F . By construction, the length of F is bounded by L. Furthermore, we
only add a segment when we join two trees of F , and this can happen at most n
times. Thus F has O(n) vertices and is a subset of an arrangement of n lines. ut

p qp2 p3 p5 p7p6p4

Fig. 6. Constructing the forest F in
Lemma 5. Segment pq crosses multiple
components of F . Segments p3p4, p4p5,
and p6p7 are not added to F .
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Fig. 7. Perturbing the tree to change
v2 from an internal vertex to a leaf.

Theorem 4. Given a planar graph G with n vertices and fixed vertex locations
P , there is an O(n2)-time approximation algorithm to construct a planar em-
bedding of G on P with total length O(n) · L where L =

∑
(p,q)∈E d(p, q).

Proof. Use Lemma 5 to construct a forest F , that will serve as the basis for
our edge routing. Because we do not want paths to travel through intermediate
vertices, we perturb the trees in F slightly so that each vertex of G is a leaf of



the tree that contains it. See Fig. 7. This can be done while keeping the trees
disjoint and of total length O(L).

Consider a single tree T of the forest F , together with the induced graph
GT on the vertices of G that lie in T . We will follow the approach of Pach and
Wenger and draw the edges of GT as paths hugging the tree T . Because every
edge of G lies in some GT , and the trees are disjoint (as objects in the plane), it
suffices to describe the solution for a single tree T . To simplify notation, we will
assume for the remainder of the proof that we have a single tree T and G = GT .

We now follow Pach and Wenger’s solution, the main difference being that we
have a more general tree than their star. We outline their solution and remark
on the modifications required for our situation.

Pach and Wenger’s solution is based on a Hamiltonian cycle that they con-
struct by adding vertices and edges to the graph. Specifically, they subdivide
each edge of the graph by at most two new vertices and add some edges between
vertices to obtain a planar graph with a Hamiltonian cycle [1, Lemma 5]. (Note
that the new edges do not appear in the final drawing.) The Hamiltonian cycle
C partitions edges of the planar graph relative to some (arbitrary) planar em-
bedding into the edges inside C and the edges outside C. They first draw the
edges of the Hamiltonian cycle C and then draw the inside and outside edges.

v2 

v1 

v3 

v4 

v5 

Fig. 8. Drawing the graph G around the tree T (drawn in gray) whose leaves are the
graph vertices. The portion of the Hamiltonian cycle C from v1 to v4 is drawn as a solid
curve. The dashed curve Λ4 surrounds T4 and is split by C into two paths between v4
and v1, one inside C and one outside C.

To draw the edges of C they use an approach similar to the weaving tech-
nique described in Lemma 1. Renumber vertices so they appear in the order
v1, v2, . . . , vn along the Hamiltonian cycle. Some of these are new vertices that
were added to create the Hamiltonian cycle. Pach and Wenger assign arbitrary
locations to the new vertices, but we locate them very close to the tree T , adding
them as leaves of T and keeping the length of T in O(L). We will use vi to refer
to the vertex of G, the corresponding point in the plane, and the corresponding
leaf of T . Edge (vi−1, vi) of C will be drawn around a subtree Ti of T . We define
Ti more carefully for our situation: Ti is the connected subtree of T induced



on leaves v1, v2, . . . , vi. With these modifications, the rest of Pach and Wenger’s
solution applies unaltered.

As they draw C they add (multiple copies of) auxiliary paths Λi from vi to
v1, one inside and one outside C. See Fig. 8. Then each edge (vi, vj) of G inside
[outside] C is routed using the paths inside [outside] C from vi to v1 and from
v1 to vj . For further details please refer to their paper [1]. The end result is a
planar drawing of G on vertex locations P . Every original edge e of G has been
subdivided by at most two new vertices, and each of the resulting three edges
has been drawn as two paths in the tree. The total length of the drawing of e is
therefore bounded by 6 times the length of T , and thus in O(L).

Pach and Wenger’s algorithm takes O(n2) time so our overall running time
is O(n2) as well. ut

4 Conclusion and Open Problems

The problem of drawing a planar graph at fixed vertex locations while minimizing
the total edge length seems to be very difficult although we are not aware of any
hardness of approximation results. In fact, for the case of a path, even an NP-
hardness result is lacking. Our algorithms achieve approximation factors of O(n)
for general graphs and O(

√
n log n) for paths and matchings. Besides the obvious

question of improving these approximation factors (or proving hardness), we
suggest looking at: (1) the problem of drawing a graph at fixed vertex locations
with thick edges; and (2) looking at the case where some vertex locations are
not fixed, which is related to drawing Steiner trees with fixed topology [18].
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