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A botnet is a network of compromised hosts that fulfills
the malicious intents of an attacker. Once installed, a bot
is typically used to steal sensitive information, send SPAM,
perform DDoS attacks, and other illegal activities. Research
in botnet detection has been quite prolific in the past years,
producing detection mechanisms that focus on specific com-
mand and control structures, or on the correlation between
the activities of the bots and the communication patterns
shared by multiple infected machines.

We present an approach that aims to detect bot-infected
hosts. Our approach ( i) is independent on the underlying
botnet structure, ( ii) is able to detect individually infected
hosts, ( iii) deals with encrypted communication, ( iv) does
not rely on the presence of noisy malicious activities and can
thus detect legitimate-resembling communication patterns,
and ( v) has a low false positive rate.

Our technique starts by monitoring a network trace pro-
duced by a bot sample B, which is summarized into a set of
network flows. Similar flows are then grouped together by
relying on a hierarchical clustering algorithm. The result-
ing clusters are analyzed for evidence of periodic behaviors.
If no periodic behaviors are found, an output-based system
selects those clusters that recur the most across different net-
work traces obtained by running the sample B multiple times.
Finally, our analysis automatically produces a network be-
havior model of B, which is deployed on a Bro NIDS sensor,
that operates on real-time and realistic settings, raising few
false positives.

1 Introduction

Malicious software (malware) is code that fulfills the mali-
cious intent of an attacker. The results of a malware in-
fection can be catastrophic. For example, the victim’s host
may unintentionally participate in coordinated, malicious
networks, called botnets. A botnet is a network of compro-
mised hosts, called bots. A bot is a piece of malware that
gets typically installed, on a victim host, either by luring the
user into landing on malicious web pages that contain drive-
by download attacks, or by exploiting simple-but-effective
social engineering techniques. Once installed, a bot can be
used to steal sensitive information, send SPAM, perform de-
nial of service (DoS) attacks, and other illegal activities.

Bots are different from other malware as they are charac-
terized by the presence of a command and control channel

(C&C ) that is used by the bots to interact with their bot
master. Traditionally, C&C communications have been car-
ried out following a centralized structure, where push-based
protocols, notably IRC, have been used. Soon, bot masters
realized that a pull-based approach, which mainly relied on
the popular HTTP protocol, achieve a stealthier commu-
nication. Eventually, the quest for stealthiness pushed the
botnet topology from a centralized structure to a decen-
tralized one, and botnets started to use P2P networks to
communicate.

Typically, bot detection, or, more generally, malware de-
tection, relies on anti-virus systems deployed on end-users
machines. These systems analyze a malware sample using
syntactic signatures that are able to identify a number of dif-
ferent malware instances. Unfortunately, these approaches
have several drawbacks. For instance, they are of a lim-
ited effect when packing and obfuscation techniques are de-
ployed [4]. These approaches aim to preserve the semantic
behavior of the malicious sample, while changing its binary
representation. To overcome the limitations of signature-
based systems, behavior-based malware analysis and detec-
tion techniques were introduced [5,8,20,22,29]. By compar-
ing the actions that a malware performs to those expressed
by a model, it is possible to focus the analysis on the match-
ing of semantic features, i.e., behavior, rather than syntactic
artifacts. These approaches are very effective in analyzing
and detecting malicious samples and describing their behav-
ior. Unfortunately, the time and computational resources re-
quired to fulfill such tasks are substantial and, even worse,
users are required to install the analysis platform on their
machines. Therefore, it would be desirable to have comple-
mentary solutions that monitor network events to spot bot-
infected machines. In this paper, we present such a solution.
Our system monitors the activity of a bot program in a con-
trolled environment and extracts models that capture the
characteristic network-level activities of this sample. These
models can then be deployed on the network, identifying
traffic that is similar to the previously-observed, malicious
connections.

2 Related Work and Motivation

Research in botnet analysis and detection has been quite
prolific in the past years [3, 6, 11–15,19,24,26,28].

One line of research devoted to botnet detection revolves
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around the concept of vertical correlation. Basically, net-
work events and traffic are inspected, looking for typical
evidence of bot infections (such as scanning) or command
and control communications. For instance, BotHunter [14]
uses a combination of signature and anomaly-based intru-
sion detection components to detect a typical bot-infection
life-cycle, while Rishi [12] examines IRC-based network traf-
fic for nickname patterns that are frequently used by bots.
Alternatively, the approach described in [3] models IRC-
based network traffic statistics and checks whether they are
suspicious or not. Unfortunately, some of these techniques
are tailored to a specific botnet structure [3, 12], or they
rely on the presence of a specific bot-infection life-cycle [14].
Moreover, most techniques rely on the presence of noisy be-
havior such as scan, SPAM, or DoS traffic that has to be
observed to trigger an initial alarm.

The other line of botnet detection research focuses mainly
on horizontal correlation, where network events are corre-
lated to identify cases in which two or more hosts are in-
volved in similar, malicious, communication. In this di-
rection, interesting approaches are represented by BotSnif-
fer [15], BotMiner [13], TAMD [28], and the work proposed
in [26]. Except for [26], which detects IRC-based botnets by
analyzing aggregated flows, the main strength of the afore-
mentioned systems is that they are independent on the un-
derlying botnet structure, and thus, they have shown to be
effective in detecting pull-, push-, and P2P-based botnets.
On the other hand, correlating actions performed by differ-
ent hosts requires that at least two hosts in the monitored
network are infected by the same bot. As a consequence,
these techniques cannot detect individual bot-infected hosts.
This is a significant limitation, especially when considering
the trend toward smaller botnets [6]. Moreover, the detec-
tion mechanisms of horizontal correlation approaches is usu-
ally triggered once malicious noisy behaviors such as scan,
SPAM, and DDoS traffic, are observed [13]. This can be a
problem, as the past few years have been witnessing a shift
of malware from a for-fun activity to a for-profit one [10,16].
As a result, bots are becoming increasingly stealthy. For in-
stance, the connections that Torpig bots open to leak stolen
data resemble legitimate HTTP communications that are
unlikely to be detected as noisy [25].

The approach we propose in this paper addresses some
of the drawbacks of previous bot detection techniques. Our
approach is based on the idea that we first observe the net-
work activity of a bot in a controlled environment. Then,
based on the recorded traffic, we mine the essential network
behavior of this bot, i.e., the network communications that a
given bot must carry out to fulfill its malicious tasks. Exam-
ples of this includes C&C -like communication patterns and
stolen information submissions. On one hand, this provides
important insights into the most relevant activities carried
out by a monitored sample. On the other hand, this enables
us to automatically generate network-based behavioral mod-
els that accurately characterize and match a bot’s network
behavior.

Mining the network activity of bots is a technique that
our approach shares with others [12–15]. However, our sys-
tem has a number of salient properties that sets it apart

from previous work. First, our system does not rely on any
a priori knowledge about the botnet structure. Second, it
is resilient to the presence of encrypted communications as
it does not inspect packets’ content. Third, different from
previous research such as [13], our technique detects bot in-
fections even when only one individual host is compromised,
and, Finally, our technique does not rely on the presence of
noisy activities, such as scanning or denial of service traffic.
In summary, we make the following contributions:

1. We present a technique to analyze network traffic gen-
erated by a monitored bot sample. More precisely, our
analysis mines the interesting part of a bot’s network
behavior, and automatically generates network behav-
ior models that faithfully describe it. Our analysis does
not rely on any assumptions on the underlying botnet
structure, nor on the communication mechanisms de-
ployed, e.g., plain-text or encrypted communications.
In addition, our analysis detects a bot infection even
when only one observed machine is infected, i.e., with-
out making any correlation among multiple hosts within
the monitored networks. Moreover, our approach de-
tects low-profile malicious behaviors without the need
to observe any noisy malicious activity.

2. We develop a prototype implementation of the proposed
analysis that is able to accurately generate bot detec-
tion models that meet the aforementioned goals.

3. We evaluated our approach on 11 bot samples, includ-
ing push-based, pull-based, and P2P-based botnets,
and 308 additional IRC-based network traces. The gen-
erated models detected the bots behaviors with very few
false positives, which suggests that our approach can be
effectively deployed in real-world networks.

3 Mining the Network Behavior of
Bots

Figure 1 depicts the main components of our analysis pro-
cess, whose goal is to automatically generate a network be-
havior model of a bot B (shaded light gray boxes are optional
phases). This model describes the interesting network ac-
tivities that the bot engages in. Such activities characterize
core properties of a bot’s (network) behavior, without gen-
erating too many false positives. For instance, a network be-
havior model generally reveals C&Cs communications and
periodic non-noisy activities carried out by bots during their
lifetime.

For our analysis, a network trace TB of a bot B is collected.
We obtain malicious traces from different sources. For in-
stance, they are collected with the help of honeypots de-
ployed in the wild or via SPAM traps. Once a network trace
has been collected, the first step of the analysis process is to
summarize the trace in a series of network flows, or connec-
tions. At this point, these flows represent the entire network
behavior of the observed sample. These are then processed
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Figure 1: Mining the Network Behavior of Bots: Analysis’ Framework.

by a filtering step. The goal of the filtering step is to re-
move known and noisy attack traffic, such as scan attempts
or SPAM. Such attack traffic is typically easy to character-
ize with certain specifications. For instance, we currently
filter out scan attempts by relying on network flows state
classification determined by Bro, a powerful, flexible, and
event-driven network intrusion detection system [23]. Be-
sides the fact that “uninteresting” traffic is removed from
the subsequent analysis process, this step has also the ben-
efit that it speeds up later phases (since less traffic needs to
be considered).

The next step is to cluster flows by grouping connections
that have similar network features (described in more de-
tail in Section 4). Clustering and grouping related network
flows provides an important advantage; it allows us to rea-
son and focus the attention on cluster-level properties as
opposed to single flow-level ones. Moreover, it allows us to
identify those clusters that are likely to be interesting, i.e.,
relevant to the behavior of a bot. To find relevant clusters,
we leverage information about timing-dependencies among
flows within a cluster, action-dependencies among flows of
different clusters, or recurring clusters in different network
observations of B. This analysis is described in Section 5.

Finally, in the last step, the clusters selected by the anal-
ysis are translated into a practical detection model that de-
scribes the bot’s network behavior. The generated models
can be leveraged to detect machines infected by B with very
few false positives (discussed in Section 6).

4 Clustering Network Flows

Clustering is an unsupervised machine-learning technique
that groups together similar items, or, in a complementary
way, sets dissimilar objects apart [27]. It is a simple yet
powerful approach that has been used in many research ar-
eas [2,13]. The notion of similarity heavily and intrinsically
relies on the features used to characterize the samples and
how the distance between samples is defined.

In this paper, we mainly focus our attention on coarse-
grained network flow features, instead of fine-grained ones.
Coarse features are those that reflect high-level properties of
a network flow, without considering details at the packet or
even the payload level. For instance, coarse features can be
the answers to general questions, such as “How many bytes
have been exchanged by this flow?”, “Who is the destina-
tion of this connection?”. On the other hand, fine-grained
features describe a more detailed characteristic of a given

flow. For instance, such features can be the answers to ques-
tions, such as “How many packets have been exchanged in
this flow?”, “What are the inter-arrival times of the pack-
ets exchanged in this flow?”. Our flow clustering considers
the amount of data transferred per flow, i.e., bytes sent and
received, and the number of packets per flow. Different to
previous research [13], not much importance is given to the
inter-arrival time of packets within a flow and the number of
packets per hour per flow. The reason is that coarse-grained
features are more difficult to change, and thus, our system
is more resistant to evasion.

Table 1 depicts the network features used by our clus-
tering algorithm. The c and f labels in the Granularity
column tag a feature as either coarse- or fine-grained, re-
spectively.

Network Feature Granularity
Byte Sent c
Byte Recv c
# Pkts per Flow f
Destination IP c
Destination Port c

Table 1: Features involved in the flow clustering.

At a first glance, coarse-grained flow features can be con-
sidered too general to provide an accurate characterization
of a process’ network behavior. However, as opposed to re-
cent and related research (e.g., [13–15]), it is worth noticing
that our analysis does not observe unknown network traffic
where benign and malicious activities are mixed. Instead,
our approach focuses its attention on network traces that are
known to contain only bot-generated activities. Thus, while
it would be reasonable to consider both strategies, in our
context, fine-grained flow features may over-specialize the
observed behavior. For instance, the inter-arrival times and
number of packets per hour can be heavily affected by net-
work congestion, topology, and geographic position between
the monitoring environment and the involved hosts. Under
this perspective, considering the fine-grained network fea-
tures of the monitoring environment would most likely pro-
duce over-specialized detection models that would not match
the inferred behavior when deployed on different networks.
Nonetheless, some fine-grained network features might be
useful. In particular, we included the number of packets
exchanged per flow, since they generally depend on the un-
derlying TCP/IP stack implementation. In particular, bots
have started to use their own stripped down TCP/IP imple-
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mentation, making this feature quite effective at character-
izing network behavior [9].

For clustering, our current implementation uses a stan-
dard hierarchical clustering algorithm with average link-
age [27]. Our distance function d(·, ·), which captures the
similarity between two flows, is a simple weighted Euclidean
function over F , which is the features set of all the normal-
ized network flows, as shown in Equation (1). Note that IP
addresses IP are not normalized.

d(a, b) = 1
|F|

∑
x,y∈F

√
f(x, y)2 ∀a, b ∈ flows

f(x, y) =

 | x− y | if x, y ∈ [0, 1]
0 if x, y ∈ IP ∧ x = y
1 otherwise

(1)

Clustering network flows is motivated by the observation
that the actions of bots are methodically repeated over their
lifetime, therefore grouping similar flows together not only
has the benefit to group similar (network) behavior together,
but also to eventually point out those flows that represent
the core behavior of the bot.

The outcome of the clustering process is represented by
a dendrogram D. Subsequently, according to the distance
function shown in Equation (1) and a given threshold, a
cut of D is produced, yielding C, a set of clusters grouping
similar1 flows. It is possible, and very common, to find
clusters that contain a single flow. This is often a result of
preliminary actions perpetrated by the bot that are not ma-
licious by themselves. For instance, our experiments showed
network connectivity checks, network-time synchronization,
Google queries, and one-shot actions performed occasion-
ally during the first stage of an infection. Unfortunately,
this may also be the result of evasions perpetrated against
bot detection systems. Even if we have not witnessed any of
these in our experiments, we direct the reader to Section 7
for a discussion about the resiliency of our approach against
evasion attacks.

5 Cluster-based Analysis

To get rid of clusters that are likely not interesting, our
analysis only considers Ck, a subset of C that contains only
clusters with at least k network flows in them. In our exper-
iments, k was set to 2. We believe that this is a reasonable
and low value that will not discard any interesting parts of
a bot’s behavior.

Once the analysis has produced Ck, three different analy-
ses are carried out: an intra-cluster analysis, an inter-cluster
dependency analysis, and an inter-trace cluster analysis. As
depicted in Figure 1, both the inter-cluster dependency anal-
ysis and the inter-trace cluster analysis are optional (shaded
light gray boxes), and they are invoked whenever the out-
put of the intra-cluster analysis yields no results. The three
phases are described in detail in the following sections.

1In our experiments, we obtained good results by using a threshold
of 0.05.

5.1 Intra-cluster Analysis

Intuitively speaking, periodic communications are usually
the result of machine-driven events. A typical example is an
email notifier that periodically checks for incoming emails.
Of course, the same may apply to a bot that queries for its
C&C host or peers. As remarked in [18], in fact, pull-based
bots, e.g., bots with an HTTP-based C&C server, clearly
manifest periodic behaviors. The goal of the intra-cluster
analysis is precisely to find such periodic behaviors.

Given a set of events E of different types, an event in-
stance is defined as (e, t), where e ∈ E is an event, and t ∈ N
is the time-stamp of the event e, i.e., its occurrence in a
stream of events. An event e ∈ E of a certain type is said
to be periodic with period p when e occurs in the observed
stream of events every p±δ time units, where δ is a tolerance
error [21]. Literature on mining periodic behaviors has been
quite prolific in the past years [17,21]. Nonetheless, inferring
periodic behaviors can be quite hard, especially when differ-
ent event types, mixed within each other in a unique stream
flow, have to be observed and analyzed. Even worse, noisy
activities blended in this flow of data may further hamper
the precision of the analysis.

The intra-cluster analysis we describe next aims to in-
fer any periodic behavior within a cluster – and determines
what period(s) are being used. To this end, similarly to
the way flows are clustered together, the time deltas (differ-
ences) between all subsequent events are clustered, using an
hierarchical clustering algorithm [27]. More precisely, flows
in a cluster c ∈ Ck are ordered based on their (creation)
timestamp. Then, timing differences between the i-th and
i+1-th flow are determined, for every flow i ∈ c. These
deltas are subsequently clustered, producing a dendrogram
Dc. Let Pc be a cut of Dc so that deltas similar to each
other, according to a similarity function and a given thresh-
old, are grouped together. In other words, Pc represents a
set of clusters that groups together similar timing differences
among flows of a cluster c, where c ∈ Ck has been obtained
by clustering the network flows found in a trace TB of a bot
B. The intuition behind this approach is that periodic be-
havior results in a sequence of events (flows) where many
pairs of elements in this sequence have a similar time differ-
ence (delta). Thus, the clustering algorithm would identify
a large group of deltas that are similar.

If a cluster c ∈ Ck contains a single periodic behavior,
it means that there exists one large cluster p ∈ Pc where
many (most) deltas are grouped (since they are all similar).
More formally, we expect that there is a cluster with a large
normalized density of deltas, that is, the number of deltas in
a cluster p, normalized with respect to all the deltas found in
the correspondent cluster c, is greater than a given threshold
d2. If such a cluster can be found, we conclude that Pc is
periodic, with a period µ ± σ, where µ is the mean over
all the flow deltas in p and σ the correspondent standard
deviation.

Of course, it may happen that Pc contains flows that are

2We achieved good results by using the same distance function de-
scribed in Section 4, and a threshold of 0.15 among flows timestamp
deltas.

4



interleaved with more than one periodic behavior. In other
words, it may happen that there are some p ∈ Pc that cover
many deltas. Even if we did not encounter such a situation
in the experiments we carried out, our analysis is general
enough to account for it. More precisely, clusters in Pc are
ordered based on their normalized density, producing an or-
dered set of clusters Po

c . The idea is to consider any cluster
p ∈ Po

c whose density is greater than a threshold k, until the
cumulative density of the chosen clusters passes the afore-
mentioned threshold d. In other words, our analysis looks
for those clusters p that satisfy the following equation:∑

p∈Po
c∧|p|>k

| p | > d ∀p ∈ Po
c (2)

If (2) holds, then we compute the parameters µ and σ that
characterize the periods of the corresponding cluster p. Of
course, a sensitivity analysis of the parameters k and d would
be needed to pick the values that most likely stabilize the
expected result (e.g., low false positive and negative). We
have not performed such analysis as we have only observed
single-periodic behavior associated with the flows in a par-
ticular cluster c ∈ Ck.

The output of the intra-cluster analysis is Cperiodic ⊆ Ck.
This set contains only those clusters that show periodic be-
haviors. Of course, it may happen that no well-defined pe-
riodic behavior or timing-dependencies exist for a bot. In
such cases, our analysis attempts to determine whether the
timing features of the flows in a cluster are drawn from an
unknown distribution. Broadly speaking, this result is ob-
tained by performing a statistical test on the timing features
of clusters belonging to different network traces generated
by a given bot sample B. This inter-trace correlation anal-
ysis is discussed in more detail in Section 5.3.

As previously mentioned, it is worth noting that peri-
odic events are very common in pull-based (e.g., HTTP-
based), bot communications. At a first glance, it seems
unclear whether this periodic behavior is to be found in
push-based (e.g., IRC-based), botnets. Such communica-
tions, in fact, generally involve a single, persistent connec-
tion that connects a bot with its command and control
server. Interestingly, however, the periodic behavior can be
found by observing flows’ idle-times. For instance, periodic
PING/PONG-like messages are quite frequent in IRC-based
C&C communications. Therefore, the intra-cluster analysis
technique described above can be easily applied after timing
differences between idle-periods of a flow are determined, for
all the flows in a cluster c ∈ Ck. A flow enters the idle state
if it has been silent for at least δ consecutive time unit (e.g.,
seconds). A flow exits the idle state as soon as it starts
exchanging data. A flow idle-period is defined as the dif-
ference between the time when the flow exited and entered
its idle state. Setting δ to 10 seconds yielded good results.,
as supported by evaluating our approach on 308 traces of
IRC-based bot families.

5.2 Inter-cluster Dependency Analysis

In addition to periodic events, bot traces can also con-
tain other low-noise, non-periodic activities. When possible,

such activities should also be taken into account. In other
words, it would be interesting to “revive” any flow that was
discarded because of its a-periodicity, or due to its mem-
bership to a cluster deemed to be uninteresting early, i.e.,
c /∈ Ck.

The inter-cluster dependency analysis aims at inferring
such properties in a very simple-yet-effective way. To this
end, this phase produces Creconsidered, a set of clusters whose
flows are found to be dependent on some of the flows present
in any of the clusters in Cperiodic. In other words, a cluster
c ∈ C is selected if it is possible to find a flow f ∈ c whose
destination (IP address) matches the one of a flow f ′ ∈ c′,
where c′ ∈ Cperiodic. For instance, in our experiments, this
analysis identified cases in which a bot downloaded addi-
tional malicious components from a host that was previously
identified as a command and control server.

5.3 Inter-trace Cluster Correlation

The intra-cluster timing analysis provides interesting infor-
mation on actions periodically performed by a bot. The
inter-cluster dependency analysis, instead, can identify ad-
ditional clusters that are related to periodic activities. Un-
fortunately, as previously mentioned, bots may not manifest
well-defined periodic activities at all. Even worse, timing re-
lationships may just be too hard to be accurately inferred.
In addition, bots may manifest occasional malicious behav-
iors that, although interesting, rarely happen. Of course,
these problems should not affect the robustness of a behav-
ioral detection model. A robust analysis needs to address
these issues and outputs the clusters that can best charac-
terize the bots’ malicious behavior.

To acquire a good confidence on the goodness of the clus-
ters produced by the previous analyses, we perform an inter-
trace cluster correlation analysis. To this end, a bot B is
run different times, producing distinct network traces Ti,
for each execution run i. Intuitively speaking, the inter-
trace cluster correlation analysis aims at finding similarities
among the clusters created during the different runs of B.
The more frequently a cluster is observed across different ex-
ecutions, the more it is likely to describe important parts of
the bot’s behavior. This inter-trace correlation has several
benefits. Similar to any output-voting system, it increases
the confidence about the quality of an answer, which, in our
context, is given by a cluster c. Furthermore, it suggests a
way to improve the accuracy of a cluster by correlating some
of its features with those of similar clusters obtained during
different executions of B.

After Ti network traces are obtained, the earlier steps of
our approach take place, as described in the previous sec-
tions. Hence, the traces Ti are normalized, pre-filtered, and
the initial hierarchical clustering process is started, eventu-
ally producing the set of clusters Ci, for each network trace
Ti. Subsequently, the intra-cluster and inter-cluster depen-
dency analyses are performed, eventually producing the set
of clusters Ci

k, Ci
periodic, and Ci

reconsidered, accordingly to the
terminology used so far.

It is at this point that the inter-trace cluster correlation
analysis begins. As a general idea, a cluster c ∈ Ci

k is finally
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selected as a strong representative of B’s behavior if clusters
similar to c exist for the majority of the clusters set Ci

k. Or,
more formally, c ∈ Ci

k is selected if, ∃c′ ∈ Cj
k, i 6= j | c′ ∼ c,

and this holds at least i
2 + 1 times.

A cluster c′ is said to be similar to a cluster c, i.e., c ∼ c′, if
c and c′ have similar network features and similar timing re-
lationships. To this end, every cluster c ∈ Ci

k is compressed,
producing a cluster cc, where the features of its network
flows are represented by their average, µc, and standard de-
viation, σc. Then, a cluster c′c ∈ Ci

k is considered network-
similar to a cluster cc if µc′

c
∈ [µcc

−σcc
, µcc

+σcc
]. Clusters

with no timing relationships can thus be selected at this
stage.

Of course, timing relationships, if any, have to be con-
sidered as well before concluding that any two clusters look
alike. To this end, the following cases are distinguished:

(a) c ∈ Ci
p and a well-defined time-related period(s) exist.

We recall from Section 5.1 that a cluster c is periodic
if the Equation (2) is satisfied. Then, c is selected and
confirmed as a periodic cluster, if

∃c′ ∈ Cj
p, i 6= j | c′ ∼ c ∧ c′ satisfies Eq. (2), ∀Ci

p

and this holds at least i
2 +1 times. If these relationships

are satisfied, then c is added to Cperiodic.

(b) c ∈ Ci
k \Ci

periodic. Since c /∈ Ci
periodic, it means c does not

manifest well-defined period(s) and the Equation (2) is
not satisfied. Nonetheless, as anticipated in Section 5.1,
it is desirable to mine whether the flows in c happen
to follow an unknown probability distribution. In fact,
the more features one or more flows need to match, i.e.,
network and timing relationships, the more accurate the
behavioral detection model is, and the less false posi-
tives our analysis will manifest. To this end, the intra-
cluster analysis described in Section 5.1 collects ∆c, the
flows timestamp deltas of c, c ∈ Ci

k \ Ci
periodic,∀c,∀i. Let

Ci
dist = Ci

k \ Ci
periodic. Then, c is selected and confirmed

as a cluster whose flow creation follows an unknown
probability distribution, if

∃c′ ∈ Cj
dist, i 6= j | c′ ∼ c ∧K-S(∆c, ∆c′ ) holds, ∀Ci

dist

and this holds at least i
2 +1 times, where K-S(·, ·) is the

Kolmogorov-Smirnov test [7]. Similarly to the previous
point, if these relationships are satisfied, c is then added
to Cperiodic.

(c) If the previous points are not satisfied, then c is added
to Cinteresting, a set of interesting clusters, only if the
output-voting system driven by the inter-trace cluster
correlation analysis yields a positive result (i.e., similar
clusters are selected based on network features match
only if this answer is obtained in the majority of the
cases). More formally, c is added to Cinteresting if

∃c′ ∈ Ci
dist \ Ci

periodic | c′ ∼ c

and, similarly to the previous cases, this holds at least
i
2 +1 times. A similar situation is carried out for clusters
belonging to Creconsidered. All the remaining clusters are
discarded.

The inter-trace cluster correlation analysis outputs Cperiodic,
Creconsidered, and Cinteresting, representing the sets of clus-
ters that exhibit timing relationships, and, under a different
perspective, interesting behaviors.

Once the inter-trace cluster correlation is finished and
clusters are chosen to either be mandatory or optional, a
further decision can be made, where similar clusters are
merged. This decision could not be taken without relying on
the inter-trace cluster correlation for the following reason.
Let cA be a cluster with flows directed to a host A. Let xA

be the feature set of cA. Similarly, let cB be a similar cluster
with the same feature set but with flows directed to a host
B. While it would be reasonable to conclude that cA and
cB are semantically equivalent, i.e., they refer to different
hosts offering the same service, the opposite may be true
as well. If the latter holds, the intra-cluster timing-analysis
may become polluted if cA and cB are grouped together.
For instance, cA may exhibit a periodic behavior while cB
may not. If | cB |�| cA | then the timing analysis can be
corrupted. For this reason, the feature set includes the des-
tination IP as a network feature. On the other hand, cA and
cB may indeed be semantically equivalent. Thus, we merge
clusters where flows have similar features if either one of the
following holds:

• there are not timing relationship (no periodic, no pos-
itive K-S test after the inter-trace cluster correlation)
between the considered clusters with similar features
values, or

• there are timing relationships and those are similar in
the clusters with similar features values.

As we will see in Section 8, the first condition turned out to
be useful for accurately modeling the network behavior of
the Storm botnet [18], while the second one was useful for
modeling the network behavior of the Torpig [9].

The merging strategy also implicitly stands against simple
evasion techniques where a bot sends similar (from a feature
values perspective) semantically non-equivalent flows with
the intent to force the analysis to cluster them together and
potentially polluting any timing relationship manifested by
the bot itself.

6 Model Generation

The cluster-based analysis outputs the clusters set Cperiodic,
Creconsidered, and Cinteresting, as described early. Let C be⋃

j∈{periodic,reconsidered,interesting} Cj . Clusters c ∈ C are
then compressed. A compressed cluster c is a cluster with
one flow, rc, whose network features are represented by the
average, µ, and the variance, σ2, over all the flows grouped
by c (different destination IPs and ports are, of course, omit-
ted). In other words, rc represents all the flows in c. It is
worth noting that timing relationships, if any, are a cluster-
based property and thus they still belong to c, even after it
has been compressed.

After clusters obtained by analyzing the network traces
of a bot B are being compressed, it is possible to generate
a B’s behavioral detection model. This phase outputs the
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information contained in the clusters set along with the code
responsible for the detection logic. The model is specified
as a Bro policy script [23] whose details are provided in Sec-
tion 6.2. In the following, instead, we detail how a behavior
model is matched when monitoring unknown network flows.

6.1 Bot Behavior Detection

Intuitively speaking, the detection of a malicious behavior
expressed by the corresponding cluster-based model deals
with flows membership, and timing-properties verification
We detail such phases in the following.

6.1.1 Flow Membership

During this step, a decision is made to check whether an
observed flow f can be assigned to one or more clusters in
C. In particular, let c be a compressed cluster of C. Let
also rc be the representative flow of c with network features
parameters µr and σ2

r . Then, a flow f matches rc’s network
features if the network features of f are within µr ± kσr.
Then, by the Tchebycheff inequality [7], we know that

P (| x− µr |> k) <
σ2

k2
,

that states that the probability that the value of a network
feature x is distant from its average µr for more than a
threshold k is bound by its variance, σ2

r , and the threshold
k. If the initial hierarchical clustering of the flows in the
malicious network trace is of good quality, then, by con-
struction, σ2

r is small. Consequently, if k is chosen to be
equal to the threshold used for clustering network flows, as
explained in Section 4, there is an high likelihood the net-
work features of malicious flows will fall within the range
µr ± kσr.

6.1.2 Timing Properties Verification

If one or more flows f are assigned to one or more com-
pressed clusters c ∈ Cperiodic, their timing properties need
to be verified. Depending on the timing properties of c,
different actions may be carried out.

• c ∈ Cperiodic and a well-defined time-related period(s)
does exist. The period p of c is described by the re-
lations expressed by the equation (2). In particular,
the parameters µp and σ2

p represent, respectively, the
average and the variance of p, determined during the
intra-cluster analysis described in Section 5.1.

The difference between the creation time-stamp of two
consecutive flows assigned to c is computed. Then,
the resulting delta δ is compared to the parameters µp

and σ2
p. If δ ∈ [µp − kσp, µp + σp], then the timing-

relationship of c are verified.

• c ∈ Cperiodic and a well-defined time-related period does
not exist. In this case, a certain quantity k of flows
needs to be assigned to c, before verifying their tim-
ing properties. To this end, we set k to be equal to

a fraction of the number of flows assigned to c dur-
ing the inter-trace cluster correlation analysis. Then,
let ∆m be a sequence of the flows creation time-stamp
deltas determined during the cluster-based analysis.
Likewise, let ∆k be a sequence of the creation time-
stamp deltas of k flows observed during detection. If
the Kolmogorov-Smirnov on ∆m, and ∆k is not sat-
isfied, then ∆k and ∆m are most likely drawn from a
different probability distribution and c’s behavior is not
matched.

During detection, we say that a flow f that belongs to a
host H matches a cluster c of a bot’s profile P if f can be
assigned to c, and if, by considering f , the timing properties
of c, if any, can be verified as well (of course, in the simpler
scenario, at least two flows that belong to H must be as-
signed to c). However, having a match does not trigger an
alarm by itself, as we tolerate fewer spurious matches that
may happen. Therefore, a bot behavior P is matched by a
possibly infected host H, and an alarm is raised, whenever
the following holds:

1. There exists a flow f of H that matches c,∀c ∈ P, and

2. A cluster c of P has a number of matches that is either
proportional to the number of flows clustered during
the initial clustering of network flows, or that is pro-
portional to the number of deltas determined during
the intra-cluster analysis, ∀c ∈ P. To make things sim-
pler, our current requirement is that a cluster c must
have been matched by flows of H at least 3 times.

In the following, we provide some details about how a bot
behavior is expressed in a practical detection model.

6.2 Mapping Models to NIDS events

Network-based behavior models need to be translated in
NIDS events to allow for malicious behavior detection. To
this end, we decided to use Bro, a Network Intrusion Detec-
tion System (NIDS) which offer a powerful event-driven pol-
icy language for writing NIDS policy scripts able to match
complex network behavior [23].

This turned out to be an interesting choice as clus-
ters can be easily represented by sets and tables,
and custom timers as well as Bro’s events, such as
connection_termination, connection_partial_finish,
udp_request, and udp_reply, can easily express the net-
work behavior models generated by our cluster-based anal-
ysis.

In fact, a typical network behavior model is composed by
clusters and by decisions that have to be taken upon the ver-
ification of a particular event (e.g., connection termination).
Thus, a typical Bro-based model that implements one of our
behavior model uses, (a) records, tables and sets to express
clusters along with their network and timing features, and
(b) network events that trigger the matching process.
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7 Discussion

One of the main issue that our analysis shares with other
dynamic-based behavior monitoring approaches is whether
the observed behavior is meaningful enough to account for
the majority of the infections for a particular bot. From a
practical perspective, bots leak information only when such
information is available [25]. Otherwise, they are often en-
gaged in ping-like message exchanges with the intent to com-
municate to a C&C or their peers that they are alive.

Triggering meaningful and specific behaviors is a known
open and hard research area. One may wonder if the be-
havioral network detection model our approach generates
contains those traits that are most likely shown by a bot.
Unfortunately, it is not straightforward to provide a defini-
tive answer to this question. Nonetheless, we think it is rea-
sonable to believe this generally happens. For instance, the
majority of the submissions that the Torpig bots recently
made to their C&C during a ten-days of monitoring were
just ping-like submissions reporting no stolen data. Talk-
ing about numbers, this translates to 32, 980, 083 ping-like
submissions over a total of 34, 042, 098 [25].

Our analysis tries to characterize a bot malicious behavior
by observing the actions it perpetrates. As every anomaly-
based system, our analysis can be subjected to evasion at-
tacks. In particular, an attacker might obfuscate the com-
munication parameters in order to hamper the clustering
approach, which is the basis of the rest of our analysis.

Our cluster-based analyses heavily rely on the quality of
the initial hierarchical clustering approach. If flows are not
aggregated in meaningful way, then further analyses are in-
effective. Flows are aggregated in a meaningful way when
the network features used to determine flows similarity are
not subjected to any form of obfuscation, or the obfuscation
they are subjected to is below the threshold used by the
distance function of the clustering algorithm [27]. An ac-
tive attacker may randomize these features with the intent
to confuse the clustering approach and aggregate dissimilar
flows together. Of course, the contrary holds and random-
ization could be used to the extent under which no flows
are grouped and every flow forms a cluster on its own. This
attack is a limitation of the effectiveness of our approach
that, however, shares with similar traffic and network-based
detection techniques as well [13, 26, 28]. A possible solu-
tion would be to characterize such an attack by adapting
the Kolmogorov-Smirnov test we used for capturing intra-
cluster timing relationships. Moreover, the same obfusca-
tion evasion could be modeled by an entropy-based analysis
which will characterize the entropy level of the network fea-
tures of a monitored bot during behavioral model construc-
tion.

8 Evaluation

In the following, we evaluate the network behavior-based
detection models generated by our cluster-based analyses.
The main goal of this evaluation is to show that our detec-
tion models are able to detect bots with a very low false

positive rate. In particular, our models detect malicious be-
havior even when a single host is infected in the monitored
network. In addition, malicious behavior is detected even
when only encrypted communications are involved. Finally,
our models detect low-pace and non-noisy malicious activi-
ties as well.

We first retrieved bot samples from Anubis [1], which re-
ceives malicious samples from different sources (e.g., user
and honeypots submissions as well as contribution from mal-
ware analysis organizations). These samples belong to dif-
ferent botnet structures, e.g., push- and pull-based, as well
as P2P. In particular, we collected HTTP-based, IRC-based,
and P2P-based bots. Of these, two HTTP-based bots were
variants of a unique bot, i.e., Torpig [9], while all the P2P
traces were Storm variants [18]. These samples were then
executed in a monitored environment for several days.

Table 2 provides details on the behavioral models gener-
ated by our cluster-based analyses. It is worth noting that
the inter-trace cluster correlation analysis has been executed
only for the Storm bot and for the Torpig bot. For the Storm
bot, the inter-trace cluster correlation analysis was triggered
because the intra-cluster analysis described in Section 5.1
did not produce any result, since no timing relationships
were mined. On the other hand, we explicitly enabled the
inter-trace cluster correlation analysis for the Torpig bot as
we wanted to have a very high confidence of its behavior,
considering the fact the Torpig botnet was still active at the
time of the analysis. Table 2 reports information on the
structure of the analyzed bot trace, e.g., push-/pull-based,
and P2P, and the size of the network trace along with the
number of packets and flows contained. Moreover, the ta-
ble shows the number of remaining flows after the post-filter
phase is finished (PF-Flows column). Next, the number of
all the clusters generated during the clustering approach de-
scribed in Section 4 is reported. In particular, the numbers
in parenthesis represent the number of clusters created after
the merging step presented in Section 5.3. Finally, the ta-
ble shows the result of the cluster-based analyses described
in Section 5, where information on the number of interesting
clusters are reported for both the normal analysis (Single-
trace column) and the optional one (Inter-trace column).
The columns labeled with Cp, Cr, and Ci, represent the set of
clusters Cperiodic, Creconsidered, and Cinteresting, respectively.

For instance, HTTP-1 refers to an HTTP-based bot whose
main goal was to crack CAPTCHA challenges from the ac-
count creation process of hotmail.com. The network trace
generated by HTTP-1 was 2 MB in size with more than four
thousands packets. These packets belonged to 206 network
flows, which dropped to 151 after uncompleted connections
and scan attempts were filtered out. The hierarchical clus-
tering described in Section 4 generated 84 clusters. The
intra-cluster analysis described in Section 5.1 highlighted
the main behavior of the bot. In particular, the analysis
identified one cluster whose flows were initiated every 20 sec-
onds, periodically. Moreover, the inter-cluster dependency
analysis pointed out the presence of 2 other clusters, which
provided more insights into the bot behavior. In particular,
these clusters captured the actions responsible for retriev-
ing CAPTCHAs from hotmail.com, and submitting them
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# Bot Trace (MB) #Pkts #Flows #PF-Flows # Clusters
Single-trace Inter-trace
Cp Cr Ci Cp Cr Ci

1 HTTP-1 2 4, 285 206 151 88(84) 1 2 0 NA NA NA
2 HTTP-2 54 81, 161 2, 392 1, 979 98(49) 5 14 0 NA NA NA
3 Torpig-1 3 16, 186 3, 921 1, 218 113(106) 2 2 0 2 0 0
4 Torpig-2 2 15, 427 3, 855 577 40(37) 2 2 0 2 0 0
5 IRC-1 11 135, 858 85, 963 1, 306 12(9) 1 4 0 NA NA NA
6 IRC-2 15 136, 163 16, 432 2, 282 22(22) 1 6 0 NA NA NA
7 Storm-1 2.5 27, 173 3, 137 827 821(283) 0 0 0 0 0 2
8 Storm-2 2.3 25, 853 2, 960 1, 023 968(218) 0 0 0 0 0 2
9 Storm-3 7.1 87, 595 2, 700 1, 562 1, 436(392) 0 0 0 0 0 1

10 Storm-GW1 42 521, 097 11, 192 8, 132 123(71) 0 0 0 0 0 5
11 Storm-GW2 45 518, 370 11, 855 8, 180 217(72) 0 0 0 0 0 5

Table 2: Bots Detection Models Details.

Network Trace # Conns Days IP Space IPs Flagged Total Alerts Alerts/Day
Swiss ISP 77.96 TB 541, 466, 576 2 786, 420 8 8 4.00
Greek University 128.18 TB 816, 591, 600 9 4, 096 5 6 0.67

Table 3: False Positives

to a C&C server S. The main goal of S was, in fact, to
crack the submitted CAPTCHAs and, for this reason, the
bot kept polling S asking for the textual representation of
the submitted CAPTCHA.

Similarly to the above description, our cluster-based anal-
ysis pointed out clusters showing timing-relationships for the
majority of the other bots shown in Table 2. For instance,
HTTP-2 behavior is described by the presence of five clus-
ters whose flows were showing periodically every 948 sec-
onds. Beside them, 14 more clusters were retrieved by the
inter-cluster dependency analysis. All the communications
involved in these clusters were directed toward google.com
hosts. Unfortunately, we could not get more insights into
the bot malicious behavior as the majority of the commu-
nications involved in those clusters were carried over SSL.
Nonetheless, our analysis was able to generate a network-
based behavioral detection model.

In a similar fashion, the Torpig bot [9] periodically con-
tacted two C&Cs, as highlighted by our cluster-based anal-
ysis. In particular, the bot contacted a Torpig C&C and
a Mebroot C&C every 1200 and 7200 seconds, respectively.
The Torpig C&C was used as a repository for sensitive infor-
mation stolen by the bot, while the Mebroot C&C provided
a way for the botherder to update, install, and uninstall the
malware itself.

The intra-cluster analysis ran on the bot labeled IRC-1
and IRC-2 highlighted, for each of them, one cluster whose
flows exhibited a periodic behavior. In particular, these
flows were responsible for PING/PONG IRC messages sent
by the IRC C&C server to check for the presence of the
bot, its responsiveness, and general connectivity. As in the
previous cases, the clusters resulting from the optional inter-
cluster dependency analysis provided more insights on the
behavior of the bots (e.g., joining specific channels, setting
channel topic, and sending private messages).

Of all the bot examined so far, our analysis was able to

extract some periodic behavior. The only exception is rep-
resented by the P2P-based Storm bot [18]. We analyzed
five Storm traces, three of which, i.e., Storm-1, Storm-2,
and Storm-3, belonged to bots installed on machines be-
hind NATs, while the remaining two, i.e., Storm-GW1, and
Storm-GW2, belonged to bots on hosts with public IPs. Our
intra-cluster timing analysis did not find any apparent tim-
ing relationship. However, the inter-trace cluster correlation
analysis was able to find similar clusters in all the traces.
In particular, all the Storm bots shared one cluster possibly
representing a form of weak authentication in which the bots
engaged in the beginning. As a consequence, our analysis
produced a model able to detect hosts infected by instances
of the Storm bot.

To further evaluate the detection capability of our mod-
els, we randomly selected 64 traces out of 308 (i.e., 20%), to
build a training set T . Then, for each trace in T , a network
behavior detection model was automatically generated, as
outlined in Section 5. Subsequently, we deployed a Bro sen-
sor, equipped with these models, to determine their detec-
tion capability, and, in particular, the detection rate over all
the remaining traces not included in the training set. In par-
ticular, this procedure was performed four times (four-fold
cross validation). The results show that our models reported
a bot infection for 50% of the analyzed traces. This corre-
sponds to 154 detection over the entire set of 308 network
traces. At a first glance, this number seems low. The reason
has to be found in the way models are generated. In fact,
for some of the models, networking and timing properties
produce well-defined ranges that do not overlap easily with
those defined by other models. However, this restriction can
be relaxed by tolerating more false positives.

To evaluate the false positive rate caused by our approach,
we deployed our models on a Bro sensor at two different net-
work sites. In particular, we deployed one Bro sensor at a
Swiss ISP network, and one sensor at a Greek university
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network. In Switzerland, our system monitored a popu-
lated network (789K IPs) for 2 days (off-line traffic). In
Greece, our system monitored a medium-populated network
(4K IPs) for 9 days (on-line traffic). Table 3 summarizes the
main results of our false positive evaluation. It can be ob-
served that only few false positives are raised over a total
period of 9 days. In particular, only 13 IPs were flagged
as infected by bots and only 14 alerts were raised. Most of
these false alarms were caused by periodic communications
initiated by email clients toward POP3 servers. Of course,
it is rather difficult to state whether these alarms were truly
all false positives and not true ones as we did not have ac-
cess to the offending hosts. Nonetheless, it is reasonable to
accept this fact as both networks are well-maintained and
bot infections, in these networks, are very rare.

9 Conclusions

Botnets have become a serious security issue that threatens
the confidentiality and integrity of users’ data.

In this paper we present a system that monitors network
traffic to detect bots. To this end, we propose an analysis
that highlights cluster-based properties of flows deemed to
be similar with respect to a given set of network features
and timing relationships. Our analysis automatically gen-
erates network behavior models that detect individual in-
fected hosts, with very few false positive. Moreover, traffic
content is not inspected, which makes our approach robust
when bots use encrypted communication. In addition, our
approach does not require to observe noisy behavior, and
it is thus suitable for detecting bots whose goal is infor-
mation theft. Our tool automatically generates models for
different bot families, including HTTP-based, IRC-based,
and P2P-based bots, that produce very few false positive.
This suggests our network behavior detection models can be
deployed in real-world settings.
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