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A Tale of Two Indices

In 1993, the Chicago Board of Options Exchange (CBOE) intced the CBOE Volatility Index (VIX).
This index has become the de factor benchmark for stock maadkatility. The original construction of
this volatility index uses options data on S&P 100 index (QEXcompute an average of the Black and
Scholes (1973) option implied volatility with strike prieelose to the current spot index level and maturities
interpolated at about one month. The market often regaidsntiplied volatility measure as a forecast of

subsequent realized volatility and also as an indicatorarket stress (Whaley (2000)).

On September 22, 2003, CBOE revamped the definition andlatitmuof the VIX, and back-calculated
the new VIX to 1990 based on historical option prices. The definition uses the S&P 500 index (SPX)
to replace OEX as the underlying stock index. Furthermdre,new index measures a weighted average
of option prices across all strikes at two nearby maturiti@s March 26, 2004, the CBOE launched a new
exchange, the Chicago Futures Exchange (CFE) to starhgrdiures on the new VIX. At the time of this

writing, options on the VIX are also planned.

In this paper, we describe the major differences in the defimiand calculation of the old and the
new volatility indices. We derive the theoretical undemings of the two indices and discuss the practical
motivations for the switch from the old to the new VIX. We alstody the historical behavior of the new
volatility index, and analyze how it interacts with stockléx returns and realized volatilities. Finally, we
discuss how to use options on the underlying S&P 500 inderfioe valuation bounds on the VIX futures,
and how to exploit information in the underlying options ketrand the VIX futures to price options on the

new VIX.



|. DEFINITIONSAND CALCULATIONS

A. TheOld VXO

The CBOE renamed the old VIX as VXO and continues to providat@gion this index. VXO is based on
options on OEX. It is an average of the Black-Scholes impligidtilities on eight near-the-money options
at the two nearest maturities. When the time to the neardstrityas within eight calendar days, the next

two nearest maturities are used instead.

At each maturity, the CBOE chooses two call and two put ogtainthe two strike prices that straddle
the spot level and are nearest to it. The CBOE first averagetab implied volatilities from the put and
call at each strike price, and then linearly interpolatesvben the two average implied volatilities at the
two strike prices to obtain the at-the-money spot impliektitity. The interpolated at-the-money implied
volatilities at the two maturities are further interpolhtong the maturity dimension to create a 22-trading

day volatility, which constitutes the VXO.

The Black-Scholes implied volatility is the annualizedatdity that equates the Black-Scholes formula
value to the options market quote. The annualization ischasean actual/365 day-counting convention.
Instead of using this implied volatility directly, the CBOtroduced an artificial “trading-day conversion”
in the calculation of VXO. Specifically, IéAT MV(t, T) denote the time&-Black-Scholes at-the-money im-
plied volatility as an annualized percentage with expiryeda. The CBOE converts this percentage to

“trading-day” volatility TV(t, T) by:

TV(t,T) = ATMV(t, T)VNC/V/NT, (1)



whereNC andNT are the number of actual calendar days and the number ohtraldiys between time
and the option expiry respectively. The CBOE converts the number of calendar odgghe number of

trading days according to the following formula:

NT =NC—2xint (NC/7). )

VXO represents an interpolated trading-day volatility 2atiading days based on the two trading-day volatil-

ities at the two nearest maturitieB\{(t, T;) andTV(t, T>)):
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whereNT; andNT, denote the number of trading days between tiraad the two option expiry dateg

andTy, respectively.

Since each month has about 22 trading days, VXO represenes-month at-the-money implied volatil-
ity estimate. Nevertheless, the trading-day conversioequmation (1) raises the level of VXO, and makes
it no longer comparable to annualized realized volatdittemputed from index returns. Thus, the VXO
computation methodology has drawn criticism from both acaid and industry for its artificially induced

upward bias.

B. The New VIX

In contrast to the old VXO, which is based on near-the-monkgclBScholes implied volatilities of OEX
options, the CBOE calculates the new volatility index VIXngsmarket pricesnstead of implied volatilities.

It also uses SPX options instead of OEX options. The generaiula for the new VIX calculation at time
tis,
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whereT is the common expiry date for all of the options involved ifsthalculation, R is the timet
forward index level derived from co-terminal index optionces, K; is the strike price of thé-th out-of-
the-money option in the calculatio@; (K;, T) denotes the timé-mid-quote price of the out-of-the-money
option at strikeK;, Kq is the first strike below the forward index levgl r; denotes the timé+iskfree rate
with maturity T, andAK; denotes the interval between strike prices, defineflkas= (Ki;1 —K;)/2. For
notational clarity, we suppress the dependence ahdF on the maturity datd as no confusion shall

OocCcur.

The formula in equation (4) uses only out-of-the-money apiexcept aKop, at whichO; (Ko, T) rep-
resents the average of the call and put option prices attiiilte sSinceKy < R, the average &g implies
that the CBOE uses one unit of the in-the-money caKat The last term in equation (4) represents the

adjustment needed to convert this in-the-money call intowrof-the-money put using put-call parity.

The calculation involves all available call options atksts greater thak; and all put options at strikes
lower thank. The bids of these options must be strictly positive to béuihed. At the extreme strikes of
the available options, the definition for the interdd{ is modified as follows:AK for the lowest strike is
the difference between the lowest strike and the next higtnidee. Likewise AK for the highest strike is the

difference between the highest strike and the next lowikestr

To determine the forward index leve], the CBOE chooses a pair of put and call options with prices

that are the closest to each other. Then, the forward prideriged via the put-call parity relation:

R=e"TYGKT) -R(KT)+K. (5)

The CBOE uses equation (4) to calculat&t, T) at two of the nearest maturities of the available

options, T; and T,. Then, the CBOE interpolates betwe®igt, T;) andV St, T,) to obtain avVSt,T)



estimate at 30-days to maturity. The VIX represents an dimeghvolatility percentage of this 30-da¥S

using an actual/365 day-counting convention:

30—-NG
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whereNC; andNG, denote the number of actual days to expiration for the twaurites. When the nearest
time to maturity is eight days or less, the CBOE switches tortaxt nearest maturity in order to avoid
microstructure effects. The annualization in (6) follows tactual/365 day-counting convention and does

not suffer from the artificial upward bias incurred in the VX@lculation.

Il. ECONOMIC AND THEORETICAL UNDERPINNINGS

A. TheOld VXO

The VXO is essentially an average estimate of the one-mdritieamoney Back-Scholes implied volatility,

with an artificial upward bias induced by the trading-daywaseion. Academics and practitioners often
regard at-the-money implied volatility as an approximatetast for realized volatility. However, since the
Black-Scholes model assumes constant volatility, theridirect economic motivation for regarding the

at-the-money implied volatility as the realized volajilfbrecast beyond the Black-Scholes model context.
Nevertheless, a substantial body of empirical work hasddhat the at-the-money Black-Scholes implied
volatility is an efficient, although biased, forecast of seduent realized volatility. Examples include La-
tane and Rendleman (1976), Chiras and Manaster (1978), idhlyewis (1988),Lamoureux and Lastrapes
(1993), Canina and Figlewski (1993), Fleming (1998), Ghrisen and Prabhala (1998), and Gwilym and
Buckle (1999). Thus, references to the VXO as a forecastlifesyuent realized volatility is more based on

empirical evidence than on any theoretical linkages.

Recently, Carr and Lee (2003) identify an economic intdghien for at-the-money implied volatility

in a theoretical framework which goes beyond the Black-&shmodel. They show under general market



settings that the timeat-the-money implied volatility with expiry at tim€ represents an accurate approx-

imation of the conditional risk-neutral expectation of tieéurn volatility during the time periofl, T:

ATMV(t,T) 2 E2[RVol ], )

whereE{ [-] denotes the expectation operator under the risk-neutrasuneQQ conditional on time-filtra-
tion #;, andRVol 1 denotes the realized return volatility in annualized petages over the time horizon

[t, T]. Appendix A details the underlying assumptions and deawatfor this approximation.

The result in (7) assigns new economic meanings for VXO, kiaipproximates the volatility swap
rate with a one-month maturity, if we re-adjust the upwarashinduced by the trading-day conversion.
Volatility swap contracts are traded actively over the deuen major currencies and some equity indexes.
At maturity, the long side of the volatility swap contracte@ves the realized return volatility and pays a
fixed volatility rate, which is the volatility swap rate. A tienal dollar amount is applied to the volatility
difference to convert the payoff from volatility percengagoints to dollar amounts. Since the contract costs

zero to enter, the fixed volatility swap rate equals the risktral expected value of the realized volatility.

It is worth noting that although the at-the-money impliedatdity is a good approximation of the
volatility swap rate, the payoff on a volatility swap is notwsly difficult to replicate. Carr and Lee (2003)
derive hedging strategies for volatility swap contractat timvolve dynamic trading of both futures and

options.

B. The New VIX

The new VIX squared approximates the conditional risk-rad@ixpectation of the annualized realized return

variance over the next 30 days:

VIX2 > E2 RVt 30], (8)



with RV 1, 30 = RV0f; , 5, denoting the annualized return variance betwjegn- 30]. HenceV IXZ approx-
imates the 30-day variance swap rate. Variance swap ctmaeeactively traded over the counter on major
equity indexes. At maturity, the long side of the variancegwontract receives a realized variance and pays
a fixed variance rate, which is the variance swap rate. Tlierdifce between the two rates is multiplied
by a notional dollar amount to convert the payoff into dol@yments. At the time of entry, the contract
has zero value. Hence, by no-arbitrage, the variance sviaggaals the risk-neutral expected value of the

realized variance.

Although volatility swap payoffs are difficult to replicateariance swap payoffs can be readily repli-
cated, up to a higher-order term. The trading strategy coesba static position in a continuum of options
with a dynamic position in futures. The risk-neutral expgectalue of the gains from dynamic futures trad-
ing is zero. The square of the VIX is a discretized versionhef initial cost of the static option position
required in the replication. The theoretical relation Isalthder very general conditions. We can think of the

VIX as the variance swap rate quoted in volatility perceatpgints.

To understand the replication strategy and appreciatedeognic underpinnings of the new VIX, we

follow Carr and Wu (2004) in decomposing the realized retwamiance into three components:

RUT = o2 [ (K- S)*dK+ 2 &(Sr - K)dK
e 7 [ 3] o Y

— 22 T o {ex—l—x— X—zz] H(dx ds),

whereS denotes the timéspot index levelR® denotes the real line excluding zero, aridx, dt) is a ran-
dom measure that counts the number of jumps of@@%e 1) in the index price at time The decomposition
in (9) shows that we can replicate the return variance by uhe af (i) the payoff from a static position in
a continuum of European out-of-the-money options on thestiyithg spot across all strike prices but at the

same expiryT (first line), (ii) the payoff from a dynamic trading stratelglding 26?124) [% — %] futures

at times (second line), and (iii) a higher-order term induced by tise@htinuity in the index price dynamics

(third line).



Taking expectations under the risk-neutral meaguomn both sides, we obtain the risk-neutral expected
value of the return variance on the left hand side. We alsaiolbie forward value of the sum of the startup
cost of the replicating strategy and the replication errothe right hand side. By the martingale property,
the expected value of the gains from dynamic futures tradiragro under the risk-neutral measure. With

deterministic interest rates, we have,
B R = 2@ T [T Dk, (10

wheree denotes the approximation error, which is zero when thexidgeamics are purely continuous, and

of orderO [(%F)S] when the index can jump:

S / [, {e?‘ 1- x——}vs( X)dxds (11)

wherev; (x)dxdtis the compensator of the jump counting meaguoe dt).

The VIX definition in equation (4) represents a discret@atof the integral in the theoretical relation
in equation (10). The extra terff /Ko — 1) in equation (4) is an adjustment for using a portion of in-the
money call option aKg < K. Appendix B provides a proof for the decompaosition in (9) anjdstification
for the adjustment term in (4). Therefore, the new VIX indexared has a very concrete economic in-
terpretation. It can be regarded either as the price of dgbiorof options, or as an approximation of the

variance swap rate up to the discretization error and ttee srduced by jumps.

C. Practical Motivation for the Switch

The CBOE's switch from the old VXO to the new VIX is motivatey both theoretical and practical con-
siderations. First, until very recently, the exact ecormmeaning of the VXO, or the at-the-money implied
volatility, was not clear in any theoretical framework bagahe Black-Scholes model. It merely repre-

sents a monotonic but nonlinear transformation of at-tloeay option prices. In contrast, the new VIX is



the price of a linear portfolio of options. The economic meaning of tlev VIX is much more concrete.
Second, the trading-day conversion in the VXO definitiorucet an artificial upward bias that has drawn
criticism from both academia and industry. Third, althoudlgd VXO approximates the volatility swap rate,
it remains true that volatility swaps are very difficult tgheate. In contrast, equation (9) shows that one
can readily replicate the variance swap payoffs up to a Inigheer error term using a static position in a
continuum of European options and a dynamic position inregarading. Therefore, despite the popularity
of VXO as a general volatility reference index, no derivatproducts have been launched on the VXO
index. This phenomenon is quite uniqgue among indexes, silmest all popular indexes have derivative
products launched on them. In contrast, just a few montles #fe CBOE switched to the new VIX def-
inition, they started planning to launch futures and omioaontracts on the new VIX. VIX futures started

trading on March 26, 2004 on the Chicago Futures Exchange.

I1l. HISTORICAL BEHAVIORS

Based on historical data on daily closing option prices of?S£0 index and S&P 100 index, the CBOE has
back-calculated the VIX to 1990 and VXO to 1987. For our eimplrwork, we choose the common sample
period from January 2, 1990 to October 18, 2005, spanning@=;@lendar days. We analyze the historical
behavior of the two indices during this sample period, witb@is on the new VIX. We also download the

two stock indexes OEX and SPX and compute the realized retlatilities over the same sample period.

At each dayt, we compute the ex post realized volatility during the néxtidys according to the following

equation:

RV _100x | 2% S | S.i1))? 12
Olty30= X %Z(n(3+1/3+1—1))7 (12)

=1
where we follow the industry standard by computing the regquared without demeaning the return and
by annualizing the volatility according to the actual/36®yetounting convention. We analyze how the

volatility indices correlate with the index returns anduretvolatilities.



A. Summary Statistics

Exhibit 1 reports summary statistics on the levels and diiffgrences of the two volatility indexes (VXO
and VIX), and their corresponding 30-day realized voléidi, RVoFFPX andRVoPEX, Since VXO has an
artificial upward bias due to the trading-day conversionaige compute an adjusted index (VXOA), which
scales back the conversion in VX@X OA= \/22/—3ovxo, where we approximately regard the 22 trading
days as coming from 30 actual calendar days. All the valaslkeries are represented in percentage volatility

points.

Since VIX squared approximates the 30-day variance swaporaiSPX and VXOA approximates the
30-day volatility swap rate on OEX, Jensen’s inequalitytaties that VIX should be higher than VXOA if
the risk-neutral expected values of the realized volion the two underlying stock indexes (OEX and

SPX) are similar in magnitude:

2
VX2 = EP[(RVoff%o)?] = (Ef [RVof%g] ) +Var’ (Rvoff,),  (13)
VXOA = EZ[RVoRE%)]. (14)
VIXZ-VXOA = Varg (RVoff%,), if EZ[RVoF%o] =E? [RVolE%)]. (15)

Exhibit 1 shows that the sample mean of the realized vdiatilihn OEX is sightly higher than that on SPX.
Nevertheless, the sample average of VIX is higher than thekaaverage of VXOA due to Jensen’s in-
equality. The sample average of the original VXO seriesadtiighest, mainly due to the erroneous trading-

day conversion.

Comparing the volatility index to the corresponding readizolatility, we find that on average, VIX is

about five percentage points higher than the realized iiglatin SPX, and VXOA is about two percentage

10



points higher than the corresponding realized volatility@EX. To test the statistical significance of the

difference between the volatility index and the realizelatitity, we construct the following-statistic,

X
t-stat = VN, 16
5 (16)
whereN = 5,769 denotes the number of observatiokglenotes the difference between the volatility index
and the realized volatility, the overline denotes the sangplerage, an@y denotes the Newey and West
(1987) standard deviation of that accounts for overlapping data and serial dependeritteive number
of lags optimally chosen following Andrews (1991) and an AR{pecification. We estimate thestatistic

for (V1X — RVoPFPX at 14.09 and for\{1X — RVoPEX) at 6.72, both of which are highly significant.

The volatility levels show moderate positive skewness ammadss kurtosis, but the excess kurtosis for
daily differences is much larger, showing potential digtarous index return volatility movements. Eraker,
Johannes, and Polson (2003) specify an index dynamics dhédins constant-arrival finite-activity jumps
in both the index return and the return variance rate. Bymedihg the model to SPX return data, they
identify a strongly significant jump component in the vadamate process in addition to a significant jump
component in the index return. Wu (2005) directly estim#tesvariance rate dynamics without specifying
the return dynamics by using the VIX index and various realizariance estimators constructed from tick
data on SPX index futures. He also finds that the variancecatiains a significant jump component, but he
finds that the jump arrival rate is not constant over time rhtlter is proportional to the variance rate level.
Furthermore, he finds that jumps in the variance rate areametavents, but arrive frequently and generate

sample paths that display infinite variation.

Exhibit 2 reports the cross-correlation between the twatdly indexes V1% andVXQ) and the
subsequent realized volatilitieRY o5, andRVo[35%,). Each volatility index level is positively correlated
with its corresponding subsequent realized volatility,the correlation estimates become close to zero when
measured in daily changes. Nevertheless, the two vojatilitexes are highly correlated in both levels (0.98)

and daily differences (0.86). The two realized volatiligries are also highly correlated in both levels (0.99)

11



and daily changes (0.98). Therefore, just as the two stod&xies both provide a general picture of the
overall stock market, the two volatility indexes both prdry the overall stock market volatility. Given the
close correlation between VIX and VXO, and the planned ass@nce of VXO, we henceforth focus our

analysis on the behavior of the new VIX.

B. TheLeverage Effect

Exhibit 3 plots the cross-correlations between SPX indaxns at different leads and lags and daily changes
in the volatility index VIX, with the two dash-dotted linegoting the 95% confidence band. The instanta-
neous correlation estimate is strongly negative at -0.dBtHe correlation estimates at other leads and lags
are much smaller. Careful inspection shows that laggedreiwithin a week) show marginally significant
positive correlations with daily changes in the volatilindex, indicating that index returns predict future
movements in the volatility index. However, index returnghwiegative lags are not significantly corre-
lated with daily changes in the volatility index. Therefovelatility index movements do not predict index

returns.

The negative correlations between stock returns and stwgcknrvolatilities have been well-documented.
Nevertheless, since return volatility is not observalble,dorrelation can only be estimated under a structural
model for return dynamics. In Exhibit 3, we use VIX as an otable proxy for return volatility and
compute the correlation across different leads and lagsowitresorting to a model for return dynamics.
The strongly negative contemporaneous correlation betvgsack (index) returns and return volatilities
captures the “leverage effect” first discussed by Black §)9Given a fixed debt level, a decline in the
equity level increases the leverage of the firm (market) amté the risk for the stock (index). Various other
explanations for the negative correlation have also begpgsed in the literature, e.g., Haugen, Talmor, and

Torous (1991), Campbell and Hentschel (1992), Campbelkael (1993), and Bekaert and Wu (2000).

12



C. The FOMC Meeting Day Effect

Balduzzi, Elton, and Green (2001) find that trading volumid-dsk spreads, and volatility on Treasury
bonds and bills increase dramatically around FOMC meetaigsd The Federal Reserve often announces
changes in the Fed Funds Target Rate and its views on thelloeepaomy during the FOMC meetings.
The anticipation and ex post reaction to these announceniremhonetary policy shifts and assessments
create dramatic variations in trading and pricing behawidhe Treasury market. In this section, we use the
VIX as a proxy for stock market volatility and investigate ether stock market volatility also shows any

apparent changes around FOMC meeting days.

We download the FOMC meeting day log from Bloomberg. Duriig ®ample period, there are 144
scheduled FOMC meetings, about ten meetings per year. iExdhiliots the time series of the Fed Funds
Target Rates in the left panel and the basis point targetggsaduring the scheduled FOMC meeting days
in the right panel. Among the 144 meetings, 62 of the meetimg®unced a change in the Fed Funds Target
Rate. Among the 62 target moves, the change is 25 basis pidrisies, 50 basis points 16 times, and 75
basis points once. For 25 times, the change is positivegsepting a tightening of the monetary policy, and

for 37 times the change represent a rate cut and hence ag edsimonetary policy.

Armed with the list of FOMC meeting days, we sort VIX around #HOMC meeting days and compute
the average VIX level each day from ten days before to ten dégs the FOMC meeting days. The left
panel of Exhibit 5 plots sample averages of VIX around FOM@timg days in the left panel. We observe
that the average volatility level builds up before the FOMe&ating date and then drops markedly afterward.
The volatility index reaches its highest level the day befitre meeting and drops to the lowest level four
days after the meeting. To investigate the significance efdtop, we measure the difference between
the volatility index one day before and one day after the mgetThe mean difference is 0.6 percentage

volatility point, with at-statistics of 4.06.

Before the FOMC meeting, market participants disagree ogthgn the Fed will change the Fed Funds

Target Rate, in which direction, and by how much. The fact tha option-implied stock index volatility

13



increases prior to the meeting and drops afterwards shatgtb uncertainty about monetary policy has
a definite impact on the volatility of the stock market. Thigartainty is resolved right after the meeting.

Hence, the volatility index drops rapidly after the FOMC rtireg

Since VIX squared can be regarded as the variance swap r&eXnwe also study whether the timing
of a variance swap investment around FOMC meeting days gesedifferent returns. The right panel of
Exhibit 5 plots the average ex post payoff from going longgstwap contract around FOMC meeting days
and holding the contract to maturity. The payoff is definedhasdifference between the ex post realized
variance and the VIX square(ﬂR\(’tHO—VIX{z). We find that the average payoffs are negative by going
long the swap on any day. Therefore, shorting the swap aingenerates positive payoffs on average.
Comparing the magnitude differences at different days, s find that shorting the swap contract four
pays prior to the FOMC meeting days generates the highesige@ayoff, and that shorting the variance
swap four days after the FOMC meeting days generates thai@average payoff. The difference in average
payoffs between investments in these two days is stafligtgignificant, with at-statistic of 9.29. Therefore,
the evidence suggests that it is more profitable to short B¥\@riance swap contract four days before an

FOMC meeting than four days after.

D. Variance Risk Premia

Up to a discretization error and a jump-induced error teriX &quared is equal to the risk-neutral expected

value of the realized variance on SPX return during the néxdég/s:

VIXZ 2~ E2 [RM430] - (17)

We can also rewrite equation (17) under the statistical nredsas,

~ Ef [Mt t+30RM t-+30]

vIX Ef [Mt t+30]

Mt t+30
= FE{ [R\M 430 +CoO (’73\{ 30) ; (18)
t [Rao d Ef Megz

14



whereM; t denotes a pricing kernel between time peti@hdT. For traded assets, no-arbitrage guarantees

the existence of at least one such pricing kernel (Duffie 2)09

Equation (18) decomposes VIX squared into two terms. Thetérn Ef [R\ (30| represents the sta-
tistical conditional mean of the realized variance, andstheond term captures the conditional covariance
between the normalized pricing kernel and the realizedaad. The negative of this covariance defines the

time+ conditional variance risk premiunv RR):

Mt 430

VRR=-Coy <EtP Mt t+30]

,R\47t+3o> =E¢ [RV 1430 — VIXZ. (19)
Taking unconditional expectations on both sides, we have,
E" VRR] = E* [RM ;50— VIXZ]. (20)

Thus, we can estimate the average variance risk premiuneasathple average of the differences between
the realized return variance and the VIX squared. Over aupgaperiod, the mean variance risk premium
is estimated at-15867 basis points, with a Newey and West (1987) serial deperdadjusted standard

error of 17.2. Hence, the mean variance risk premium is gtyamegative.

Risk averse investors normally ask for a positive risk preamifor return risk. They require stock
prices to appreciate by a higher percentage on averageck stturns are riskier. In contrast, the negative
variance risk premium indicates that investors requirdrilex return variance to stdgwer on average to
compensate for higher variance risk. Therefore, wheragi®ehiaverage return is regarded as compensation
for higher return risk, lower average variance levels agamged as compensation for higher variance risk.
Investors are averse not only to increases in the returaneeilevel, but also to increases in the variance of

the return variance.
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From the perspective of a variance swap investment, thetiaegariance risk premium also implies
that investors are willing to pay a high premium or endure \&rage loss when long variance swaps in

order to receive compensation when the realized variaruigls

Dividing both sides of equation (18) bWIX?, we can rewrite the decomposition in excess returns:

R M R
1—RP { V,t+§0:| +C0\F< L L3 \'{,t+§0> ’ 21)
VIX Et [Mtt+30] VX

If we regardV 1X2 as the forward cost of the investment in the static optioritieosrequired to replicate the
variance swap payoff(R\Lt+3o/Vl><t2 — 1) captures the excess return from going long the variance.swap
The negative of the covariance term in equation (21) reptsshe conditional variance risk premium in

excess return terms:

- Mtt+zo  RMit430) _ p | RMiss0|
VRPR= ~Cof (E%“’[Mmso]’ VIX2 >_Et [ VIX?2 } t (2)

We can estimate the mean variance risk premium in excess retum through the sample average of the
realized excess returfiSR 130 = (RM t+30/V IX,(2 —1), which is estimated at40.16%, with a Newey and

West (1987) standard error of 2.87%. Again, the mean vagigisk premium estimate is strongly negative
and highly significant. Investors are willing to endure aityghegative excess return for being long variance

swaps in order to hedge away upward movements in the retuianea of the stock index.

The average negative variance risk premium also suggestshibrting the 30-day variance swap and
holding it to maturity generates an average excess retud0.56%. We compute the annualized informa-
tion ratio using 30-day apart non-overlapping déR= —+/12ER/S:r, whereER denotes the time series
average of the excess return &gk denotes the serial-dependence adjusted standard devestilnate of
the excess return. The information ratio estimates avei@ges2, indicating that shorting 30-day variance

swaps is very profitable on average.
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To further check the historical behavior of excess returamfthis investment, we plot the time series
of the excess returns in the left panel and the histogramaerright panel in Exhibit 6. The time series
plot shows that shorting variance swaps provides a pogsiiten 89% of the time (5137 out of the 5769
daily investments). However, while the historical maximpositive return is at 89.53%, the occasionally
negative realizations can be as large as 242.42%. The fastom the right panel shows that the excess
return distribution is heavily negatively skewed. The hagylerage return and high information ratio suggest
that investors ask for a very high average premium to congterfer the heavily negatively skewed risk
profile. The payoff from shorting variance swaps is simitathat from selling insurance, which generates

a regular stream of positive premiums with small variatiout, with occasional exposures to large losses.

To investigate whether the classic Capital Asset PricinglldCAPM) can explain the risk premium
from investing in variance swaps, we regress the excesmseftom being long the variance swap on the

excess returns from being long the market portfolio,

ERtrs0=0+f (Rtn,%+3o - Rf) + &, (23)

where (R{‘}Ho— Rf) denotes the continuously compounded excess return to theetrgortfolio. If the
CAPM holds, we would obtain a highly negative beta estimatettie long variance swap return. If the
CAPM can fully account for the risk premium, the estimatetfar interceptr, which represents the average

excess return to a market-neutral investment, would noigrméfisantly different from zero.

We proxy the excess return to the market portfolio using #ieerweighted return on all NYSE, AMEX,
and NASDAQ stocks (from CRSP) minus the one-month Treasilkryate (from Ibbotson Associates).
Monthly data on the excess returns is publicly available etriéth French’s online data library from July
1926 to September 2005. We match the sample period with daratel run the regression on monthly
returns over non-overlapping data using the generalizetthade of moments, with the weighting matrix

computed according to Newey and West (1987).
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The regression estimates are as follows, wigihatistics reported in parentheses,

ER = -03636 — 37999 (R"—R;) +a, R*=1915% o

(—65.03) (—30.10)
The beta estimate is highly negative, consistent with timegd observation that index returns and volatility
are negatively correlated. However, this negative betaasfully explain the negative premium for volatil-
ity risk. The estimate for the intercept, or the mean betatrak excess return, remains strongly negative.
The magnitude oft is not much smaller in magnitude than the sample averagecafitl excess return at
—3836%. Thus, the CAPM only gets the sign right, but cannot fallgount for the large negative risk
premium on index return variance risk. This result suggistisvariability in variance constitutes a separate

source of risk that the market prices heavily.

To test whether the variance risk premium is time varyingruvethe following expectations-hypothesis

regressions, with thiestatistics reported in parenthesis:

RVt 30 = —119006 + 0.650MIX? +@y.30,
—-052 —4.79
( ) ( ) (25)
(RMys30/VIXZ—1) = —0.4495 + 0.000VIX? +@.30.
(—14.28) (1.61)

Under the null hypothesis of constant variance risk premitla first regression should generate a slope of
one, and the second regression should generate a slopeofZagp variance risk premium would further
imply zero intercepts for both regressions. Tth&tatistics are computed against these null hypotheses.
Since the daily series of the 30-day realized variance tatest an overlapping series, we estimate both
regressions using the generalized methods of moments,castrect the weighting matrix, accounting for

the serial dependence according to Newey and West (1987 )3@itags.

When the regression is run on the variance level, the sldafiaas is significantly lower than the null

value of one, providing evidence that the variance risk jwemV RR is time varying and correlated with
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the VIX level. When the regression is run on excess returtisarsecond equation, the slope estimate is no
longer significantly different from zero, suggesting tha variance risk premium defined in excess return

terms ¥ RPR) is not highly correlated with the VIX level.

E. Predictability of Realized Variance and Returnsto Variance Swap | nvestments

We estimate GARCH(1,1) processes on the S&P 500 index retoavation, with an AR(1) assumption on
the return process. Then, we compare the relative infoama&ibntent of the GARCH volatility and the VIX

index in predicting subsequent realized return variances:

RV 1130 = a+bVIX?+cGARCH+ &30, (26)

whereGARCH denotes the timé-estimate of the GARCH return variance in annualized basistfpoEXx-
hibit 7 reports the generalized methods of moment estima&sults on restricted and unrestricted versions

of this regression.

When we use eitheV X2 or GARCHas the only predictor in the regression, the volatility mdéXx
generates an R-squared about ten percentage points higimethe GARCH variance does. When we use
bothV 1X? and GARCHas predictors, the slope estimate on the GARCH variance Isnyer statistically
significant, and the R-squared is only marginally highenthsingV IX? alone as the regressor. Thus, the

GARCH variance does not provide much extra information iditi@h to that in the VIX index.

The results in Exhibit 7 show that we can predict the realimethnce using the volatility index VIX. By
using variance swaps, investors can exploit such predlityadnd directly convert them into dollar returns.
We investigate whether the predictability of return vacarhas been fully priced into the variance swap
rate by analyzing the predictability of the excess returamfinvesting in a 30-day SPX variance swap and

holding it to maturity.
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First, we measure the monthly autocorrelation of the exeessnsER ;30 using non-overlapping 30-
day apart data. The estimates average at 0.12. When we ruRR€l) fegression on the non-overlapping
excess returns, the R-squared estimates average to 1.588%. the predictability of excess returns through
mean reversion is very low. Although the volatility level sgongly predictable, investors have priced
this predictability into variance swap contracts, so that éxcess returns on these swaps are not strongly

predictable.

Exhibit 3 shows that SPX returns predicts future movemeantthe VIX index. Now we investigate
whether we can predict the excess return on a variance swegtinent using index returns. Exhibit 8 plots
the cross-correlation between the excess return to thanaiswap and the monthly return on SPX, based
on monthly sampled and hence non-overlapping data. Thik stdex return and the return on the variance
swap investments show strongly negative contemporanemuslation, but the non-overlapping series do
not exhibit any significant lead-lag effects. Hence, destiie predictability in return volatilities, excess
returns on variance swap investments are not strongly geddé. This result shows that the SPX options

market is relatively efficient.

IV. VIX DERIVATIVES

Given the explicit economic meaning of the new VIX and itedirlink to a portfolio of options, the launch
of derivatives on this index becomes the natural next stepM@rch 26, 2004, the CBOE launched a new
exchange, the Chicago Futures Exchange, and startedgridimes on VIX. Options on the VIX are also
being planned. In this section, we derive some interestsglts regarding the pricing of VIX futures and

options.
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A. VIX Futures and Valuation Bounds

Under the assumption of no-arbitrage and continuous mgukirmarket, the VIX futures prices"%, is a

martingale under the risk-neutral probability measQre
R =E¢ [FY] = EX VIXy). 27)

We derive valuation bounds on VIX futures that are obsesvditdim the underlying SPX options market,
under two simplifying assumptions: (i) The VIX is calculdtasing a single strip of options maturing at
T, > Ty, with T, — T; = 30/365, instead of two strips, and on a continuum of optionsegri@ther than a

discrete number of options. (ii) The SPX index has contisudynamics and interest rates are deterministic.

The first assumption implies that the VIX index is given by,

B 2 * Or, (K, Tz)
Ve = \/(TZ_Tl)BTl(TZ)/O 4% 9

whereBr, (T2) denotes the timé&; price of a zero bond maturing 8. The second assumption further
implies that the equality between the VIX index squared dmdrisk-neutral expected value of the return

variance is exact. Alternatively, we can write,
VIXr, = \/ERR, 1,. (29)

Substituting (29) in (27), we have the VIX futures as,

R =EZ\/EfRW,1,, t<Ti<T (30)

Then, the concavity of the square root and Jensen’s indgugdnerates the following lower and upper

bounds for the VIX futures:

EtQ V R\/TLTZ < FtViX < \/ ]EtQR\/rLTz . (31)
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The lower bound is the forward volatility swap rdte= Et‘@\/m, which can be approximated by
a forward-starting at-the-money option. The proof is samtb that in Appendix A for the approximation
of a spot volatility swap rate using the spot at-the-moneyoop The upper bound is the forward-starting
variance swap rate quoted in volatility percentage polhtss w/EtQRVrLTZ, which can be determined from

the prices on a continuum of options at two maturifigandT>:

1
o BB DRV, ~EE(T— Ve, |

2 w Ot(KvTZ) OI(K>T1) dK
T2_T1/0 [ }W (32)

Ut2 = EE@ RViT, =

Bi(T2) Bt(T1)

The width of the bounds is determined by the risk-neutrabvene of the forward-starting realized volatility:
2
U2~ L2 =EL (R 7,) — (EC VRV T, ) = Var? (VR ;). (33)

When the market quote on VIX future&{*) is available, we can combine it with forward-starting

variance swap ratet() to determine the risk-neutral variance of the future VIX:

varl (VIXg,) = Var? ( E? [RVrLTZ])
2
= EtQ [R\/TLTZ] - (EtQ \/ E%R\/l'LTz) = Ut2 - (FtViX)z' (34)

Therefore, VIX futures provide economically relevant imfation not only about the future VIX level, but

also about the risk-neutral variance of the future VIX. W gae this information for pricing VIX options.
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B. VIX Options

The VIX futures market, together with the SPX options margetvides the information basis for launching

VIX options. To see this, we consider a call option on VIX,whe terminal payoff:

(VIXy, —K)T, (35)

whereK is the strike price andl; denotes the expiry date of the option. We have shown that wkeean the
conditional risk-neutral meamy;) and variancer(y) of V I Xy, from information in the VIX futures market

and the underlying SPX options market:

My EZ (VIXy,) = RV,

(36)

i 00 K7T K,T; i
VaréQ (VIXy,) = Ut2 . (FtVIX)Z _ 2Tl fo O[BE 2)  Ou(KT) | dK (FtVIX)Z.

My = T ™) BTy | K2

Thus, under certain distributional assumptions, we caivel¢he value of the VIX option as a function of

these two moments.

As an example, if we assume thatXt, follows a log-normal distribution under measupewe can use

the Black formula to price VIX options with the two momentsaiquation (36) as inputs,
C = By (Ta) [R™N (di) — KN (dp)] ,

where
_ INR™/K+ 32(Ta—t)
B Sy Ti—t ’

ands is the conditional annualized volatility of Al Xr,, which can be represented as a function of the first

dy

do=0d1 —svT1—t,

two conditional moments of I Xy, ,

B 1 My + (FY%)2
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As another example, if we assume that the risk-neutraliligion of V 1Xt, is normal rather than log-
normal, we can derive the Bachelier option pricing formdadunction of the first two observable moments

of VIXy,:

G = Bt (To) [vimaN' (d) + (R™ — K)N(d)], (38)

with d = (Ft"‘x— K)//Mx. For at-the-money optionK(= F®), the Bachelier option pricing formula

reduces to a very simple form,

A= By(T1)y/Ma/V2m (39)

V. CONCLUSION

The new VIX differs from the old VXO in two key aspects. Firtte two indices use different underly-
ings, SPX for the new VIX versus OEX for the old VXO. Second ttvo indices use different formulae
in extracting volatility information from the options mat< The new VIX is constructed from the price of
a portfolio of options and represents a model-free appration of the 30-day return variance swap rate.
The old VXO builds on the one-month Black-Scholes at-thareyamplied volatility and approximates the
volatility swap rate under certain assumptions. The CBO&dae to switch from VXO to VIX mainly
because the new VIX has a more well known and robust econartdcpretation. In particular, the vari-
ance swap underlying the new VIX has a robust replicatingfglar whose option component is static. In
contrast, robust replication of the volatility swap ungerty the VXO index requires dynamic option trad-
ing. Furthermore, the VXO includes an upward bias inducedrbgrroneous trading-day conversion in its

definition.

Analyzing about 15 years of daily data on the two volatilitdices, we obtain several interesting findings
on the index behavior. We find that the new VIX averages aboaipercentage points higher than the bias-
corrected version of the old index, although the sampleagenf the 30-day realized volatility on SPX is

0.66 percentage point lower than that of OEX. The differeneveen the new and old volatility indices

24



is mainly induced by Jensen’s inequality and the risk-radwtariance of realized volatility. The historical
behaviors of the two volatility indices are otherwise vamitar and move closely with each other. We also
find that daily changes in the volatility indices show vemgkexcess kurtosis, suggesting that the volatility

indices contain large discontinuous movements.

We identify a strongly negative contemporaneous coradtietween VIX and SPX index returns, con-
firming the “leverage effect” first documented by Black (1R7/eurthermore, although lagged index returns
show marginal predictive power on the future movements ef\MhX, lagged movements in the volatility

index do not predict future index returns.

When we analyze VIX behavior around FOMC meeting days, dunhich monetary policy decisions
such as Fed Funds Target Rate changes are often announdaa Wt the volatility index increases prior
to the FOMC meeting, but drops rapidly after the meetingywshg that uncertainty about monetary policy

has a direct impact on volatility in the stock market.

Since VIX squared represents the variance swap rate on SEXample average difference between
the 30-day realized return variance on SPX and VIX squareskaores the average variance risk premium,
which we estimate at-15867 basis points and highly significant. When we represenvé#nance risk
premium in excess returns form, we obtain a mean estimated6f16% for being long a 30-day variance
swap and holding it to maturity. The highly negative varmmisk premium indicates that investors are
averse to variations in return variance and the compemstirdoearing variance risk can come in the form

of a lower mean variance level.

From the perspective of variance swap investors, the negediriance risk premium indicates that in-
vestors are willing to pay a high average premium to obtaimmensation (insurance) when the variance
level increases. Therefore, shorting variance swaps andeheeceiving the fixed leg generates positive
excess returns on average. The annualized informationm f@tishorting a variance swap is about 3.52,
much higher than traditional investments. Nevertheldss,excess return distribution accessed by being

short variance swaps is heavily negatively skewed. Negadturn realizations are few but large. The high
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information ratio indicates that investors ask for a higarage return in order to compensate for the heavily
negatively skewed risk profile. When we regress the excéssgefrom being long the variance swap on the
stock market portfolio, we obtain a highly negative betawdeer, the intercept of the regression remains
highly negative, indicating that the classic Capital Asagting Model cannot fully account for the negative
variance risk premium. Investors regard variability ini@ace as a separate source of risk and charge a
separate price for bearing this risk. Expectations hymgheegressions further show that the variance risk
premium in variance levels are time varying and correlatgd tlwe VIX level, but the variance risk premium

in excess returns form is much less correlated with the ViXélle

We find that the VIX can predict movements in future realizadance, and that GARCH volatilities do
not provide extra information once the VIX s included asgressor. Nevertheless, the strong predictability
of the realized variance does not transfer to strong pragiiityy in excess returns for investing in variance

swaps.

Finally, we show that the SPX options market provides infaiion on valuation bounds for VIX futures.
The width of the bounds are determined by the risk-neutreabmae for forward-starting return volatility.
Furthermore, VIX futures quotes not only provide informatiabout the risk-neutral mean of future VIX
levels, but they also combine with information from the SRXians market to reveal the risk-neutral vari-

ance of the VIX. This information can be used to price VIX op8.
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Appendix A. Approximating Volatility Swap Rates with At-the-Money Implied Volatilities

Let (Q,7,Q) be a probability space defined on a risk-neutral meaQurds in Carr and Lee (2003), we assume

continuous dynamics for the index futufgsunder measur@:

dR/R = oy dW, (1)

where the diffusion volatilityo; can be stochastic, but its variation is assumed to be indleperof the Brownian
motionW in the price. Under these assumptions, Hull and White (188a@)v that the value of a call option can be
written as the risk-neutral expected value of the BlackeBehformula, evaluated at the realized volatility. Theetim
value of the at-the-money forwarll (= ) option maturing at tim& can be written as,

)

ATMG :EP{H [N (RVOLTZ\/—T—t) N (_RVOLT T—t)]}7

2

whereRVol 7 is the annualized realized return volatility oyefT]:

1T
RVolr = /= /t o2ds ©)

Brenner and Subrahmanyam (1988) show that a Taylor serfension of each normal distribution function about

zero implies:

3
2

N (RVOLTZ\/T —t) N (_ RVot1y/T —t) _RVOLIVTT

2 \/5_[ ((T _t)

)- (4)

Substituting (4) in (2) implies that:

ATMG T ~ E? [\/%1 RVol 1T —t] , (5)

and hence the volatility swap rate is given by:

V2n
FVT _t

EZ [RVol 7] = ATMG T +O((T —1)%). (6)
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Since an at-the-money call value is concave in voIatiE;&%AT MGt is a slightly downward biased approximation
of the volatility swap rate. As a result, the error term isippes. However, Brenner and Subrahmanyam show that the
at-the-money implied volatility is also given by:

vam CATMG 7 +O((T —1)?

AT M\LT = ﬁ

). (7

Once again,w%AT MGt is a slightly downward biased approximation of the at-themey implied volatility.
Subtracting equation (7) from (7) implies that the volatiswap rate is approximated by the at-the-money implied
volatility:

EZ [RVol1] = ATMV 1 +O((T 1)), (8)

The leading source of error in (6) is partially canceled kg lgrading source of error in (7). As a result, this approxi-

mation has been found to be very accurate.

Appendix B. Replicating Variance Swaps with Options

The interpretation of the new VIX as an approximation of tBeday variance swap rate can be derived under a much

more general setting for tH@-dynamics of SPX index futures:

dR /R = 0w dW-+ [ (e~ 1) (dxdt) — ve (), ©

whereR_ denotes the futures price at tirhgust prior to a jumpR® denotes the real line excluding zero, and the
random measurg(dx,dt) counts the number of jumps of size* — 1) in the index futures at timé The process

{ve(x),x € R%} compensates the jump process: [5 fro (€ — 1) u(dx ds), so that the last term in equation (9) is the
increment of &Q-pure jump martingale. To avoid notational complexity, veswame that the jump component in the

price process exhibits finite variation,

[, (A DV < o
RO

By adding the time subscripts m_ andv;(x), we allow both to be stochastic and predictable with restethe
filtration 7;. To satisfy limited liability, we further assume the twodhastic processes to be such that the futures price

R is always nonnegative and absorbing at the origin. Finaliih little loss of generality, we assume deterministic
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interest rates and dividend yields. Under these assungtiba annualized quadratic variation on the futures return

over horizont, T] can be written as

1 T T
Rt =2 [ /t o dt+ /O /]R oxzu(dxdt)} (10)

Applying 1td’s lemma to the functiori(F) = InF, we have
T T
In(Fr) — +/ —dFs—— o§,ds+/ /O[X—ex—i—l]u(dx,ds).
t R

Add and subtract [% -1+ ftT xu(dx, dt) and re-arrange, we obtain a representation for the quadhaiation,

(T-OR¥T = 2[%_1 ( >}+2/ {FS ]dFS
_z/tT/RO {ex_l_x_i] p(dx ds). (11)

A Taylor expansion with remainder of iy about the poink implies,

InFr — InFt+Ft(Fr R) /KZK Fr)tdK — / Z(Fr—K)+dK. (12)

R K

Plug (12) into (11), we have,

(T-tRUT = 2UH%(K-Fmdm/:%(ﬁ—qu

+2/ {g——}da

+2/t /RO [ex—l—x—x—zz] p(dx ds), (13)

which is the decomposition in (9) that also represents acaig strategy for the return quadratic variation.

Take expectations under meas@gwe obtain the risk-neutral expected value of the returimamae on the left

hand side, and the cost of the replication strategy on thn hignd side,

EC[RMr] =

ZGFtTt/ O (K dK ZE[Q/ /Ro{ex 1-— X_E]VS( )dxds
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where the first term denotes the initial cost of the stati¢fpbo of out-of-the-money options and the second term is a

higher-order error term induced by jumps.

The VIX’s definition in equation (4) represents a discretmaof the option portfolio. The extra tertf /Ko — 1),
in the VIX definition adjusts for the in-the-money call optiosed akg < K. To convert the in-the-money call option

into the out-of-the-money put option, we use the put-calitpa
& TG (Ko,K) = &'TVR (Ko, T) + R — Ko. (14)

If we plug this equality into equation (4) to convert all aptiprices into out-of-money option prices, we have

AKg

1 [R 2
W(H_KO)_ﬁ [——1} ; (15)

_ t(T t
VSt,T) _tz K2er O (Ki, T)+ Ko

where the second term on the right hand side of equation ¢1di)e to the substitution of the in-the-money call option
atKp by the out-of-the-money put option at the same stKlse If we further assume that the forward level is in the
middle of the two adjacent strike prices and approximaterttezval AKg by i — Ko, the last two terms in (15) cancel

out to obtain:
_ T t
VL, T) = tE Kzert O (Ki,T). (16)

Thus, the VIX definition matches the theoretical relationtfoe risk-neutral expected value of the return quadratic

variation up to a jump-induced error term, and errors indunediscretization of strikes.
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Exhibit 1

Summary Statistics of Volatility Indices and Realized Return Volatilities

Moments  VIX RVoFFX VXO VXOA RVoPEX VIX RVoOFPX VXO VXOA RVoPEX

Levels

Mean 19.46 14.64 20.39
Stdev 6.37 6.82 7.29
Skewness  0.95 146 0.95
Kurtosis 0.78 2.64 0.76
Auto 0.99 0.99 0.99

Daily Differences

17.46 15.30 -0.00 -0.00 -0.00 -0.00 .00-0

6.25 7.29 1.01 0.82 1.16 0.99 0.86
0.95 1.43 0.68 0.87 0.68 0.68 0.69
0.76 2.38 10.24 36.61 13.71 13.71 0633.

0.99 0.99 -0.03 0.05 -0.09 -0.09 0.06

Entries report the sample average (Mean), standard dexiattdev), skewness, excess kurtosis, and first-order auto
correlation (Auto) on the levels and daily differences @f tiew volatility index VIX, the 30-day realized volatility o
SPX return (RVoi™), the old volatility index VXO, its bias-corrected versiKOA, and the 30-day realized volatility
on OEX return (RVSIEX). Each series has 5,769 daily observations from Januan®201o October 18, 2005. All
series are represented in percentage volatility points.

Exhibit 2

Cross-correlations Between Volatility Indices and Subsequent Realized Return Volatilities

Correlation V1% RVoEthgo VXQ

RVORE%, VIX  RVoFP%, VXa RVoPEX,

Levels Daily Differences
VX 1.00 0.76 0.98 0.76 1.00 -0.04 0.86 -0.04
RVoﬁﬂéO 0.76 1.00 0.78 0.99 -0.04 1.00 -0.06 0.98
VXQ 0.98 0.78 1.00 0.78 0.86 -0.06 1.00 -0.05
RVOLZE%, 0.76 099 0.78 1.00 -0.04 0.98 -0.05 1.00

Entries report the contemporaneous cross-correlationveen VIX, SPX 30-day realized volatility (R\@éo),
VXQ, and OEX 30-day realized volatility (R\#}%,), both in levels and daily differences.
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Exhibit 3
Cross-correlations Between Return and Volatility.
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The stem bars represent the cross-correlation estimateseam SPX index returns at the relevant number
of lags (in days) and the corresponding daily changes in Mibe two dash-dotted lines denote the 95%
confidence band.
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Exhibit 4
The Fed Funds Target Rate Changes
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The solid line in the left panel plots the time series of theé Fands Target Rate over our sample period.
The spikes in the right panel represents the target rate gharn basis points.

Exhibit 5
VIX Fluctuation Around FOM C Meeting Days
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Lines represent the sample averages of the VIX levels @etlpand the average payoffs to long variance
swap contracts(R\ 30— VIX?) (right panel), at each day within ten days before and after BEOMC
meeting days.
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Exhibit 6
Excess Returnsfrom Shorting 30-Day Variance Swaps
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The left panel plots the time series of excess returns frasntisg 30-day variance swaps on SPX and
holding the contract to maturity. The right panel plots thstbgram of excess returns.

Exhibit 7
Information content in VIX and GARCH volatilities in predicting futurerealized return variances

Intercept VIX? GARCH R-square, %
-11.9006 (-0.52) 0.6501 (8.90) — — 46.87
64.0843 (3.70) — — 0.7456 (8.74) 35.76
11.4691 (-0.50) 0.5873 (5.20) 0.0981 (0.88) 47.05

Entries report the estimation results on restricted andastricted versions of the following relation
RV 1130 =a+bVIX?+cGARCH+ @ 30.

The relation is estimated using generalized method of mtanérhe covariance matrix is computed according to
Newey and West (1987) with 30 lags. The data is daily fromdgn, 1990 to October 18, 2005, generating 5,769
observations for each series.
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Exhibit 8
Cross-correlation Between SPX Monthly Returnsand Excess Returnson 30-day Variance Swaps

Sample Cross Correlation

The stem bars represent the cross-correlation estimatesees SPX returns at different lags and excess
returns on investing in a 30-day variance swap and holdintp imaturity. The estimates are based on
monthly non-overlapping data. The two dashed lines deha®5%% confidence band. Positive numbers on

0.2

[SPX Return (Lag), ER]

o ce ta vt le TT. T T‘
[ ‘ I
_01.
—02 -------------
_03- .................... ........................................................................
—0.4F ------------
05515 —1;0 5 (;) 5 10 15 20

Number of Lags in Months

the x-axis represent lags in months for index returns.
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