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Abstract

Traditional definitions of encryption security guarantee secrecy for any plaintext that can be computed
by an outside adversary. In some settings, such as anonymous credential or disk encryption systems,
this is not enough, because these applications encrypt messages that depend on the secret key. A
natural question to ask is do standard definitions capture these scenarios? One area of interest is n-
circular security where the ciphertexts E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1) must be
indistinguishable from encryptions of zero. Acar et al. (Eurocrypt 2010) provided a CPA-secure public
key cryptosystem that is not 2-circular secure due to a distinguishing attack.

In this work, we consider a natural relaxation of this definition. Informally, a cryptosystem is n-weak
circular secure if an adversary given the cycle E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1)
has no significant advantage in the regular security game, (e.g., CPA or CCA) where ciphertexts of
chosen messages must be distinguished from ciphertexts of zero. Since this definition is sufficient for
some practical applications and the Acar et al. counterexample no longer applies, the hope is that
it would be easier to realize, or perhaps even implied by standard definitions. We show that this is
unfortunately not the case: even this weaker notion is not implied by standard definitions. Specifically,
we show:

• For symmetric encryption, under the minimal assumption that one-way functions exist, n-weak
circular (CPA) security is not implied by CCA security, for any n. In fact, it is not even implied
by authenticated encryption security, where ciphertext integrity is guaranteed.

• For public-key encryption, under a number-theoretic assumption, 2-weak circular security is not
implied by CCA security.

In both of these results, which also apply to the stronger circular security definition, we actually show
for the first time an attack in which the adversary can recover the secret key of an otherwise-secure
encryption scheme after an encrypted key cycle is published. These negative results are an important
step in answering deep questions about which attacks are prevented by commonly-used definitions and
systems of encryption. They say to practitioners: if key cycles may arise in your system, then even if you
use CCA-secure encryption, your system may break catastrophically; that is, a passive adversary might
be able to recover your secret keys.

Keywords: Encryption, Definitions, Circular Security, Counterexamples

1 Introduction

Encryption is one of the most fundamental cryptographic primitives. Most definitions of encryption secu-
rity [21, 18, 34] follow the seminal notion of Goldwasser and Micali which guarantees indistinguishability of
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encryptions for messages chosen by the adversary [21]. However, Goldwasser and Micali wisely warned to
be careful when using a system proven secure within this framework on messages that the adversary cannot
derive himself.

Over the past several years, there has been significant interest in designing schemes secure against key-
dependent message attacks, e.g., [15, 11, 30, 3, 26, 28, 13, 14, 5, 2], where the system must remain secure even
when the adversary is allowed to obtain encryptions of messages that depend on the secret keys themselves.
In this work, we are particularly interested in circular security [15]. A public-key cryptosystem is n-circular
secure if the ciphertexts E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1), as well as ciphertexts of
chosen messages, cannot be distinguished from encryptions of zero, for independent key pairs. Either by
design or accident, these key cycles naturally arise in many applications, including storage systems such as
BitLocker [13], anonymous credentials [15], the study of “axiomatic security” [30, 3] and more. See [13] for
a discussion of the applications.

Until recently, few positive or negative results regarding circular security were known outside of the
random oracle model. On one hand, no n-circular secure cryptosystems were known for n > 1. On the other
hand, no counterexamples existed for n > 1 to separate the definitions of circular and CPA security; that
is, as far as anyone knew the CPA-security definition already captured circular security for any cycle larger
than a self-loop.

Recently, this gap has been closing in two ways. On the positive side, several circular-secure schemes
have been proposed [13, 5, 14]. The focus of the current work is on negative results – namely, investigating
whether standard notions of encryption are “safe” for circular applications.

In 2008, Boneh, Halevi, Hamburg and Ostrovsky proved, by counterexample, that one-way security
does not imply circular security [13]. Recently, Acar, Beleniky, Bellare and Cash [2] proved that, under an
assumption in bilinear groups, CPA-security does not imply circular security.

Our Results We narrow this gap even further by studying the extent to which standard definitions (e.g.,
CPA, CCA) imply a weak form of circular security. Our results are primarily negative.

1. Relaxing the Circular Security Notion. Perhaps the current formulation of circular security is “too
strong”; that is, perhaps there is a relaxed notion of this definition which simultaneously satisfies many
practical applications and yet is also already captured by standard security notions. This is an area worth
investigating. We begin by proposing a natural relaxation called weak circular security where the adversary
is handed an encrypted cycle E(pk1, sk2), E(pk2, sk3), . . . , E(pkn−1, skn), E(pkn, sk1) along with the public
keys and then proceeds to play the CPA or CCA security game as normal (where these ciphertexts are also
off-limits for the decryption oracle). We stress here that the encrypted cycle is always generated as described,
and is never changed to encryptions of zero. This definition is intriguing, and perhaps of independent interest,
for two reasons.

First, the Acar et al. [2] counterexample does not apply to it. That construction uses the bilinear map
to test whether a sequence of ciphertexts contain a cycle or zeros. Here the adversary knows he’s getting an
encrypted cycle, but then must extract some knowledge from this that helps him distinguish two messages
of his choosing.

Second, this definition appears sufficient for some practical settings. Using a weak circular secure encryp-
tion scheme, Alice and Bob could exchange keys with each other over an insecure channel knowing that: (1)
Eve can detect that they did so, but (2) Eve cannot learn anything about their other messages. Similarly, an
adversary scanning over a user’s BitLocker storage may detect that her drive contains an encrypted cycle, but
cannot read anything on her drive. In an anonymous credential system of Camenisch and Lysyanskaya [15],
a user has multiple keys. To participate in the system, the user must encrypt them in a cycle, provide
this cycle to the other users, and prove that she has done this correctly. Then, if she shares one key, she
automatically shares all her keys. In their application, detection of a cycle is actually desirable, provided
that subsequent encryptions remain secure.

2. Symmetric-Key Counterexamples. In the symmetric setting, we show that standard notions do not
imply n-circular security for any positive n. Specifically, given any n ≥ 1, we show how to construct a
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secure authenticated encryption scheme (which is necessarily CCA-secure; see Section 2) that is not n-weak
circular secure, under the minimal assumption that secure authenticated encryption schemes exist, which
are equivalent to one-way functions.

The main technical ingredient in our counterexample is a lemma showing that it is provably hard for an
adversary to compute an encrypted key cycle itself, assuming that the symmetric scheme under attack is a
secure authenticated encryption scheme (or CCA secure). We stress that this lemma does not hold if the
encryption scheme is only CPA secure.

Our lemma gives us leverage in constructing a counterexample because it means the adversary is given
strictly more power in the weak circular security game than in the standard security game. Specifically, the
adversary is given an encrypted key cycle in the weak circular security game that it could not have computed
itself, and we design a scheme to help such an adversary without affecting regular security.

3. Public-Key Counterexamples. We show that neither CPA nor CCA-security imply (even) weak circular
security for cycles of size 2. That is, we show secure systems that are totally compromised when the
independently-generated ciphertexts E(pkA, skB) and E(pkB , skA) are released. This is a difficult task,
because the system must remain secure if either one, but only one, of these ciphertexts are released. Moreover,
this counterexample requires new ideas. We cannot use the common trick in self-loop counterexamples that
test if the message is the secret key corresponding to the public key, since there is no way for the encryption
algorithm with public key pkA to distinguish, say, skB from any other valid message. Specifically, we show
that:

If there exists an algebraic setting where the Symmetric External Diffie-Hellman 1 (SXDH) assumption
holds, then there exists a CPA-secure cryptosystem which is not 2-weak circular secure. The proposed scheme
is particularly interesting in that it breaks catastrophically in the presence of a 2-cycle — revealing the secret
keys of both users.

Moreover, if simulation-sound non-interactive zero- knowledge (NIZK) proof systems exist for NP and
there exists an algebraic setting where the Symmetric External Diffie-Hellman (SXDH) assumption holds,
then there exists a CCA-secure cryptosystem which is not 2-weak circular secure. This is also the first
separation of CCA security and (regular) circular security.

These results deepen our understanding of how to define “secure” encryption and which practical attacks
are captured by the standard definitions. They also provide additional justification for the ongoing effort,
e.g. [13, 14, 5], to develop cryptosystems which are provably circular secure.

1.1 Related Work

In 2001, Camenisch and Lysyanskaya [15] introduced the notion of circular security and used it in their
anonymous credential system to discourage users from delegating their secret keys. They also showed how
to construct a circular-secure cryptosystem from any CPA-secure cryptosystem in the random oracle model.
Independently, Abadi and Rogaway [1] and Black, Rogaway, Shrimpton [11] introduced the more general no-
tion of key-dependent message (KDM) security, where the encrypted messages might depend on an arbitrary
function of the secret keys. Black et al. showed how to realize this notion in the random oracle model.

Halevi and Krawczyk [26] extended the work of Black et al. to look at KDM security for deterministic
secret-key functions such as pseudorandom functions (PRFs), tweakable blockciphers, and more. They give
both positive and negative results, including some KDM-secure constructions in the standard model for PRFs.
In the symmetric setting, Hofheinz and Unruh [28] showed how to construct circular-secure cryptosystems in
the standard model under relaxed notions of security. Backes, Pfitzmann and Scedrov [7] presented stronger
notions of KDM security (some in the random oracle model) and discussed the relationships among these
notions.

1The SXDH assumption states that there is a bilinear setting e : G1×G2 → GT where the Decisional Diffie-Hellman (DDH)
assumption holds in both G1 and G2. It has been extensively studied and used e.g., [20, 38, 31, 12, 8, 6, 23, 9, 24], perhaps
most notably as a setting of the Groth-Sahai NIZK proof system [24].
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In the public-key setting, Boneh, Halevi, Hamburg and Ostrovsky [13] presented the first cryptosystem
which is simultaneously CPA-secure and n-circular-secure (for any n) in the standard model, based on
either the DDH or Decision Linear assumptions. As mentioned earlier, Boneh et al. [13] also proved, by
counterexample, that one-way security does not imply circular security. One-way encryption is a very
weak notion, which informally states that given (pk , E(pk ,m)), the adversary should not be able to recover
m. Given any one-way encryption system, they constructed a one-way encryption system that is not n-
circular secure (for any n). Their system generates two key pairs from the original and sets PK = pk1 and
SK = (sk1, sk2). A message (m1,m2) is encrypted as (m1, E(pk1,m2)). In the event of a 2-cycle, the values
Enc(pkA, skB) = (skB,1, E(pkA,1, skB,2)) and Enc(pkB , skA) = (skA,1, E(pkB,1, skA,2)) provide the critical
secret key information (skB,1, skA,1) in the clear.

Subsequently, Applebaum, Cash, Peikert and Sahai [5] adapted the circular-secure construction of [13]
into the lattice setting. Camenisch, Chandran and Shoup [14] extended[13] to the first cryptosystem which is
simultaneously CCA-secure and n-circular-secure (for any n) in the standard model, by applying the “double
encryption” paradigm of Naor and Yung [33]. (Interestingly, we use this same approach in Section 4.4 to
extend our public-key counterexample from CPA to CCA security.)

Haitner and Holenstein [25] recently provided strong impossibility results for KDM-security with respect to
1-key cycles (a.k.a., self-loops.) They study the problem of building an encryption scheme where it is secure to
release E(k, g(k)) for various functions g. First, they show that there exists no fully-black-box reduction from
a KDM-secure encryption scheme to one-way permutations (or even some families of trapdoor permutations)
if the adversary can obtain encryptions of g(k), where g is a poly(n)-wise independent hash function. Second,
there exists no reduction from an encryption scheme secure against key-dependent messages to, essentially,
any cryptographic assumption, if the adversary can obtain an encryption of g(k) for an arbitrary g, as long
as the security reduction treats both the adversary and the function g as black boxes. These results address
the possibility of achieving strong single-user KDM-security via reductions to cryptographic assumptions.
The results in this paper study a version of KDM security that is in one sense weaker – we only allow a
narrow class of functions g – but also stronger because it considers multiple users. Our results also address
a different question regarding KDM security. We study whether or not KDM security is always implied
by regular security while Haitner and Holenstein study the possibility of achieving strong single-user KDM
security via specialized constructions.

Most closely related to our work, Acar et al. [2] demonstrated both public and private key encryption
systems that are provably CPA-secure and yet also demonstrably not 2-circular secure. Their counterexample
does not apply to CCA or weak circular security.

Subsequent to the original posting of this work, Rothblum [36] studied the circular security of bit encryp-
tion. In particular, using n-linear maps, for large n, where DDH is assumed hard in every pre-image group,
he constructs a CPA (or CCA) secure bit-encryption scheme that is not circular secure; that is, where it is
not “safe” to encrypt the secret key sk bit-by-bit using the corresponding public key pk . This approach is
conceptually similar to extending either the Acar et al. [2] or our 2-circular counterexample in Section 4 to
an n-circular counterexample using n-linear maps. Unfortunately, there are no candidate implementations
for n-linear maps where n > 2 and even the discrete logarithm problem is believed to be hard in one of the
pre-image groups. Thus, it remains an open problem to resolve these two fascinating questions relating to
circular security.

There is also a relationship to recent work on leakage resilient and auxiliary input models of encryption,
which mostly falls into the “self-loop” category. In leakage resilient models, such as those of Akavia, Gold-
wasser and Vaikuntanathan [4] and Naor and Segev [32], the adversary is given some function h of the secret
key, not necessarily an encryption, such that it is information theoretically impossible to recover sk . The
auxiliary input model, introduced by Dodis, Kalai and Lovett [17], relaxes this requirement so that it only
needs to be difficult to recover sk .

Self-Loops In sharp contrast to all n ≥ 2, the case of 1-circular security is fairly well understood. A
folklore counterexample shows that CPA-security does not directly imply 1-circular security. Given any
encryption scheme (G,E,D), one can build a second scheme (G,E′, D′) as follows: (1) E′(pk ,m) outputs
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IND-CPA(Π,A, λ)

b
r← {0, 1}

(pk , sk)← KeyGen(1λ)
(m0,m1, z)← A1(pk)
y ← Enc(pk ,mb)

b̂← A2(y, z)

Output (b̂
?
= b)

AE(Π,A, λ)

b
r← {0, 1}

K ← KeyGen(1λ)

b̂← AE
ae
K,b(·,·),Dae

K,b(·)(1λ)

Output (b̂
?
= b).

Figure 1: Experiments for Definitions 2.1 and 2.3.

E(pk ,m)||0 if m 6= sk and m||1 otherwise, (2) D′(sk , c||b) outputs D(sk ,m) if b = 0 and sk otherwise. It
is easy to show that if (G,E,D) is CPA-secure, then (G,E′, D′) is CPA-secure. When E′(pk , sk) = sk ||1 is
exposed, then there is a complete break. Conversely, given any CPA-secure system, one can build a 1-circular
secure scheme in the standard model [13].

2 Definitions of Security

A public-key encryption system Π is a tuple of algorithms (KeyGen,Enc,Dec), where KeyGen is a key-
generation algorithm that takes as input a security parameter λ and outputs a public/secret key pair (pk , sk);
Enc(pk ,m) encrypts a message m under public key pk ; and Dec(sk , c) decrypts ciphertext c with secret key
sk . A symmetric-key encryption system is a public-key encryption system, except that it always outputs
pk = ⊥, and the encryption algorithm computes ciphertexts using sk , i.e. by running Enc(sk ,m). In the
symmetric case we will sometimes write K instead of sk . As in most other works, we assume that all
algorithms implicitly have access to shared public parameters establishing a common algebraic setting.

Our definitions of security will associate a message space, denoted M , with each encryption scheme.
Throughout this paper, we assume that the space of possible secret keys output by KeyGen is a subset of the
message space M and thus any secret key can be encrypted using any public key. For symmetric encryption
schemes we will always have M ⊂ {0, 1}∗.

By ν(k) we denote some negligible function, i.e., one such that, for all c > 0 and all sufficiently large k,
ν(k) < 1/kc. We abbreviate probabilistic polynomial time as PPT.

2.1 Standard Security Definitions

Public-key encryption We recall the standard notion of indistinguishability of encryptions under a
chosen-plaintext attack due to Goldwasser and Micali [21].

Definition 2.1 (IND-CPA) Let Π = (KeyGen,Enc,Dec) be a public-key encryption scheme for the message
space M . For b ∈ {0, 1}, A = (A1,A2) and λ ∈ N, let the random variable IND-CPA(Π,A, λ) be defined by
the probabilistic algorithm described on the left side of Figure 1. We denote the IND-CPA advantage of A by
Advcpa

Π,A(λ) = 2 · Pr[IND-CPA(Π,A, λ) = 1]− 1. We say that Π is IND-CPA secure if Advcpa
Π,A(λ) is negligible

for all PPT A.

We also consider the indistinguishability of encryptions under chosen-ciphertext attacks [33, 34, 18].

Definition 2.2 (IND-CCA) Let Π = (KeyGen,Enc,Dec) be a public-key encryption scheme for the message
space M . Let the random variable IND-CCA(Π,A, λ) be defined by an algorithm identical to IND-CPA(Π,A, λ)
above, except that both A1 and A2 have access to an oracle Dec(sk , ·) that returns the output of the decryp-
tion algorithm and A2 cannot query this oracle on input y. We denote the IND-CCA advantage of A by
Advcca

Π,A(λ) = 2 · Pr[IND-CCA(Π,A, λ) = 1]− 1. We say that Π is IND-CCA secure if Advcca
Π,A(λ) is negligible

for all PPT A.
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IND-CIRC-CPAn(Π,A, λ)

b
r← {0, 1}

For i = 1 to n:

(pk i, sk i)← KeyGen(1λ)
If b = 1 then

y← EncCycle(pk, sk)
Else

y← EncZero(pk, sk)

b̂← A(pk,y)

Output (b̂
?
= b)

IND-WCIRC-CPAn(Π,A, λ)

b
r← {0, 1}

For i = 1 to n:

(pk i, sk i)← KeyGen(1λ)
y← EncCycle(pk, sk)
(j,m0,m1, z)← A1(pk,y)
y ← Enc(pk j ,mb)

b̂← A2(y, z)

Output (b̂
?
= b)

EncCycle(pk, sk)

For i = 1 to n
yi ← Enc(pk i, sk (imod n)+1)

Output y

EncZero(pk, sk)

For i = 1 to n

yi ← Enc(pk i, 0
|sk(i mod n)+1|)

Output y

Figure 2: Experiments for Definitions 2.4 and 2.5. Each is defined with respect to a message space M ,
and we assume that m0,m1 ∈ M always. We write pk, sk, and y for (pk1, . . . , pkn), (sk1, . . . , skn) and
(y1, . . . , yn) respectively.

Symmetric-key authenticated encryption We recall the definition of secure authenticated (symmetric-
key) encryption due to [35], except that we will not require pseudorandom ciphertexts. Bellare and Nam-
prempre [10] showed that AE implies IND-CCA, and is in fact strictly stronger. For our counterexample, we
target this very strong definition of security in order strengthen our results by showing that even this does
not imply weak circular security.

Definition 2.3 (AE) Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme for the message
space M . Let the random variable AE(Π,A, λ) be defined by the probabilistic algorithm described on the
right side of Figure 1. In the experiment, the oracle Eae

K,b(·, ·) takes as input a pair of equal-length messages
(m0,m1) and computes Enc(K,mb). The oracle Dae

K,b(·) takes as input a ciphertext c and computes Dec(K, c)
if b = 1 and always returns ⊥ if b = 0. The adversary is not allowed to submit any ciphertext to Dae

K,b(·) that
was previously returned by Eae

K,b(·, ·). We denote the AE advantage of A by Advae
Π,A(λ) = 2 ·Pr[AE(Π,A, λ) =

1]− 1. We say that Π is AE secure if Advae
Π,A(λ) is negligible for all PPT A.

2.2 Circular Security Definitions

We next give definitions for circular security of public-key and symmetric-key encryption. These definitions
are variants of the Key-Dependent Message (KDM) security notion of Black et al. [11]. By restricting the
adversary’s power, we make it significantly harder for us to devise a counterexample and thus prove a stronger
negative result.2

Definition 2.4 (IND-CIRC-CPAn) Let Π = (KeyGen,Enc,Dec) be a public-key encryption scheme for the
message space M . For b ∈ {0, 1}, integer n > 0, adversary A and λ ∈ N, let the random variable
IND-CIRC-CPAn(Π,A, λ) be defined by the probabilistic algorithm on the left side of Figure 2. We denote the
IND-CIRC-CPAn advantage of A by

Advn-circ-cpa
Π,A (λ) = 2 · Pr[IND-CIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-CIRC-CPAn secure if Advn-circ-cpa
Π,A (λ) is negligible for all PPT A.

One could augment this definition by modifying the IND-CIRC-CPAn experiment to allow for a challenge
“left-or-right” query as in IND-CPA. While this is a quite natural modification, it only strengthens the
definition, and we are interested in studying the weakest notions for which we can give a separation. Next
we give a definition of weak circular security of public-key encryption.

2If we allowed the adversary to obtain encryptions of any affine function of the secret keys, as is done in [26, 13], then we
could devise a trivial counterexample where the adversary uses 1-cycles to break the system.
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Definition 2.5 (IND-WCIRC-CPAn) Let Π = (KeyGen,Enc,Dec) be a public-key encryption scheme for
the message space M . For b ∈ {0, 1}, integer n > 0, adversary A and λ ∈ N, let the random variable
IND-WCIRC-CPAn(Π,A, λ) be defined by probabilistic algorithm on the center of Figure 2. We denote the
IND-WCIRC-CPAn advantage of A by

Advn-wcirc-cpa
Π,A (λ) = 2 · Pr[IND-WCIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-WCIRC-CPAn secure if the function Advn-wcirc-cpa
Π,A (λ) is negligible for all PPT A.

Finally, we give a definition of weak circular security for symmetric encryption. We will abuse notation
and also call this IND-WCIRC-CPAn security, since it will be clear from the context whether or not we mean
public-key and symmetric-key.

Definition 2.6 (IND-WCIRC-CPAn) Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme for
the message space M . For b ∈ {0, 1}, integer n > 0, adversary A and λ ∈ N, let IND-WCIRC-CPAn(Π,A, λ)
be defined by the following probabilistic algorithm:

IND-WCIRC-CPAnb (Π,A, λ)
b
r← {0, 1}

For i = 1 to n:
Ki ← KeyGen(1λ)

y← EncCycle(K)
b̂← AgEnc(·,·,·)(y)
Output (b̂ ?= b)

EncCycle(K)
For i = 1 to n
yi ← Enc(Ki,K(imod n)+1)

Output y

Ẽnc(j,m0,m1)
Return Enc(Kj ,mb)

We denote the IND-WCIRC-CPAn advantage of A by

Advn-wcirc-cpa
Π,A (λ) = 2 · Pr[IND-WCIRC-CPAn(Π,A, λ) = 1]− 1.

We say that Π is IND-WCIRC-CPAn secure if Advn-wcirc-cpa
Π,A (λ) is negligible for all PPT A.

Discussion In both the IND-CPA and IND-CIRC-CPA notions, the adversary must distinguish an encryption
(or encryptions) of a special message from the encryption of zero. This choice of the message zero is arbitrary.
We keep it in the statement of our definition to be consistent with [13]; however, it is important to note,
for systems such as ours where zero is not in the message space, that zero can be replaced by any constant
message for an equivalent definition. Acar et al. [2] use an equivalent definition where zero is replaced by a
fresh random message.

We will not need to define a notion of security to withstand circular and chosen-ciphertext attacks, because
we are able to show a stronger negative result. In Section 4.4, we provide an IND-CCA-secure cryptosystem,
which is provably not IND-CIRC-CPA-secure. In other words, we are able to devise a peculiar cryptosystem:
one that withstands all chosen-ciphertext attacks, and yet breaks under a weak circular attack which does
not require a decryption oracle.

3 Counterexample for Symmetric Encryption

Encryption Scheme Πae Let Π′ae = (KeyGen′,Enc′,Dec′) be a secure authenticated encryption scheme.
To simplify our results, we assume that KeyGen′(1λ) outputs a uniformly random key K in {0, 1}λ, that the
message space M ′ = {0, 1}∗, and that ciphertexts output by Enc′(K,m) are always in {0, 1}p(|m|), where
p is some polynomial that depends on λ. We also assume that the first λ bits of a ciphertext are never
equal to K. All of these assumptions can be removed via straightforward and standard modifications to our
arguments below.
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Fix a positive integer n. We now construct our counterexample scheme, denoted Πae = (KeyGen,Enc,Dec).
We will take KeyGen = KeyGen′, i.e., Πae also uses keys randomly chosen from {0, 1}λ. The message-space
of Πae will consist of M = {0, 1}λ ∪ {0, 1}np(λ), bit strings of length either λ or np(λ). The algorithms Enc
and Dec are defined as follows.

Enc(K,m)
If IsCycle(K,m) then

Output K ‖ m
Else

Output Enc′(K,m)

Dec(K, c)
If c = K ‖ m̃ then

Output m̃
Else

Output Dec′(K, c)

IsCycle(K,m)
If |m| 6= np(λ)

Return false
Parse m as (c1, . . . , cn)
K2 ← Dec′(K, c1)
For i = 2 to n
Kimod n+1 ← Dec′(Ki, ci)

Return (K1
?= K)

Decryption is always correct. This follows from our assumption that Enc′ will never output a ciphertext that
contains K as a prefix. We first establish the AE security of our scheme.

Theorem 3.1 Encryption scheme Πae is AE secure whenever Π′ae is AE secure.
(Proof in Appendix A.2.)

The proof proceeds by showing that computing an encrypted key-cycle during the AE game is equivalent to
recovering the secret key. From there we can reduce the security of Πae to Π′ae easily.

Curiously, Theorem 3.1 is no longer true if one replaces AE security with a symmetric version of IND-CPA
security for both Πae and Π′ae. Namely, some type of chosen-ciphertext security is required on Π′ae to prove
even chosen-plaintext security of Πae. Intuitively, this is because it might be possible for an adversary to
compute an encrypted key-cycle on its own if the scheme is only IND-CPA-secure, but not if the scheme is
AE-secure. In fact, the work of Boneh et al. [13] gives an explicit example of a scheme where the adversary
can compute a cycle himself.

The Attack We now show that Πae is not circular-secure for n cycles, even in a weak sense.

Theorem 3.2 Πae is not IND-WCIRC-CPAn secure.

Proof. We give an explicit adversary A that has advantage negligibly close to 1. The adversary takes as
input the encrypted key-cycle y in the IND-WCIRC-CPAn game. It queries Ẽnc(1,m0,m1), where m0 = y
and m1 is a random message of the same length. Let y be the ciphertext returned by the oracle.

At this point, there are many ways to proceed; perhaps the simplest is to observe that the length of
y depends on the challenge bit b. This is because, if b = 0, then m0 = y was encrypted, resulting in
y = K ‖ y, which is λ+ np(λ) bits long. If b = 1 then y was computed by running Enc′(K,m1), which will
be p(|m1|) = p(np(λ)) bits long if IsCycle(K,m1) returns false. Thus, as long as IsCycle(K,m1) returns false,
A2 can compute the value of b by measuring y’s length.

But why should IsCycle(K,m1) return false? This follows from the AE security of Π′ae. Let us parse m1

into (c1, . . . , cn), where each ci ∈ {0, 1}p(λ) is random. When IsCycle(K,m1) returns true, it must be that
Dec′(K, c1) did not return ⊥. But if this happens, then we can construct an adversary to break the AE
security of Π′ae. The adversary simply queries Dae

K,b(·) at a random point, observes if it returns ⊥ or not, and
outputs b̂ = 0 or 1 depending on this observation. 2

We note that we could design an encryption scheme that does not have this type of ciphertext-length
behavior by giving a different attack that abuses the fact that K is present in the ciphertext in one case,
but not the other. We have chosen to present the attack this way for simplicity only.
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4 Counterexamples for Public-Key Encryption

4.1 Preliminaries and Algebraic Setting

Bilinear Groups We work in a bilinear setting where there exists an efficient mapping function e :
G1×G2 → GT involving groups of the same prime order p. Two algebraic properties required are that: (1) if g
generates G1 and h generates G2, then e(g, h) 6= 1 and (2) for all a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab.

Decisional Diffie-Hellman Assumption (DDH) Let G be a group of prime order p ∈ Θ(2λ). For all
PPT adversaries A, the following probability is 1/2 plus an amount negligible in λ:

Pr
[
g, z0 ← G; a, b← Zp; z1 ← gab; d← {0, 1};
d′ ← A(g, ga, gb, zd) : d = d′

]
.

Strong External Diffie-Hellman Assumption (SXDH): Let e : G1×G2 → GT be bilinear groups. The
SXDH assumption states that the DDH problem is hard in both G1 and in G2. This implies that there does
not exist an efficiently computable isomorphism between these two groups. The SXDH assumption appears
in many prior works, such as [20, 38, 31, 12, 8, 6, 23, 9, 24, 2].

Indistinguishability and Pseudorandom Generators

Definition 4.1 (Indistinguishability) Two ensembles of probability distributions {Xk}k∈N and {Yk}k∈N
with index set N are said to be computationally indistinguishable if for every polynomial-size circuit family
{Dk}k∈N, there exists a negligible function ν such that

|Pr [x← Xk : Dk(x) = 1]− Pr [y ← Yk : Dk(y) = 1]|

is less than ν(k). We denote such sets {Xk}k∈N
c
≈ {Yk}k∈N.

Definition 4.2 (Pseudorandom Generator [29]) Let Ux denote the uniform distribution over {0, 1}x.
Let `(·) be a polynomial and let G be a deterministic polynomial-time algorithm such that for any input
s ∈ {0, 1}n, algorithm G outputs a string of length `(n). We say that G is a pseudorandom generator if the
following two conditions hold:

• (Expansion:) For every n, it holds that `(n) > n.
• (Pseudorandomness:) For every n, {U`(n)}n

c
≈ {s← Un : G(s)}n.

The constructions of Section 4.2 use a PRG where the domain of the function is an exponentially-sized
cyclic group.

4.2 Encryption Scheme Πcpa

We now describe an encryption scheme Πcpa = (KeyGen,Enc,Dec). It is set in asymmetric bilinear groups
e : G1 × G2 → GT of prime order p where we assume that the groups G1 and G2 are distinct and that the
DDH assumption holds in both. We assume that a single set of group parameters (e, p,G1,G2,GT , g, h),
where G1 = 〈g〉,G2 = 〈h〉, will be shared across all keys generated at a given security level and are implicitly
provided to all algorithms.

The message space is M = {0, 1} × Z∗p × Z∗p. Let encode :M→ {0, 1}`(λ) and decode : {0, 1}`(λ) →M
denote an invertible encoding scheme where `(λ) is the polynomial length of the encoded message. Let
F : GT → {0, 1}`(λ) be a pseudorandom generator secure under the Decisional Diffie Hellman assumption.
(Recall that pseudorandom generators can be constructed from any one-way function [27].)
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KeyGen(1λ). The key generation algorithm selects a random bit β ← {0, 1} and random values a1, a2 ← Z∗p.
The secret key is set as sk = (β, a1, a2). We note that sk ∈M. The public key is set as:

pk =

{
(0, e(g, h)a1 , ga2) ∈ {0, 1} ×GT ×G1 if β = 0
(1, e(g, h)a1 , ha2) ∈ {0, 1} ×GT ×G2 if β = 1.

Encrypt(pk ,M). The encryption algorithm parses the public key pk = (β, Y1, Y2), where Y2 may be in G1

or G2 depending on the structure of the public key, and message M = (α,m1,m2) ∈ M. Note that
m1 and m2 cannot be zero, but these values can be easily included in the message space by a proper
encoding.

Select random r ← Zp and R← GT . Set I = F (R)⊕ encode(M).

Output the ciphertext C as:

C =

{
(gr, R · Y r1 , Y

rm2
2 · gm1 , I) if β = 0;

(hr, R · Y r1 , Y
rm2
2 , I) if β = 1.

We note that in the first case, C ∈ G1×GT ×G1×{0, 1}`(λ), while in the second C ∈ G2×GT ×G2×
{0, 1}`(λ).

Decrypt(sk , C). The decryption algorithm parses the secret key sk = (β, a1, a2) and the ciphertext C = (C1,
C2, C3, C4). Next, it computes:

R =

{
(C2/e(C1, h))a1 if β = 0;
(C2/e(g, C1))a1 if β = 1.

Then it computes M ′ = F (R)⊕ C4 ∈ {0, 1}`(λ) and outputs the message M = decode(M ′).

Discussion Like the circular-secure scheme of Boneh et al. [13], the above cryptosystem is a variation on
El Gamal [19]. It is a practical system, which on first glance might be somewhat reminiscent of schemes the
readers are used to seeing in the literature. The scheme includes a few “artificial” properties: (1) placing
a public key in either G1 or G2 at random and (2) the fact that the ciphertext value C3 is unused in the
decryption algorithm. We will shortly see that these features are “harmless” in a semantic-security sense,
but very useful for recovering the secret keys of the system in the presence of a two cycle. While it is
not unusual for counterexamples to have artificial properties (e.g., [16, 22]), we can address these points as
well.3 In Appendix C, we show that property (1) can be removed by doubling the length of the ciphertext.
For property (2), we observe that many complex protocols such as group signatures (e.g., [12]) combine
ciphertexts with other components that are unused in decryption but are quite important to the protocol
as a whole. Thus, we believe our counterexample is not that far fetched. It is possible that such an attack
could exist on one of today’s commonly-used encryption algorithms.

We first show that Πcpa meets the standard notion of CPA security.

Theorem 4.3 Encryption scheme Πcpa is IND-CPA secure under the Decisional Diffie-Hellman Assumption
in G1 and G2 (SXDH).

The proof is given in Appendix B. It is relatively standard and involves repeated applications of the DDH
assumption and PRG security.

3While our scheme is different from that of Acar et al. [2], that scheme also has similar artificial properties such as the
presence of values that are not used in decryption.
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4.3 The Attack

Despite being IND-CPA-secure, cryptosystem Πcpa is not even weakly circular secure for 2-cycles. Specifically,
given a circular encryption of two keys, we show that an adversary can distinguish another ciphertext with
advantage 1/2. Our adversary actually does much more than this: with probability 1/2 over the coins used
in key generation, it can recover both secret keys.

This is the first circular attack that allows the adversary to recover the secret keys. (In Appendix C, we
discuss how to improve these probabilities to almost 1.) Our attack combines elements of both ciphertexts
in an attempt to recover skA, which can then be used to decrypt the first ciphertext and obtain skB . It is
counterintuitive that this is possible, given that it is easy to see that IND-CPA-security guarantees that it is
safe for one of them to send their message.

Theorem 4.4 Πcpa is not IND-WCIRC-CPA2-secure.

Proof. We give PPT adversaryA = (A1,A2) such that Adv2-wcirc-cpa
Πcpa,A (λ) is equal to 1/2. Since IND-WCIRC-CPA

security requires that this advantage be negligible, this attack breaks security. The adversary proceeds as
follows. The first stage of the adversary, A1, obtains the two public keys, which we will write as pkA and
pkB , and an encrypted cycle, which we will write as (CA, CB).

If both keys have β = 0 or β = 1 (call this event E1), the adversary aborts and instructs the second stage
(A2) to output a random bit. Since the two keys are independently generated by the challenger, this event
will occur with probability exactly 1/2. Below we will condition on E1 not happening, and wlog assume
that pkA = (0, e(g, h)a1 , ga2) and pkB = (1, e(g, h)b1 , hb2). The corresponding secret keys skA = (0, a1, a2),
skB = (1, b1, b2) are not known to the adversary.

We write the given ciphertexts CA = (cA,1, cA,2, cA,3, cA,4) and CB = (cB,1, cB,2, cB,3, cB,4). A1 will
output two arbitrary distinct messages, and request that the challenge use pkA. For the state passed to A2,
it now computes:

X := cB,2 ·
e(cA,1, cB,3)
e(cA,3, cB,1)

.

A1 sets ŝkA = decode(cB,4 ⊕ F (X)) and passes this with the challenge messages as state to A2.
A2 receives a ciphertext y and the passed state. It parses ŝkA as a secret key for Πcpa and computes

Dec(ŝkA, y), and tests if this is equal to either of the challenge messages. If so, it outputs the corresponding
bit. Otherwise it outputs a random bit.

Let’s explore why this test works. Write CA = Enc(pkA, skB) and CB = Enc(pkB , skA). Then:

CA = (cA,1, cA,2, cA,3, cA,4)

= (gr, R · e(g, h)ra1 , gra2b2+b1 , F (R)⊕ encode(skB))
CB = (cB,1, cB,2, cB,3, cB,4)

= (hs, S · e(g, h)sb1 , hsa2b2 , F (S)⊕ encode(skA))

for some r, s ∈ Zp and R,S ∈ GT . Then we have that:

X := cB,2 ·
e(cA,1, cB,3)
e(cA,3, cB,1)

= S · e(g, h)sb1 · e(gr, hsa2b2)
e(gra2b2+b1 , hs)

= S · e(g, h)sb1 · e(g, h)rsa2b2

e(g, h)rsa2b2 · e(g, h)sb1
= S.

Thus, A1 recovers ŝkA = skA as decode(cB,4 ⊕ F (S)), and A2 will correctly guess bit b in this case.
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Write b̂ for the output of A2. We have

Adv2-wcirc-cpa
Πcpa,A (λ) = 2 Pr[b̂ = b]− 1

= 2(Pr[b̂ = b|E1] Pr[E1]+

Pr[b̂ = b|¬E1] Pr[¬E1])− 1
= 2(1 · 1/2 + 1/2 · 1/2)− 1
= 1/2

This completes the proof. 2

4.4 Extension: A Counterexample for CCA Security

We show that there exists an IND-CCA-secure cryptosystem, which suffers a complete break when Alice and
Bob trade secret keys over an insecure channel; i.e., transmit the two-key cycle E(pkA, skB) and E(pkB , skA).
Our construction follows the “double-encryption” approach to building IND-CCA systems from IND-CPA
systems as pioneered by Naor and Yung [33] and refined by Dolev, Dwork and Naor [18] and Sahai [37]. Our
building blocks will be:

1. The IND-CPA-secure cryptosystem Πcpa = (G,E,D) from Section 4. Let E(pk ,m; r) be the encryption
of m under public key pk with randomness r.

2. An adaptively non-malleable non-interactive zero-knowledge (NIZK) proof system with unpredictable
simulated proofs and uniquely applicable proofs for the language L of consistent pairs of encryptions,
defined as:

L =
{

(e0, e1, c0, c1) : ∃m, r0, r1 ∈ {0, 1}∗ s.t.
c0 = E(e0,m; r0) and c1 = E(e1,m; r1)

}
.

A proof system for L can be realized under relatively mild assumptions, such as the difficulty of factoring
Blum integers (e.g., [37]). One complication is that the secret keys for this cryptosystem now change and
the construction must be adapted accordingly, so that the secret key can still be recovered by the adversary
during a circular attack. We show that this is possible.

Construction Πcca. The construction Πcca = (KeyGen,Enc,Dec), following [37] directly, is then defined as
follows. Let t(λ) be the polynomial bound on the amount of randomness needed by the encryption algorithm
to encrypt a single message and let q(λ) be the polynomial length of the reference string required by the
proof system Γ.

KeyGen(1λ). Call G(1λ) twice to generate two key pairs (e0, d0) and (e1, d1). Select a random reference
string Σ ∈ {0, 1}q(λ) for Γ. Set pk = (e0, e1,Σ) and sk = (d0, d1).

Encrypt(pk ,M ∈ ({0, 1} × Z∗p × Z∗p)2). Choose random r0, r1 ← {0, 1}t(k). Let c0 = E(e0,m; r0) and c1 =
E(e1,m; r1). Use P to generate a proof π relative to Σ that (e0, e1, c0, c1) ∈ L using (m, r0, r1) as the
witness. Output the ciphertext (c0, c1, π).

Decrypt(sk , C). Use V to verify the correctness of π. If π is valid, output either of D(d0, c0) or D(d1, c1),
chosen arbitrarily.

Theorem 4.5 Encryption scheme Πcca is IND-CCA secure under the Decisional Diffie-Hellman Assumption
in G1 and G2 (SXDH) and the assumption that proof system Γ satisfies the above constraints. (Follows
directly from Theorem 4.3 and [37], Theorem 4.1.)

Theorem 4.6 Πcca is not IND-WCIRC-CPA2-secure.
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Proof sketch. Given two public keys pkA = (eA,0, eA,1,ΣA) and pkB = (eB,0, eB,1,ΣB), and two valid
ciphertexts CA = (cA,0, cA,1, πA) and CB = (cB,0, cB,1, πB). The attack follows the same outline as that in
the proof of Theorem 4.4, using the values (eA,0, eB,0, cA,0, cB,0) and ignoring the rest of the ciphertexts. If
the encryption keys are of different types (not both type 0 or type 1), then the distinguisher will win with
advantage 1/2 as before. 2

5 Conclusion and Open Problems

In this work, we presented a natural relaxation of the circular security definition, which may prove interesting
for positive results in its own right. We demonstrated that its guarantees are not already captured by standard
definitions of encryption. To do this, we presented symmetric and public-key encryption systems that are
secure in the IND-CPA and IND-CCA sense, but fail catastrophically in the presence of an encrypted cycle.
This provides the first answer to the foundational question on whether IND-CCA-security captures (weak or
regular) circular security for all cycles larger than self-loops. In either case, it does not.

Our work leaves open the interesting problem of finding a public-key counterexample for cycles of size
≥ 3. Secondly, while our symmetric counterexample depended only on the existence of AE-secure symmetric
encryption, our public-key counterexample, like that of Acar et al. [2], required a specific bilinear map
assumption. It would be highly interesting to find a counterexample assuming only that IND-CPA- or
IND-CCA-secure systems exist.

Finally, we observe that our public-key counterexample contains a novel and curious property – certain
combinations of independently generated ciphertexts trigger the release of their underlying plaintext. From
Rabin’s 1

2 -OT system to DH-DDH gap groups, the cryptographic community has a strong history of turning
such oddities to an advantage. If we view a cryptosystem with this property as a new primitive, what new
functionalities can be realized using it?
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A Security Proof for Πae

A.1 Security against Key Recovery Attacks

It will simplify our results to use the following concept of key recovery security, which is implied by AE
security.

Definition A.1 (KR) Let Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme for the message
space M . Let the random variable KR(Π,A, λ) be defined by the following probabilistic algorithm:

KR(Π,A, λ)
K ← KeyGen(1λ)
K̂ ← AEkr

K (·),Dkr
K (·)(1λ)

Output (K̂ ?= K).

15



Here the oracle Ekr
K (·) takes as input a message m ∈ M and returns Enc(K,m), and the oracle Dkr

K (·) takes
as input a ciphertext and returns Dec(K, c).

We denote the KR advantage of A by

Advkr
Π,A(λ) = Pr[KR(Π,A, λ) = 1].

We say that Π is KR secure if Advkr
Π,A(λ) is negligible for all PPT A.

We will use the following theorem below. The proof is standard.

Theorem A.2 Any AE-secure symmetric-key encryption scheme is also KR-secure.

A.2 Proof of Security for System Πae

Theorem A.3 Encryption scheme Πae is AE secure whenever Π′ae is AE secure.

Proof. We prove the theorem by giving a reduction to the AE security of Π′ae. We proceed by describing a
pair of hybrid games, where the first H0 is defined to be the AE experiment from Definition 2.3 with Πae,
and the second is a modified experiment that will be seen to be essentially equivalent to the AE experiment
with Π′ae.

We denote the hybrids H0,H1, and define them as follows:

H0: The AE experiment with Πae.
H1: Exactly as in H0, except that the oracles Eae

K,b(·, ·) and Dae
K,b(·) use modified versions of the algo-

rithms Enc and Dec which ignore their “If” statements and proceed directly the “Else” clause.

Fix some PPT adversary A, and let

AdvHi

A (λ) = 2 Pr[Hi(A, λ) = 1]− 1

for i = 0, 1. Then we have
AdvH0

A (λ) = Advae
Πae,A(λ), (1)

which is negligible by assumption. Next we relate AdvH0
A (λ) and AdvH1

A (λ).

Lemma A.4 For all PPT adversaries A,

AdvH0
A (λ)− AdvH1

A (λ) ≤ ε1(λ) (2)

for some negligible function ε1.

Proof. Suppose to the contrary that a PPT adversaryA exists that violates (2). UsingA we construct an PPT
adversary B such that Advkr

Π′
ae,B(λ) is non-negligible which contradicts the AE security Π′ae by Theorem A.2.

The adversary B has access to two oracles in the KR experiment with Π′ae, Ekr
K (·) and Dkr

K (·). B will run
A, which expects the two oracles Eae

K,b(·, ·),Dae
K,b(·) in the AE experiment with Πae.

B starts by selecting b r← {0, 1} and initializing a list L to be empty. B then runs A, simulating queries
to Eae

K,b(·, ·) and Dae
K,b(·) as follows:

Eae
K,b(m0,m1)
UseCycle(mb)
Return Ekr

K (mb)

UseCycle(x)
If |x| 6= np(λ) then

Return
Parse x as (c1, . . . , cn)
K2 ← Dkr

K (c1)
For i = 2 to n
Kimod n+1 ← Dec′(Ki, ci)

Add K1 to L

Dae
K,b(c)
If b = 0 then

Return ⊥
Else

Parse c as K̃ ‖ m̃
Add K̃ to L
Return Dkr

K (c)
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When A halts, B selects and outputs K̂ at random from L.
Before moving on, let us intuitively explain how B is simulating the game. We have implemented the

oracle simulation so that B assumes that the “If” statements in both oracles do not ever pass, and indeed it
properly simulates both hybrids as long as this is case. It keeps track of the keys induced by the queries of
A which might have caused an “If” statement to pass, and afterwards it chooses a random one and hopes it
was the first such query.

Let E be the event that A queries either Eae
K,b(·, ·) or Dae

K,b(·) at a point that causes their “If” statements
to evaluate to true. It is apparent that H0 and H1 are identical unless E occurs, so we have

AdvH0
A (λ)− AdvH1

A (λ) ≤ Pr[E].

Conditioned on E occurring, we have that K̂ is equal to K (where K was chosen in the KR experiment) with
probability 1/Q, where Q is (polynomial) number of queries issued by A. This follows from the fact that B
perfectly simulates H0 until the first query that triggers the event E. Thus, B recovers the secret key with
probability at least Advkr

Π′
ae,B(λ) = Pr[E]/Q. But this is negligible by the assumption that Π′ae is AE-secure

and hence KR-secure, which bounds Pr[E] by a negligible function. 2

Lemma A.5 For every PPT adversary A

Advae
Π′

ae,A(λ) = AdvH1
A (λ). (3)

Proof. This lemma follows by the observation that in H1, A is interacting with oracles that are functionally
identical to those in AE(Π′ae,A, λ). The only difference is in the message space restriction in H1, which is a
strict subset of those allowed in AE(Π′ae,A, λ). 2

Finally, we observe that Advae
Π′

ae,B(λ) is negligible by assumption. Combining this observation with (1),
(2) and (3) proves the theorem. 2

B Security Proof for System Πcpa

We first recall Theorem 4.3.

Theorem B.1 Encryption scheme Πcpa is IND-CPA secure under the Decisional Diffie-Hellman Assumption
in G1 and G2 (SXDH).

Proof. To show that scheme Πcpa meets security Definition 2.1, suppose PPT adversary A = (A1,A2) has
advantage ε in the IND-CPA(Πcpa,A, λ) experiment. Let ψ(·) be some polynomial function that will be
determined in the proof. Using a series of hybrid games we show that if all PPT adversaries have negligible
advantage ε1 in solving the DDH problem in G1 or G2 and advantage ψ(ε1) at distinguishing the PRG F
(secure under DDH) from a random function, then ε is bounded by the negligible value 4ε1 + 2ψ(ε1).

In all hybrids, the adversary plays the IND-CPA game with a challenger. The public key is distributed
normally, but the structure of the challenge ciphertext differs between the hybrids. Let CT = (C1, C2, C3, C4)
denote the challenge ciphertext computed in IND-CPA and let R2

r← GT , R3
r← G1 (if β = 0) or R3

r← G2

(if β = 1) and R4
r← {0, 1}|C4| be randomly chosen. The hybrids are as follows:

H0: The challenge ciphertext is CT = (C1, C2, C3, C4).
H1: The challenge ciphertext is CT1 = (C1, R2, C3, C4).
H2: The challenge ciphertext is CT2 = (C1, R2, R3, C4).
H3: The challenge ciphertext is CT3 = (C1, R2, R3, R4).
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We will write AdvHi

A (λ) to denote the advantage of A in Hi, i.e., 2 Pr[Hi(A, λ) = 1] − 1. By definition,
the ciphertext in H0 is as in IND-CPA(Πcpa,A, λ), while the challenge ciphertext in hybrid H3 information-
theoretically hides the plaintext. We argue that under the DDH assumption in G1 and G2, for all PPT A,
we have

AdvH0
A − AdvH3

A ≤ 2ε1 + ψ(ε1). (4)

It remains to observe that, by definition,

AdvH0
A (λ) = IND-CPA(Πcpa,A, λ), (5)

and
AdvH3

A (λ) = 0 (6)

because the adversary’s output is independent of the bit b it is trying to guess.

We now turn to proving (4). We start by bounding the difference in advantage between H0 and H1.

Lemma B.2 For all PPT A = (A1,A2), if the DDH assumption holds in G1 and G2, then

AdvH1
A (λ)− AdvH0

A (λ) ≤ ε1.

Proof. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be the common parameters. Suppose for contradiction that
an adversary A violates the inequality in the lemma. Then, we construct an adversary A′ that decides the
DDH problem in G1 or G2 with advantage ε′. A′ works as follows.

1. Sample a bit β ← {0, 1}.
2. Obtain a DDH problem instance:

Γ =

{
(g, ga, gb, G) ∈ G4

1 if β = 0;
(h, ha, hb, H) ∈ G4

2 if β = 1.
3. Sample v ← Z∗p.
4. Set the public key as:

pk =

{
(0, e(ga, h), gv) ∈ {0, 1} ×GT ×G1 if β = 0;
(1, e(g, ha), hv) ∈ {0, 1} ×GT ×G2 if β = 1.

5. Run A1(pk) to produce a tuple (M0,M1, z). Parse M0 as (α,m1,m2).
6. Sample R← GT and set I ← F (R)⊕ encode(M0).
7. Set the challenge ciphertext as:

C =

{
(gb, R · e(G, h), (gb)vm2 · gm1 , I) if β = 0;
(hb, R · e(g,H), (hb)vm2 , I) if β = 1.

Note that in the first case, C ∈ G1 × GT × G1 × {0, 1}`(λ), while in the second case C ∈ G2 × GT ×
G2 × {0, 1}`(λ).

8. Run A2(C, z) and output whatever it outputs.

We argue that when Γ is a proper DDH instance, A′ perfectly simulates the experiment H0. The
distribution of keys and encryption values are exactly as they should be. When Γ is not a DDH instance, A′
perfectly simulates the experiment H1. The only impacted ciphertext part is C2, where the proper public
key information has been replaced by a random value. Thus, A′’s advantage in solving DDH in G1 or G2

will be ε′. Under the DDH assumption in G1,G2, ε′ ≤ ε1. 2

Lemma B.3 For all PPT A = (A1,A2), if the DDH assumption holds in G1 and G2, then

AdvH2
A (λ)− AdvH1

A (λ) ≤ ε1.
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Proof. Suppose adversary A = (A1,A2) violates the lemma. Then, we construct an adversary A′ that decides
the DDH problem in G1 or G2 with advantage ε′ as follows. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be
the common parameters. A′ works as follows:

1. Sample a bit β ← {0, 1}.
2. Obtain a DDH problem instance:

Γ =

{
(g, ga, gb, G) ∈ G4

1 if β = 0;
(h, ha, hb, H) ∈ G4

2 if β = 1.

3. Sample v ← Z∗p.
4. Set the public key as:

pk =

{
(0, e(g, h)v, ga) ∈ {0, 1} ×GT ×G1 if β = 0;
(1, e(g, h)v, ha) ∈ {0, 1} ×GT ×G2 if β = 1.

5. Run A1(pk) to produce a tuple (M0,M1, z). Parse M0 as (α,m1,m2).
6. Sample R,R2 ← GT and set I ← F (R)⊕ encode(M0).
7. Set the challenge ciphertext as:

C =

{
(gb, R2, G

m2 · gm1 , I) if β = 0;
(hb, R2, H

m2 , I) if β = 1.

8. Run A2(C, z) and output whatever it outputs.

When Γ is a proper DDH instance, A′ perfectly simulates experiment H1. When Γ is not a DDH instance,
A′ perfectly simulates experiment H2. The only impacted ciphertext part is C3, where the proper public key
information has been replaced by a random value. Thus, A′’s advantage in solving DDH in G1 or G2 will
be ε′. Under the DDH assumption in G1,G2, ε′ ≤ ε1. 2

Lemma B.4 For all PPT A = (A1,A2) if F is secure under the DDH assumption in G1,G2 then

AdvH3
A (λ)− AdvH2

A (λ) ≤ ψ(ε1).

Proof. Let (e, p,G1,G2,GT , g = 〈G1〉, h = 〈G2〉) be the common parameters. Note that in our construction,
F has domain GT and range {0, 1}`(λ).4 Let us suppose that adversary A = (A1,A2) violates the lemma.
Then, we construct an adversary A′ that breaks the security of the PRG F with advantage ε′. A′ accepts as
input a value I ′ sampled from ensemble Eb where E0 = {R ← GT : F (R)}λ, E1 = {U`(λ)}λ and b ∈ {0, 1}
and operates as follows:

1. Compute (pk , sk)← KeyGen(1k) and parse pk = (β, Y1, Y2).
2. Run A1(pk) to produce a tuple (M0,M1, z).
3. Sample r ← Zp, R2 ← GT and R3 ← G1 (if β = 0) or R3 ← G2 (if β = 1). Set I ← I ′ ⊕ encode(M0).

Compute the challenge ciphertext as follows:

C =

{
(gr, R2, R3, I) if β = 0;
(hr, R2, R3, I) if β = 1.

4. Run A2(C, z) and output whatever it outputs.

4Although this specification differs slightly from Definition 4.2, this specific construction can be constructed from traditional
PRGs using standard techniques.
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If I ′ is sampled from distribution E0 then A′ perfectly simulates H2. If I ′ is sampled from the uniform
distribution E1, then I ′ ⊕ encode(M0) is uniformly distributed in {0, 1}`(λ) and A′ perfectly simulates H3.
Additionally, R is independent of the adversary’s view. Thus A′’s advantage in distinguishing the two
distributions will be ε′. Under the DDH assumption, we have ε′ ≤ ψ(ε1). 2

We complete the proof of the theorem by combining (4), (5), (6), and Lemmas B.2, B.3, and B.4. 2

C An Alternative Counterexample for CPA Security

As mentioned in Section 4, one “artificial” feature of the cryptosystem Πcpa is that the KeyGen algorithm
randomly embeds the public key into either G1 or G2 with probability 1/2 and then the group setting of the
ciphertext also differs depending on the public key. We know of no deployed cryptosystems that alternate the
setting of keys in such a manner. Some readers might hope that this property renders our result inapplicable
to the domain of “practical” cryptosystems, i.e., to assume that cryptosystems with a single, defined key
and ciphertext structure are immune to the concerns we note here. We must disappoint these readers.

Below we propose an alternative IND-CPA-secure scheme Π′cpa that does not exhibit this “group switching”
feature, and yet still breaks catastrophically in the face of a 2-cycle. Indeed, this result is even stronger than
that of Section 4 since it permits an adversary to win the IND-CIRC-CPA game with a higher probability.
Π′cpa has keys and ciphertexts that are twice the length of those in Πcpa.

Construction Π′cpa Cryptosystem Π′cpa = (KeyGen′,Enc′,Dec′) uses Πcpa = (KeyGen, Enc,Dec) as a build-
ing block. As before we assume that a single set of bilinear group parameters will be shared across all keys
generated at a given security level and are implicitly provided to all algorithms. LetM be the message space
of Πcpa. Then the message space for Π′cpa is M′ =M×M. We define the system as follows.

KeyGen′(1λ). The key generation algorithm runs KeyGen repeatedly to obtain pk1, sk1 and pk2, sk2 where
pk1 = (0, ·, ·) and pk2 = (1, ·, ·).5 The public key is set as pk = (pk1, pk2), and the secret key as
sk = (sk1, sk2).

Encrypt′(pk ,M). The encryption algorithm parses the public key pk = (pk1, pk2), and message M =
(m1,m2) ∈M′. Output the ciphertext C as:

C = (Enc(pk1,m2),Enc(pk2,m1))

Decrypt′(sk , C). The decryption algorithm parses the secret key sk = (sk1, sk2) and the ciphertext C =
(C1, C2). Next, it computes:

M = (Dec(sk2, C2),Dec(sk1, C1))

Correctness follows trivially from the correctness of Πcpa.

Theorem C.1 Encryption scheme Π′cpa is IND-CPA secure under the Decisional Diffie-Hellman Assumption
in G1 and G2 (SXDH).

Attack on IND-CIRC-CPA Security The above scheme breaks completely for 2-key cycles.

Theorem C.2 Encryption scheme Π′cpa is not IND-CIRC-CPA secure for cycles of length 2.

Proof sketch. To show that scheme Π′cpa is not IND-CIRC-CPA-secure for key cycles of length two, we recall
the attack of Section 4.3. As in that attack, we assume that the adversary receives CA = Enc(pkA, skB)
and CB = Enc(pkB , skA) or two encryptions of a fixed message, and must distinguish which. Unlike that
attack, we do not abort based on the structure of the public keys. Instead we receive pkA = (pkA,1, pkA,2),
pkB = (pkB,1, pkB,2), CA = (CA,1, CA,2) and CB = (CB,1, CB,2). Now, there are two options. Either:

5This can be accomplished probabilistically by repeatedly calling KeyGen and discarding redundant keypairs; alternatively
the KeyGen algorithm can be trivially modified to produce the needed keys in only two calls.
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1. CA,1 = Enc(pkA,1, skB,2) and CB,2 = Enc(pkB,2, skA,1) and
CA,2 = Enc(pkA,2, skB,1) and CB,1 = Enc(pkB,1, skA,2); or

2. CA,1 = Enc(pkA,1, α2) and CB,2 = Enc(pkB,2, α1) and
CA,2 = Enc(pkA,2, α1) and CB,1 = Enc(pkB,1, α2)
for any fixed (α1, α2) ∈M′ as defined by Definition 2.4.

If we are in case 1, then we simply apply the exact attack from Section 4.3 twice to the pairs (CA,1, CB,2)
and (CA,2, CB,1) to recover both secret keys in full (skA,1, skA,2) and (skB,1, skB,2) with probability 1. Once
this is done and detected, D outputs 1.

If we are in case 2, then let α1 = (·,m1,m2) and α2 = (·,m′1,m′2). Parse skA,1 = (0, a1, a2) and
skB,2 = (1, b1, b2) and we have:

CA,1 =(cA,1, cA,2, cA,3, cA,4)

=(gr, R · e(g, h)ra1 , gra2m
′
2+m′

1 , F (R)⊕ encode(α2))
CB,2 =(cB,1, cB,2, cB,3, cB,4)

=(hs, S · e(g, h)sb1 , hsm2b2 , F (S)⊕ encode(α1))

for some r, s ∈ Zp and R,S ∈ GT . Then we have that:

X := cB,2 ·
e(cA,1, cB,3)
e(cA,3, cB,1)

= S · e(g, h)sb1 · e(gr, hsm2b2)
e(gra2m′

2+m′
1 , hs)

= S · e(g, h)s(b1−m
′
1) · (e(g, h)s(m2b2−m′

2a2))r

Now, D will return 1 if and only if skA = decode((F (S)⊕encode(α1))⊕F (X)). What is the probability that
this event occurs? First, suppose that s(m2b2−m′2a2) mod p 6= 0 (event E1), which happens with probability
≥ 1 − 3/(p − 1) = (p − 4)/(p − 1) for honest executions. Next, consider the values α1, α2, s, S as fixed and
r is the only variable. What is the chance that the challenger’s random choice of r will induce a value X
such that F (X) = F (S)⊕ encode(α1)⊕ encode(skA)? First, we observe that since s(m2b2 −m′2a2) 6= 0 and
r is chosen uniformly at random in Zp, then X is also distributed uniformly at random in GT . Thus, by the
assumption that F is computationally indistinguishable from a uniform, random function, D will incorrectly
guess a key cycle in this case with probability at most 2−`(λ) plus a negligible amount ν(λ), where λ is the
security parameter.

Thus, D’s total probability of success in this attack is:

Pr[D wins] = Pr[Case 1] · Pr[D wins |Case 1]
+ Pr[Case 2] · Pr[D wins |Case 2]

≥1
2
· 1 +

1
2
· (Pr[E1] · Pr[D wins |E1])

≥1
2

+
1
2
·
(
p− 4
p− 1

· (1− 2−`(λ) − ν(λ))
)

≥3
4
− (2−`(λ) + ν(λ))

2
for all p ≥ 7

Of course, for practical 80-bit or higher values of p, this probability is much closer to 1. 2
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