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A dividend-ratio model is introduced bere that makes
the log of the dividend-price ratio on a stock linear
in optimally forecast future one-period real discount
rates and future one-period growtb rates of real div-
idends. If ex post discount rates are observable, this
model can be tested by using vector autoregressive
methods. Four versions of the linearized model, dif-
Jering in the measure of discount rates, are tested
Jor U.S. time series 1871-1986 and 1926-1986: a ver-
sion that imposes constant real discount rates, and
versions that measure discount rates from real
interest rate data, aggregate real consumption data,
and return variance data. The results yield a metric
to judge the relative importance of real dividend
growth, measured real discount rates, and unex-
plained factors in determining the dividend-price
ratio.

What accounts for the variation through time in the
dividend-price ratio on corporate stocks? The dividend-
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price ratio is often interpreted as reflecting the outlook for dividends: when
dividends can be forecast to decrease or grow unusually slowly, the divi-
dend-price ratio should be high. Alternatively, the ratio is interpreted as
reflecting the rate at which future dividends are discounted to today’s price:
when discount rates are high, the dividend-price ratio is high. In principle,
the dividend-price ratio ought to have both of these interpretations at once.
Yet their relative importance has never been established, and it is not clear
whether these two interpretations together can account for time variation
in the dividend-price ratio if one assumes that market expectations are
rational. We address these questions by using long historical time series
on broad stock indexes in the United States.

Our method is to test a dividend-ratio model relating the dividend-price
ratio D/ Pto the expected future values of the one-period rates of discount
rand one-period growth rates of dividends g over succeeding periods. The
model might be described as a dynamic version of the Gordon (1962)
model, D/P = r — g, which was derived under the assumption that divi-
dends will grow at a constant rate forever, and that the discount rate will
never change. This article fills a significant gap in the literature by per-
mitting an analysis of the variation through time in the dividend-price ratio
in relation to predictable changes in discount rates and dividend growth
rates. Most previous studies of the dividend-price ratio have been con-
cerned with the cross-sectional relationship between dividend-price ratios
and average returns [e.g., Black and Scholes (1974)], while our own pre-
vious work on the time-series behavior of dividends and stock prices [e.g.,
Shiller (1981) and Campbell and Shiller (1987)] relies for the most part
on the assumption that discount rates are constant.

The dividend-ratio model opens up important new avenues for econo-
metric work. In this article we use it as follows. We think of log dividends
and discount rates as two elements in a possibly large vector of variables
that summarize the state of the economy at any point in time. The state
vector evolves through time as a multivariate linear stochastic process with
constant coefficients.! Stock market participants observe the state vector
contemporaneously and know the process that it follows; they use this
knowledge to forecast future log dividends and discount rates.

If dividends and discount rates are observable ex post, then this structure,
together with the dividend-ratio model, implies restrictions on the joint
time-series behavior of dividends, discount rates, and stock prices. In par-
ticular, the difference between the ex post stock return and the ex post
discount rate should not be predictable from a linear regression on infor-

! This structure is consistent with models in which managers determine dividends without reference to
stock prices, and also with “dividend-smoothing” models in which managers react to prices in setting
dividends [Marsh and Merton (1986, 1987)].
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mation known in advance, and the log dividend-price ratio should be an
optimal linear forecaster of the present value of future dividend growth
rates and discount rates. These propositions can be tested formally, and
they can also be evaluated informally: for example, by comparing the
history of the actual log dividend-price ratio with that of an optimal forecast
from a linear vector autoregressive model.

The measurement of dividends is straightforward, but the measurement
of discount rates is not. Indeed, one view is that the only source of infor-
mation on discount rates is the stock price itself. Our approach can be
useful even if this view is correct; as discussed further below, we can use
the dividend-ratio model to obtain a better estimate of the long-term dis-
count rate by correcting the stock price for dividend expectations. How-
ever, we begin by using several simple models which imply that discount
rates can be measured outside the stock market. We recognize that these
models are unlikely to be able to account for all variation in stock prices,
but it is worth knowing how far they can take us toward a complete expla-
nation. We do not attempt to provide any formal theoretical justification
for the measures we use, but we note that they have been the subject of
some attention in the recent finance literature [see, for example, Fama and
French (1988); French, Schwert, and Stambaugh (1987); Hansen and Sin-
gleton (1983); Marsh and Merton (1986); and Poterba and Summers (1986,
1988)].

We study several versions of the basic model, which differ in their mea-
sure of ex ante discount rates. In what we will call version 1 of the mode],
the one-period real discount rate on stock is assumed to be constant through
time. In version 2, the discount rate is assumed to be the one-period ex
ante real return on short debt (Treasury bills or commercial paper), plus
a constant risk premium. In version 3, the ex ante discount rate is given
by the expected growth rate of real aggregate consumption per capita
multiplied by the coefficient of relative-risk aversion, plus a constant risk
premium.? In these three versions of the model, the discount rate on stock
varies because the riskless real rate of interest varies, while the risk pre-
mium on stock is assumed to be constant. In version 4, by contrast, the ex
ante discount rate is the sum of a constant riskless rate and a time-varying
risk premium given by the conditional variance of stock returns times the
coefficient of relative-risk aversion.

All four versions of the model have implications for returns—version 1,
for example, implies that expected real stock returns are constant, while
version 2 implies that expected excess returns on stock over short debt

2 For a theoretical justification, see Breeden (1979), Grossman and Shiller (1981), and Hansen and Singleton
(1983).
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are constant—and these implications have been studied in the literature 3
The main contribution of this article is to derive the implications of these
discount rate models for stock prices, using the dividend-ratio model.

We also use the dividend-ratio model in a slightly different way. The
model allows us to study the term structure of expected real stock returns
implied by aggregate stock prices. The dividend-price ratio is in effect a
long-term expected real return on stock, but it is contaminated in that it
is also influenced by expected changes in real dividends. We can use the
dividend-ratio model to purge the dividend-price ratio of expected changes
in dividends, so that we derive a sort of real consol yield. This is of interest
whether or not our measures of one-period discount rates, discussed above,
are satisfactory.

The organization of this article is as follows. Section 1 derives the div-
idend-ratio model as a linear approximation to an exact relationship between
stock prices, stock returns, and dividends. Section 2 discusses the stock
market data and discount rate data that we use. Section 3 outlines our
vector autoregressive method for analyzing movements in the dividend-
price ratio, and Section 4 applies it to the data. Section 5 concludes. In
the Appendix we study the approximation error in the dividend-ratio model,
finding that it appears to be small in practice.

1. The Dividend-Ratio Model

We start by writing the real price of a stock or stock portfolio, measured
at the beginning of time period ¢, as P, The real dividend paid on the
portfolio during period ¢ will be written D,. The realized log gross return
on the portfolio, held from the beginning of time ¢ to the beginning of
time ¢ + 1, is written

b, = log (P.., + D) — log (P) )

We would like to obtain a linear relationship between log returns, log
dividends, and log prices. The exact relationship in Equation (1) is non-
linear, since it involves the log of the sum of the price and the dividend.
It turns out, however, that b, can be well approximated by the variable &,,
b, = £, where £, is defined as follows:

3 Version 1 of the model has been the subject of considerable controversy. A partial list of references is:
Campbell and Shiller (1987); Fama and French (1988); Keim and Stambaugh (1986); Kleidon (1986);
LeRoy and Porter (1981); Mankiw, Romer, and Shapiro (1985); Marsh and Merton (1986); Poterba and
Summers (1988); Shiller (1981); and West (1987, 1988). With regard to version 2, several of the above
authors have asked whether the variance of short-term interest rates might help explain the variance of
stock market prices. Version 3 of the model has been analyzed extensively, following the original theoretical
work of Lucas (1978) and Breeden (1979), by Grossman and Shiller (1981); Grossman, Melino, and Shiller
(1987); Hansen and Singleton (1983); Hall (1988); Mankiw, Rotemberg, and Summers (1985); and Mehra
and Prescott (1985), among others. Version 4 has been proposed, following an exploratory analysis by
Merton (1980), by Pindyck (1984, 1986), who argues that much of the variability in stock prices can be
explained by the variability of the volatility of stock returns. Against this, Poterba and Summers (1986)
have argued that volatility is not persistent enough to account for much variation in stock prices. French,
Schwert, and Stambaugh (1987) and Campbell (1987) also examine the relationship between volatility
and expected stock returns.
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&, =k+plog(P,,) + (1 —p)log(D) — log(P)
=k+Ppr+1+(1_P)dz—p: (2)

Here, lowercase letters denote logs of the corresponding uppercase letters.
The parameter p is close to but a little smaller than 1, and & is a constant
term.

Equation (2) differs from Equation (1) in that the log of the sum of the
price and the dividend is replaced by a constant &, plus a weighted average
of the log price and the log dividend with weights p and (1 — p). Below,
we will justify this approximation rigorously as a first-order Taylor expan-
sion of Equation (1). But first we will explain intuitively why the approx-
imation works.

It is easiest to begin by explaining why the difference pAlog(P,,) +
(1 — p)Alog (D,) approximates the difference Alog(P,,, + D,). Having
done this, we can derive the constant . that makes the approximation hold
in levels. By a standard argument, the change in the log of (P, + D,) is
approximately equal to the proportional change in the level:

P+ D,—P— D,
P+ D,

— P, - Pt+ D, — D,_,
P+ D,_, P+ D,

Alog (P, + D) =

If now we suppose that the ratio of the price to the sum of price and
dividend is approximately constant through time at the level p, whereby
P =p(P,+ D,,) and D,., = (1 — p)(P, + D,_,), then we have the
relationship we need:

p(PH-l - Pt) (1 - P)(D; - Dt—l)

Alog (P, + D) = P, + Do

pAlog(P.,) + (1 — p) Alog (D)

This explanation makes it clear that p is the average ratio of the stock
price to the sum of the stock price and the dividend. In the static Gordon
(1962) world—where the log stock return b, = b, a constant, and the
dividend growth rate Ad, = g, a constant—the ratio P,/(P, + D,_,) is also
constant and equals exp (g — 5).* In our empirical work below we will
construct p by using the formula p = exp (g — b), setting b equal to the
sample mean stock return and g equal to the sample mean dividend growth
rate.

The above argument shows that the change in log (P, + D,) is approx-
imated by the change in plog (P.,) + (1 — p)log(D,). But we want our
approximation to work in levels as well as changes. The constant term &
in Equation (2) ensures that our approximation holds exactly for levels in
the static world of constant stock returns and dividend growth rates. The

I

4 To see this, just note that exp(g) = D/D,_, = P,/P,_, and that exp () = (P, + D,.,)/P,_,, so that exp (g
— b) = P/(P,+ D,.,). We must have g < b if stock prices are to be finite.

199

£T0Z ‘0Z SUNL UO 00 BT JO AISIRAIUN T /610°S[euIno[pIo JX0's 1//:dny Wwoly papeoumod


http://rfs.oxfordjournals.org/

The Review of Financial Studies / Fall, 1988

value of k can be expressed most simply if we define 8, = d_, — p,,
the log dividend-price ratio. In the static world 8, is a constant: §, = § =
log(1/p — 1). Then we have

k= —log(p) — (1 —p)é 3

With this definition of &, the approximate return (which is also constant
in the static world) is

=1 -p)d - D) + Doy — p) t+ k
=(1—-po+g—logp — (1 —p)é
=g—log(p)=h
where the last equality follows from the formula for p given above. Thus,
¢ and b are equal in the static world and Equation (2) holds exactly.

When stock returns and dividend growth rates are not constant, but vary
through time, then Equation (2) does not hold exactly. It holds as a first-
order Taylor approximation of Equation (1).°> The higher-order terms in
the Taylor expansion of Equation (1), which are neglected in Equation
(2), create an approximation error. In the Appendix, however, we present
evidence that in practice the error is small and almost constant. (It is worth
noting that a constant approximation error would not affect any of our
empirical results since we do not test any restrictions on the means of the
data.)

So far we have written our equations in terms of the log levels of divi-
dends and prices, d,and p,. It will be convenient to rewrite them in terms
of the dividend-price ratio 6, = d,_, — p,and the dividend growth rate Ad,.
Rewriting Equation (2) and substituting 4, for £,, we get

b, = k+ 06, — pd,, + Ad, 29

Equation (2') can be thought of as a difference equation relating 6, to
6,11, Ad,, and b, We can solve this equation forward, and if we impose the
terminal condition that lim,_.p’,., = 0, we obtain

S k
o = 2 pbuy = Ad) — T— 4
=0 p

This equation says that the log dividend-price ratio 8, can be written as a
discounted value of all future returns 4,,,and dividend growth rates Ad,, »
discounted at the constant rate p less a constant /(1 — p). It is important
to note that all the variables in Equation (4) are measured ex post; (4) has
been obtained only by the linear approximation of A, and the imposition
of a condition that é,, ;does not explode as 7increases. There is no economic
content to Equation (4).

We can obtain an economic model of the dividend-price ratio if we are

* More precisely, if we rewrite the right-hand side of Equation (1) as a nonlinear function of dividend-price
ratios and dividend growth rates &, d,.,, and Ad, and take a first-order Taylor expansion around the point
6, = 0,,, = 8 and Ad, = g then we obtain Equation (2).
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willing to impose some restriction on the behavior of b, In particular,
suppose that we have a theory that provides an “‘ex post discount rate” 7,
satisfying

Eb,=Er + ¢ (3)

Here E, denotes a rational expectation formed by using the information
set J, that is available to market participants at the beginning of period ¢,
and b, and r, are measured at the end of period # Equation (5) says that
there is some variable whose beginning-of-period rational expectation,
plus a constant term ¢, equals the ex ante return on stock over the period.
As an example, consider the hypothesis that the expected real return on
stock equals the expected real return on commercial paper, plus a constant.
Then the ex post real return on commercial paper can be used as the ex
post discount rate in Equation (5).

If we can observe the ex post discount rate r,, then Equations (4) and
(5) together yield a testable economic model of the dividend-price ratio.5
To see this, note that we can take expectations of the left- and right-hand
sides of Equation (4), conditional on agents’ information /,at the beginning
of period ¢ The left-hand side of (4) is unchanged because 9, is known at
the beginning of period ¢ (it is in f,).” The right-hand side becomes the
discounted value of all expected future 4., and Ad,,, conditional on 1,
But Equation (5) implies that Eb,,, = Er.., + ¢, so we can substitute in
expected future discount rates 7, ; to obtain

b= B3 pry, — Ad) + S ©)
=0 I—=0»

Equation (6) is what we will call the dividend-ratio model, or dynamic
Gordon model. It explains the log dividend-price ratio as an expected
discounted value of all future one-period “growth-adjusted discount rates,”
t.+; — Ad,, ;. It represents the combined effect on the log dividend-price
ratio of expected future discount rates and dividends that we noted in the
opening paragraph of this article.

The original Gordon model, D,/P,= r — g, can be obtained as a special
case of our dividend-ratio model when discount rates and dividend growth
rates are constant through time and when the constant term ¢ equals zero.
Unlike Gordon, however, we will not use our model to try to explain the
mean level of the dividend-price ratio; rather, we will allow a free constant
term ¢ (representing a constant risk premium in stock returns), which
means that our model restricts only the dynamics of the dividend-price
ratio and not its mean level.

The dividend-ratio model has some important advantages when com-

¢ In fact, we can also test the model if we observe not 7, but some unknown coefficient times r,. We show
how to do this in Section 3, but at this stage we assume that r, itself is observable.

7 This is true because we defined the log dividend-price ratio § as the difference between last year’s log
dividend and the log stock price at the beginning of the year.
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pared with earlier empirical models. First, it is linear in logs. This makes
it easy to combine with log-linear models of dividends and prices. As
stressed by Kleidon (1986) and others, log-linear models are appealing
on a priori grounds, and they appear to fit the data better than linear ones
do.

Second, Ad,, ;and r,, ;enter symmetrically in Equation (6); all that matters
for the dividend-price ratio is their difference, that is, the growth-adjusted
discount rate. This offers a significant advantage when we come to do
empirical work. The original model [Equations (1) and (5)] concerns real
prices, real dividends, and real discount rates. However, price indices
used to convert nominal values to real values are measured much more
poorly than are nominal dividends, share prices, and interest rates. Neither
6, nor Ad,,, — r,.,depends on the price index used? so if we are willing
to treat Ad,,, — r,., as a single variable, we can work in nominal terms
throughout and reduce our vulnerability to measurement error. Unfortu-
nately, if we want to study forecasts of Ad,,; and r,,; separately, we must
rely on a measured price deflator.

The usefulness of the dividend-ratio model depends on the quality of
the approximation used to derive it. This, in turn, will vary from one data
set to another. The next section discusses the data sets used in this article,
and the Appendix presents some measures of the approximation error in
Equations (2) and (4) for these data.

2. Data on Prices, Dividends, and Discount Rates

The two main data sets used in this article are described in Table 1. The
first consists of annual observations on prices and dividends for the Stan-
dard & Poors Composite Stock Price Index (S&P 500), extended back to
1871 by using the data in Cowles (1939).° The corresponding discount
rate measures and price deflators are summarized in Table 1.

Our second data set is taken from the Center for Research in Security
Prices (CRSP) series of monthly returns on the value-weighted New York
Stock Exchange (NYSE) index from 1926 to 1985. Returns are reported
both inclusive and exclusive of dividends, and this makes it possible to
compute the levels of dividends and prices up to an arbitrary scale factor.
The CRSP data incorporate careful corrections for stock splits, noncash
distributions, mergers, delisting, and other potential problems [Fisher and

8 Strictly speaking, this result assumes (as implied by the timing convention in our definition of ) that
dividends are paid at the end of the time period ¢ and that real interest rates r, are measured from the
beginning of ¢ to the end of ¢

9 This data set is also used in Campbell and Shiller (1987) and is very similar to the data used by Shiller
(1981); Mankiw, Romer, and Shapiro (1985); West (1988); and other contributors to the ‘“volatility”
literature. Kleidon (1986) also studied the Standard & Poors data from 1926, and Wilson and Jones (1987)
have analyzed in some detail the properties of the pre-1926 Cowles data.
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Table 1
Description of data sets

Cowles/S&P 500, 1871-1986

Nominal stock price: January S&P Composite Index, spliced to series in Cowles (1939). 1871-1986.
Nominal dividend: Total dividend per share accruing to index. 1871-1985.

Price deflator, model versions 1, 2, and 4: January Producer Price Index (annual average before 1900).
1871-1986.

Price deflator, model version 3: Consumption deflator, as used in Grossman and Shiller (1981). 1889—
1985.

Nominal discount rate, model version 2: Annual return on four- to six-month prime commercial paper
(six-month starting in 1979), rolled over in January and July. Interest rate data starting in 1938 are from
the Board of Governors of the Federal Reserve System, with pre-1938 data from Macaulay (1938). 1871-
1985.

Nominal discount rate, model version 3: Nominal growth in aggregate per capita consumption of non-
durables and services, as used in Grossman and Shiller (1981). 1889-1985.

Real discount rate, model version 4: Squared ex post annual real return on the stock index. 1871-1985.
Value-weighted NYSE index, 1926-1986

Nominal stock price: January 1 value-weighted NYSE index, from CRSP Stock Index File. 1926-1986.

Nominal dividend: Value-weighted NYSE index, total dividends for year, from CRSP Stock Index File.
1926-1985.

Price deflator: January consumer price index, from Ibbotson Associates (1987). 1926-1986.

Nominal discount rate, model version 2: Annual return on one-month Treasury bills, rolled over monthly,
from Ibbotson Associates (1987). 1926-1985.

Nominal discount rate, model version 3: Nominal growth in aggregate per capita consumption of non-
durables and services, as used in Grossman and Shiller (1981). 1926-1985.

Real discount rate, model version 4: Squared ex post annual real return on the stock index. 1926-1985.

Lorie (1977)].° Corresponding monthly nominal Treasury bill rates and
CPI inflation rates are from Ibbotson Associates (1987).

Although the raw CRSP data are available monthly, we follow Marsh and
Merton (1987) and aggregate to an annual data interval. The main reason
for doing this is that individual firms tend to change dividends no more
frequently than once a year, so that aggregate dividends display seasonals
within the year."!

In Table 2 we present some statistics that summarize the behavior of the
nominal stock market variables in our two data sets. The most striking
result in the table is the similarity in the period of overlap, 1926-1986. For
example, the log dividend-price ratios on Cowles/S&P 500 stocks and the
value-weighted NYSE index have a correlation of 0.985 over this period.

1 These data have been used by Marsh and Merton (1987) in their study of aggregate dividend behavior, by
Fama and French (1988) and Poterba and Summers (1987) in analyses of mean reversion in stock returns,
and by many other writers in finance. CRSP data are also available for the equal-weighted New York Stock
Exchange index. We obtained empirical results for this series, but they are qualitatively similar to those
for the value-weighted index and to save space we do not report them here. These results are available
from the authors on request.

" In aggregating the data to an annual interval, we assumed that dividends paid each month are accumulated
through the year without receiving interest. The annual dividend is then the sum of monthly dividend
payments, while the annual price is formed as the previous year’s price times the one-year return excluding
dividends, compounded monthly.
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Table 2
Summary statistics for stock market data

- . Correlation
Data set and sample period of Cowles/S&P
Cowles/S&P, Cowles/S&P, NYSE, and NYSE,
Statistic 1871-1986 1926-1986 1926-1986 1926-1986
Ap,:
Mean 0.032 0.044 0.042
Standard 0.972
deviation 0.178 0.200 0.208
Ad;
Mean 0.030 0.041 0.040
Standard 0.958
deviation 0.132 0.131 0.134
8¢
Mean —3.053 —3.121 —3.143
Standard 0.985
deviation 0.277 0.294 0.290

All variables in this table are nominal and measured annually. p, is the log stock price, 4, is the log dividend,
and §, is the log dividend-price ratio d,_, — p,.

It would seem that these indices reflect the same broad movements in
prices and dividends.

In Table 3 we complete our review of the data by testing for unit roots
in the various nominal and real series. This is important for two related
reasons. First, the standard theory of inference in regressions with sto-
chastic regressors requires that all variables be stationary. If we regress
stock returns on variables with unit roots, the conventional standard errors
may be seriously misleading. Second, when we use Equation (6) to char-
acterize the behavior of the dividend-price ratio that is implied by a model
of stock-price behavior, the results are likely to be sensitive to the station-
arity assumption we make.

The test statistic used in Table 3 is one of a class recently proposed by
Phillips (1987) and Phillips and Perron (1988). It is a modification of the
F-statistic in the Dickey-Fuller (1981) regression of the change in a variable
on a constant, a time trend, and the lagged level of the variable. Under
the null hypothesis that the variable has a unit root, this regression has no
explanatory power asymptotically since the change in the variable is sta-
tionary while the trend and level are not. However, the F-statistic has a
nonstandard distribution, which is calculated numerically by Dickey and
Fuller for the case where the change in the variable is white noise. Phillips
and Perron’s modification to the F-statistic enables one to apply the same
distribution even when the change in the variable is serially correlated.

The main results in Table 3 are as follows. The null hypothesis of a unit
root is generally not rejected for levels of prices and dividends, whether
these are measured in nominal terms or real terms. The exception is that
the null of a unit root can be rejected for the real dividend on Cowles/
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Table 3
Univariate tests for unit roots

Data set and sample period

Variable Cowles/S&P, 1871-1986 NYSE, 19261986
Nominal
b 2.890 3.622
d, 3.194 4972
Ap, 49.578%** 22.969%**
Ad, 33.012%** 14.342%*>
7 3916 4.173
Ad, — 7, 30.794%** 13.410%**
8, 10.711%#+* 6.250**
T, 28.442%%* 7.359**
Real
F2 4.124 2.670
d, 7.089** 3.532
Ap, 47.831% %% 25.436***
Ad, 33,438 %+ 17.422%+*
r, 26.113%** 5.346*

Variables are defined as follows: p, is the log stock price, 4, is the log dividend, 8, is the log dividend-price
ratio d,_; — p, =, is the measured inflation rate, and r, is the commercial-paper rate (1871-1986) or Treasury-
bill rate (1926-1986).

This table presents tests of the null hypothesis that a series has a unit root. The test statistic is Z®, from
Phillips and Perron (1988) and as used in Perron (1988). The statistic is formed from the Fstatistic in the
regression 4y, = u + B¢ + ay,,, corrected for serial correlation in the equation error by using a fourth-
order Newey-West (1987) correction. The critical values for the statistic are as reported in Fuller (1976):
1% 8.27 (*** in the table), 2.5% 7.16, 5% 6.25 (** in the table), and 10% 5.34 (* in the table).

S&P 500 stocks at the 5 percent level. This presumably reflects some neg-
ative autocorrelations in the growth rate of this series.? The unit root null
is strongly rejected for growth rates of stock market variables and for the
log dividend-price ratio.

The unit root tests in Table 3 are univariate and do not take account of
the “adding up” constraint that the sum of stationary processes must be
stationary. Accordingly, there are some internally inconsistent results in
the table. For example, in the Cowles/S&P data it cannot be true that the
log dividend-price ratio and the log real dividend are stationary while the
log real price has a unit root. It is also inconsistent that inflation and real
interest rates, and nominal dividend growth corrected or uncorrected for
nominal interest rates, seem to be stationary in all data sets, but the unit
root null is not rejected for nominal interest rates.

We proceed under the assumption that the log dividend-price ratio and
growth rates of real dividends and prices are stationary, so that log divi-

It is possible that the series is genuinely stationary around a trend, but it is also possible that our tests are
falsely rejecting the null hypothesis because the series has negative autocorrelations in growth rates arising
from an autoregressive-moving-average (ARMA) representation in growth rates with a large (but not unit)
moving-average root. Such series tend to revert, not to a trend, but to a long moving average of their past
history. Schwert (1988) presents Monte Carlo results in which false rejection of a unit root null occurs for
this reason.
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dends and prices are cointegrated processes.!?> Econometric techniques
have been developed for processes of this sort by Engle and Granger
(1987), Phillips and Durlauf (1986), and Stock (1987). Our model is par-
ticularly straightforward to deal with since the cointegrating vector is spec-
ified in the model and does not require estimation. Ordinary theory of
estimation of stationary vector autoregressions is applicable here.

3. Vector Autoregressions and the Dividend-Ratio Model

In this section we propose a method for analyzing the historical movements
of stock prices in relation to dividends and alternative measures of discount
rates. The method is an extension of that developed in Campbell and Shiller
(1987).

Our approach uses the dividend-ratio model derived in Section 1. As we
showed there, a linear approximation to the log stock return implies that
the log dividend-price ratio can be written as a discounted value of expected
future dividend growth rates and discount rates. We would like to test the
adequacy of some popular measures of the ex post discount rate on stock.
We can do this by comparing the log dividend-price ratio with the forecast
of dividend growth and discount rates obtained from an unrestricted econo-
metric model: in practice, we will use a log-linear vector autoregression,
or VAR. We can make the comparison in a formal statistical way, or infor-
mally by looking at the historical movements of these two variables.

Our approach is different from the regression methods commonly used
to test a model of expected stock returns. The standard way to proceed
would be to regress the one-period ex post stock return less the ex post
discount rate, b, — r, on a constant term and on some variables known at
the start of period ¢ If the coefficients on these variables are jointly sig-
nificant, then the model is rejected statistically.

Our approach has two potential advantages over the standard approach.
First, it may have more power to detect long-lived deviations of stock prices
from the “fundamental value” implied by the model. As Shiller (1984)
and Summers (1986) have argued, single-period returns regressions have
extremely low power against this alternative. Second, even if the regression
approach does reject the model, the rejection can be hard to interpret.
The regression results do not tell us whether the behavior of the dividend-
price ratio is quite different from that implied by the model or whether it
is rather similar. We do not know whether we reject the model because it
is entirely wrong or because the dividend-price ratio is affected by some
economically minor, but statistically detectable, factor. Our approach
explicitly compares movements in the dividend-price ratio with the move-
ments that are implied by the model.

¥ We note that this is a conservative assumption in the sense that it leads to greater variability in the rational
forecast of expected future dividends, and less evidence of excess volatility in stock prices, than does the
assumption that dividends and prices are stationary around a deterministic trend.
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It might seem that our approach does not take proper account of extra
information that market participants may have. If the market knows a great
deal about the future paths of dividends and discount rates, then how can
our unrestricted econometric model reproduce the market’s forecast?

The answer is that we include the log dividend-price ratio itself as one
variable in the vector autoregression. This enables the VAR to generate a
forecast of dividends and discount rates that exactly equals the log divi-
dend-price ratio. Intuitively, even though we do not observe everything
that market participants do, we do observe the log dividend-price ratio,
and that variable summarizes the market’s relevant information.

Another way to make the same point is that those restrictions on the
VAR which ensure that the unrestricted forecast equals the dividend-price
ratio are algebraically equivalent to those which ensure that the one-period
stock return cannot be predicted by the lagged variables included in the
VAR. Adding extra variables cannot make stock returns unpredictable if
they were found to be predictable using fewer variables; similarly, adding
extra variables cannot make the log dividend-price ratio equal the unre-
stricted forecast of dividends and discount rates if these series differ when
fewer variables are used.

In order to explain our approach precisely, we will now introduce some
more notation. To keep the exposition as simple as possible, we will
redefine all variables as deviations from means; this enables us to drop
constant terms, which, as explained in Section 1, are not the focus of our
inquiry and are not restricted by our model.

We assume that at the start of period ¢, market participants observe a
vector of state variables y,; their information set , is just the history {y,
Vi1, - - .}. We assume that y,follows a linear stochastic process with constant
coefficients that are known to market participants. It follows from this
assumption that any subset of the variables in y, (where linear combinations
of variables can be included) also follows a linear stochastic process with
constant coefficients.

We now define a vector x, that includes the variables in y, that we econo-
metricians observe. Qur information set H, is the history {x,, x,-,, . . .}. A
parsimonious choice for x, is the vector [6,, r,._, — Ad,_,]’, where we remove
the means from the data since these are unrestricted, and we lag the growth-
adjusted discount rate by one period to ensure that it is known to the
market by the start of period ¢ This vector x, is the smallest that allows us
to test the restrictions of the dividend-ratio model. We could of course
choose a larger vector [see, for example, Campbell and Shiller (1988a)],
but as noted above this could only strengthen a rejection of the model.

We assume that the linear process for x, can be written as a vector
autoregression (VAR) with p lags: x, = C\x,_, + Cx,_, + -+ + Cx,_, +

u,, where C,for i=1 --- p are each 2 X 2 matrices. Since p can be large,
this assumption involves little further loss of generality. We will write the
(j, k) element of C,; as Cy; thus, C, is the coefficient of the jth variable
in x, on the kth variable lagged 7 times.
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It will be convenient for us to rewrite the VAR in first-order, or com-
panion, form along lines first suggested for rational expectations models
by Sargent (1979). Doing this enables us to convert a pth-order auto-
regression into a first-order autoregression, for which the formula for con-
ditional expectations has a simple form. This is done by defining a new
vector z, which includes 2p rather than 2 elements: §, and (p — 1) lags,
and r,_, — Ad,_, and (p — 1) lags. For example, if p = 2, then we can write
2, = [0, 0,1, ooy — Ad,y, 1oy — Ad,), v, = [y, 0, 1, 0]. The vector z,
then follows a first-order VAR, where the rows corresponding to 8,and Ad,_,
are stochastic and the others are deterministic:

0, G Gun Cun G 0,1 Uy,
0,1 — 1 0 0 0 6, 4 0
r— — Ad,_, Coai G Can Gyl 12 — Ad, Uy,
r_, — Ad,_, 0 0 1 0 7y — Ad,_, 0

The VAR system can be written more parsimoniously as
z,=Az,_, + v, (7

The vector z, has the useful property that to forecast it ahead % periods,
given our information set H,, we simply multiply z, by the kth power of
the matrix A: E[z,,, | H] = A*z.

As a final investment in notation, we define a vector el such that el'z,
= §,, and a vector e¢2 such that e2’'z, = r,_, — Ad,_,. That is, el and e2
“pick out” the elements §, and 7,_, — Ad,_, from the vector z, In the
example above, e1 =[1000]) and €2 =[00 1 0]".

We are now in a position to state the restrictions of the dividend-ratio
model (6) on the vector autoregression (7). We note first that a very weak
implication of the dividend-ratio model is that the log dividend-price ratio
d,should Granger-cause r, — Ad,. The reason is that 6, embodies the market’s
information about the full vector of state variables y. Unless y, contains
only r,_, — Ad,_, and its lags, so that market forecasts are based only on
the history of this variable, 6, will have incremental explanatory power for
r, — Ad,. And we can rule out the case in which y, contains only »,_; —
Ad,_, and lags by noting that it implies, counterfactually, that 8, should be
an exact linear function of current and lagged »,_, — Ad,_,. This point is
discussed at greater length in Campbell and Shiller (1987).

Of course, the dividend-ratio model also imposes a tight set of cross-
equation restrictions on the VAR. To derive these, we take expectations of
Equation (6), conditional on the VAR information set H, The left-hand
side is unchanged since §,is in H,. The right-hand side becomes an expected
discounted value conditional on H, [since H, is a subset of the market’s
information set J, that defines the expectations in Equation (6)]. Thus, we
have

0, = EI:E pj(rl+j - Adl+j) I Ht:| =9 (8

Jj=0
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where we have dropped constant terms, as discussed above. Equation (8)
says that 8, should equal the unrestricted VAR forecast of the discounted
value of 7,,; — Ad,, ;, which we call §. We can rewrite this equation, using
the multiperiod VAR forecasting formula given above, as

b= el'z,= ) ple2' A1z, = ©)

=0

Since Equation (9) is to hold for all realizations of z,, we must have

el' = D) ple2' Ait' = e2'A(] — pA)~! (10)
j=0
where the second equality follows by evaluating the infinite sum, noting
that it must converge because the elements of z, are stationary.

Equation (10) defines a set of 2p nonlinear restrictions on the VAR
coefficients. These can be tested by using a nonlinear Wald test. If we write
the estimated vector of VAR coefficients as v, the estimated variance-covari-
ance matrix of these coefficients as 0, and the vector of deviations of the
estimated system from the model as A, then the Wald test statistic is
N (ON/3y'®IN/3vy) ~A. Under the null hypothesis, it is distributed x2, with
degrees of freedom equal to the number of restrictions (the number of
elements of A). In the case of Equation (10), A = el’ — e2’A(J — pA)—!
and has 2p elements. The derivatives of X with respect to the VAR param-
eters can be calculated numerically.'

The more usual regression approach to the model can also be expressed
as a Wald test of restrictions on the VAR. If we postmultiply the restrictions
in Equation (10) by (I — pA), we get 2p linear restrictions, one for each
column of the matrix A:

el' (I — pA) — e2’A=0 (11)

One can show that Equation (11) states the restrictions of the model in
returns form: E(§, — 7, | H) = 0, where £, is as defined in Equation (2).1
A Wald test of Equation (11) on the VAR, using the formula above with A
= el'(I — pA) — e2'A, is numerically equivalent to a test that there are 2p
zero coefficients when &, — 7, is regressed on the variables in z,.

It is important to note, however, that a Wald test of the restrictions (10)
is not equivalent to a test of (11), even though (10) and (11) are algebra-
ically equivalent. Formally, the reasons are that (10) and (11) are related

'* A similar approach can be used to calculate standard errors for diagnostic statistics, such as the correlation
between 8, and 8,. This correlation is a function of the VAR coefficients y (and also of the variance-covariance
matrix of the VAR explanatory variables, but we treat this as fixed). For any such function f{y), we can
obuin a standard error as \/d f/dy'®4 /3y, where the derivatives are calculated numerically.

> The constant term ¢ does not appear here because in this section we have defined all variables as deviations
from their means. Means are not restricted by our model. To see how Equation (11) is equivalent to the
restriction on returns, rewrite it as el'z, — el'p(Az,) — e2'(4z,) = 0. Note that Az, = Ez,,,. Then el'z, =
8, el'p(Az) = pEd,.,, and e2'(Az) = E(r, — Ad,). Combining these elements and using the definition of
£, in Equation (2) gives us the restriction on returns.
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by a nonlinear transformation and that Wald tests are not invariant to such
transformations. As we have already argued, it may be easier to detect
departures from the null by looking at the behavior of the dividend-price
ratio than by looking at one-period stock returns. In our empirical work
we will present tests of both the dividend-price ratio restriction (10) and
the one-period stock return restriction (11).

The approach outlined above is appealingly simple, since it involves a
VAR with only two variables. It enables us to test a model of expected
stock returns by using Equation (10) or (11) and to compute the impli-
cations of predictable excess returns for the log dividend-price ratio by
using Equation (9).

Unfortunately, the two-variable approach does not allow us to judge the
relative importance for the log dividend-price ratio of expectations of future
dividends and discount factors, since it treats the discount rate adjusted
for dividend growth as a single variable. To address this question, we need
to expand the vector of variables we observe, x,, to include Ad,_, and 7,_,
separately. Redefining z, and 4 in the obvious manner, and defining el,
e2, and €3 to pick out §,, Ad,_,, and r,_,, respectively, we now have the
following equation instead of (9):

el'z,= D, pl(e3 — e2') Atz (12)

j=0

or 8, =9, =9, + 8, 0, is now defined to equal the right-hand side of
Equation (12), while &}, is the component of &, that forecasts future discount
rates and &Y, is the component that forecasts (the negative of) dividend
growth rates: 8, = e3'A(I — pA)~'z, and 8}, = —e2'A(J — pA) 'z,

We can use the three-variable system to see whether expectations of
dividend growth, measured by 8, or of discount rates, measured by &,
have historically been more important in determining the dividend-price
ratio. As discussed in the introduction, we can also construct an implicit
long-term expected real return on stock by purging the log dividend-price
ratio of the influence of expected future dividends. From Equation (4), if
we remove the present value of expected future dividend growth, &, from
8,, what we are left with is a present value of expected future stock returns,
E, =2, p’h,,,;. The sum of the weights in this expression is 1/(1 — p), so if
we multiply by (1 — p) we get a weighted average of expected future stock
returns. This has the same form as Shiller’s (1979) expression for a consol
yield as a weighted average of expected future short-term interest rates.
Accordingly, we will call (1 — p) (8, — 8, a long-term expected real stock
return.

The restrictions (12) can again be rewritten in returns form to get

16 The discussion here omits constant terms. The long-term expected real stock return can be adjusted to
have the correct mean by adding the unconditional mean log stock return.
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el'(I— pA) — (e3' — e2')A = 0, which corresponds to E(§, — r, | H) =
0, as before.

Our discussion so far has assumed that we observe the ex post discount
rate r, itself. But in version 3 of the model we observe instead real con-
sumption growth Ac,, which is related to 7, by r, = e Ac,, where « is the
coefficient of relative-risk aversion.'” Similarly, in version 4 we observe V,,
the squared ex post stock return, and our model is that r, = aV,. Since a
is not known, but must be estimated from the data, our methods require
some modification in this case.

Taking version 3 as an example, we define x, = [§,, Ad,_,, Ac,_,]. We
redefine z, A4, el, e2, and e3 appropriately (e3 picks out Ac,_, from z,).
Then the model implies

6, =08,=108,+ 8, = ae3’A(I — pA) 'z, — e2’A(I — pA)~'z, (13)
and
el'(I — pA) — (ae’d’ — e2')A =0 (14)

We can estimate a, the coefficient of relative-risk aversion, by using the
restrictions (14). One might at first think that a unique value for o could
be found by postmultiplying (14) by A~'e3 and solving the resulting
expression for a in terms of estimated coefficients. However, the restrictions
(14) imply that « is overidentified. When p > 1, the matrix 4 is singular
because of its special structure. Defining e4 as the vector that is 0 except
for the second element, which is 1, then (pel’ + ae3’' — e2' — e4')A = 0.

Our approach was, instead, to use a method-of-moments estimator for «
[Hansen (1982)]. Recall that we write v as the vector of VAR coefficients,
@ as its variance-covariance matrix, and X as the vector of deviations of the
estimated VAR from the model. In this case, A = A(a, v) = el — (pA)’el
— A'(ae3 — e2). We choose o to minimize the Wald test statistic for the
model A(e, v)'(N/3Y'©IN/dy) ~'N(a, v). We do this in two steps, first eval-
uating the derivatives 0A/dy at @ = 1, and then evaluating them at the first
round estimate of «. The minimized Wald statistic is distributed x2 under
the null, with 3p — 1 degrees of freedom.

The resulting estimate of « has the following interpretation. Equation
(14) asserts that the prediction at time ¢ of the linearized return £, equals
(a constant plus) a times the predicted change in log consumption. Qur
estimate of « is thus analogous to other estimates in the literature that rely
on making forecast returns correspond to forecast changes in consumption.
In Grossman and Shiller (1981), estimation of « along these lines was
suggested (in the context of a plot of stock prices and their ex post rational

7 Once again we have dropped constant terms. The implicit assumption here is that the consumption data

for each year represent consumption on December 31 of the year. Thus, in January of each year (the month
in which our stock-price data are drawn), Ac,_, is known but Ac, is not. There is no fully satisfactory way
to handle the unit-averaged consumption data in the context of a theoretical model involving point-of-
time consumption data without going to the continuous-time econometrics format, as in Grossman, Melino,
and Shiller (1987). We did experiment with the model r, = aAc,,,, with results that are discussed below.
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counterpart), but the discussion was couched in levels; the simple method
used here of dealing with nonstationarity (dividing by lagged dividend)
was not used, and formal estimation in such terms was not attempted.

. Empirical Results

In this section we apply the methods worked out in the previous section
to our two stock market data sets. We begin by analyzing versions 1 and 2
of the model—in which expected real stock returns and expected excess
returns on stock over short debt, respectively, are constant through time—
since in these versions no unknown parameter needs to be estimated from
the VAR system.

We study version 1 of the model by using a two-variable system that
includes the log dividend-price ratio and the real dividend growth rate.
(In this version the dividend growth rate is the only component of the
growth-adjusted discount rate that varies through time, so it is the only
component that needs to be included in the VAR.) We study version 2 by
using a similar two-variable system that includes the log dividend-price
ratio and the return on short debt less the dividend growth rate. We then
move to a three-variable system in which real dividend growth and the
real return on short debt are included separately.

For each data set, the parameter p, which is taken as known in our
analysis, was formed as the exponential of the difference between the
sample average change in log dividends and the log of the sample average
real return on stocks. The parameter p therefore differs slightly across data
sets; it is 0.937 for the Cowles/S&P data and 0.933 for the NYSE data. In
order to check for robustness, we also estimated models with p fixed at
0.90, 0.95, and 0.975. The results were very similar to those reported.*®

Table 4 displays detailed results for version 1 of the model, based on a
VAR system with a single lag (p = 1). While this lag length may be too
short (we try longer lags below), it has the advantage that we can give full
details of the results in a single table. We report results for the Cowles/
S&P and New York Stock Exchange data in separate panels.

At the top of each panel of Table 4, we report regressions of the exact
log stock return b,and the approximate log stock return £, on two variables
known at the start of period # the dividend-price ratio é, and the lagged
dividend growth rate Ad, ;. These are the variables that enter the first-
order VAR system. If version 1 of our model is correct, so that expected
real stock returns are constant through time, then the regression coeffi-
cients of returns on these variables should equal zero. We can test the

® One might think that changing the discount factor p would dramatically affect the standard deviation of
the series 8. The discount rate did indeed have an important effect in our earlier paper [Campbell and
Shiller (1987)}. But recall that here 6, and &, are defined in log terms, so their movements represent
percentage changes in the dividend-price ratio. As the discount rate changes, it affects both the absolute
variability of the dividend-price ratio and its absolute mean level. The net effect on the percentage variability
of the dividend-price ratio is small.
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Table 4
Testing constant expected real returns

Explanatory variable

Dependent Joint significance
variable é, Ad,_, R? of coefficients

Cowles/S&P, 1871-1986
Regressions of returns on information:

b, 0.129 -0.013 0.043 0.078
(0.057) (0.121)

£ 0.141 —0.012 0.053 0.045
(0.057) (0.120)

VAR estimation:

[ 0.706 0.259 0.515 0.000
(0.066) (0.139)

Ad, -0.197 0.231 0.227 0.000
(0.039) (0.083)

Implications of VAR estimates:
6, = 0.6368, — 0.097Ad,_,
(0.123)  (0.106)

a(8)/a(8) = 0.637  corr (§,8,) = 0.997
(0.124) (0.006)
Significance level for Wald test that 6, = §, 0.005

Dependent Explanatory variable Joint significance

variable 8, Ad,_, R? of coefficients

Value-weighted NYSE, 1926-1986
Regressions of returns on information:

h, 0.154 —0.385 0.108 0.031
(0.087) (0.213)

£, 0.170 —-0.374 0.120 0.021
(0.086) (0.209)

VAR estimation:

[ 0.689 0.570 0.500 0.000
(0.094) (0.229)

Ad, —-0.187 0.157 0.246 0.000
(0.047) (0.115)

Implications of VAR estimates:
8 = 04716, + 0.109Ad,_,
(0.114)  (0.131)

a(8))/a(8,) = 0.470 corr (8, 6,) = 0.995
(0.114) (0.011)

significance level for Wald test that §; = é, 0.000

Variables are defined as follows: p, is the log stock price, 4, is the log dividend, 3, is the log dividend-price
ratio d,_, — p, b, is the log one-period stock return, and ¢, is the approximation of », defined in Equation
(2). The variable &, is the unrestricted forecast of the present value of future growth-adjusted discount
rates from a VAR (equivalent to the negative of the present value of future dividend growth rates in this
version of the model), defined in Equations (8) and (9). The VAR includes the log dividend-price ratio
and the dividend growth rate.

Standard errors are reported in parentheses under each coefficient. The matrix of VAR coefficients is the
matrix A defined in Equation (7), except for a sign switch in the off-diagonal elements due to the fact that
results are reported for dividend growth rather than for the negative of dividend growth. The constant-
expected-return model is tested in two different ways: by regressing the exact and approximate log stock
returns b, and £, on the lagged variables that appear in the VAR and testing the joint significance of the
coefficients, and by a VAR Wald test of the hypothesis that & = §, [Equation (10)]. The approximate stock-
return regression test is equivalent to a VAR Wald test of Equation (11).
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model by testing the joint significance of these coefficients.’® We use both
exact and approximate returns as a way to evaluate the accuracy of our
approximation. If the approximation error is constant, then the regression
test of the model will give the same result whether exact or approximate
returns are used.

The returns regressions show that stock returns are somewhat predict-
able. The lagged log dividend-price ratio has a positive effect on stock
returns, while the lagged real dividend growth rate has a negative effect.
This pattern holds across both data sets, although in the Cowles/S&P data
the log dividend-price ratio is more highly significant, while in the NYSE
data both variables are about equally significant. The two variables are
jointly significant at about the 5 percent level in each data set, which rejects
the constancy of expected real stock returns at this level. The results are
similar whether exact or approximate returns are used, although the rejec-
tions are slightly stronger with approximate returns.

The ability of the dividend-price ratio to predict returns has been noted
before [for example, by Shiller (1984) and by Flood, Hodrick, and Kaplan
(1986)]. The special feature of our approach is that we can use the dividend-
ratio model to compute the implications of this predictability for the behav-
ior of the dividend-price ratio. To do this, we start from the VAR estimates,
which are reported in Table 4 below the returns regressions. The coeffi-
cients reported are the elements of the matrix A (except that the off-
diagonal elements have a sign switch because results are reported for
dividend growth rather than for the negative of dividend growth). We use
these coeflicients, and Equation (9), to compute the variable &), a linear
combination of the explanatory variables in the VAR.

If the constant-expected-return model were true, the variable &, would
place a unit weight on 6, and a zero weight on Ad,_,. In fact, we can reject
at the 0.5 percent level the hypothesis that &} equals §,.2° In both data sets
the weight of 8, on Ad, , is close to zero, as it should be under the null,
but the weight on é, is considerably less than unity. In the Cowles/S&P
data, for example, it is 0.636 with an asymptotic standard error of 0.13.
This means that &), the unrestricted forecast of the present value of future
real dividend growth, has a standard deviation about two-thirds that of the
log dividend-price ratio §,; in other words, the log dividend-price ratio
moves about 50 percent too much.

One way to understand this result is to consider what it means for the
dividend-price ratio to have a positive effect on subsequent stock returns.
The dividend-price ratio is high when prices are low, and the effect on
returns implies that prices tend to rise subsequently. To eliminate the

" As we noted in the previous section, the regression test that uses the approximate stock return is numerically
equivalent to a VAR Wald test of Equation (11). The reported standard errors and test statistics are not
corrected for heteroskedasticity. We also computed standard errors using White’s (1984) heteroskedasticity
correction and found them to be similar or slightly smaller.

** We test this hypothesis by using a nonlinear Wald test of the restrictions given in Equation (10).
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Table 5
Testing constant expected real and excess returns
Model version 1 Model version 2
(constant expected real returns) (constant expected excess returns)
Lag length Lag length
1 3 5 1 3 5
Cowles/S&P, 1871-1986
b, regression test 0.078 0.056 0.083 0.100 0.007 0.014
& regression test 0.045 0.035 0.055 0.073 0.005 0.009
Test that & = 6, 0.005 0.000 0.000 0.009 0.000 0.000
(8))/a(8,) 0.637 0.370 0.382 0.674 0.434 0.402
(0.124) (0.129) (0.073) (0.111) (0.143) (0.060)
corr (&, 6, 0.997 0.837 0.326 0.999 0.856 0.431
(0.006) (0.246) (0.565) (0.004) (0.200) (0.583)
Value-weighted NYSE, 1926-1986
b, regress}on test 0.031 0.063 0.042 0.111 0.097 0.042
£, regression test 0.021 0.043 0.024 0.081 0.069 0.023
Test that 5 = &, 0.000 0.000 0.000 0.005 0.001 0.000
o (&) /a(5,) 0.470 0.290 0.365 0.544 0.360 0.528
(0.114) 0.079) (0.130) (0.140) (0.115) (0.284)
corr (8, 6,) 0.995 0.616 —0.089 1.000 0.119 -0.353
(0.011) (0.432) (0.505) (0.002) (0.767) (0.392)

Variables are defined as follows: §, is the log dividend-price ratio, b, is the log one-period stock return,
and &, is the approximation to b, defined in Equation (2). The variable & is the unrestricted forecast of the
present value of future growth-adjusted discount rates from a VAR, defined in Equations (8) and (9). The
VAR includes the log dividend-price ratio and the dividend growth rate (for model version 1) or the short-
term real interest rate less the dividend growth rate (for model version 2).

The constant-expected-return model is tested in two different ways: by regressing the exact and approximate
log stock returns b, and £, (or excess returns b, — r,and £, — 7, in model version 2) on the lagged variables
that appear in the VAR and testing the joint significance of the coeflicients, and by a VAR Wald test of the
hypothesis that & = 8, [Equation (10)]. The approximate stock-return regression test is equivalent to a VAR
Wald test of Equation (11).

predictability of returns, the stock price would have to be less variable
around the dividend.

It is striking that the model is rejected at about the 5 percent level when
using a one-period-return regression test [equivalently, a Wald test of Equa-
tion (11) on the VAR], but is rejected at the 0.5 percent level when using
a test of the hypothesis that §, = §, [a nonlinear Wald test of Equation (10)
on the VAR]. Campbell and Shiller (1988a) relate this fact to the observation
made by Fama and French (1988) and others that returns are more pre-
dictable over many periods than over a single period.

The results in Table 4 are conditional on the one-lag specification of the
system (although, of course, adding lags in a fixed sample can never reduce
the R? of the equation explaining stock returns). In the left-hand part of
Table 5 (the “Model version 1 columns) we summarize the results for
VAR lag lengths 1, 3, and 5. (In the pth-order VAR, the independent vari-
ables are b, ...,8, ,,,and Ad,_,, ..., Ad,_,.) In both data sets the second
lag variables raise the R? for the dividend growth equation (not reported
in the table) by at least 10 percentage points. Little further improvement
occurs thereafter. The significance level at which we reject the constant-
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expected-real-return model fluctuates between 2 and 10 percent when we
use a one-period-return regression test, and it is always 0.5 percent or
better when we test that §, = §,. The result that the dividend-price ratio
moves too much seems very robust; indeed, as the lag length increases,
the ratio ¢(87)/0(38,) tends to fall. It is estimated quite precisely, even in
the high-order VAR systems.

The main effect of increasing lag length is that the estimated correlation
of 6, and & falls. It seems likely that the extremely high correlation in the
first-order model is an artifact of the information set, which contains only
6, and Ad,_,. The variable Ad,_, is not highly persistent or smooth, so &,
does not place a large weight on it and instead moves closely with 8,. It is
also possible that the higher-order models are picking up the tendency of
real dividends to revert to a long average of past dividends; when we
compute the correlation of &, with a detrended real dividend, it rises with
lag length. However, the correlation coefficients are very imprecisely esti-
mated, so strong conclusions are unwarranted.

The estimates in Tables 4 and 5 are derived from vector autoregressions
over the whole sample period for each data set. We also estimated VAR
systems with one and two lags over subsamples 1871-1925, 1926-1955,
and 1956-1986. The constant-real-returns model is rejected more strongly
in the later subsamples. Thus, in the Cowles/S&P data, the approximate
return regression test (with lag length 2) rejects at the 41 percent level in
1871-1925, the 28 percent level in 1926-1955, and the 7.1 percent level
in 1956-86. The test that &, = §, rejects at the 29 percent level in 1871-
1925, the 5.1 percent level in 1926-1955, and the 0.1 percent level in 1956
1986. In every case the ratio ¢(6’)/0(8,) is estimated to be less than 1.

In the right-hand part of Table 5 we move on to consider version 2 of
the model, in which expected excess returns on stock over commercial
paper or Treasury bills are constant through time. We begin with a two-
variable system including 6, and r,_, — Ad,_,; this has the advantage that
the price deflator cancels from both variables, so our results are not depen-
dent on the accuracy of the measured deflator.

The results for excess returns in Table 5 are qualitatively very similar to
those for real returns. Excess stock returns are slightly less predictable
than real returns in low-order systems, but as we increase lag length this
difference disappears. Once again the test that §, = §, rejects more strongly
than the return regression test, and the dividend-price ratio seems to move
too much. The ratio ¢(8)/a(d,) is never higher than 0.678 in any of the
systems we estimate, and the difference between this ratio and unity is
almost always statistically significant at the 5 percent level or better. The
correlation between §,and ¢, again falls with lag length, but it is imprecisely
estimated.?!

* When we estimated VAR systems over the subsamples used for model version 1, we again found the
strongest evidence against the model in the period 1956-1986. The dividend-price ratio again appeared
to “move too much” in every subsample.
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Table 6
Testing constant expected excess returns by using interest rates and dividend growth rates
Lag length
1 3
Cowles/S&P, 1871-1986
b, regression test 0.179 0.011
&, regression test 0.135 0.008
Test that §;, = §, 0.019 0.000
o(8, — 8./ (3) 0.395 0.761
(0.113) (0.201)
a(8,)/a(5) 0.186 0.253
(0.062) (0.111)
corr (8, — 0, 8.) 0.395 0.383
(0.538) (0.703)
Value-weighted NYSE 1926-1986
b, regression test 0.055 0.051
£, regression test 0.036 0.032
Test that & = 6, 0.003 0.000
(b, — 84)/a(3) 0.537 0.946
(0.114) (0.171)
a(8,)/a(8,) 0.237 0.245
(0.091) (0.150)
corr (8, — 8, &) 0.001 —-0.707
(0.434) (0.346)

Variables are defined as follows: §, is the log dividend-price ratio, 4, is the log one-period stock return,
and £, is the approximation to b, defined in Equation (2). The variable &, is the unrestricted forecast of the
present value of future growth-adjusted discount rates from a VAR, defined in Equations (8) and (9). The
VAR includes the log dividend-price ratio, the dividend growth rate, and the short-term real interest rate.
The variable &, is the unrestricted forecast of the present value of the negative of future dividend growth
rates from the VAR, defined in Equation (12). The variable &), is the unrestricted forecast of the present
value of future discount rates from the VAR, defined in Equation (12).

The constant-expected-excess-return model is tested in two different ways: by regressing the exact and
approximate excess log stock returns 4, — r,and £, — r, on the lagged variables that appear in the VAR
and testing the joint significance of the coefficients, and by a VAR Wald test of the hypothesis that §; = §,
[Equation (10)]. The approximate stock-return regression test is equivalent to a VAR Wald test of Equation

(11).

The similarity between the results for excess and real stock returns in
Table 5 suggests that time variation in short-term real interest rates is not
particularly helpful in explaining the movements of the dividend-price
ratio. In Table 6 we present some results, based on a three-variable system
including real dividend growth and real interest rates separately, that con-
firm this view. Systems of lag length 1 and 3 are estimated; we do not go
up to lag 5 since the number of variables in the system now grows more
rapidly with lag length. For each data set, the table gives the following
numbers: significance levels for the predictability of exact and approximate
excess returns; a rejection significance level for the hypothesis that 8, = 4,
the standard deviation of the implied long-term expected real return 6, —

', as a ratio to the standard deviation of 8,; the standard deviation of the
unrestricted forecast of the discounted value of future short-term real inter-
est rates 8/, as a fraction of the standard deviation of é,; and the correlation
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between 6, — d,, and &, If the predictability of real returns were entirely
due to time-varying short-term real interest rates, so that excess stock
returns were unpredictable, then we should not reject that &, = §,, and we
should find é, — ¢, equal to §,, with the same standard deviation and a
correlation of unity.

In fact, the hypothesis that 8§}, = §, is strongly rejected. The results in
Table 6 show that §), has a much smaller standard deviation than 8, — 3.,
does (the difference in variability increases as we increase lag length) and
that the correlation between the two variables is small. In about half the
systems we estimate, in fact, the correlation is actually negative.

This finding can be traced back to the following features of the data.
The ex post short-term real interest rate, used here as a measure of the
discount rate r,, is not highly variable; in the Cowles/S&P data, for example,
it has a standard deviation of 0.091, while real dividend growth and the
log dividend-price ratio have standard deviations of 0.278 and 0.132,
respectively. In the NYSE data the standard deviation of the ex post real
interest rate is even lower, at 0.045, while the other two series are about
as variable as in the Cowles/S&P data. Furthermore, in the VAR systems
we estimate, the real rate is forecastable largely because of its own serial
correlation. We find that it is not even Granger-caused by the log dividend-
price ratio at the 10 percent level. It seems that short-term real interest
rates are not sufficiently variable, and do not have the appropriate corre-
lation with stock prices, to explain big movements in the log dividend-
price ratio.

In Table 7 we move on to evaluate real consumption growth and the
volatility of stock returns as measures of time-varying discount rates on
stock (versions 3 and 4 of the model, respectively). As discussed in the
previous section, these versions of the model have a free parameter o which
can be interpreted as the coefficient of relative-risk aversion and which we
estimate from the unrestricted VAR coeflicients by using the method of
moments. The format of Table 7 is similar to that of Table 6, except that
we report the estimate of o with its standard error.

The results in Table 7 are discouraging for the view that real consumption
growth is an adequate measure of the one-period discount rate on stock.
The estimates of the coefficient of relative-risk aversion always have the
wrong sign, and this version of the model is rejected about as strongly as
are previous versions in VAR systems that have more than one lag. Once
again the expected present value of future discount rates, 4, has too little
variability and a correlation with 8, — 6., that falls with lag length.

Inspection of the equation for consumption growth in the underlying
VAR system reveals why « is always estimated to be negative. In all the
equations we estimate, the log dividend-price ratio Granger-causes con-
sumption growth at conventional significance levels, but a high ratio at
the start of a year forecasts low consumption growth over the year. This
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Table 7
Testing consumption- and volatility-based models of the discount rate
Model version 3 (consumption) Model version 4 (volatility)
Lag length Lag length
1 3 1 3
Cowles/S&P, 1871-1986
Estimate of a —2.191 —0.423 2.552 0.960
(standard error) (1.399) (0.818) (2.549) (0.985)
£, regression test 0.072 0.038 0.170 0.096
Test that & = 8, 0.012 0.000 0.039 0.007
a(8, — 0 /a(d) 0.484 0.711 0.368 0.724
(0.100) (0.216) (0.122) (0.211)
o(8)/a(3) 0.227 0.038 0.077 0.095
(0.149) (0.081) (0.116) (0.148)
corr (8, — &, &) 0.910 ~0.024 0.339 0.660
(0.073) (0.788) (1.415) (0.525)
Value-weighted NYSE, 1926-1986
Estimate of a —3.423 —0.332 1.810 1.318
(standard error) (1.926) (1.067) (2.614) (1.261)
£, regression test 0.259 0.046 0.052 0.162
Test that 6 = 6, 0.168 0.000 0.000 0.000
(8, — &) /a(8) 0.526 0.811 0.538 0.857
(0.108) (0.175) (0.111) (0.178)
o (8,)/a(8) 0.396 0.035 0.107 0.151
(0.170) (0.120) (0.322) (0.215)
corr (8, — &, &) 0.930 0.190 0.731 0.187
(0.087) (0.709) (0.453) (1.149)

Variables are defined as follows: §, is the log dividend-price ratio, b, is the log one-period stock return,
and &, is the approximation to b, defined in Equation (2). The variable & is the unrestricted forecast of the
present value of future growth-adjusted discount rates from a VAR, defined in Equation (13). The VAR
includes the log dividend-price ratio, the dividend growth rate, and the consumption growth rate (for
model version 3) or the squared ex post stock return (for model version 4). The variable &, is the unrestricted
forecast of the present value of the negative of future dividend growth rates from the VAR, and the variable
4, is the unrestricted forecast of the present value of future discount rates from the VAR; both are defined
in Equation (13).

In these versions of the model the discount rate includes a free parameter a. This is estimated from the
VAR by using Equation (14) and a method-of-moments estimator. The model is tested in two ways: by
using a Wald test of Equation (14) (£, regression test) and by using a nonlinear Wald test of Equation (13)
(test that & = 8,).

means that low consumption growth is associated with a high one-period
discount rate on stock, which requires a to be negative.??

The results for version 4 of the model are somewhat better, but still
discouraging. The estimates of & now have the right sign, but they are very
imprecisely estimated. The variable 8,, has very low variability, and in the

We also estimated version 3 of the model assuming that consumption is measured at the beginning of the
year, so that r, = a Ac,,,. With this timing assumption, the estimate of « is no longer negative, but it is still
insignificantly different from zero. The dividend-price ratio no longer Granger-causes the discount rate
measure, and the model is more strongly rejected.
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VAR forecasting equation for volatility, the squared ex post stock return is
not Granger-caused by the log dividend-price ratio at the 10 percent level.
The model is rejected almost as strongly as before in systems with more
than one lag.

Conclusion

This article has examined time variation in corporate stock prices relative
to dividends. As a framework for analyzing stock-price movements, we have
proposed a dividend-ratio model that expresses the log dividend-price
ratio as the rational expectation of the present value of future dividend
growth rates and discount rates. We have used the equation in combination
with a vector autoregression to break down movements in the log dividend-
price ratio into components attributable to expected future dividend growth,
expected future discount rates, and unexplained factors.

Our main results are three. First, there is some evidence that the log
dividend-price ratio does move with rationally expected future growth in
dividends. The log dividend-price ratio Granger-causes real dividend growth
in all the systems we estimated, and the unrestricted forecast of the present
value of future dividend growth rates from a VAR, 8, has a standard devia-
tion that is generally about half that of the actual log dividend-price ratio
d,. The correlation between §,, and §, is extremely high in first-order VAR
systems, falling dramatically as we increase the VAR lag length. It generally
remains positive in high-order systems but is imprecisely estimated.

Second, the various measures of short-term discount rates that we used—
short-term interest rates, consumption growth, and the volatility of stock
returns themselves—are unhelpful in explaining stock-price movements.
One of the weakest implications of the model is that the log dividend-
price ratio should help forecast measured discount rates if, in fact, expec-
tations of future discount rates drive stock prices. But neither short-term
real interest rates nor squared ex post real stock returns are Granger-caused
by the log dividend-price ratio at conventional significance levels. The log
dividend-price ratio does Granger-cause real consumption growth, but the
correlation between Ac, and 4, has the wrong sign. When we compute
the rational expectation of the present value of future discount rates, 4,
we find that it is far less variable than the component of the log dividend-
price ratio that is not explained by dividends, 8, — 4,

Third, there is substantial unexplained variation in the log dividend-
price ratio. The unexplained part of §, is roughly equal to 8, — &, since
measured discount rates contribute little to the explanation of §,, and the
variable 8, — 4., has a standard deviation about half that of §,.

To give an idea of what remains to be explained, we present an estimate
of the long-term expected real stock return in Table 8. The variable reported
is the unconditional mean log stock return plus (1 — p)(6, — ). As
discussed in Section 3, this variable is a weighted average of expected
future discount rates on stock; it is the stock market equivalent of a consol
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Table 8
Dividend-price ratio and long-term expected real stock return

Long-term Long-term
Date D,_./P, expected return Date D,_,/P, expected return
1929 0.034 0.068 1958 0.047 0.081
1930 0.046 0.078 1959 0.033 0.068
1931 0.063 0.096 1960 0.031 0.061
1932 0.093 0.118 1961 0.033 0.061
1933 0.067 0.109 1962 0.028 0.056
1934 0.035 0.079 1963 0.033 0.060
1935 0.041 0.077 1964 0.030 0.059
1936 0.033 0.067 1965 0.029 0.055
1937 0.040 0.076 1966 0.029 0.054
1938 0.071 0.097 1967 0.034 0.061
1939 0.037 0.076 1968 0.029 0.057
1940 0.046 0.084 1969 0.028 0.052
1941 0.058 0.093 1970 0.033 0.059
1942 0.076 0.109 1971 0.033 0.061
1943 0.061 0.102 1972 0.029 0.056
1944 0.051 0.094 1973 0.026 0.049
1945 0.047 0.087 1974 0.034 0.059
1946 0.036 0.072 1975 0.053 0.083
1947 0.045 0.076 1976 0.041 0.081
1948 0.055 0.092 1977 0.038 0.074
1949 0.065 0.102 1978 0.048 0.081
1950 0.063 0.104 1979 0.052 0.089
1951 0.064 0.105 1980 0.050 0.089
1952 0.054 0.095 1981 0.045 0.085
1953 0.051 0.092 1982 0.052 0.087
1954 0.055 0.094 1983 0.048 0.088
1955 0.041 0.082 1984 0.042 0.080
1956 0.038 0.074 1985 0.045 0.081
1957 0.039 0.072

This table reports the dividend-price ratio D,_,/ P, for each year in our sample, together with an estimate
of the required long-term real rate of return on stocks for that year. This estimate is formed as the
unconditional mean real rate of return on stocks, plus (1 — p) times (6, — &), the component of the
demeaned log dividend-price ratio that cannot be accounted for by expected dividend growth. The variable
&, is the unrestricted forecast of the present value of the negative of future dividend growth rates from a
VAR, defined in Equation (12). The estimated VAR includes two lags of the log dividend-price ratio and
the log real dividend growth rate.

yield in the bond market. The estimate is based on a VAR system that
includes two lags of the log dividend-price ratio and the real dividend
growth rate. (The system is similar to the ones reported in Table 5.) Prices
and dividends are taken from the CRSP value-weighted New York Stock
Exchange index. After allowing for the lags in the model, our series runs
from 1929 to 1985. For comparison, we also report the raw-dividend-price
ratio D,_,/P.,

It is clear from Table 8 that the long-term expected real return on stock
is highly variable (recall that it is not a one-period expected return, but a
long-term average of expected returns). Also, it does not move in parallel
with the short-term real interest rate. Short-term real rates were unusually
low in the late 1970s, but there is no sign of matching behavior in (1 — p) -
(8, — 8,)—which, instead, was unusually low throughout the 1960s.

We have reached these conclusions by using a methodology that is
significantly more general and robust than any previously available. In
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particular, we have not assumed that dividends are stationary around a
fixed time trend [as Shiller (1981) did] or that they follow a linear process
with a unit root [as Mankiw, Romer, and Shapiro (1985) and West (1987,
1988) did]. Rather, we have been able to model dividends as a log-linear
process with a unit root. This incorporates the geometric random walk
model of Kleidon (1986) and LeRoy and Parke (1987) and the dividend-
smoothing model of Marsh and Merton (1986, 1987) as special cases. We
have also been able to incorporate some simple and popular models of
discount rate variation into our analysis.

There are, of course, a number of caveats that need to be taken into
account in evaluating our results. Our approach relies on the accuracy of
a first-order Taylor approximation to the log return on stocks. This approx-
imation is essential if we are to be able to solve forward for the price
implications of a returns model. We have presented evidence in the Appen-
dix that the approximation is quite accurate for our data, but approximation
error could have some influence on our results.

Our measures of discount rates are applicable only under certain assump-
tions, which might be questioned. In one version of the model a constant
risk premium is assumed; in another, a constant riskless rate—rather extreme
assumptions. And of course, even under these assumptions, there is a
question whether we measure the risk-free rate or the risk premium accu-
rately with our data. Theory suggests that the discount rate should be a
function of the leverage of the firm, which changes through time as the
price of the firm changes [Black (1976)], a factor not taken into account
in our analysis.

Throughout, we have also assumed that stable, linear stochastic pro-
cesses drive log dividends, log prices, and discount rates. Some of our
procedures are robust to failures of this assumption. Notably, when we test
the hypothesis that dividends and measured discount rates can fully explain
stock-price movements, our test is either a regression of ex post stock
returns on information or a nonlinear test of algebraically equivalent
restrictions. The return regression should give zero coefficients whether
the information variables follow stable or unstable, linear or nonlinear
processes. The nonlinear test will find that 8, = §, if the return regression
gives zero coeflicients, so it is equally robust.

On the other hand, the qualitative comparison of §,and §', which we use
to characterize a failure of the null hypothesis, may be vulnerable to a
misspecification of the processes for prices, dividends, and discount rates.
However, we believe that this comparison is fairly reliable in our data,
since we obtain similar results over various subsamples.

Our econometric methods are based on asymptotic distribution theory.
It is possible that they are subject to some bias in finite samples. Mankiw
and Shapiro (1986) and Stambaugh (1986) have studied bias in regression
tests, while Flavin (1983), Kleidon (1986), and Mattey and Meese (1986)
have pointed out that volatility tests can suffer from this problem. We have
conducted our own Monte Carlo study of the methods used in this articie
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[Campbell and Shiller (1988b)). While we do find some bias toward rejec-
tion of the model, and some downward bias in the estimates of ¢(8,) /a(8,),
the bias is not sufficient to explain our empirical findings.

Our results are also conditional on an adequate specification of lag length
in the VAR systems we estimate. We try lag lengths up to 5 in two-variable
systems and 3 in three-variable systems. The main effect of altering lag
length is that the correlation between §, and 8, falls, particularly when we
move from one to two lags. As argued above, we suspect that the extremely
high correlation in the first-order system is to some extent spurious.

Our conclusions might also be affected by adding more lagged variables
to our information set H, We note, however, that adding more variables
could only increase the explanatory power of regressions explaining stock
returns. Given the risk of overfitting regressions in finite samples, we have
chosen to consider a relatively small set of information variables in this
article. In Campbell and Shiller (1988a), we have extended the set of
variables somewhat by including corporate earnings data. We obtain results
for one-lag systems including earnings that are similar to the resuits reported
here for higher-order systems.

There is an interesting parallel between our results and those of Fama
and French (1988) and Flood, Hodrick, and Kaplan (1986). These authors
find that stock returns are more highly predictable when measured over
several years than when measured over one year. The predictability of
returns seems to cumulate over time. Our dividend-ratio model can be
seen as a way to compute the effects of single-period predictability of
returns when they are cumulated over infinite time. We find that moderate
predictability of one-year stock returns can have dramatic implications for
the log dividend-price ratio. In particular, the log dividend-price ratio has
a standard deviation that is at least 50 percent higher than it would be if
stock returns were unpredictable.

Appendix: Approximation Error of the Dividend-Ratio Model

In this Appendix we evaluate in several different ways the approximation
error in the dividend-ratio model, Equation (6). We do this by studying
the error in the underlying Equations (2) and (4) and by directly comparing
&, as given in Equation (9) with an exact log dividend-price ratio in a
simple model. The evaluations proceed as follows:

1. We compare exact return b, to approximate return £,.

2. We compare the log dividend-price ratio 8, with the right-hand side
of Equation (4), using a terminal condition.

3. We compare an exact log dividend-price ratio where the price is the
present value of expected dividends with the approximate log dividend-
price ratio &',

4. We compare regression results when b, or &, are regressed on infor-
mation.
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Table Al
Evaluation of approximation error: Log-linear approximation to stock return

Variable
Data set, sample period, Exact Approximate Error,
and statistic return A, return £, & — b
Cowles/S&P, 1871-1986:
Mean 0.081 0.076 —0.005
Standard deviation 0.170 0.169 0.005
Correlation with exact return 1.0000 0.9996 —0.3108
Value-weighted NYSE, 1926-1986:
Mean 0.089 0.081 —0.008
Standard deviation 0.201 0.199 0.006
Correlation with exact return 1.0000 0.9995 —0.3394

All variables in this table are nominal. 4, is the log one-period stock return, and £, is the approximation to
b, defined in Equation (2).

The first, second, and fourth comparisons use actual data, the third uses a
Monte Carlo experiment in which data are generated by a known vector
autoregressive model. The first two comparisons relate to ex post data, and
the second two relate to conditional expectations.

1. Table Al compares the approximate nominal stock return £, defined
in Equation (2), with the exact nominal return 4,.?* The approximation
error is quite small and, most important for our purposes, is almost constant.
(Constant approximation error will not affect our results since our models
do not restrict mean returns.)

2. Even though the approximation error is small for one-period returns,
it might cumulate when we solve forward to obtain Equation (4). To check
this possibility, we constructed an approximate log dividend-price ratio
67 by using Equation (4), the time series of ex post stock returns b, and
dividend growth rates Ad,, and a terminal condition 84 = §,.2¢ In Table A2
we compare this variable with the actual log dividend-price ratio é,. If our
approximation held exactly in Table A1 (that is, if we had ¢, = A, for all ¢#),
then there would also be no error in Table A2. In order to reduce the
influence of the terminal condition, we use only the first 30 years of each
sample in computing the summary statistics. The approximation error is
again quite small and not highly variable.

3. For our Monte Carlo experiment, we first generated 1000 replications
of the vector z, by using a normal random-number generator and the esti-
mated parameters of the one-lag vector autoregressive model estimated
here in Table 4, top panel. We then computed the corresponding 1000

# Real stock returns are obtained by subtracting the inflation rate from nominal returns, and excess stock
returns are obtained by subtracting ex post nominal discount rates from nominal returns. Therefore, the
approximation error for these return concepts is the same as for nominal stock returns.

* This terminal condition is used only for evaluating the approximation in Equation (4), not in the empirical
work of the article.
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Table A2
Evaluation of approximation error: Log-linear approximation to dividend-price ratio

. Variable
Data set, sample period,
and statistic 5, o o — 9,
Cowles/S&P, 1871-1986:
Mean —3.007 —2.935 0.072
Standard deviation 0.242 0.238 0.011
Correlation with 9§, 1.000 0.982 0.044
Value-weighted NYSE, 1926-1986:
Mean —2.989 —2.877 0.112
Standard deviation 0.263 0.266 0.027
Correlation with 8, 1.000 0.995 0.063

Summary statistics are computed only over the first 30 years of each sample. §, is the log dividend-price
ratio, and &/ is an approximate log dividend-price ratio constructed by using Equation (4), the time series
of ex post stock returns 4, and dividend growth rates Ad,, and a terminal condition 04 =6,

observations of &, by using the right-hand side of Equation (9). The
variable ¢} is what the log dividend-price ratio should be if discount rates
are constant through time (version 1 of our model) and if our approxi-
mation holds exactly.

If dividends are generated by the lognormal VAR system and if discount
rates are constant through time, then, without using any approximation,
the log dividend-price ratio should equal 8N as defined by

3™ = —log| D) exp(m,) (A1)

Jj=1

where
m; = e2’ jﬂ + ([ - A)‘I(A - Aj+l)(zt - /J')

$05 3 (- A) (1 — AV — 4'([ — A)Ve2

k=1

Table A3
Monte Carlo evaluation of approximation error: Log-linear approximation to dividend-price ratio

Variable

Exact log Approximate log

dividend-price dividend-price
Statistic ratio 68 ratio & Error, 6, — 8N
Mean —2.867 —2.710 0.157
Standard deviation 0.179 0.176 0.003
Correlation with 6" 1.000 0.99997 ~0.896

The results in this table are based on simulated, not actual, data. We generated 1000 replications of a
vector z, including the log dividend-price ratio and the dividend growth rate, by using a normal random-
number generator and the estimated parameters of the one-lag vector autoregressive model estimated in
Table 4, top panel. We then computed the corresponding observations of &, by using the right-hand side
of Equation (9). These are compared with observations of 8, defined in Equation (A1). If our approximation
(2) is accurate, then &, should equal 8™
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where u is defined as the mean of the vector z, = x,, where @ is the variance
matrix of the error term u,= v,, and where the other symbols are as described
in the text of this article.*

It follows that we can test the accuracy of our approximation by com-
paring 6, with 8'¥. Comparisons of this sort are given in Table A3. The
correlation of & with 6N is extremely high at 0.99997, and the other mea-
sures also show very close correspondence. There is thus no need to use
the more complicated nonlinear expression (A1) instead of (9) for the log
dividend-price ratio.

4. Even though &, and b, are highly correlated, it does not automatically
follow that the approximation does not pose problems for our Wald tests
of the dividend-ratio model. We therefore compared regressions of £, and
b, on information. A detailed comparison is presented in Table 4; com-
parative significance levels for rejection of the dividend-ratio model are
presented also in Tables 5 and 6. The significance tends to be slightly
stronger for approximate returns, indicating that there is some correlation
of the approximation error with the explanatory variables. However, the
difference is small and should not affect the broad conclusions we get from
our approximate model.
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