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1. Introduction

Modern portfolio theory aims to allocate assets by maximising the expected
risk premium per unit of risk. In a mean—variance framework risk is defined in
terms of the possible variation of expected portfolio returns. The focus on
standard deviation as the appropriate measure for risk implies that investors
weigh the probability of negative returns equally against positive returns.
However it is a stylised fact that the distribution of many financial return series
are non-normal, with skewness and kurtosis pervasive.! Furthermore there is
ample evidence that agents often treat losses and gains asymmetrically. There is
a wealth of experimental evidence for loss aversion (see, for example, Kahne-
man et al., 1990). The choice therefore of mean—variance efficient portfolios is
likely to give rise to an inefficient strategy for optimising expected returns for
financial assets whilst minimising risk. It would therefore be more desirable to
focus on a measure for risk that is able to incorporate any non-normality in the
return distributions of financial assets. Indeed risk measures such as semi-
variance were originally constructed in order to measure the negative tail of the
distribution separately.

Typically mainstream finance rests on the assumption of normality, so that a
move away from the assumption of normally distributed returns is not par-
ticularly favoured; one drawback often stated is the loss in the possibility of
moving between discrete and continuous time frameworks. However it is
precisely this simplifying approach, whereby any deviations from the square
root of time rule are ignored, which needs to be incorporated into current fi-
nance theory. The ability to focus on additional moments in the return dis-
tribution with the possibility of allowing for skewed or leptokurtotic
distributions enables additional risk factors (along with the use of standard
deviation) to be included into the optimal portfolio selection problem.?

In this paper, we develop an optimal portfolio selection model which
maximises expected return subject to a downside risk constraint rather than
standard deviation alone. In our approach, downside risk is written in terms of
portfolio Value-at-Risk (VaR), so that additional risk resulting from any non-
normality may be used to estimate the portfolio VaR. This enables a much
more generalised framework to be developed, with the distributional as-
sumption most appropriate to the type of financial assets to be employed. We
develop a performance index similar to the Sharpe ratio, and for the case that

! See among others Fama and Roll (1968), Boothe and Glassman (1987), and Jansen and de
Vries (1991).

2 Recent research by Harvey and Siddique (2000), Bekaert et al. (1998) and Das and Uppal
(1999) indeed advocate the need to incorporate non-normalities into the portfolio allocation
decision.
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financial assets are assumed to be normally distributed, provide a model similar
to the mean—variance approach.

The plan of the paper is as follows: We introduce the framework in Section
2. Section 3 then provides empirical results of the optimal portfolio allocation
for a US investor. In Section 4 we address the importance of the non-normal
characteristics of expected return distributions in such a framework. Conclu-
sions and practical implications are drawn in Section 5.

2. Portfolio selection under shortfall constraints

Portfolio selection under shortfall constraints has its origins in the work by
Roy (1952) on safety-first theory. Roy defined the shortfall constraint such that
the probability of the portfolio value falling below a specified disaster level is
limited to a specified disaster probability. We extend the literature on asset
allocation subject to shortfall constraints.> We address the potential problem
concerning the definition of disaster levels and probabilities through the use of
VaR, and develop a market equilibrium model for portfolio selection, which
allows for alternative parametric distributions to be used. Banks and financial
institutions have adopted VaR as the measure for market risk,* whereby VaR
is defined as the maximum expected loss on an investment over a specified
horizon given some confidence level.” For example a 99% VaR for a 10-day
holding period,® implies that the maximum loss incurred over the next 10 days
should only exceed the VaR limit once in every 100 cases. It therefore reflects
the potential downside risk faced on investments in terms of nominal losses.
Introducing VaR as a shortfall constraint into the portfolio selection decision,
so that the portfolio manager or investor is highly concerned about the value of
the portfolio falling below the VaR constraint, is much more in fitting with
individual perception to risk and more in line with the constraints which
management currently face.

In the framework developed, the measure for risk is defined in terms of the
VaR over and above the risk free rate of return on the initial wealth. The
portfolio is then selected to maximise expected return subject to the level of
risk. The final choice of portfolio, including the borrowing and lending deci-

3 See also Leibowitz and Kogelman (1991), and Lucas and Klaassen (1998) who, for example,
construct portfolios by maximising expected return subject to a shortfall constraint, defined such,
that a minimum return should be gained over a given time horizon for a given confidence level.

4 See Jorion (1997) for a comprehensive introduction into VaR methodology.

5 In practice these confidence levels for VaR range from 95% through 99%, whereby the Basle
Committee recommends 99%.

© This is the VaR recommended by the Basle Committee for Banking Regulation used in
establishing a bank’s capital adequacy requirements.
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sion will therefore meet the specified VaR limit. VaR is therefore used as an ex-
ante market risk control measure, extending the richness of VaR as a risk
management tool. Developing upon the framework as laid out by Arzac and
Bawa (1977), we provide a model in terms of downside risk, so that the optimal
portfolio is determined in terms of its VaR, and a performance index, similar to
the Sharpe ratio is developed. In this way, we are able to leave the distribu-
tional assumptions about the structure of the tails of the distribution or any
skewness, to that most in accordance with the financial asset held. This has the
advantage of allowing for non-normal payoffs as with most derivative prod-
ucts: providing a general but highly desirable model for optimal portfolio se-
lection. We shall also see that under certain distributional assumptions the
model collapses to the CAPM,” as developed by Sharpe (1964), Lintner (1965)
and Mossin (1966). Since the model is able to encompass much of modern
portfolio theory we are able to observe the effect on the portfolio decision
induced by non-normalities.

3. Portfolio selection model

In this section, we present a portfolio construction model subject to a VaR
limit set by the risk manager for a specified horizon. In other words, we
derive an optimal portfolio such that the maximum expected loss would not
exceed the VaR for a chosen investment horizon at a given confidence level.
Using VaR as the measure for risk in this framework is in accordance with
the banking regulations in practice and provides a clear interpretation of
investors’ behaviour of minimising downside risk. The degree of risk aversion
is set according to the VaR limit; hence avoiding the limitations of expected
utility theory as to the degree of risk aversion, which an investor is thought to
exhibit.

3.1. Portfolio selection problem and downside risk constraint

Suppose that we have an amount W(0) to be invested for an investment
horizon T, which we want to invest such that the portfolio meets a chosen VaR
limit. This could be set for example by the risk management department, so
that the financial institution meets the Basle capital adequacy requirement, or
by the private investor according to his individual aversion to risk. This
amount can therefore be invested along with an amount B representing bor-
rowing (B > 0) or lending (B < 0). We assume 7, is the interest rate at which
the investor can borrow and lend for the period 7. There are n available assets,

7 See Arzac and Bawa (1977) for the derivation of the CAPM.
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and y(i) denotes the fraction invested in the risky asset, i. The y(i)s must
therefore sum to one. Let P(i,¢) be the price of asset i at time ¢ (the current
decision period is therefore when ¢ = 0). The initial value of the portfolio, in Eq.
(1), represents the budget constraint:

n

w(0)+B=> 7(i)P(i,0). (1)

i=1

The manager or investor therefore needs to choose the fractions y(i) to be
invested with the initial wealth W(0) and the amount borrowed or lent at time
0. Allocating the assets in the portfolio and choosing the amount to borrow
or lend such that the maximum expected level of final wealth is achieved
results in the definition of the portfolio allocation problem. Choosing the
desired level of VaR as VaR* we therefore formulate the downside risk
constraint as follows:

Pr{W(0) — W(T,p) = VaR"} < (1 — ¢), 2)

where Pr denotes the expected probability conditioned on the information
available at time zero, for portfolio p. Eq. (2) is equivalent to

Pr{W (T, p) <W(0) — VaR*} < (1 — ¢). (3)

Since VaR is the worst loss over the investment horizon 7, which can be ex-
pected with confidence level ¢, the investor’s level of risk aversion is reflected in
both the level of the VaR, and the confidence level associated with it. The
optimal portfolio, which is derived such that Eq. (3) holds, will therefore reflect
this.

3.2. Optimal portfolio construction

The introduction of VaR however provides us with a shortfall constraint
(denoted by Eq. (3)) that fits perfectly into the Arzac and Bawa framework. We
therefore build upon their results to derive an optimal portfolio selection
model. The investor is interested in maximising wealth at the end of the in-
vestment horizon. Let r(p) be the expected total return on a portfolio p in
period T, assume that asset i is included with fraction y(i, p) in portfolio p. The
expected wealth from investing in portfolio p at the end of the investment
horizon becomes

Ey(W(T,p)) = (W(0) + B)(1 +r(p)) = B(1 +ry). )

Substituting for B and the downside risk constraint (Eq. (3)), the final expected
return on wealth is maximised for an investor concerned about the downside
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risk by the portfolio maximising S(p) in Eq. (5). We denote this maximising
portfolio as p', where ¢(c,p) simply defines the quantile that corresponds to
probability (1 — ¢) of occurrence, which can be read off the cdf of the expected
return distribution for portfolio p.

r(p) — re
w(0)rr — W(0)q(c,p)

P :maxS(p) = (5)

Note that although initial wealth is in the denominator of S(p) it does not affect
the choice of the optimal portfolio since it is only a scale constant in the
maximisation. The asset allocation process is thus independent of wealth. The
advantage however of having initial wealth in the denominator is in its inter-
pretation. S(p) equals the ratio of the expected risk premium offered on
portfolio p to the risk, reflected by the maximum expected loss on portfolio p
that is incurred with probability 1 — ¢ relative to the risk-free rate. Since the
negative quantile of the return distribution multiplied by the initial wealth is
the VaR associated with the portfolio for a chosen confidence level, we are able
to derive an expression for the risk faced by the investor as ¢. Letting VaR
(¢,p) denote portfolio p’s VaR, the denominator of (5) may be written as

@(c,p) = W(0)ri — VaR(c, p). (6)

Such a measure for risk is in fitting with investors’ behaviour of focussing on
the risk-free rate of return as the benchmark return with risk being measured as
the potential for losses to be made with respect to the risk-free rate as the point
of reference. Indeed the measure for risk can be seen as a possible measure for
regret, since it measures the potential opportunity loss of investing in risky
assets. Investors will therefore only accept greater returns if they can tolerate
the regret occurring from the greater potential wealth-at-risk. The risk-return
ratio S(p), which is maximised for the optimal portfolio p’ can therefore be
written as

_rp)—ry

o(c,p) )

P maxS(p)
p

S(p) is thus a performance measure like the Sharpe index that can be used to
evaluate the efficiency of portfolios (see Sharpe, 1994, for more details). Indeed
under the assumption that expected portfolio returns are normally distributed,
and the risk-free rate is zero, S(p) collapses to a multiple of the Sharpe index.
In this case the VaR is expressed as a multiple of the standard deviation of the
expected returns so that the point at which both performance indices are
maximised will lead to the same optimal portfolio being chosen. Only a min-
imal difference in the optimal portfolio weights occurs for positive risk free
rates, for a small time horizon.
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The optimal portfolio that maximises S(p) in Eq. (7) is chosen independently
from the level of initial wealth. It is also independent from the desired VaR,
since the risk measure ¢ for the various portfolios depends on the estimated
portfolio VaR rather than the desired VaR. Investors first allocate the risky
assets and then the amount of borrowing or lending will reflect by how much
the VaR of the portfolio differs from the VaR limit set; thus two-fund sepa-
ration holds like in the mean—variance framework. However, since the inves-
tors’ degree of risk aversion is captured by the chosen VaR level, the amount of
borrowing or lending required to meet the VaR constraint may be determined.
This is a significant benefit of the model, and therefore has serious practical
implications, with investors being able to easily and accurately determine the
desired risk-return trade-off with the required amount of borrowing or lending
easily determined. The amount to be borrowed is denoted by Eq. (8):

W(0)(VaR™ — VaR(c,p'))

B —
@'(c,p)

: ®)

The optimal portfolio is independent of the distributional assumption, so that
the model has been derived solely on the premise that investors wish to max-
imise expected return subject to a downside risk constraint.

4. Optimal portfolio selection for US stocks and bonds

In order to determine the effect of deviations from normality, and the time
horizon chosen for the VaR level we have estimated the optimal portfolios for
a US investor using US Stocks and Bonds such that a VaR constraint over
various time horizons is met. We use data obtained from datastream for the
S&P 500 composite return index for the US, the 10-year datastream bench-
mark US government bond return index and the 3-month US Treasury Bill
rate for the risk-free rate. We employ daily data from these US indices from
January 1990 until December 1998, providing us with 2364 observations. The
average annual return on the S&P 500 over the sample period was 16.81%, just
over twice as high as the average annual return on the 10-year Government
Bond Index of 8.35%. The annual standard deviation is also higher on the S&P
500 at 13.42% per annum, compared to the less volatile nature of the Gov-
ernment Bonds with an annual standard deviation of only 6.31%.

Looking at the alternative frequencies in Table 1, we see that the monthly
average return is naturally greater than the daily return; however the standard
deviation of the distribution is also greater, and is even greater than the square
root of time rule would suggest. This provides an indication of autocorrelation.
We also see that for all three data frequencies significant skewness and kurtosis
is prevalent.
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Table 1
Summary statistics®
Daily Bi-weekly Monthly

S&P 500 composite return index
Observations 2364 248 132
Average return 0.000528 0.00523 0.010804
Standard deviation 0.007717 0.028459 0.037896
Maximum return 0.058101 0.098783 0.106718
Minimum return —-0.03532 —0.07666 —-0.11075
Skewness 0.179661 0.170371 —-0.06104
Kurtosis 6.78397 3.73567 3.45994
10-year datastream US benchmark Government Bond Index
Observations 2364 248 132
Average return 0.000331 0.003317 0.006572
Standard deviation 0.003972 0.012421 0.018705
Maximum return 0.016462 0.031485 0.039118
Minimum return —-0.02826 —0.04402 -0.05199
Skewness —-0.39087 —-0.38734 —-0.46151
Kurtosis 6.23627 3.34004 2.8721

#The table gives the summary statistics for the S&P 500 composite returns index and the 10-year
datastream US benchmark government bond index over the period January 1990-December 1998.

4.1. Optimal portfolio selection using the empirical distribution

To find the portfolio which maximises the performance index S(p) in (7) we
estimate both the expected return »(p) and the VaR for various combinations
of US stocks and bonds, using the daily, biweekly and monthly data over the
sample period. Plotting the risk-return trade-off provides us with an efficient
VaR frontier for a given confidence level for VaR, moving from a portfolio
containing 100% bonds to a 100% investment into stocks. In Fig. 1, we have
plotted efficient VaR frontiers using daily data, whereby alternative distribu-
tional assumptions have been used to estimate ¢, the parameter for risk.

The efficient VaR frontier is similar to a mean—variance frontier except for
the definition of risk: VaR relative to the benchmark return (¢) instead of
standard deviation (o). The empirical distribution provides the true risk—return
trade-off as observed in financial markets; however the greater the time horizon
for the investment then the less precise the efficient VaR frontier. In order to
determine the exact proportion of the portfolio which needs to be held in cash,
we need to know the investor’s risk profile. The level set for VaR, which in-
cludes the choice for the confidence level associated with the VaR level, de-
termines this. In the empirical example below, we have set the desired VaR
level as the 95% VaR from the historical distribution. This provides us with a
benchmark with which we can compare the alternative distributional as-
sumptions and various time horizons used for the investment period. An
investor who wants to be 95% confident that his or her wealth will not drop by
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Fig. 1. Efficient VaR frontier — daily data and daily VaR at 95% confidence level.

Note: The figure presents the risk—return trade-off for portfolios of stocks and bonds whereby risk is
measured by the downside risk measure ¢ of the portfolio at the 95% confidence level. The returns
and VaR estimates are obtained using daily data on the S&P 500 composite returns index and the
10-year datastream US benchmark government bond index for the period January 1990-December
1998. We present the efficient frontier for the empirical distribution, the parametric normal ap-
proach and under the assumption of a student-¢ distribution with 5 degrees of freedom.

more than the daily VaR limit, however attains the highest possible return
therefore selects the point on the efficient VaR frontier, where return per unit of
risk is maximised. To determine the optimal allocation between stocks and
bonds, we set the risk-free rate at 4.47%, the last available 3-month Treasury
bill rate in the sample period. For an investor with a VaR limit at the 95%
confidence level the optimal allocation between US stocks and bonds occurs
when 36% of wealth is held in stocks and 64% in bonds. The combinations for
stocks and bonds for a variety of confidence levels are provided in the first two
columns of Table 2, and the portfolio VaR is given in the third column.

Naturally the greater the confidence level chosen in association with the
VaR then the greater the portfolio VaR. Absolute portfolio VaR is given in the
final column. In order to ensure that the portfolio meets the desired VaR, in
accordance with Eq. (8) a greater proportion of the portfolio will be needed to
be held at the risk free rate the higher the confidence level associated with the
VaR level set: a movement along the Capital Market Line, also shown in Fig.
1. The final proportions of the portfolio optimising the risk-return trade-off for
the chosen VaR level are provided in Table 3. We can see how sensitive the
portfolio selection decision is to changes in the confidence level associated with
the VaR limit.
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Table 2
Optimal portfolios using empirical distribution for VaR estimation®
Confidence level (%) Stocks (%) Bonds (%) Portfolio VaR ($)
Daily
95 36 64 —6.84
96 40 60 -7.66
97 33 67 -7.90
98 45 55 -10.22
99 34 66 -11.40

#Data on the S&P 500 composite returns index and the 10-year datastream US benchmark gov-
ernment bond index over the period January 1990-December 1998 are used to find the optimal
portfolios. Optimal portfolios consisting of US stocks and bonds are found at the point at which
the risk-return trade-off equation (7) is maximised. The risk-free return is the rate on the last
period’s one month Treasury bill (4.47%). The VaRs for $1000 held in the portfolios are given for a
daily time horizon, where the historical distribution is used to estimate the VaR.

Table 3

Optimal portfolios to meet VaR constraint under empirical distribution®
Confidence level (%) Stocks (%) Bonds (%) Cash (%)
Daily
95 36.00 64.00 0.00
96 35.78 53.68 10.54
97 28.63 58.12 13.25
98 30.30 37.04 32.66
99 20.55 39.89 39.56
Bi-weekly
95 39.00 61.00 0.00
96 23.38 57.24 19.38
97 31.66 28.08 40.26
98 30.33 21.96 47.70
99 23.20 25.14 51.66
Monthly
95 90.00 10.00 0.00
96 80.04 6.02 13.94
97 62.77 11.08 26.15
98 48.62 0.49 50.89
99 40.83 2.15 57.02

#Under the assumption that expected returns are distributed as in the past the optimal portfolio
allocation is found such that the decision to borrow or lend is incorporated. The final optimal
portfolios are found where various VaR constraints are met. These have been arbitrarily chosen to
exemplify variations in individual risk-return profiles. The data used are as described in Table 2,
for $1000 held in the portfolio, whereby the historical distribution at the 95% empirical level is used
to estimate the VaR.

Allocating 36% in Stocks and 64% in Bonds generates a 95% VaR on the
portfolio of $6.86 and of course since this is the desired VaR no borrowing or
lending is required to meet the VaR constraint. If however the risk manager
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desires greater confidence in the probability that the initial wealth will not drop
by more than the VaR level, then the VaR associated with the portfolio allo-
cation will be greater than the VaR limit and hence results in too much risk
being taken.® In order to meet the benchmark VaR less risk will have to be
taken and hence a proportion of the initial wealth is lent at the risk free rate.
This is provided in the final column where we see that the greater the confi-
dence level, hence the lower the risk tolerance of the investor, the greater the
proportion of wealth that needs to be lent at the risk free rate.’

The use of the empirical distribution results in the stock proportions not
being a monotonic function of the confidence level. If however we assume
that the future distribution of returns can be accurately proxied by the
normal distribution, the only risk factor in our downside risk measure is the
standard deviation of the distribution. This means that the quantile estimate
is merely a multiple of standard deviations, and for short time horizons our
risk measure ¢ in Eq. (8) depends almost entirely on the multiple of the
standard deviation. This results in the risk-return trade-off being almost
identical to that derived under the mean-variance framework where the
Sharpe ratio is maximised. Of course since we also have the possibility of
assuming different distributional assumptions, we need not constrain our-
selves to optimising our portfolio according to the first two moments of the
distribution only and hence are able to include the possibilities of non-nor-
malities into asset allocation. We therefore compare the optimal allocation of
assets derived using both the normal distribution and a fatter tailed distri-
bution, the student-f, whereby we use the same sample period of data as
before.

4.2. Optimal portfolio selection under alternative parametric distributions

From Fig. 1 we saw that at the 95% VaR level the assumption of normality
reflects the actual risk—return trade-off fairly well. On average the assumption
of normality for the future distribution of returns at the 95% level means that
the risk is only slightly overestimated for a given level of return. The risk is
minimised at the optimal allocation of 40% stocks and 60% bonds for daily
VaR. Regardless of the confidence level, chosen for the VaR, we see that the
optimal combination of risky assets is the same. Since the VaR is a multiple of
the portfolio standard deviation, the assumption of normality renders the in-
vestor’s attitude to risk unimportant in the optimisation process. The use of

8 The choice of a higher confidence level will by definition result in a higher VaR.

? In a similar manner specifying a confidence level below that used for the optimisation the risk
manager would want to take on additional risk by borrowing additional funds at the risk-free rate,
and going short in the 3-month Treasury Bill.
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Table 4

Optimal Portfolios to meet VaR constraint under normality and student-#*
Confidence Normality Student-¢
level (%) Stocks Bonds Cash Stocks Bonds Cash

(%) (%) (%) (%) (o) (%)

Daily
95 38.22 57.33 4.44 40.38 60.57 —0.95
96 35.81 53.72 10.46 36.99 55.49 7.51
97 33.24 49.86 16.90 33.33 50.00 16.67
98 30.34 45.51 24.15 29.14 43.72 27.14
99 26.67 40.01 33.32 23.73 35.59 40.68
Bi-weekly
95 48.47 59.24 -7.71 55.59 67.94 —23.54
96 41.73 51.01 7.26 44.89 54.87 0.24
97 35.64 43.56 20.80 35.84 43.81 20.35
98 29.85 36.48 33.66 27.73 33.89 38.38
99 23.76 29.05 47.19 19.65 24.02 56.34
Monthly
95 84.33 53.91 —-38.24 190.43 121.75 -212.17
96 49.54 31.68 18.78 62.62 40.04 -2.66
97 32.88 21.02 46.10 33.31 21.30 45.39
98 22.72 14.52 62.76 19.83 12.68 67.49
99 15.28 9.77 74.96 11.43 7.31 81.26

#Under the assumption that expected returns are both normally and student-z distributed with 5
degrees of freedom, the optimal portfolio allocation is found such that the decision to borrow or
lend is incorporated. The final optimal portfolios are found where various VaR constraints are met.
These have been arbitrarily chosen to exemplify variations in individual’s risk—return profiles. The
data used are as described in Table 2, for $1000 held in the portfolio, whereby the historical dis-
tribution at the 95% empirical level is used to estimate the VaR.

longer frequency data yields an optimum of 45% stocks and 55% bonds for
bi-weekly data, and 61% stocks and 39% bonds for monthly data. The maxi-
misation also occurs at the same point as when maximising the Sharpe ratio for
all types of frequencies used.'® However through the use of VaR we are able to
provide greater insight into the actual risk—return trade-off facing the investor,
without having to resort to the use of specifying an individual’s utility function
for consumption. The exact portfolio proportions in stocks, bonds and cash to
meet the 95% empirical VaR are given in Table 4 for various confidence levels
and again for the various time horizons for both the normal distribution and
the student-¢ with 5 degrees of freedom.

19 Indeed for daily, bi-weekly and monthly time horizons the difference is negligible, resulting in
the same optimum being found. The greater the investment time horizon however, the greater the
risk-free rate of return, and hence the two risk measures will provide a different optimal points.
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Fig. 2. Efficient VaR frontier — daily data and daily VaR at 99% confidence level.

Note: The figure presents the risk—return trade-off for portfolios of stocks and bonds whereby risk is
measured by the downside risk measure ¢ of the portfolio at the 99% confidence level. The returns
and VaR estimates are obtained using daily data on the S&P 500 composite returns index and the
10-year datastream US benchmark government bond index for the period January 1990-December
1998. We present the efficient frontier for the empirical distribution, the parametric normal ap-
proach and under the assumption of a student-¢ distribution with 5 degrees of freedom.

The non-parametric nature of the empirical distribution however, led to the
changing optimum allocation of assets for various confidence levels, whereby
the optimal portfolio selection resulted in a proportionally greater increase in
lending to meet the desired VaR level for higher confidence levels. Under the
assumption of normality with standard deviation crucial in the measure for risk
this effect is not captured. Unfortunately the assumption of normality under-
estimates the risk—return trade-off as presented in the efficient VaR frontiers,
Fig. 2. The efficient VaR frontiers at the 99% confidence level can be compared
for a daily time horizon using both the normal and the empirical distributions.
It appears that for a desired confidence level of 99%, for all time horizons of
VaR chosen, results in too aggressive an investment strategy.

The level of risk, as measured by the empirical VaR for the portfolio, is
higher for all combinations of stocks and bonds than captured by the use of
standard deviation alone. The greater the deviation from normality'' the
greater the underestimation of risk as we move to higher confidence levels for
the VaR. The greater probability of extreme negative returns in the empirical
distribution implies greater downside risk than is captured by the measure of

11 See, for example, Huisman et al. (1998).
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standard deviation alone. The use therefore of the normal distribution to assess
the risk-return trade-off will result in an incorrect allocation of assets for in-
vestors with low risk tolerance and risk managers wishing to set 99% confi-
dence levels. The nature of the student-¢ distribution with its thin waist and fat
tails gives rise to a smaller estimation of the portfolio VaR for lower confidence
levels, and to a greater estimation for higher confidence levels. From Fig. 2 we
see that for daily VaR it is indeed the case that at the 99% confidence level the
use of normality to estimate VaR results in too high an allocation into stocks.
It would therefore appear to be more appropriate to use the student-¢ distri-
bution with 5 degrees of freedom.!? The affect however is not so severe when a
bi-weekly or a monthly time horizon is used.

As we move to higher confidence levels, for a shorter time horizon for
the VaR estimation we find that it becomes more important to incorporate the
additional downside risk from fat tails into the risk—return trade-off. The
proportions held in the risky assets are the same as under the assumption of
normality, however the portfolio risk is greater. To ensure that the final
portfolio selection meets the same desired VaR level a greater proportion of the
portfolio needs to be held at the risk free rate.

5. Concluding remarks

Focussing on downside risk as an alternative measure for risk in financial
markets has enabled us to develop a framework for portfolio selection that
moves away from the standard mean—variance approach. The measure for risk
depends on a portfolio’s potential loss function, itself a function of portfolio
VaR. Introducing VaR into the measure for risk has the benefit of allowing the
risk-return trade-off to be analysed for various associated confidence levels.
Since the riskiness of an asset increases with the choice of the confidence level
associated with the downside risk measure, risk becomes a function of the
individual’s risk aversion level. The portfolio selection problem is still to
maximise expected return, however whilst minimising the downside risk as
captured by VaR. This allows us to develop a very generalised framework for
portfolio selection. Indeed the use of certain parametric distributions such as
the normal or the student-¢ allows for a market equilibrium model to be de-
rived, with the assumption of normality enabling the model to collapse to the

12 The smaller the number of degrees of freedom used to parameterise the student-¢ distribution
the fatter the tails of the distribution and the greater the severity of the difference between the
normal distribution. Tail index estimation techniques may be adopted for the correct estimation of
the degrees of freedom for the student-s distribution, see Huisman et al. (2001) for a robust
estimator in small samples. Adopting this approach we find the use of 5 degrees of freedom
throughout the empirical analysis provides consistent results.
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CAPM. We illustrate just how great the impact is on the portfolio selection
decision from non-normalities, alternative time horizons, and alternative risk
specifications.
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