
Local System Security via SSHD Instrumentation
 Scott Campbell

National Energy Research Scientific
Computing Center,

Lawrence Berkeley National Lab

scampbell@lbl.gov

ABSTRACT
In this paper we describe a method for near real-time
identification of attack behavior and local security policy
violations taking place over SSH. A rational is provided for the
placement of instrumentation points within SSHD based on the
analysis of data flow within the OpenSSH application as well as
our overall architectural design and design principles. Sample
attack and performance analysis examples are also provided.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information Flow Controls –

General Terms
Measurement, Security.

Keywords
SSH, keystroke logging, Bro IDS, Intrusion Detection, policy
enforcement.

1. INTRODUCTION
The adoption of SSH as the defacto protocol for interactive shell
access has proven to be extremely successful in terms of avoiding
shared media credential theft and man in the middle attacks. At
the same time it has also created difficulty for attack detection and
forensic analysis for the computer security community. The SSH
protocol and it’s implementations such as OpenSSH [9] provide
tremendous power and flexibility. Examples of this flexibility
include authentication and encryption options, shell access,
remote application execution and X11 and SOCKS forwarding.
While the benefits gained vastly exceed the difficulties introduced
by this protocol, the loss of visibility into user activity created
problems for the security groups tasked with monitoring network
based logins and activity.

The National Energy Research Scientific Computing Center
(NERSC) is the primary open science computing facility for the
Office of Science in the U.S. Department of Energy. It is one of
the largest facilities in the world devoted to providing
computational resources and expertise for basic scientific
research, and has on the average 4000 users across seven primary
computational platforms. The significant majority of user
interaction involves interactive ssh logins. To address this lack of
visibility into user activity on our high performance computing
(HPC) infrastructure, we introduced an instrumentation layer into
the OpenSSH application and feed the output into a real time
analyzer based on the Bro IDS. This instrumentation provides
application data such as user keystrokes and login details, as well
as metadata from the SSHD such as session and channel creation
details. This data is fed to an analyzer where local site security
policy is applied to it, allowing decisions to be made regarding
hostile activity. The data analyzer is based on the Bro intrusion
detection system (IDS) [10] which provides a native scripting
language to handle data structures, tables, timers to express local
security policy. In this capacity Bro is being used as a flexible
data interpreter. A key differentiator between the instrumented

SSHD (iSSHD) and many other security tools and research
projects is that iSSHD is not designed to detect and act on single
anomalous events (like unexpected command sequences), but
rather to enforce local security policy on data provided by the
running SSHD instances.

A key idea is that the generation of data is completely decoupled
from its analysis. The iSSHD instance generates data and the
analyzer applies local policy to it. By using the Broccoli library
[4], we convert the structured text data output by iSSHD into
native bro events that are processed by the analyzer system [3].
Events, as their name implies, are single actions or decisions made
by a user that are agnostic from a security analysis perspective.
 Bro processes these events in the same way as network traffic
events, applying local security policy to interpret them as desired.

Local security policy can be thought of as sets of heuristics that
describe (in this context) what behaviors are considered
unacceptable or suspect. This behavior might be a command like
“mkdir …”, application usage like remotely executing a login
shell, or tunneling traffic to avoid blocked ports. iSSHD was
designed so that the installed SSHD instance would not need to be
modified with every new threat. Instead, changes are made on the
analysis/policy side as new problems are identified. This not only
simplifies administration, but also allows experiments to be run on
previous logs without significant work.

While NERSC has no explicit legal or privacy issues with
intercepting communications on local systems, we recognize the
importance of an informed user and staff population. To help
address this we chose a policy of complete transparency. Each
major group at NERSC was allowed representation in the design
process and code review. As well, the entire user community was
alerted to the changes by making announcements at User Group
meetings and email notices. The complete source code is
available to anyone interested and can be secured through the
LBNL Technology Transfer Office.

The iSSHD project has been used in production capacity at
NERSC for nearly three years on approximately 350 hosts. There
are around 4000 user accounts with a daily average of 52,000
logins per day on the collective set of multi-user systems. In
addition to the obvious security functionality, there are a number
of other non-security purposes like debugging user problems or
job analysis where having access to historical keystroke data has
been quite beneficial in tracking down systems problems.

The reminder of the paper is structured as follows. In related
work similar coding projects and tools are presented. Next the
execution flow within an unmodified OpenSSH 5.8p1 instance is
mapped out. This flow provides a way to determine the most
effective points for instrumentation. In section four, the overall
architecture and design goals are detailed including the integration
of Bro into the process. Section five provides implementation

details describing the inherent tradeoffs between complete
monitoring and resource limitations. Section six has examples of
attacks and some rudimentary analysis. Finally future work and
references are provided.

2. RELATED WORK
Related work can be generalized into several groups. These are
research projects relating to SSH data access, hacker activities,
and more generalized detection of SSH credential theft detection
in the HPC environment.

The work most similar to our own involves the hacker
community’s use of backdoored SSHD instances to steal
authentication credentials. In principle there is little difference
between this behavior and the functionality provided by the
iSSHD except in terms of the breadth of data provided. Statically
backdoored OpenSSH code has been around since at least 1999
[14], and more recent versions are trivial to locate - see [15] for
example.

Besides directly replacing the existing SSHD binary, there are at
least three additional ways to access session data. The first is via
direct access to a user’s terminal devices by a privileged user.
This can be achieved by one of dozens of small applications or as
part of a larger kernel rootkit [18]. A more subtle approach is to
interfere with kernel level behavior, thereby preventing a user
space analysis of the terminals from giving away the access.
Typically rather than just looking at terminal IO, input and output
system calls are intercepted via a hidden kernel module. This
information is transmitted to an analysis tool or recorded. There
are innumerable examples of this approach within the rootkit
community [11] as well as Honeypot implementations such as
Sebek [13]. Finally you can interact with the running SSHD
process by injecting code into it [16] or using process debugging
to “jump” from their stolen user account to a potentially
privileged session on another machine [17] [1]. These last two
cases are somewhat subtle in that no changes to the actual static
(non-running) binary are made.

There is a general class of SSH related security work focusing on
user account theft via anomaly detection, both in terms of
command sets as well as process accounting data. These include
Yurcik [21] [22] and Joohan Lee et al. [5] who look for account
compromises within the HPC domain via accounting and
command analysis. Historically, there is a rich collection of
research relating to account masquerading, with a nice write-up by
Malek et al. [6]. This last class of ideas can be fed by or used
with the iSSHD and incorporated into the sites overall intrusion
detection design since they are orthogonal to the actual iSSHD.

3. SSH Application and Protocol
In order to identify the best places to place instrumentation within
the SSH application, it is necessary to understand the code path
taken by typical behavior as well as subtleties within the protocol.

From a historical perspective there are two individual (and
incompatible) versions of the SSH protocol available. Tatu
Ylönen created version 1 in 1995 as a replacement for the then
ubiquitous telnet and rlogin protocols. OpenSSH emerged with
the OpenBSD group taking up development after a number of
organizational changes including the splitting of the Ylönen code
base at one of it’s last open source implementations. The SecSH

IETF working group developed version 2 originally published in
1998 and in 2006 a revised version of the protocol was adopted as
a standard in RFC 4250 (Protocol Assigned Numbers) [23], 4251
(Protocol Architecture) [24], 4252 (Authentication Protocol) [25],
4253 (Transport Layer Protocol) [26], 4254 (Connection Protocol)
[27].

In terms of this analysis, all paths and descriptions assume the use
of version 2 protocol since version 1 has suffered a number of
pathological security defects [19] which reduce it’s use to older
and unusual cases. In the case of the actual code instrumentation,
this assumption is not made and both version 1 and 2 provide
nearly identical logging. Section 3.1 represents a general
overview and relationship between RFC and OpenSSH structure.
Section 3.2 takes this high level design and fleshes it out,
providing a code path and rational for instrumentation locations.

3.1 SSH Application and Protocol Layering
 For this initial description we avoid taking into consideration a
number of details in order to focus on the overall flow of
information and data. For a generic shell interaction a simplified
diagram of the data flow might look something like Figure 1.

Figure 1: Application vs. Protocol design for typical SSHD session

Here Figure 1 is broken out into two columns – on the left there is
the protocol layering as defined in RFC 4250-4254. The right side
describes the application implementation of those layers. It is
worth noting that the layers do not map 1 to 1 - in particular the
role of the session object within the application, which according
to RFC 4253 should be rolled into the transport layer. Here each
application layer is a functional layer within the application, with
the parent SSHD is represented as the top block. After a
successful network connection is made, the process forks, and an
authentication context A is created. This context is used for the
lifetime of the login and is used to track a number of
authentication based data values.

During the next step Key Exchange occurs, where the actual
negotiation for a cipher, MAC and compression take place. First
server authentication takes place via server/host key pairs. This
authentication is transparent to the user if they have visited that
SSHD server in the past. Assuming the server authentication is
successful, algorithm negotiation for cipher and MAC takes place.
Finally the short-lived session key is generated which is used to
provide symmetric encryption for the data stream. This key is
periodically re-negotiated after a given time or data volume
passes. Since this is a reasonably well studied and logged area of

Figure 2: Internal SSHD Data Flow

the application, none of the exchange is recorded in the iSSHD
besides what the system logs already do. If a strong reason to log
the session crypto data could be come up with, there is no reason
why it could not be done.

The Authentication Layer (unsurprisingly) provides the actual
user authentication process. This process is extremely flexible
with a number of options natively defined by the application as
well as any generic PAM infrastructure. During the
authentication process more than one type of authentication type
can be examined so multiple fail and postpone events can be
generated even for a successful login. Since we are less interested
in the details of the authentication process than the outcome, there
is little or no detailed logging from iSSHD except for the
success/failure declaration as well as the authentication type being
used. We apply the same rational to the key exchange process
since in both cases relevant data can be preserved in regular
system logs.

If the authentication process proves successful, a Session Object is
created. This will be the primary container for not only the
authentication context, but tty, X11 and channel data as well. The
Session layer code also controls the mechanics of user login such
as the login process, remote command execution, pty allocation
and X11 forwarding.

The session object can create, use and destroy Channels. A
channel can be thought of as a connection within the Session
Object that has well defined semantics for data movement,
windowing information, file descriptors and multiplexing
capacity. Typically for a shell, you would allocate a single
channel that holds the file descriptors for stdin, stdout and stderr.
 It is not unusual though to have many additional channels in use
for X-windows, SOCKS forwarding and authentication agents.
 Data within a channel is not encrypted since it is contained within
a session which already is. This is a critical point for monitoring
which we will use to our advantage.

3.2 Common Code Paths During Execution
Now that the behavior of OpenSSH for a typical login has been
described, we can more closely examine code paths for strategic
places to insert instrumentation. Identifying those paths involved
reading the source code as well as experimenting with sessions
running in debug mode. Since the most common service for SSH
to provide is remote shell login access, it was the initial target for

both analysis and instrumentation. The execution path for this is
identical to that shown in Figure 1, except for some additional
details found in the session section. A location is considered a
good candidate for auditing if (1) there exists a decision making
branch where most or all connections traverse or (2) a final state is
arrived at which contains security relevant information.

Figure 2 provides a more detailed set of code paths for nearly any
use of OpenSSH. Here every box represents a transition between
user privilege or application function and ultimately represents an
event sent to the iSSHD analyzer. The creation of the Session
Object (SO) begins on the left side and the path moves to the right
till the users objective is reached. In it, a number of common
paths that immediately stand out. The horizontal split between
session and tunnel driven services is an obvious candidate for
instrumentation. As a reminder, the session code tends to be more
execution oriented – i.e. involved with the invocation of services,
commands and shells. Since it is not unusual for an attacker to
use a known tool or service in a way which is unusual, how we
instrument the path is extremely important. Decision branches
such as “session-in-channel-open” provide the path of what was
asked for, and logging details at the end of the code path provide
information regarding what was actually done. In any case, policy
can be written to provide notice if the local site finds any part of
the execution path objectionable.

Using the same rational, the lower half of Figure 2 provides the
same opportunity to audit this behavior in some detail for
tunneling and port forwarding activity. While not implemented in
this design, it should be at least possible (though perhaps not
practical) to access the forwarded data instead of just identifying
the static forwarding requests.

The level of logging may seem excessive, but such detail can
prove to be quite powerful for forensic analysis when combined
with local site policy. Local site policy - described later in some
detail - can act on specific session events like tunneling which
may not be allowed by a centers usage policy. There is a huge
benefit to be had in identifying the exact execution path of an
attacker. Since it is not unusual for a tool like ssh to be used in a
way which was not foreseen by the security community we tend
to error on the side of caution.

4. SYSTEM ARCHITECTURE
For the iSSHD architecture, we selected three principles
fundamental to the design and implementation process. If at any
time one of these principles was in contradiction with the design,
something was wrong with the architecture. The principles are:

1. Avoid introducing stability or security problems: We
need to demonstrate with high confidence that our
modified version of SSH is just as stable and secure as
the original code base.

2. Unchanged user experience: The modified version of
SSH can not affect the way users interact with NERSC
systems, require a special version of the SSH client or
application, nor remove any existing capabilities.

3. Minimal impact on system resources: System
resources including CPU time, memory, and network
bandwidth are at a premium. Additional demands made
by the instrumented SSH must be insignificant
compared to an unmodified SSH instance.

Based on these requirements, the following choices were made in
the architecture and development plan:

1. Use OpenSSH as the code base. OpenSSH has an
exceptionally good reputation and is already used on the
multi-user production systems. In addition, we were
able to add on the Pittsburgh Supercomputing Center’s
high performance OpenSSH patch set [12]. This
provides significant gains in terms of bulk data transfer
performance.

2. Minimizing changes to the code base. As part of the
project we made an active attempt to minimize the
number of changes to the original code. In addition, we
chose to use other tools and capabilities rather than
write them ourselves. An example of this would be the
use of stunnel [20] rather than attempting to write an
add on to ssh for our own data encryption.

3. Decoupled Analysis: Taking our experience from the
Bro IDS, we chose to fully decouple the analysis from
the generation of the ssh instrumentation data. To do
this it was necessary to remove any dependencies
between the running iSSHD and the back end analysis.
This is done by making all writes to the back end non-
blocking stressing that a failure of the analysis
infrastructure should result in the loss of security data
before an interrupted user experience.

The overall design of the iSSHD can be broken out into two
sections – the event generation within the running iSSHD process,
and the logging and analysis that compares those events against
local policy. Much of §3 was involved with the thought process
that took place before the coding started. With that in mind, we
turn to the actual design and implementation of the system itself.

It should be noted that the core of the analysis side currently exists
as a log repository with scripts feeding live data to the Bro IDS.
The use of Bro is not technically required since the file exists as
structured text, which provides the ability to feed the information
to any another tool. We will assume for the remainder of the
paper that Bro will be used.

4.1 Server Side
The iSSHD server is modified OpenSSH code that provides
events for further logging and analysis. Within the SSHD
application (as described in §3.2) there are ideal locations where
we extract information about user activity. Such information
includes login and authentication data, session and channel
creation, port forwarding, and keystroke/application data. This
data is normalized in terms of data types as well as being formed
into structured text. This text is then written to a local socket
(provided by stunnel) using a non-blocking descriptor. Details of
this process follow.

For events, a number of data types are defined. Not unexpectedly
these types map approximately with the native data types defined
by Bro. This includes the usual integer, string and count as well
as more network specific types like address and subnet. In order
to encapsulate arbitrary data, both unstructured string and binary
data is URL encoded using the stringcoders library [8]. This
mechanism is used in reproducing user activity since even simple
terminal sessions include Unicode characters and colors. An
additional benefit of URL encoding is to safely encapsulate traffic
that might be directed toward either the analysis system or the
terminal session of the individual doing the analysis. Original
versions of the instrumentation attempted to remove non-printing
characters from the recorded data, but information loss and textual
confusion ultimately pointed toward the URL encoding solution
as a better option.

As has been already described, the most basic unit of information
provided by iSSHD is called an event. Events, as their name
implies, are single actions or decisions made by a user that are
agnostic from a security analysis perspective. Lines typed by the
user as well as logins and channel creations are all examples of
events.

For event creation, all activity points to a single function. This
reduces confusion and creates a single point for information
gathering. A sample function call looks something like:

s_audit("channel_new", "count=%d count=%i
 uristring=%s", found, type, t1buf);

The function s_audit is the general event handling operation
within iSSHD. There are three sets of arguments that it takes –
the first is just the event name (in this case “channel_new”). The
second defines data typing for the Broccoli interpreter and has
printf() type structure. Any additional arguments define the data
associated with the event type. Here, ‘found’ is the index for the
free channel slot, ‘type’ defines the type/state of the channel (ie:
SSH_CHANNEL_LARVAL, SSH_CHANNEL_AUTH_SOCKET), and
‘t1buf’ is the URL encoded channel name such as server-session
or auth socket. After passing through the Broccoli interpreter, an
event named “channel_new” will be created with three arguments.
Note that there is no indication that the channel creation is
considered a good or bad thing – such a determination will be left
to the analysis side of the iSSHD.

Figure 3: Overall iSSHD Architecture

Data provided by keystroke logging presents an interesting
problem in that the content can be of arbitrary length, and will
contain non-printing ASCII characters. To avoid inefficiencies,
we cache keystroke data in a channel buffer queue using the
native channel buffer types until a new line character is seen or
data volume is exceeds a threshold. In situations where too much
data is generated on the server side (such as large compile runs),
the value of this additional data is almost zero. To address this,
we adopted the same idea as used in the network Time Machine
[7]: specifically that most security sensitive data and events tend
to cluster them selves to the beginning of interactive sessions. By
making the distinction between interactive sessions (where there
are roughly the same order of magnitude of client initiated data
events as server) and highly asymmetric connections (with dozens
or hundreds of server data events per client data event), we can
avoid excess resource consumption by the iSSHD. This is one
situation where it was necessary to build logic into the code
running in the iSSHD. Table 1 provides cutoff values for both
normal tty channels as well as channels not bound to a tty. For the
situation of non-tty communications, the ratio of printing to non-
printing characters is also looked at to avoid needlessly copying
binary files.

Table 1: Default cutoff values for user and server data.

TTY Details Default Value

Yes Max line length or line count for client
input between server inputs.

15 lines, 64k
bytes

Yes Max line length or line count for server
input between client inputs.

15 lines, 64k
bytes

No Initial sample value (ISV) before
determining binary data.

1024 bytes

No Maximum data in total for either client
or server inputs.

.5M bytes

No Percentage of non ascii-printing
characters, after ISV, allowed for
continued sampling.

30%

For example if a user (client side) types ‘ls -l’ in a normal tty
based login, the iSSHD would provide the server echo of ‘ls -l’ as
well as the next 14 lines or 64k bytes of server side output
(whichever is exceeded first). The line/byte count is reset every
time client data is processed. The cutoff values are modifiable at
compile time and are set somewhat conservatively since the
assumption is that there is a large number of iSSHDs feeding into
a single analysis system.

4.2 Data Analysis
Data analysis consists of any component except for the iSSHD
itself. Practically it can be thought of as the stunnel as well as the
bro instance and related policy.

The stunnel is not particularly interesting in that we are using it to
transport data from an open file descriptor on the iSSHD side, to
the analyzer host. Since this is just a simple implementation of a
well-known application, we will focus on the details provided by
the policy.

The bro policy is designed to track individual sessions and
whatever activity is contained within them - normal shell sessions,
remote code execution or subsystem invocation. Each session is
defined by the start of the ssh connection and continues through
any activity until that connection ends. The series of events for a
routine login looks something like Figure 4 when printed directly
from the iSSHD.

Each of these lines represents an event and the data associated
with it. Policy can be written to trigger on specific events, their
data, or both. Of obvious interest is a users keystroke data and the
systems response. Since we have direct access to near real time
keystroke information, we look for extremely unlikely - and
highly suspicious - character sequences. These might include
known toolkit signatures, abnormal root shell prompts for /bin/sh,
or any other unexpected commands. Sets of commands that
individually do not represent a significant interest, but which are
suspicious in total represent the second type of alarm. These two
categories are defined by two sets of signatures – the first for
commands or strings worthy of immediate notification, and the
second for sets of these commands or strings present in the user
session.

In order to circumvent logging from the system login() facility, it
is not unusual for attackers to remotely execute a shell via ‘ssh
host sh -i’ . This style of reconnaissance has become so common
during hostile activity that we made sure that it could be simply
alarmed and all interactive data recorded. To address this, traffic
on non-tty channels had to be tracked and analyzed since the tty
invocation is part of the standard unix login() facility. Since data
on these channels can include binary streams, the ratio of ASCII
to non-ASCII packets is monitored. If after a pre-defined
sampling window this ratio exceeds a threshold, further
monitoring on that channel is dropped. We have experienced
tremendous success in logging both the remote execution of shell
binaries as well as monitoring commands to and from such
occurrences.

SSHD_CONNECTION_START

AUTH_KEY_FINGERPRINT uristring=0x.. uristring=DSA
AUTH_INFO uristring=Accepted uristring=scottc
uristring=publickey

SESSION_NEW uristring=SSH2
CHANNEL_NEW count=0 count=SSH_CHANNEL_LARVAL
uristring=server-session
SERVER_INPUT_CHANNEL_OPEN uristring=session
CHANNEL_NEW count=1 count=SSH_CHANNEL_AUTH_SOCKET
 uristring=auth+socket
SESSION_INPUT_CHANNEL_REQ count=0
 uristring=auth-agent-req@openssh.com
SESSION_INPUT_CHANNEL_REQ count=0 uristring=pty-req
SESSION_INPUT_CHANNEL_REQ count=0 uristring=shell

CHANNEL_DATA_SERVER count=0
 uristring=%0ALast+login:+Sat+Jan++8+14:45:31+2011
CHANNEL_DATA_CLIENT count=0 uristring=exit
CHANNEL_DATA_SERVER count=0 uristring=exit
CHANNEL_DATA_SERVER count=0 uristring=%0Alogout

SESSION_EXIT count=0 count=28221 count=0
CHANNEL_FREE count=0 uristring=server-session
CHANNEL_FREE count=1 uristring=auth+socket

SSHD_CONNECTION_END

Figure 4: Event series for a shell login.

The final area to explicitly mention is the ability of iSSHD to
intercept authentication data. When considering our options for
recording passwords during authentication, we ended up having to
carefully balance the utility and risk of retaining the data. In the
context of a forensic analysis, a password might be tremendously
valuable if used in a legally sanctioned criminal investigation. On
the other hand having such valuable credential information in the
logs represents a huge risk in and of itself, even without taking
into consideration passwords recorded for other institutions by
users transiting local systems. Ultimately the decision to record
passwords is left to the local site as a configure time option so that
it cannot be adjusted without recompiling the iSSHD. Since it is
not unusual for sites to share lists of known compromised keys via
their fingerprints, public keys presented for authentication can be
compared to a list of known bad keys and alarms raised when a
suspicious key is seen.

4.3 Event Details
As previously suggested, events generated by the iSSHD are
without any sort of predefined notions of good or bad since it is
the role of the analyzer to interpret these events. These events can
be roughly grouped by function, with types auth, channel, session,
server and sshd. In addition to these, the sftp subsystem also has a
number of events associated with it.

The example presented in Figure 4 shows the series of events seen
in a “normal” login. Two of the most important in terms of
monitoring and analysis are CHANNEL_DATA_CLIENT and
CHANNEL_DATA_SERVER. These events provide unfiltered client
keystroke and server echo/response data. If a user types
“lz<backspace>s<enter>” you would see “lz%7Fs” from the client
side and “lz%08+%08s” from the server side in the URI encoded
data. The characters ‘%7F’ and ‘%08’ are the control characters
delete and backspace respectively which can be seen from
standard ascii definitions. Since we assume all user-generated
data is potentially hostile, we reduce the possibility of accidentally

interpreting control characters in the process of reading and
interpreting the data by storing it in an encoded form.

Each event also includes timestamp, server id (process ID + server
hostname + listening port), client id (32 bit random number) and
interface address list. This information is tracked by the analyzer
bro policy as a locally unique session identifier - for example
#12345. This session id will remain constant for any activity
attached to that users session. This event data is missing from
figure 4 (and the other session figures) to allow for better clarity.
Additionally, data is maintained for the channel id so session #12
might contain channel 0 and channel 1. Since the session object
holds channel objects, the session id (ex #12) is the same and the
channel identifier will be different. A small number of events,
mostly connected to the running sshd daemon itself, do not have
all these fields since there is no notion of client session to be had
when the daemon is starting or emitting a heartbeat event.

5. RESULTS AND PERFORMANCE DATA
Presenting quantifiable results for the iSSHD is somewhat
complicated since there is no control data to base comparisons
against. Since the number of incidents is not large, checked
against a control group or varied across sites, it presents more of
an anecdotal story than an effective hypothesis test. Using iSSHD
we have identified approximately three-dozen instances of stolen
credentials. Most of them are not particularly interesting, but at
the same time we can catch this class of attacker before anything
can get interesting. Because of this, we will present an unusually
qualitative analysis for the security and policy enforcement
capabilities. For performance data we will look at a number of
measurements comparing iSSHD to an unmodified version
running on the same hardware. In addition we will also provide a
simple analysis of aggregate user events that would be extremely
difficult (or impossible) without the data set.

Besides detection, the iSSHD provides considerable insight into
the tactics, skill levels and motivations for many of the attackers
on our systems. In many cases the forensic logs quickly provide a
clear indication of the success, skill level and threat presented by
an intruder.

5.1 Sample 1: Remote Shell Invocation
Figure 5 provides a textbook example of a “classic” stolen
credential and local exploit attack. This user (resu) made the
mistake of having the same password for at least two sites -
NERSC and the remote site that was compromised. Here the
attacker remotely executes a shell to log in, then attempts a local
linux exploit. Note that because of the shell invocation,
communications are not via the normal tty interface - a technique
detailed in §4.2 .

Details follow with some of the data fields removed for clarity.

1

2
3
4
5
6
7
8
9
10
11

AUTH_OK resu keyboard-interactive/pam
1.1.1.1:52073/tcp > 0.0.0.0:22/tcp
NEW_SESSION SSH2
NEW_CHANNEL_SESSION exec
SESSION_REMOTE_DO_EXEC sh -i
SESSION_REMOTE_EXEC_NO_PTY sh -i
NOTTY_DATA_CLIENT uname -a
NOTTY_DATA_SERVER Linux comp05 2.6.18-…GNU/Linux
NOTTY_DATA_CLIENT unset HISTFILE
NOTTY_DATA_CLIENT cd /dev/shm
NOTTY_DATA_CLIENT mkdir ...
NOTTY_DATA_CLIENT cd ...

12

13
14
15

16
17

18

19

20

21

22
23
24

NOTTY_DATA_CLIENT wget
 http://host.example.com:23/ab.c
NOTTY_DATA_CLIENT gcc ab.c -o ab -m32
NOTTY_DATA_CLIENT ./ab
NOTTY_DATA_SERVER [32mAc1dB1tCh3z [0mVS Linux
 kernel 2.6 kernel 0d4y
NOTTY_DATA_SERVER $$$ Kallsyms +r
NOTTY_DATA_SERVER $$$ K3rn3l r3l3as3:
 2.6.18-194.11.3.el5n-perf
NOTTY_DATA_SERVER ??? Trying the
 F0PPPPppppp__m3th34d
NOTTY_DATA_SERVER $$$ L00k1ng f0r kn0wn
 t4rg3tz..
NOTTY_DATA_SERVER $$$ c0mput3r 1z aqu1r1ng n3w
 t4rg3t...
NOTTY_DATA_SERVER !!! u4bl3 t0 f1nd t4rg3t!?
 W3'll s33 ab0ut th4t!
NOTTY_DATA_CLIENT rm -rf ab ab.c
NOTTY_DATA_CLIENT kill -9 $$
SSH_CONNECTION_END 1.1.1.1:52073/tcp >
 0.0.0.0:22/tcp

Figure 5: Remote shell invocation example.

We can see a number of clear indicators that something is going
on which is not normal user activity. First is the interactive
session on a non-tty channel created by remotely executing a shell
(line 3-5). Second, the unset HISTFILE command and the
creation of a directory called “...” under /dev/shm (line 8-10).
Finally the exploit is downloaded, compiled and (unsuccessfully)
run (line 12-21). Highlighted text represents commands and
output that as part of the default policy distribution are considered
sufficiently unusual or dangerous to warrant alarming on.

5.2 Sample 2: Cluster Reconnaissance
This example is one of the more complex and educational that we
have captured, providing a clear snapshot of the methodology and
tactics taken by a pair of hackers looking into our systems. Since
they are sharing a common login via the GNU screen utility we
can see the interaction between them and get an understanding of
their methods and communication, something quite difficult under
normal conditions. While there are several thousand lines of
interaction from the event, space limitations force us to only
include a small chunk of the most interesting (and amusing) lines.

1
2
3

4
5
6
7
8
9
10

11

12
13

14

DATA_CLIENT /sbin/arp -a
DATA_SERVER b@n:~> /sbin/arp -a
DATA_SERVER comp05 (192.168.49.94) at
00:00:30:FB:00:00 [ether] PERM on ss
DATA_SERVER b@n:~>
DATA_CLIENT oh wow
DATA_SERVER b@n:~> oh wow
DATA_SERVER b@n:~> /sbin/arp -an |wc -l
DATA_SERVER 9787
DATA_CLIENT rofl hax it hacker
DATA_SERVER b@n:/u0> sorry, im gonna s roll
 a cigarette and smoke it, y
DATA_SERVER b@n:/u0> then im gonna come back
 and try to hack ok ?
DATA_SERVER b@n:/u0> i am gonna go for one
DATA_SERVER b@n:/u0> you cant smoke inside?
 terrible
DATA_SERVER b@n:/u0> its f cold as f***

Figure 6a: Initial communication and Note: removal additional
server fields, time and session id

The text from the screen session is marked in blue, and event
names are once again bolded. The overall behavior can be
broken out into several sections. In Figure 6a, lines 1-10, arp
tables are used to identify locally attached systems. In this case

the large number of them (9787) seems to cause the need for a
few moments thinking about how to proceed. This is one of the
initial indicators that the attackers are not just blindly running
tools. It also indicates that they are probably in the western
hemisphere.

1
2
3
4
5

6
7
8
9
10

11

12

13
14
15

16

17

18
19

20

21

22

DATA_CLIENT hmm cd .. ;ssh-keygen -t
DATA_SERVER b@n:~/.ssh> hmm
DATA_SERVER b@n:~/.ssh> cd ..
DATA_SERVER b@n:~/.ssh> ssh-keygen -t dsa
DATA_SERVER Gen pub/private dsa key pair.
...
DATA_CLIENT ls
DATA_SERVER b@n:~/.ssh> ls
DATA_SERVER id_dsa id_dsa.pub known_hosts
DATA_CLIENT cat id_dsa.pub > authorized_keys
DATA_SERVER b@n:~/.ssh> cat id_dsa.pub >
 authorized_keys
DATA_CLIENT ssh -oHashKnownHosts=yes
 192.168.0.1
DATA_SERVER b@n:~/.ssh> ssh
 -oHashKnownHosts=yes 192.168.0.1
DATA_CLIENT cat > ssh_cn010onf
DATA_SERVER b@n:~/.ssh> cat > ssh_config
DATA_CLIENT cat known_hosts | grep -v
 192.168.0.1
DATA_SERVER b@n:~/.ssh> cat known_hosts |
 grep -v 192.168.0.1 > tmp
...
DATA_SERVER b@n:/tmp> what are you trying to
do get ride of t pressing yes?
DATA_SERVER b@n:/tmp> clearly
DATA_SERVER b@n:/tmp> lol set known_hosts to
dev null n00b
DATA_SERVER b@n:/tmp> that is such a hack
and completely improper
DATA_SERVER b@n:/tmp> and a good way to lose
a box if you forget to remove it
DATA_SERVER b@n:/tmp> nononosec phrack.org
done? wn? its in issue 64

Figure 6b: Generate local key pair and populate across NFS
share, attempt generic NFS type attacks via suid 0 program.

1
2
3

DATA_CLIENT ps axuw |grep snort
DATA_SERVER ps axuw |grep snort
DATA_SERVER b 36684 0.0 0.0 2740 564 pts/10
S+ 20:39 0:00 grep snort

Figure 6c: Looking for IDS processes.

By Figure 6b discussion has indicated a familiarity with insecure
multi-host NFS file systems - interestingly, they did not attempt to
use NFSShell. From here (lines 4-5) the pair generate a pass-
phraseless ssh key to use across the systems sharing the home file
system, once again indicating a familiarity with shared file
systems and how they can be used. They grapple a bit with
configuration issues and interestingly use the HashKnownHosts
option to obscure records left in the known_hosts file. Figure 6c
provides an example of IDS detection.

Ultimately this pair logged in to 19 local systems and never
managed to get root access. The dialog here is as long as it is in
order to convey the relative sophistication and interesting method
of the attackers.

5.3 Performance Data
There are numerous points of reference in comparing the
performance of the iSSHD with an unmodified OpenSSH. In this
case we will be looking at aggregate remote command execution
time, time to copy binary and ascii files, cpu usage for general
activity, and memory usage for the child process.

This command set is run remotely via remote execution with the
system time command providing information about total
execution time, system and user cpu usage. We recognize the
differences between remotely executing a script containing
commands and manually running them. Ultimately we chose to
run via the script for repeatability and ease of use since tools such
as Expect do not provide additional functionality.

 Remote Exec SCP Binary SCP ASCII

SSHD 42.78 [0.05] 9.85 [0.11] 0.70 [0.01]

iSSHD 43.03 [0.18] 9.85 [0.15] 0.69 [0.02]

Table 2: Run time values for three tests, values in seconds, standard
deviation in brackets. Average remote command execution time
increases by 0.6%.

For Table 2 column 1, “Remote Exec” is a set of 13 remotely
executed commands including normal user activity like ls, touch
configure and make. From a simple ratio test, the iSSHD takes in
total about 0.25 seconds more to run or about 0.6%. This
indicates that the average behavior of interactive shell commands
should not be adversely affected, but limited variations in
keystroke responsiveness could be lost. Given the way that large
volume logging is done (as described in §4.1), this is not at all
surprising. For the additional columns in Table 2, we have the
time to completion values for using scp to transfer a medium size
ASCII file as well as a medium size binary file. In this case,
medium size is on the order of 100MB. In each case the
additional overhead caused by the memory copy and transmit did
not provide a significant (or measurable) difference in the
measured time. In this measurement, the same file was moved
from one directory on the local system to another 40 times in a
row. The task was then repeated with the iSSHD to reduce the
influence of variable overhead and caching.

Looking at CPU usage for the same two data sets demonstrates
differences in application behavior. First, the system CPU
dominated the total time by ~ 4:1 for total CPU time per
transaction. This is not surprising given that the majority of this
activity is driven by read() and write() calls as well as polling
during periods of inactivity.

Figure 7 shows the relationship between execution time and CPU
time for both sets of test runs. One thing to notice is the slope of
the linear regression curve. Total CPU usage decreases since the
faster you move a constant set of data, the harder the data must be
pushed during the (shorter) time window. The product of the two
terms as a histogram we see a very tight set of values (s2),
implying this relationship.

The final metric is memory use, which ends up being quite
consistent both in terms of native and iSSHD when looking at
results from the data generation scripts. Within SSHD, there are a
limited number of ways that memory becomes allocated once a
session completes initialization – the most common being internal
data buffering and channel creation. In both of these cases the

size growth is minimal for the modifications made since data
buffering from interactive sessions are cleared once they are
written to the stunnel socket.

Figure 7: Total CPU time vs. length of transaction time for test
data runs against iSSHD and native SSHD.

The overall conclusion is that the changes made to introduce
instrumentation into iSSHD do not have a significant impact on
performance or usability.

5.4 Overall Observations
Overall the iSSHD project has provided insight into probably
three-dozen compromised user accounts since 2009. In each of
these cases it was possible to not only quickly determine the
success of the attack, but also get exploit tools and code used.

Figure 8: Distribution of maximum channels/session for November
2010.

As suggested in the introduction, the iSSHD also provides a
tremendous source of measurement data as well. We have not yet

begun to fully explore this avenue, but there is no technical reason
why we could not use this to identify needs for the user
community. An example of this would be to systematically
explore port-forwarding behaviors to see if we could deliver
network services differently. Besides problem solving, the
measurement data can also provide an interesting repository of
pure research data. Figure 8 provides an example of the
maximum channel count per session per day during November
2010). It is interesting to note that some users are exceeding 50
channels per session – in this case the majority of this is web
browsing. This might be done (for example) to visit social
networking sites blacklisted by a users local institution. This has
interesting security repercussions to be sure.

6. FUTURE WORK
Since the iSSHD is relatively new, there is a great deal of learning
going on with regard to what information is useful as well as
available. There are several areas that we are actively looking
into for future releases. The first is the detection of local terminal
session hijacking as described in §2 by [17][18]. The second is
the extraction of keystroke data from the X11 x-terminal data-
stream, which is currently opaque. There is currently some
prototype work completed for the session hijacking (detailed
below), while tapping into the X11 stream represents a possible
way to look into the protocols being tunneled over the ssh
channel.

6.1 Local Session Hijacking
In the available literature and toolkits, there are a number of ways
that a local attacker can tap into a running session and “reach
across” the network to access further systems and resources. In
particular this can be done to elevate privilege if the user has
gained root access on the external system, or to hop over one time
password authentication. We are familiar with examples of the
later.

In the SSH-Jack application [17], ptrace is attached to the ssh
client process, finds the channel setup code, then patches the
memory to request a remote shell attached to a local TCP socket.
The user running the ssh client is completely unaware that this is
happening since they are running under a different set of channels
in the same user session. We are hoping to look for an unusual
ssh_session2_open() call and match it to the expected state for a
normal session to help identify this attack. Regardless of this, the
entire communications from the new channel will be logged and
analyzed in the same way that normal user activity is.

A more common attack involves a local root user looking to jump
off the compromised host through some sort of multi-factor
authentication. In many cases this involves the opening of the
victim users terminal descriptors for standard in, out and error
then writing data directly into the sockets. The running ssh is not
even aware that anything is amiss since it is just transiting data
normally. We are looking to use the Linux inotify interface [2] to
monitor and log additional file open events on the terminals file
descriptors. This is still in its prototype phase.

7. CONCLUSION
We have presented an instrumented version of the OpenSSH
application that allows for a local site to log and analyze user

activities on local HPC resources. This analysis can be used to
enforce local security policy with respect to SSH usage, which
would otherwise be difficult or impossible with normal tools.

8. ACKNOWLEDGEMENTS
This work was supported by the Director, Office of Science,
Division of Mathematical, Information, and Computational
Sciences of the U.S. Department of Energy under contract number
DE-AC02-05CH11231.

This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy.

I would very much like to thank Tom Limoncelli for his help in
the paper shepherding process.

9. REFERENCES

[1] "Trust Transience: Post Intrusion SSH Hijacking" to Blackhat
Las Vegas, Adam Boileau

[2] Dow, Eli M., Monitor Linux file system events with inotify,
IBM Linux Test and Integration Center, http://www-
28.ibm.com/developerworks/linux/library/l-inotify.html?ca=dgr-
lnxw07Inotify, 2005.

[3] H. Dreger, C. Kreibich, V. Paxson and R. Sommer, Enhancing
the Accuracy of Network-based Intrusion Detection with Host-
based Context, Proc. Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA) 2005.

[4] C. Kreibich and R. Sommer. Policy-controlled Event
Management for Distributed Intrusion Detection. 4th International
Workshop on Distributed Event-Based Systems (DEBS'05), 2005,
Columbus/Ohio, USA

[5] Joohan Lee, Muazzam Siddiqui, "High Performance Data
Mining for Network Intrusion Detection Using Cluster
Computing", International Conference on Parallel and Distributed
Computing and Systems (PDCS 2004), MIT Cambridge,
November 2004

[6] Malek Ben Salem, Shlomo Hershkop, Salvatore J. Stolfo. "A
Survey of Insider Attack Detection Research" in Insider Attack
and Cyber Security: Beyond the Hacker, Springer, 2008

[7] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson and
F. Schneider, Enriching Network Security Analysis with Time
Travel, Proc. ACM SIGCOMM, August 2008.

[8] Nick Galbreath, stringencoders: A collection of high
performance c-string transformations,
http://code.google.com/p/stringencoders/

[9] Open SSH Project, http://www.openssh.org

[10] V. Paxson, Bro: A System for Detecting Network Intruders in
Real-Time. Proceedings of the 7th USENIX Security Symposium,
San Antonio, TX, January 1998

[11] http://packetstormsecurity.org/files/view/42556/phalanx-
b6.tar.bz2

[12] Chris Rapier and Benjamin Bennett. 2008. High speed bulk
data transfer using the SSH protocol. In Proceedings of the 15th
ACM Mardi Gras conference, (MG '08). ACM, New York, NY,
USA, , Article 11 , 7 pages. DOI=10.1145/1341811.1341824
http://doi.acm.org/10.1145/1341811.1341824

[13] Know Your Enemy: Sebek. The Honeynet Project,
November 2003 https://projects.honeynet.org/sebek

[14] SSHD Backdoor Homepage, http://emsi.it.pl/ssh/

[15] http://packetstormsecurity.org/files/author/5480/ :
Backdoored version of OpenSSH 4.5p1 that logs passwords to
/var/tmp/sshbug.txt.

[16] http://packetstormsecurity.org/files/view/45228/ssheater-
1.1.tar.gz : SSHeater is a program that infects the OpenSSH
daemon in run-time in order to log all future sessions and
implement a backdoor where a single password, chosen by the
user, can log into all accounts in the system. There's a log parser
included in the package that can display authentication
information about sessions as well as play the session just like
TTYrec/play.

[17] http://www.storm.net.nz/projects/7

[18] http://datenterrorist.wordpress.com/2007/07/06/tty-sniffer-
fur-linux-24/

[19] SSH CRC32 attack detection code contains remote integer
overflow, Vulnerability Note VU#945216, United States
Computer Emergency Readiness Team,
http://www.kb.cert.org/vuls/id/945216

[20] W. Wong: Stunnel: SSLing Internet Services Easily.
SANS Institute, November 2001.

[21] W. Yurcik, X. Meng, and N. Kiyanclar. NVisionCC: A
visualization framework for high performance cluster security. In
ACM Workshop on Visualization and Data Mining for Computer
Security (VizSEC/DMSEC), 2004.

[22] W. Yurcik, Chao Liu, “A first step toward detecting SSH
identity theft in HPC cluster environments: discriminating
masqueraders based on command behavior”, CCGRID '05
Proceedings of the Fifth IEEE International Symposium on
Cluster Computing and the Grid - Volume 01

[23] T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Protocol
Assigned Numbers”, RFC 4250, January 2006

[24] T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture”, RFC 4251, January 2006

[25] T. Ylonen, C. Lonvick, “The Secure Shell (SSH)
Authentication Protocol”, RFC 4252, January 2006

[26] T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Transport
Layer Protocol”, RFC 4253, January 2006

[27] T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Connection
Protocol”, RFC 4254, January 2006

Appendix 1
This is an abbreviated list of iSSHD events current as of January
2011. The event name is in the left column and a summary of
returned data types is on the right. All events are processed in the
current public release of the policy set. The description in the
Returned Data column does not include all the default fields
described in §4.3.

Authentication
Events

Returned Data

auth_info userid, auth type, success,
source IP, dest IP

auth_invalid_user userid
auth_key_fingerprint fingerprint of pub key
auth_pass_attempt userid, password

Channel Events Returned Data

channel_data_client URI encoded client data
channel_data_server URI encoded server response
channel_data_server_sum Data skipped by heuristics
channel_free id of closed channel
channel_new id, type, remote name
channel_notty_analysis_disable printable/non-printable ratio for

non-tty channel exceeds set
ratio

channel_notty_client_data URI encoded non-tty client
data

channel_notty_server_data URI encoded non-tty server
data

channel_pass_skip id of channel where pass skip
happened

channel_port_open type, listening port,
path/hostname, remote ip,
remote port

channel_portfwd_req hostname, listening port

type, listening port,
path/hostname, remote ip,
remote port

channel_post_fwd_listener listen port, path/hostname, host
port, type

channel_set_fwd_listener type, wildcard bind, host, port
to connect, listen port

channel_socks4 id, path/hostname, host port, s4
command, username

channel_socks5 id, path/hostname, host port, s5
command

Session Events Returned Data

server_input_channel_open

chan_type, channel, window
size

session_do_auth session type, state
session_exit chanid, parent pid, status
session_in_channel_req chanid, chan type, session id
session_remote_do_exec parent pid, command
session_remote_exec_no_pty parent pid, command
session_remote_exec_pty parent pid, command
session_request_direct_tcpip orig host, orig port, dest host,

dest port, session id
session_tun_init tun type, can id
session_x11fwd display as string

SSHD Events Returned Data

sshd_connection_end

remote ip, remore port, local ip,
local port, client id

sshd_connection_start remote ip, remote port, local ip,
local port, parent pid

sshd_exit local ip, local port
sshd_restart local ip, local port
sshd_server_heartbeat select value
sshd_start local ip, local port

