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Abstract

This paper extends the approximate closed-form intertemporal capital asset pricing model
of Campbell (1993) to allow for stochastic volatility. The return on the aggregate stock mar-
ket is modeled as one element of a vector autoregressive (VAR) system, and the volatility of
all shocks to the VAR is another element of the system. Our estimates of this VAR reveal
novel low-frequency movements in market volatility tied to the default spread. We show
that growth stocks underperform value stocks because they hedge two types of deteriora-
tion in investment opportunities: declining expected stock returns, and increasing volatility.
Volatility hedging is also relevant for pricing risk-sorted portfolios and non-equity assets such
as equity index options and corporate bonds.

JEL classification: G12, N22



1 Introduction

The fundamental insight of intertemporal asset pricing theory is that long-term investors
should care just as much about the returns they earn on their invested wealth as about the
level of that wealth. In a simple model with a constant rate of return, for example, the
sustainable level of consumption is the return on wealth multiplied by the level of wealth,
and both terms in this product are equally important. In a more realistic model with
time-varying investment opportunities, conservative long-term investors will seek to hold
“intertemporal hedges”, assets that perform well when investment opportunities deterio-
rate. Such assets should deliver lower average returns in equilibrium if they are priced from
conservative long-term investors’first-order conditions.

Since the seminal work of Merton (1973) on the intertemporal capital asset pricing model
(ICAPM), a large empirical literature has explored the relevance of intertemporal considera-
tions for the pricing of financial assets in general, and the cross-sectional pricing of stocks in
particular. One strand of this literature uses the approximate accounting identity of Camp-
bell and Shiller (1988a) and the assumption that a representative investor has Epstein-Zin
utility (Epstein and Zin 1989) to obtain approximate closed-form solutions for the ICAPM’s
risk prices (Campbell 1993). These solutions can be implemented empirically if they are
combined with vector autoregressive (VAR) estimates of asset return dynamics (Campbell
1996). Campbell and Vuolteenaho (2004), Campbell, Polk, and Vuolteenaho (2010), and
Campbell, Giglio, and Polk (2012) use this approach to argue that value stocks outperform
growth stocks on average because growth stocks do well when the expected return on the
aggregate stock market declines; in other words, growth stocks have low risk premia because
they are intertemporal hedges for long-term investors.

A weakness of the papers cited above is that they ignore time-variation in the volatility of
stock returns. In general, investment opportunities may deteriorate either because expected
stock returns decline or because the volatility of stock returns increases, and it is an empirical
question which of these two types of intertemporal risk have a greater effect on asset returns.
We address this weakness in this paper by extending the approximate closed-form ICAPM to
allow for stochastic volatility. The resulting model explains risk premia in the stock market
using three priced risk factors corresponding to three important attributes of aggregate
market returns: revisions in expected future cash flows, discount rates, and volatility. An
attractive characteristic of the model is that the prices of these three risk factors depend on
only one free parameter, the long-horizon investor’s coeffi cient of risk aversion.

Since the long-horizon investor in our model cares mostly about persistent changes in
the investment opportunity set, there must be predictable variation in long-run volatility for
volatility risk to matter. Empirically, we implement our methodology using a vector autore-
gression (VAR) including stock returns, realized variance, and other financial indicators that
may be relevant for predicting returns and risk. Our VAR reveals low-frequency movements
in market volatility tied to the default spread, the yield spread of low-rated over high-rated
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bonds. While this effect has received little attention in the literature, we argue that it is
sensible: Investors in risky bonds perceive the long-run component of volatility and incor-
porate this information when they set credit spreads, as risky bonds are short the option to
default. Moreover, we show that GARCH-based methods that filter only the information in
past returns in order to disentangle the short-run and long-run volatility components miss
this important low-frequency component.

With our novel model of long-run volatility in hand, we find that growth stocks have low
average returns because they outperform not only when the expected stock return declines,
but also when stock market volatility increases. Thus growth stocks hedge two types of
deterioration in investment opportunities, not just one. In the period since 1963 that creates
the greatest empirical diffi culties for the standard CAPM, we find that the three-beta model
explains over 69% of the cross-sectional variation in average returns of 25 portfolios sorted by
size and book-to-market ratios. The model is not rejected at the 5% level while the CAPM
is strongly rejected. The implied coeffi cient of relative risk aversion is an economically
reasonable 9.63, in contrast to the much larger estimate of 20.70, which we get when we
estimate a comparable version of the two-beta CAPM of Campbell and Vuolteenaho (2004)
using the same data.2 This success is due in large part to the inclusion of volatility betas in
the specification. In particular, the spread in volatility betas in the cross section generates
an annualized spread in average returns of 6.52% compared to a comparable spread of 3.90%
and 2.24% for cash-flow and discount-rate betas.

We confirm that our findings are robust by expanding the set of test portfolios in two
important dimensions. First, we show that our three-beta model not only describes the cross
section of size- and book-to-market-sorted portfolios but also can explain the average returns
on risk-sorted portfolios. We examine risk-sorted portfolios in response to the argument
of Daniel and Titman (1997, 2012) and Lewellen, Nagel, and Shanken (2010) that asset-
pricing tests using only portfolios sorted by characteristics known to be related to average
returns, such as size and value, can be misleading. As tests that include risk-sorted portfolios
are unable to reject our intertemporal CAPM with stochastic volatility, we verify that the
model’s success is not simply due to the low-dimensional factor structure of the 25 size- and
book-to-market-sorted portfolios. Specifically, we show that sorts on stocks’pre-formation
sensitivity to volatility news generate economically and statistically significant spread in both
post-formation volatility beta and average returns in a manner consistent with our model.
Interestingly, in the post-1963 period, sorts on past CAPM beta generate little spread in
post-formation cash-flow betas, but significant spread in post-formation volatility betas.
Since, in the three-beta model, covariation with aggregate volatility news has a negative
premium, the three-beta model also explains why stocks with high past CAPM betas have
offered relatively little extra return in the post-1963 sample.

Second, we show that our three-beta model can help explain average returns on non-
equity portfolios that are exposed to aggregate volatility risk. These portfolios include the

2The risk aversion estimate reported in Campbell and Vuolteenaho’s (2004) paper is 28.75.
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S&P 100 index straddle of Coval and Shumway (2001), which is explicitly designed to be
highly correlated with aggregate volatility risk, and the risky bond factor of Fama and French
(1993), which should be sensitive to changes in aggregate volatility since risky corporate debt
is short the option to default. Consistent with this intuition, we find that compared to the
volatility beta of a value-minus-growth bet, the risky bond factor’s volatility beta is of the
same order of magnitude while the straddle’s volatility beta is more than 3 times larger
in absolute magnitude. These volatility betas are of the right sign to explain the abnormal
CAPM returns of the option and bond portfolios. Approximately 38% of the average straddle
return can be attributed to its three ICAPM betas, based purely on model estimates from
the cross section of equity returns. Additionally, when we price the joint cross-section of
equity, bond, and straddle returns our intertemporal CAPM with stochastic volatility is not
rejected at the 5-percent level while the CAPM is strongly rejected.

The organization of our paper is as follows. Section 2 reviews related literature. Section
3 lays out the approximate closed-form ICAPM and shows how to extend it to incorporate
stochastic volatility. While our main focus is on asset pricing without the use of consump-
tion data, we do also derive the implications of our model for consumption growth. Section
4 presents data, econometrics, and VAR estimates of the dynamic process for stock returns
and realized volatility. This section documents the empirical success of our model in fore-
casting long-run volatility. Section 5 turns to cross-sectional asset pricing and estimates a
representative investor’s preference parameters to fit a cross-section of test assets, taking the
dynamics of stock returns as given. This section also presents a set of robustness exercises
in which we vary our basic VAR specification for the dynamics of aggregate returns and risk,
and explore the underlying components of volatility betas for the market portfolio and for
value stocks versus growth stocks. Section 6 concludes.

2 Literature Review

Our work is complementary to recent research on the “long-run risk model”of asset prices
(Bansal and Yaron 2004) which can be traced back to insights in Kandel and Stambaugh
(1991). Both the approximate closed-form ICAPM and the long-run risk model start with
the first-order conditions of an infinitely lived Epstein-Zin representative investor. As orig-
inally stated by Epstein and Zin (1989), these first-order conditions involve both aggregate
consumption growth and the return on the market portfolio of aggregate wealth. Campbell
(1993) pointed out that the intertemporal budget constraint could be used to substitute
out consumption growth, turning the model into a Merton-style ICAPM. Restoy and Weil
(1998, 2011) used the same logic to substitute out the market portfolio return, turning the
model into a generalized consumption CAPM in the style of Breeden (1979).

Kandel and Stambaugh (1991) were the first researchers to study the implications for
asset returns of time-varying first and second moments of consumption growth in a model
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with a representative Epstein-Zin investor. Specifically, Kandel and Stambaugh (1991) as-
sumed a four-state Markov chain for the expected growth rate and conditional volatility
of consumption, and provided closed-form solutions for important asset-pricing moments.
In the spirit of Kandel and Stambaugh (1991), Bansal and Yaron (2004) added stochastic
volatility to the Restoy-Weil model, and subsequent research on the long-run risk model has
increasingly emphasized the importance of stochastic volatility for generating empirically
plausible implications from this model (Bansal, Kiku, and Yaron 2012, Beeler and Campbell
2012). In this paper we give the approximate closed-form ICAPM the same capability to
handle stochastic volatility that its cousin, the long-run risk model, already possesses.

One might ask whether there is any reason to work with an ICAPM rather than a
consumption-based model given that these models are derived from the same set of assump-
tions. The ICAPM developed in this paper has several advantages. First, it describes risks
as they appear to an investor who takes asset prices as given and chooses consumption to
satisfy his budget constraint. This is the way risks appear to individual agents in the econ-
omy, and it seems important for economists to understand risks in the same way that market
participants do rather than relying exclusively on a macroeconomic perspective. Second,
the ICAPM allows an empirical analysis based on financial proxies for the aggregate market
portfolio rather than on accurate measurement of aggregate consumption. While there are
certainly challenges to the accurate measurement of financial wealth, financial time series are
generally available on a more timely basis and over longer sample periods than consumption
series. Third, the ICAPM in this paper is flexible enough to allow multiple state variables
that can be estimated in a VAR system; it does not require low-dimensional calibration of the
sort used in the long-run risk literature. Finally, the stochastic volatility process used here
governs the volatility of all state variables, including itself. We show that this assumption
fits financial data reasonably well, and it guarantees that stochastic volatility would always
remain positive in a continuous-time version of the model, a property that does not hold in
most current implementations of the long-run risk model.3

The closest precursors to our work are unpublished papers by Chen (2003) and Sohn
(2010). Both papers explore the effects of stochastic volatility on asset prices in an ICAPM
setting but make strong assumptions about the covariance structure of various news terms
when deriving their pricing equations. Chen (2003) assumes constant covariances between
shocks to the market return (and powers of those shocks) and news about future expected
market return variance. Sohn (2010) makes two strong assumptions about asset returns and
consumption growth, specifically that all assets have zero covariance with news about future
consumption growth volatility and that the conditional contemporaneous correlation between
the market return and consumption growth is constant through time. Duffee (2005) presents
evidence against the latter assumption. It is in any case unattractive to make assumptions
about consumption growth in an ICAPM that does not require accurate measurement of
consumption.

3Eraker (2008) and Eraker and Shaliastovich (2008) are exceptions.
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Chen estimates a VAR with a GARCH model to allow for time variation in the volatility
of return shocks, restricting market volatility to depend only on its past realizations and not
those of the other state variables. His empirical analysis has little success in explaining the
cross-section of stock returns. Sohn uses a similar but more sophisticated GARCH model
for market volatility and tests how well short-run and long-run risk components from the
GARCH estimation can explain the returns of various stock portfolios, comparing the results
to factors previously shown to be empirically successful. In contrast, our paper incorporates
the volatility process directly in the ICAPM, allowing heteroskedasticity to affect and to
be predicted by all state variables, and showing how the price of volatility risk is pinned
down by the time-series structure of the model along with the investor’s coeffi cient of risk
aversion.

A working paper by Bansal, Kiku, Shaliastovich and Yaron (2012), contemporaneous
with our own, explores the effects of stochastic volatility in the long-run risk model. Like us,
they find stochastic volatility to be an important feature in the time series of equity returns.
Their work puts greater emphasis on the implied consumption dynamics while we focus on
the cross-sectional pricing implications of exposure to volatility news. More fundamentally,
there are differences in the underlying models. They assume that the stochastic process
driving volatility is homoskedastic, and in their cross-sectional analysis they impose that
changes in the equity risk premium are driven only by the conditional variance of the stock
market. The different modeling assumptions account for our contrasting empirical results;
we show that volatility risk is very important in explaining the cross-section of stock returns
while they find it has little impact on cross-sectional differences in risk premia.

Stochastic volatility has, of course, been explored in other branches of the finance litera-
ture. For example, Chacko and Viceira (2005) and Liu (2007) show how stochastic volatility
affects the optimal portfolio choice of long-term investors. Chacko and Viceira assume an
AR(1) process for volatility and argue that movements in volatility are not persistent enough
to generate large intertemporal hedging demands. Campbell and Hentschel (1992), Calvet
and Fisher (2007), and Eraker and Wang (2011) argue that volatility shocks will lower ag-
gregate stock prices by increasing expected returns, if they do not affect cash flows. The
strength of this volatility feedback effect depends on the persistence of the volatility process.
Coval and Shumway (2001), Ang, Hodrick, Xing, and Zhang (2006), and Adrian and Rosen-
berg (2008) present evidence that shocks to market volatility are priced risk factors in the
cross-section of stock returns, but they do not develop any theory to explain the risk prices
for these factors.

There is also an enormous literature in financial econometrics on modeling and forecasting
time-varying volatility. Since Engle’s (1982) seminal paper on ARCH, much of the literature
has focused on variants of the univariate GARCH model (Bollerslev 1986), in which return
volatility is modeled as a function of past shocks to returns and of its own lags (see Poon
and Granger (2003) and Andersen et al. (2006) for recent surveys). More recently, realized
volatility from high-frequency data has been used to estimate stochastic volatility processes
(Barndorff-Nielsen and Shephard 2002, Andersen et al. 2003). The use of realized volatility

5



has improved the modeling and forecasting of volatility, including its long-run component;
however, this literature has primarily focused on the information content of high-frequency
intra-daily return data. This allows very precise measurement of volatility, but at the same
time, given data availability constraints, limits the potential to use long time series to learn
about long-run movements in volatility. In our paper, we measure realized volatility only
with daily data, but augment this information with other financial time series that reveal
information investors have about underlying volatility components.

A much smaller literature has, like us, looked directly at the information in other variables
concerning future volatility. In early work, Schwert (1989) links movements in stock market
volatility to various indicators of economic activity, particularly the price-earnings ratio and
the default spread, finding relatively weak results. Engle, Ghysels and Sohn (2009) study
the effect of inflation and industrial production growth on volatility, finding a significant link
between the two, especially at long horizons. Campbell and Taksler (2003) look at the cross-
sectional link between corporate bond yields and equity volatility, emphasizing that bond
yields respond to idiosyncratic firm-level volatility as well as aggregate volatility. Two recent
papers, Paye (2012) and Christiansen et al. (2012), look at larger sets of potential predictors
of volatility, that include the default spread and/or valuation ratios, to study which ones
have predictive power for quarterly realized variance. The former, in a standard regression
framework, finds that a few variables, that include the commercial paper to Treasury spread
and the default spread, contain useful information for predicting volatility. The latter uses
Bayesian Model Averaging to determine which variables are most important for predicting
quarterly volatility, and documents the importance of the default spread and valuation ratios
in forecasting short-run volatility.

3 An Intertemporal Model with Stochastic Volatility

3.1 Asset pricing with time varying risk

Preferences

We begin by assuming a representative agent with Epstein-Zin preferences. We write
the value function as

Vt =
[
(1− δ)C

1−γ
θ

t + δ
(
Et
[
V 1−γ
t+1

])1/θ
] θ
1−γ

, (1)

where Ct is consumption and the preference parameters are the discount factor δ, risk aversion
γ, and the elasticity of intertemporal substitution ψ. For convenience, we define θ =
(1− γ)/(1− 1/ψ).
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The corresponding stochastic discount factor (SDF) can be written as

Mt+1 =

(
δ

(
Ct
Ct+1

)1/ψ
)θ (

Wt − Ct
Wt+1

)1−θ

, (2)

where Wt is the market value of the consumption stream owned by the agent, including
current consumption Ct.4 The log return on wealth is rt+1 = ln (Wt+1/ (Wt − Ct)), the log
value of wealth tomorrow divided by reinvested wealth today. The log SDF is therefore

mt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1) rt+1. (3)

A convenient identity

The gross return to wealth can be written

1 +Rt+1 =
Wt+1

Wt − Ct
=

(
Ct

Wt − Ct

)(
Ct+1

Ct

)(
Wt+1

Ct+1

)
, (4)

expressing it as the product of the current consumption payout, the growth in consumption,
and the future price of a unit of consumption.

We find it convenient to work in logs. We define the log value of reinvested wealth per
unit of consumption as zt = ln ((Wt − Ct) /Ct), and the future value of a consumption claim
as ht+1 = ln (Wt+1/Ct+1), so that the log return is:

rt+1 = −zt + ∆ct+1 + ht+1. (5)

Heuristically, the return on wealth is negatively related to the current value of reinvested
wealth and positively related to consumption growth and the future value of wealth. The
last term in equation (5) will capture the effects of intertemporal hedging on asset prices,
hence the choice of the notation ht+1 for this term.

The ICAPM

We assume that asset returns are jointly conditionally lognormal, but we allow changing
conditional volatility so we are careful to write second moments with time subscripts to
indicate that they can vary over time. Under this standard assumption, the expected return
on any asset must satisfy

0 = ln Et exp{mt+1 + ri,t+1} = Et [mt+1 + ri,t+1] +
1

2
Vart [mt+1 + ri,t+1] , (6)

and the risk premium on any asset is given by

Etri,t+1 − rf,t +
1

2
Vartrt+1 = −Covt [mt+1, ri,t+1] . (7)

4This notational convention is not consistent in the literature. Some authors exclude current consumption
from the definition of current wealth.
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The convenient identity (5) can be used to write the log SDF (3) without reference to
consumption growth:

mt+1 = θ ln δ − θ

ψ
zt +

θ

ψ
ht+1 − γrt+1. (8)

Since the first two terms in (5) are known at time t, only the latter two terms appear in the
conditional covariance in (7). We obtain an ICAPM pricing equation that relates the risk
premium on any asset to the asset’s covariance with the wealth return and with shocks to
future consumption claim values:

Etri,t+1 − rf,t +
1

2
Vartrt+1 = γCovt [ri,t+1, rt+1]− θ

ψ
Covt [ri,t+1, ht+1] (9)

Return and risk shocks in the ICAPM

To better understand the intertemporal hedging component ht+1, we proceed in two steps.
First, we approximate the relationship of ht+1 and zt+1 by taking a loglinear approximation
about z̄:

ht+1 ≈ κ+ ρzt+1 (10)

where the loglinearization parameter ρ = exp(z̄)/(1 + exp(z̄)) ≈ 1− C/W .

Second, we apply the general pricing equation (6) to the wealth portfolio itself (setting
ri,t+1 = rt+1), and use the convenient identity (5) to substitute out consumption growth from
this expression. Rearranging, we can write the variable zt as

zt = ψ ln δ + (ψ − 1)Etrt+1 + Etht+1 +
ψ

θ

1

2
Vart [mt+1 + rt+1] . (11)

Third, we combine these expressions to obtain the innovation in ht+1:

ht+1 − Etht+1 = ρ(zt+1 − Etzt+1)

= (Et+1 − Et)ρ
(

(ψ − 1)rt+2 + ht+2 +
ψ

θ

1

2
Vart+1 [mt+2 + rt+2]

)
. (12)

Solving forward to an infinite horizon,

ht+1 − Etht+1 = (ψ − 1)(Et+1 − Et)
∞∑
j=1

ρjrt+1+j

+
1

2

ψ

θ
(Et+1 − Et)

∞∑
j=1

ρjVart+j [mt+1+j + rt+1+j]

= (ψ − 1)NDR,t+1 +
1

2

ψ

θ
NRISK,t+1. (13)

The second equality follows Campbell and Vuolteenaho (2004) and uses the notation NDR

(“news about discount rates”) for revisions in expected future returns. In a similar spirit
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we write revisions in expectations of future risk (the variance of the future log return plus
the log stochastic discount factor) as NRISK .

Finally, we substitute back into the intertemporal model (9):

Etri,t+1 − rf,t +
1

2
Vartri,t+1

= γCovt [ri,t+1, rt+1] + (γ − 1)Covt [ri,t+1, NDR,t+1]− 1

2
Covt [ri,t+1, NRISK,t+1]

= γCovt [ri,t+1, NCF,t+1] + Covt [ri,t+1,−NDR,t+1]− 1

2
Covt [ri,t+1, NRISK,t+1] . (14)

The first equality expresses the risk premium as risk aversion γ times covariance with the
current market return, plus (γ−1) times covariance with news about future market returns,
minus one half covariance with risk. This is an extension of the ICAPM as written by
Campbell (1993), with no reference to consumption or the elasticity of intertemporal substi-
tution ψ.5 When the investor’s risk aversion is greater than 1, assets which hedge aggregate
discount rates (Covt [ri,t+1, NDR,t+1] < 0) or aggregate risk (Covt [ri,t+1, NRISK,t+1] > 0) have
lower expected returns, all else equal.

The second equality rewrites the model, following Campbell and Vuolteenaho (2004), by
breaking the market return into cash-flow news and discount-rate news. Cash-flow news
NCF is defined by NCF = rt+1−Etrt+1 +NDR. The price of risk for cash-flow news is γ times
greater than the price of risk for discount-rate news, hence Campbell and Vuolteenaho call
betas with cash-flow news “bad betas”and those with discount-rate news “good betas”since
they have lower risk prices in equilibrium. The third term in (14) shows the risk premium
associated with exposure to news about future risks and did not appear in Campbell and
Vuolteenaho’s model, which assumed homoskedasticity. Not surprisingly, the coeffi cient is
negative, indicating that an asset providing positive returns when risk expectations increase
will offer a lower return on average.

3.2 From risk to volatility

The risk shocks defined in the previous subsection are shocks to the conditional volatility
of returns plus the stochastic discount factor, that is, the conditional volatility of risk-
neutralized returns. We now make additional assumptions on the data generating process
for stock returns that allow us to estimate the news terms. These assumptions imply that the
conditional volatility of risk-neutralized returns is proportional to the conditional volatility
of returns themselves.

5Campbell (1993) briefly considers the heteroskedastic case, noting that when γ = 1, Vart [mt+1 + rt+1]
is a constant. This implies that NRISK does not vary over time so the stochastic volatility term disappears.
Campbell claims that the stochastic volatility term also disappears when ψ = 1, but this is incorrect. When
limits are taken correctly, NRISK does not depend on ψ (except indirectly through the loglinearization
parameter, ρ).
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Suppose the economy is described by a first-order VAR

xt+1 = x̄ + Γ (xt − x̄) + σtut+1, (15)

where xt+1 is an n× 1 vector of state variables that has rt+1 as its first element, σ2
t+1 as its

second element, and n−2 other variables that help to predict the first and second moments of
aggregate returns. x̄ and Γ are an n× 1 vector and an n×n matrix of constant parameters,
and ut+1 is a vector of shocks to the state variables normalized so that its first element
has unit variance. The key assumption here is that a scalar random variable, σ2

t , equal to
the conditional variance of market returns, also governs time-variation in the variance of all
shocks to this system. Both market returns and state variables, including volatility itself,
have innovations whose variances move in proportion to one another.

Given this structure, news about discount rates can be written as

NDR,t+1 = (Et+1 − Et)
∞∑
j=1

ρjrt+1+j

= e′1

∞∑
j=1

ρjΓjσtut+1

= e′1ρΓ (I− ρΓ)−1 σtut+1 (16)

Furthermore, our log-linear model will make the log SDF, mt+1, a linear function of the
state variables. Since all shocks to the SDF are then proportional to σt, Vart [mt+1 + rt+1] ∝
σ2
t . As a result, the conditional variance, Vart [(mt+1 + rt+1) /σt] = ωt, will be a constant
that does not depend on the state variables. Without knowing the parameters of the utility
function, we can write Vart [mt+1 + rt+1] = ωσ2

t so that the news about risk, NRISK , is
proportional to news about market return variance, NV .

NRISK,t+1 = (Et+1 − Et)
∞∑
j=1

ρjVart+j [rt+1+j +mt+1+j]

= (Et+1 − Et)
∞∑
j=1

ρj
(
ωσ2

t+j

)
= ωρe′2

∞∑
j=0

ρjΓjσtut+1

= ωρe′2 (I− ρΓ)−1 σtut+1 = ωNV,t+1. (17)

Substituting (17) into (14), we obtain an empirically-testable intertemporal CAPM with
stochastic volatility:

Etri,t+1 − rf,t +
1

2
Vartri,t+1

= γCovt [ri,t+1, NCF,t+1] + Covt [ri,t+1,−NDR,t+1]− 1

2
ωCovt [ri,t+1, NV,t+1] , (18)
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where covariances with news about three key attributes of the market portfolio (cash flows,
discount rates, and volatility) describe the cross section of average returns.

The parameter ω is a nonlinear function of the coeffi cient of relative risk aversion γ, as
well as the VAR parameters and the loglinearization coeffi cient ρ, but it does not depend on
the elasticity of intertemporal substitution ψ except indirectly through the influence of ψ on
ρ. In the appendix, we show that ω solves:

ωσ2
t = (1− γ)2Vart

[
NCFt+1

]
+ ω(1− γ)Covt

[
NCFt+1,NVt+1,

]
+ ω2 1

4
Vart

[
NVt+1

]
. (19)

We can see two main channels through which γ affects ω. First, a higher risk aversion–
given the underlying volatilities of all shocks– implies a more volatile stochastic discount
factor m, and therefore a higher RISK. This effect is proportional to (1 − γ)2, so it in-
creases rapidly with γ. Second, there is a feedback effect on RISK through future risk: ω
appears on the right-hand side of the equation as well. Given that in our estimation we find
Covt

[
NCFt+1,NVt+1,

]
< 0, this second effect makes ω increase even faster with γ.6

This equation can also be written directly in terms of the VAR parameters. If we define
xCF and xV as the error-to-news vectors such that

1

σt
NCF,t+1 = xCFut+1 =

(
e′1 + e′1ρΓ(I − ρΓ)−1

)
ut+1 (20)

1

σt
NV,t+1 = xV ut+1 =

(
e′2ρ(I − ρΓ)−1

)
ut+1 (21)

and define the covariance matrix of the residuals (scaled to eliminate stochastic volatility)
as Σ =Var[ut+1], then ω solves

0 = ω2 1

4
xV Σx′V − ω (1− (1− γ)xCFΣx′V ) + (1− γ)2 xCFΣx′CF (22)

This quadratic equation for ω has two solutions. This result is an artifact of our linear
approximation of the Euler Equation, and the appendix shows that one of the solutions can
be disregarded. This false solution is easily identified by its implication that ω becomes
infinite as volatility shocks become small. The correct solution is

ω =
1− (1− γ)xCFΣx′V −

√
(1− (1− γ)xCFΣx′V )2 − (1− γ)2(xV Σx′V )(xCFΣx′CF )

1
2
xV Σx′V

(23)

6Bansal, Kiku, Shaliastovich and Yaron (2012) derive a similar expression. The equivalent expression
for ω in their case reduces to (1 − γ)2 as they impose that the volatility process is homoskedastic and the
conditional equity premium is driven solely by the stochastic volatility.
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There is an additional disadvantage to the quadratic expression arising from our loglin-
earization. In the case where risk aversion, volatility shocks and cash flow shocks are large
enough, as measured by the product (1−γ)2(xV Σx′V )(xCFΣx′CF ). equation (22) may deliver
a complex rather than a real value for ω. While the conditional variance Vart[mt+1 + rt+1]
from which we define ω will be both real and finite, the loglinear approximation may not
allow for a real solution in an economically important region of the parameter space. Given
our VAR estimates of the variance and covariance terms, we find equation (22) yields a real
solution as γ ranges from zero to 6.93.

To allow for larger values in our risk aversion parameter, we consider an alternative
approximation. If we linearize the right hand side of equation (19) around ω = 0 we can
approximate Vart[mt+1 + rt+1] as a linear, rather than quadratic, function of ω. We then
have

ω ≈ (1− γ)2(xCFΣx′CF )

1− (1− γ)(xCFΣx′V )
(24)

which is now defined for all γ > 0. Figure 1 plots ω as a function of γ using both the solution
in equation (23) and the approximation in (24) for values of γ up to 20.

By construction, they will yield similar solutions for values of γ close to one, where ω
gets close to 0 and volatility news becomes less and less important. In other words, it is
easy to show that our linearization preserves the property of the true model that as γ → 1,
ω → 0 and

Vart[mt+1 + rt+1]→ (1− γ)2Vart[NCF ]

As risk aversion increases, we find that this approximate value for ω continues to resemble
the exact solution of the quadratic equation (22) in the region where a real solution exists.
We have also used numerical methods, similar to those proposed by Tauchen and Hussey
(1991), to solve the model and validate our estimates of ω for a range of values for γ that
include the region where the quadratic equation does not have a real solution.

3.3 Implications for consumption growth

Following Campbell (1993), in this paper we substitute consumption out of the pricing equa-
tions using the intertemporal budget constraint. However the model does have interesting
implications for the implied consumption process. From equations (5) and (13), we can
derive the expression:

∆ct+1 − Et∆ct+1 = (rt+1 − Etrt+1)− (ψ − 1)NDR,t+1 − (ψ − 1)
1

2

ω

1− γNV,t+1. (25)

The first two components of the equation for consumption growth are the same as in the
homoskedastic case. An unexpectedly high return of the wealth portfolio has a one-for-one
effect on consumption. An increase in expected future returns increases today’s consumption
if ψ < 1, as the low elasticity of intertemporal substitution induces the representative investor
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to consume today (the income effect dominates). If ψ > 1, instead, the same increase induces
the agent to reduce consumption to better exploit the improved investment opportunities
(the substitution effect dominates).

The introduction of time-varying conditional volatility adds an additional term to the
equation describing consumption growth. News about high future risk is news about a
deterioration of future investment opportunities, which is bad news for a risk-averse investor
(γ > 1). When ψ < 1, the representative agent will reduce consumption and save to ensure
adequate future consumption. An investor with high elasticity of intertemporal substitution,
on the other hand, will increase current consumption and reduce the amount of wealth
exposed to the future (worse) investment opportunities.

Using estimates of the news terms from our VARmodel (described in the next section), we
can explore the implications of the model for consumption growth. As shown in the previous
subsection, the three shocks that drive innovations in consumption growth (rt+1 − Etrt+1,
NDR,t+1, NV,t+1) can all be expressed as functions of the vector of innovations σtut+1. The
conditional variance of consumption growth, Vart(∆ct+1), will then be proportional to the
conditional variance of returns, Vart(rt+1); similarly, the conditional standard deviation of
consumption growth will be proportional to the conditional standard deviation of returns.
As a consequence, the ratio of the standard deviations,

A(γ, ψ) ≡
√

Vart(∆ct+1)√
Vart(rt+1)

will be a constant that depends on the model parameters γ and ψ as well as on the uncondi-
tional variances and covariances of the innovation vector ut+1, which we obtain by estimating
the VAR.

Figure 2 plots the coeffi cient A(γ, ψ) for different values of γ and ψ for the homoskedastic
case (left panel), and for the heteroskedastic case (right panel) using the linear approximation
for ω described in Section 3.2. In each panel, we plot A(γ, ψ) as γ varies between 0 and
20, for different values of ψ. Each line corresponds to a different ψ between 0.5 and 1.5;
when ψ = 1 the value of A(γ, ψ) is always equal to 1 since in that case the volatility of
consumption growth is equal to the volatility of returns.

As expected, in the homoskedastic case (left panel), the variance of consumption growth
does not depend on γ but only on ψ. It is rising in ψ because our VAR estimates imply
that the return on wealth is negatively correlated with news about future expected returns
NDR,t+1, that is, wealth returns are mean-reverting. This confirms results reported in
Campbell (1996). Once we add stochastic volatility (right panel), as γ increases the volatility
of consumption growth increases for all values of ψ as long as ψ 6= 1. To understand why
this is the case, notice in equation (24) that since ω grows with γ faster than (1 − γ)2, the
term ω

1−γ is increasing in γ in absolute value. Therefore, the larger γ, the more the variance
of NV gets amplified into a higher variance of consumption innovations.
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Note also that for ψ < 1 and for high enough γ (i.e. in the bottom-right section of the
right panel), the volatility of consumption innovations is higher for lower values of ψ. When
risk aversion is high, innovations in consumption are dominated by news about future risk.
Agents with very low or very high elasticity of intertemporal substitution, i.e. with ψ far from
1, will tend to adjust their consumption strongly (in different directions) to volatility news.
Therefore, it is possible for individuals with lower elasticity of intertemporal substitution to
end up with amore volatile process for consumption innovations, due to their strong reaction
to volatility news.

4 Predicting Aggregate Stock Returns and Volatility

4.1 State variables

Our full VAR specification of the vector xt+1 includes six state variables, five of which are
the same as in Campbell, Giglio and Polk (2011). To those five variables, we add an estimate
of conditional volatility. The data are all quarterly, from 1926:2 to 2011:4.

The first variable in the VAR is the log real return on the market, rM , the difference
between the log return on the Center for Research in Securities Prices (CRSP) value-weighted
stock index and the log return on the Consumer Price Index.

The second variable is expected market variance (EV AR). This variable is meant to
capture the volatility of market returns, σt, conditional on information available at time
t, so that innovations to this variable can be mapped to the NV term described above.
To construct EV ARt, we proceed as follows. We first construct a series of within-quarter
realized variance of daily returns for each time t, RV ARt. We then run a regression of
RV ARt+1 on lagged realized variance (RV ARt) as well as the other five state variables at
time t. This regression then generates a series of predicted values for RV AR at each time
t + 1, that depend on information available at time t: ̂RV ARt+1. Finally, we define our
expected variance at time t to be exactly this predicted value at t+ 1:

EV ARt ≡ ̂RV ARt+1.

Note that though we describe our methodology in a two-step fashion where we first estimate
EV AR and then use EV AR in a VAR, this is only for interpretability. Indeed, this approach
to modelingEV AR can be considered a simple renormalization of equivalent results we would
find from a VAR that included RV AR directly.7

7Since we weight observations based on RV AR in the first stage and then reweight observations using
EV AR in the second stage, our two-stage approach in practice is not exactly the same as a one-stage
approach. However, Panel B of Table 12 shows that results from a RV AR-weighted single-step estimation
are qualitatively very similar to those produced by our two-stage approach.
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The third variable is the price-earnings ratio (PE) from Shiller (2000), constructed as
the price of the S&P 500 index divided by a ten-year trailing moving average of aggregate
earnings of companies in the S&P 500 index. Following Graham and Dodd (1934), Campbell
and Shiller (1988b, 1998) advocate averaging earnings over several years to avoid temporary
spikes in the price-earnings ratio caused by cyclical declines in earnings. We avoid any
interpolation of earnings as well as lag the moving average by one quarter in order to ensure
that all components of the time-t price-earnings ratio are contemporaneously observable by
time t. The ratio is log transformed.

Fourth, the term yield spread (TY ) is obtained from Global Financial Data. We compute
the TY series as the difference between the log yield on the 10-Year US Constant Maturity
Bond (IGUSA10D) and the log yield on the 3-Month US Treasury Bill (ITUSA3D).

Fifth, the small-stock value spread (V S) is constructed from data on the six “elementary”
equity portfolios also obtained from Professor French’s website. These elementary portfolios,
which are constructed at the end of each June, are the intersections of two portfolios formed
on size (market equity, ME) and three portfolios formed on the ratio of book equity to market
equity (BE/ME). The size breakpoint for year t is the median NYSE market equity at the
end of June of year t. BE/ME for June of year t is the book equity for the last fiscal year
end in t − 1 divided by ME for December of t − 1. The BE/ME breakpoints are the 30th
and 70th NYSE percentiles.

At the end of June of year t, we construct the small-stock value spread as the difference
between the ln(BE/ME) of the small high-book-to-market portfolio and the ln(BE/ME)
of the small low-book-to-market portfolio, where BE and ME are measured at the end of
December of year t − 1. For months from July to May, the small-stock value spread is
constructed by adding the cumulative log return (from the previous June) on the small low-
book-to-market portfolio to, and subtracting the cumulative log return on the small high-
book-to-market portfolio from, the end-of-June small-stock value spread. The construction
of this series follows Campbell and Vuolteenaho (2004) closely.

The sixth variable in our VAR is the default spread (DEF ), defined as the difference
between the log yield on Moody’s BAA and AAA bonds. The series is obtained from the
Federal Reserve Bank of St. Louis. Campbell, Giglio and Polk (2011) add the default spread
to the Campbell and Vuolteenaho (2004) VAR specification in part because that variable is
known to track time-series variation in expected real returns on the market portfolio (Fama
and French, 1989), but mostly because shocks to the default spread should to some degree
reflect news about aggregate default probabilities. Of course, news about aggregate default
probabilities should in turn reflect news about the market’s future cash flows.
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4.2 Short-run volatility estimation

In order for the regression model that generates EV ARt to be consistent with a reasonable
data-generating process for market variance, we deviate from standard OLS in two ways.
First, we constrain the regression coeffi cients to produce fitted values (i.e. expected market
return variance) that are positive. Second, given that we explicitly consider heteroskedas-
ticity of the innovations to our variables, we estimate this regression using Weighted Least
Squares (WLS), where the weight of each observation pair (RV ARt+1, xt) is initially based
on the time-t value of (RV AR)−1. However, to ensure that the ratio of weights across obser-
vations is not extreme, we shrink these initial weights towards equal weights. In particular,
we set our shrinkage factor large enough so that the ratio of the largest observation weight
to the smallest observation weight is always less than or equal to five. Though admittedly
somewhat ad hoc, this bound is consistent with reasonable priors of the degree of variation
over time in expected market return variance. More importantly, we show later (in Table 12
Panel B) that our results are robust to variation in this bound. Both the constraint on the
regression’s fitted values and the constraint on WLS observation weights bind in the sample
we study.

The results of the first stage regression generating the state variable EV ARt are reported
in Table 1 Panel A. Perhaps not surprisingly, past realized variance strongly predicts future
realized variance. More importantly, the regression documents that an increase in either PE
or DEF predicts higher future realized volatility. Both of these results are very statistically
significant and are a novel finding of the paper. In particular, the fact that we find that very
persistent variables like PE and DEF forecast next period’s volatility indicates a potential
important role in volatility news for lower frequency or long-run movements in stochastic
volatility.

We argue that the links we find are sensible. Investors in risky bonds incorporate their
expectation of future volatility when they set credit spreads, as risky bonds are short the
option to default. Therefore we expect higher DEF to be associated with higher RV AR.
The result that higher PE predicts higher RV AR might seem surprising at first, but one
has to remember that the coeffi cient indicates the effect of a change in PE holding constant
the other variables, in particular the default spread. Since the default spread should also
generally depend on the equity premium and since most of the variation in PE is due to
variation in the equity premium, for a given value of the default spread, a relatively high
value of PE implies a relatively higher level of future volatility. Thus PE cleans up the
information in DEF concerning future volatility.

The R2 of this regression is just over 23%. The relatively low R2 masks the fact that
the fit is indeed quite good, as we can see from Figure 3, in which RV AR and EV AR are
plotted together. The R2 is heavily influenced by the occasional spikes in realized variance,
which the simple linear model we use is not able to capture. Indeed, our WLS approach
downweights the importance of those spikes in the estimation procedure.
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The internet appendix to this paper (Campbell, Giglio, Polk, and Turley 2012) reports
descriptive statistics for these variables for the full sample, the early sample, and the modern
sample. Consistent with Campbell, Giglio and Polk (2012), we document high correlation
between DEF and both PE and V S. The table also documents the persistence of both
RV AR andEV AR (autocorrelations of 0.524 and 0.740 respectively) and the high correlation
between these variance measures and the default spread.

Perhaps the most notable difference between the two subsamples is that the correlation
between PE and several of our other state variables changes dramatically. In the early
sample, PE is quite negatively correlated with both RV AR and V S. In the modern sample,
PE is essentially uncorrelated with RV AR and quite positively correlated with V S. As a
consequence, since EV AR is just a linear combination of our state variables, the correlation
between PE and EV AR changes sign across the two samples. In the early sample, this
correlation is very negative, with a value of -0.511. This strong negative correlation reflects
the high volatility that occurred during the Great Depression when prices were relatively
low. In the modern sample, the correlation is positive, 0.140. The positive correlation
simply reflects the economic fact that episodes with high volatility and high stock prices,
such as the technology boom of the late 1990s, were more prevalent in this subperiod than
episodes with high volatility and low stock prices, such as the recession of the early 1980s.

4.3 Estimation of the VAR and the news terms

Following Campbell (1993), we estimate a first-order VAR as in equation (15), where xt+1

is a 6× 1 vector of state variables ordered as follows:

xt+1 = [rM,t+1 EV ARt+1 PEt+1 TYt+1 DEFt+1 V St+1]

so that the real market return rM,t+1 is the first element and EV AR is the second element. x̄
is a 6×1 vector of the means of the variables, and Γ is a 6×6 matrix of constant parameters.
Finally, σtut+1 is a 6×1 vector of innovations, with the conditional variance-covariance matrix
of ut+1 a constant:

Σ = Var(ut+1)

so that the parameter σ2
t scales the entire variance-covariance matrix of the vector of inno-

vations.

The first-stage regression forecasting realized market return variance described in the
previous section generates the variable EV AR. The theory in Section 3 assumes that σ2

t ,
proxied for by EV AR, scales the variance-covariance matrix of state variable shocks. Thus,
as in the first stage, we estimate the second-stage VAR using WLS, where the weight of each
observation pair (xt+1, xt) is initially based on (EV ARt)

−1. We continue to constrain both
the weights across observations and the fitted values of the regression forecasting EV AR.
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Table 1 Panel B presents the results of the VAR estimation for the full sample (1926:2
to 2011:4). We report bootstrap standard errors for the parameter estimates of the VAR
that take into account the uncertainty generated by forecasting variance in the first stage.
Consistent with previous research, we find that PE negatively predict future returns, though
the t-statistic indicates only marginal significance. The value spread has a negative but not
statistically significant effect on future returns. In our specification, a higher conditional
variance, EV AR, is associated with higher future returns, though the effect is not statistically
significant. Of course, the relatively high degree of correlation among PE, DEF , V S, and
EV AR complicates the interpretation of the individual effect of those variables. As for the
other novel aspects of the transition matrix, both high PE and high DEF predict higher
future conditional variance of returns. High past market returns forecast lower EV AR,
higher PE, and lower DEF .8

Panel C of Table 1 reports the sample correlation and autocorrelation matrices of both
the unscaled residuals σtut+1 and the scaled residuals ut+1. The correlation matrices report
standard deviations on the diagonals. There are a couple of aspects of these results to
note. For one thing, a comparison of the standard deviations of the unscaled and scaled
residuals provides a rough indication of the effectiveness of our empirical solution to the
heteroskedasticity of the VAR. In general, the standard deviations of the scaled residuals are
several times larger than their unscaled counterparts. More specifically, our approach implies
that the scaled return residuals should have unit standard deviation. Our implementation
results in a sample standard deviation of 0.562, that is relatively close to one.

Additionally, a comparison of the unscaled and scaled autocorrelation matrices reveals
that much of the sample autocorrelation in the unscaled residuals is eliminated by our WLS
approach. For example, the unscaled residuals in the regression forecasting the log real
return have an autocorrelation of -0.074. The corresponding autocorrelation of the scaled
return residuals is essentially zero, 0.002. Though the scaled residuals in the EV AR, PE
and DEF regression still display some negative autocorrelation, the unscaled residuals are
much more negatively autocorrelated.

Table 2 reports the coeffi cients of a regression of the squared unscaled residuals σtut+1

of each VAR equation on a constant and EV AR. These results are consistent with our
assumption that EV AR captures the conditional volatility of market returns (the coeffi cient
on EV AR in the regression forecasting the squared residuals of rM is 0.478). The fact that
EV AR significantly predicts with a positive sign all the squared errors of the VAR supports
our underlying assumption that one parameter (σ2

t ) drives the volatility of all innovations.

8One worry is that many of the elements of the transition matrix are estimated imprecisely. Though these
estimates may be zero, their non-zero but statistically insignificant in-sample point estimates, in conjunction
with the highly-nonlinear function that generates discount-rate and volatility news, may result in misleading
estimates of risk prices. However, Table 12 Panel B shows that results are qualitatively similar if we instead
employ a partial VAR where, via a standard iterative process, only variables with t-statistics greater than
1.0 are included in each VAR regression.
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The top panel of Table 3 presents the variance-covariance matrix and the standard devi-
ation/correlation matrix of the news terms, estimated as described above. Consistent with
previous research, we find that discount-rate news is twice as volatile as cash-flow news.

The interesting new results in this table concern the variance news term NV . First, news
about future variance is more volatile than discount-rate news. Second, it is negatively
correlated (-0.22) with cash-flow news: as one might expect from the literature on the
“leverage effect”(Black 1976, Christie 1982), news about low cash flows is associated with
news about higher future volatility. Third, NV correlates negatively (-0.09) with discount-
rate news, indicating that news of high volatility tends to coincide with news of low future
real returns.9 The net effect of these correlations, documented in the lower left panel of
Table 3, is a slightly negative correlation of -.02 between our measure of volatility news and
contemporaneous market returns (for related research see French, Schwert, and Stambaugh
1987).

The lower right panel of Table 3 reports the decomposition of the vector of innovations
σ2
tut+1 into the three terms NCF,t+1, NDR,t+1, and NV,t+1. As shocks to EV AR are just a
linear combination of shocks to the underlying state variables, which includes RV AR, we
“unpack”EV AR to express the news terms as a function of rM , PE, TY , V S, DEF , and
RV AR. The panel shows that innovations to RV AR are mapped more than one-to-one to
news about future volatility. However, several of the other state variables also drive news
about volatility. Specifically, we find that innovations in PE, DEF , and V S are associated
with news of higher future volatility.

Figure 4 plots the smoothed series for NCF , −NDR and NV using an exponentially-
weighted moving average with a quarterly decay parameter of 0.08. This decay parameter
implies a half-life of six years. The pattern of NCF and −NDR we find is consistent with
previous research. As a consequence, we focus on the smoothed series for market variance
news. There is considerable time variation in NV , and in particular we find episodes of news
of high future volatility during the Great Depression and just before the beginning of World
War II, followed by a period of little news until the late 1960s. From then on, periods of
positive volatility news alternate with periods of negative volatility news in cycles of 3 to 5
years. Spikes in news about future volatility are found in the early 1970s (following the oil
shocks), in the late 1970s and again following the 1987 crash of the stock market. The late
1990s are characterized by strongly negative news about future returns, and at the same time
higher expected future volatility. The recession of the late 2000s is instead characterized by
strongly negative cash-flow news, together with a spike in volatility of the highest magnitude
in our sample. The recovery from the financial crisis has brought positive cash-flow news
together with news about lower future volatility.

9Though the point estimate is negative, the large standard errors imply that we cannot reject the “volatil-
ity feedback effect”(Campbell and Hentschel 1992, Calvet and Fisher 2007).

19



4.4 Predicting long-run volatility

The predictability of volatility, and especially of its long-run component, is central to this
paper. In the previous sections, we have shown that volatility is strongly predictable, and
it is predictable in particular by variables beyond lagged realizations of volatility itself: PE
and DEF contain essential information about future volatility. We have also proposed a
VAR-based methodology to construct long-horizon forecasts of volatility that incorporate all
the information in lagged volatility as well as in the additional predictors like PE and DEF .

We now ask how well our proposed long-run volatility forecasts capture the long-horizon
component of volatility. In Table 4 we regress realized long-run variance up to period h,

LHRV ARh =
Σh
j=1ρ

j−1RV ARt+j

Σh
j=1ρ

j−1
,

on different forecasting models of long-run variance.10 In particular, we estimate two stan-
dard GARCH-type models, specifically designed to capture the long-run component of
volatility. The first one is the two-component EGARCH model proposed by Adrian and
Rosenberg (2008). This model assumes the existence of two separate components of volatil-
ity, one of which is more persistent than the other, and therefore will tend to capture the
long-run dynamics of the volatility process. The other model we estimate is the FIGARCH
model of Baillie, Bollerslev, and Mikkelsen (1996), in which the process for volatility is mod-
eled as a fractionally-integrated process, and whose slow, hyperbolic rate of decay of lagged,
squared innovations potentially captures long-run movements in volatility better. We first
estimate both GARCH models using the full sample of daily returns and then generate the
appropriate forecast of LHRV ARh.11 To these two models, we add the set of variables from
our VAR, and compare the forecasting ability of these different models.

Table 4 Panel A reports, for different horizons h ranging from 1 year to 15 years, the
results of forecasting regressions of long run volatility LHRV ARh using different specifica-
tions. The first row of each sub-panel presents results using the state variables in our VAR,
each included separately. The second row predicts LHRV ARh with the horizon-specific fore-
cast implied by our VAR (V ARh). The third and fourth rows forecast LHRV ARh with the
corresponding forecast from the EGARCH model (EGh) and the FIGARCH model (FIGh)
respectively. The fifth and sixth rows join the VAR variables with the two GARCH-based
forecasts, one at a time. The seventh and eighth row conducts a horse race between V ARh

and FIGh and between V ARh and DEF .

First note that both the EGARCH and FIGARCH forecasts by themselves capture a
significant portion of the variation in long-run realized volatility: both have significant co-
effi cients, and both have nontrivial R2s, even at very long horizons. Our VAR variables
10Note that we rescale by the sum of the weights ρj to maintain the scale of the coeffi cients in the predictive

regressions across different horizons.
11We start our forecasting exercise in January 1930 so that we have a long enough history of past returns

to feed the FIGARCH model.
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provide as good or better explanatory power, and RV AR, PE and DEF appear strongly
statistically significant at all horizons (with the exception of RV AR at h = 20, i.e. 5 years).
Finally, the VAR-implied forecast, V ARh, is not only significantly different from 0, but it is
also not significantly different from 1. This indicates that our VAR is able to produce fore-
casts of volatility that not only go in the right direction, but are also of the right magnitude,
even at very long horizons.

Very interesting results appear once we join our variables to the two GARCH models.
Even after controlling for the GARCH-based forecasts (which render RV AR insignificant),
PE and DEF always come in significantly in predicting long-horizon volatility. Moreover,
and especially at long horizons, the addition of the VAR state variables strongly increases the
R2. We further show that when using the VAR-implied forecast together with the FIGARCH
forecast, the coeffi cient on V ARh is still very close to one and always statistically significant
while the FIGARCH coeffi cient moves closer to zero (though estimates of the coeffi cient on
FIGh remain statistically significant at some horizons).

We develop an additional test of our VAR-based model of stochastic volatility from the
idea that the variables that form the VAR — in particular the strongest of them, DEF
—should predict volatility at long horizons only through the VAR, not in addition to it.
In other words, the VAR forecasts should ideally represent the best way to combine the
information contained in the state variables concerning long-run volatility. If true, after
controlling for the VAR-implied forecast, DEF or other variables that enter the VAR should
not significantly predict future long-run volatility. We test this hypothesis by running a
regression using both the VAR-implied forecast and DEF as right-hand side variables. We
find that at all horizons the coeffi cient on V ARh is still not significantly different from 1,
while the coeffi cient on DEF is small and statistically indistinguishable from 0.

Finally, in Panel B of Table 4 we examine more carefully the link between DEF and
LHRV AR focusing on the 10-year horizon. The Table reports the results from regressions
forecasting LHRV AR40 with PE, DEF , PEO (PE orthogonalized to DEF ), and DEFO
(DEF orthogonalized to PE). The Table shows that by itself, PE has no information about
low-frequency variation in volatility. In contrast, DEF forecasts nearly 22% of the variation
in LHRV AR40. And once DEF is orthogonalized to PE, the R2 increases to 51%. Adding
PEO has little effect on the R2. We argue that this is clear evidence of the strong predictive
power of the orthogonalized component of the default spread.

Recall our simple interpretation of these results. DEF contains information about future
volatility as risky bonds are short the option to default. However, DEF also contains
information about future aggregate risk premia. We know from previous work that most
of the variation in PE is about aggregate risk premia. Therefore, including PE in the
volatility forecasting regression cleans up variation in DEF due to aggregate risk premia
and thus sharpens the link between DEF and future volatility. Since PE and DEF are
negatively correlated (default spreads are relatively low when the market trades rich), both
PE and DEF receive positive coeffi cients in the multiple regression.
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In Figure 5, we provide a visual representation of the volatility-forecasting power of
our key VAR state variables and our interpretation of the results. The top panel plots
LHRV AR40 together with lagged DEF and PE. The graph confirms the strong negative
correlation between PE and DEF (correlation of -0.6) and highlights how both variables
track long-run movements in long run volatility. To isolate the contribution of the default
spread in predicting long run volatility, the bottom panel plots LHRV AR40 together with
DEFO. In general, the improvement in fit moving from the top panel to the bottom panel
is clear.

More specifically, the contrasting behavior of DEF and DEFO in the two panels during
episodes such as the tech boom help illustrate the workings of our story. Taken in isola-
tion, the relatively stable default spread throughout most of the late 1990s would predict
little change in expectations of future market volatility. However, once the declining equity
premium over that period is taken into account (as shown by the rapid increase in PE),
one recognizes that a PE-adjusted spread in the late 1990s actually forecasted much higher
volatility ahead.

Taken together, the results in Table 1 Panel A and Table 4 make a strong case that
credit spreads and valuation ratios contain information about future volatility not captured
by simple univariate models, even those like the FIGARCH model or the two-component
EGARCH model that are designed to fit long-run movements in volatility, and that our
VAR method for calculating long-horizon forecasts preserves this information.

5 Measuring and Pricing Cash-flow, Discount-Rate, and
Volatility Betas

5.1 Test assets

In addition to the six VAR state variables, our analysis also requires returns on a cross
section of test assets. We construct three sets of portfolios to use as test assets. Our primary
cross section consists of the excess returns on the 25 ME- and BE/ME-sorted portfolios,
studied in Fama and French (1993), extended in Davis, Fama, and French (2000), and made
available by Professor Kenneth French on his web site.12

Daniel and Titman (1997, 2012) and Lewellen, Nagel, and Shanken (2010) point out that
it can be misleading to test asset pricing models using only portfolios sorted by characteristics
known to be related to average returns, such as size and value. In particular, characteristics-
sorted portfolios are likely to show some spread in betas identified as risk by almost any asset
pricing model, at least in sample. When the model is estimated, a high premium per unit

12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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of beta will fit the large variation in average returns. Thus, at least when premia are not
constrained by theory, an asset pricing model may spuriously explain the average returns to
characteristics-sorted portfolios.

To alleviate this concern, we follow the advice of Daniel and Titman (1997, 2012) and
Lewellen, Nagel, and Shanken (2010) and construct a second set of six portfolios double-
sorted on past risk loadings to market and variance risk. First, we run a loading-estimation
regression for each stock in the CRSP database where ri,t is the log stock return on stock i
for month t.

3∑
j=1

ri,t+j = b0 + brM

3∑
j=1

rM,t+j + b∆V AR

3∑
j=1

∆V ARt+j + εi,t+3

We calculate ∆V AR as a weighted sum of changes in the VAR state variables. The
weight on each change is the corresponding value in the linear combination of VAR shocks
that defines news about market variance. We choose to work with changes rather than shocks
as this allows us to generate pre-formation loading estimates at a frequency that is different
from our VAR. Namely, though we estimate our VAR using calendar-quarter-end data, our
approach allows a stock’s loading estimates to be updated at each interim month.

The regression is reestimated from a rolling 36-month window of overlapping observations
for each stock at the end of each month. Since these regressions are estimated from stock-level
instead of portfolio-level data, we use quarterly data to minimize the impact of infrequent
trading. With loading estimates in hand, each month we perform a two-dimensional sequen-
tial sort on market beta and ∆V AR beta. First, we form three groups by sorting stocks
on b̂rM . Then, we further sort stocks in each group to three portfolios on b̂∆V AR and record
returns on these nine value-weight portfolios. The final set of risk-sorted portfolios are the
two sets of three b̂rM portfolios within the extreme b̂∆V AR groups. To ensure that the aver-
age returns on these portfolio strategies are not influenced by various market-microstructure
issues plaguing the smallest stocks, we exclude the five percent of stocks with the lowestME
from each cross-section and lag the estimated risk loadings by a month in our sorts.

In the empirical analysis, we consider two main subsamples: early (1931:3-1963:3) and
modern (1963:4-2011:4) due to the findings in Campbell and Vuolteenaho (2004) of dramatic
differences in the risks of these portfolios between the early and modern period. The first
subsample is shorter than that in Campbell and Vuolteenaho (2004) as we require each of
the 25 portfolios to have at least one stock as of the time of formation in June.

Finally, we generate a parsimonious cross section of option, bond, and equity returns for
the 1986:1-2011:4 time period based on the findings in Fama and French (1993) and Coval
and Shumway (2001). In particular, we use the S&P 100 index straddle returns studied by
Coval and Shumway.13 We also include proxies for the two components of the risky bond

13Specifically, the series we study includes only those straddle positions where the difference between the
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factor of Fama and French (1993) which we measure using the return on the Barclays Capital
High Yield Bond Index (HY RET ) and the return on Barclays Capital Investment Grade
Bond Index (IGRET ). When pricing the straddle and risky bond return series, we include
the returns on the market (RMRF ), size (SMB), and value (HML) equity factors of Fama
and French (1993) as they argue these factors do a good job describing the cross section of
average equity returns.

5.2 Beta measurement

We now examine the validity of an unconditional version of the first-order condition in
equation (18). We modify equation (18) in three ways. First, we use simple expected
returns on the left-hand side to make our results easier to compare with previous empirical
studies. Second, we condition down equation (18) to avoid having to estimate all required
conditional moments. Finally, we cosmetically multiply and divide all three covariances by
the sample variance of the unexpected log real return on the market portfolio. By doing so,
we can express our pricing equation in terms of betas, facilitating comparison to previous
research. These modifications result in the following asset-pricing equation

E[Ri −Rf ] = γσ2
Mβi,CFM + σ2

Mβi,DRM −
1

2
ωσ2

Mβi,VM , (26)

where

βi,CFM ≡ Cov(ri,t, NCF,t)

V ar(rM,t − Et−1rM,t)
,

βi,DRM ≡ Cov(ri,t,−NDR,t)

V ar(rM,t − Et−1rM,t)
,

and βi,VM ≡ Cov(ri,t, NV,t)

V ar(rM,t − Et−1rM,t)
.

We price the average excess returns on our test assets using the unconditional first-order
condition in equation (26) and the quadratic relationship between the parameters ω and γ
given by (24). As a first step, we estimate cash-flow, discount-rate, and variance betas using
the fitted values of the market’s cash flow, discount-rate, and variance news estimated in
the previous section. Specifically, we estimate simple WLS regressions of each portfolio’s log
returns on each news term, weighting each time-t+1 observation pair by the weights used to
estimate the VAR in Table 1 Panel B. We then scale the regression loadings by the ratio of
the sample variance of the news term in question to the sample variance of the unexpected
log real return on the market portfolio to generate estimates for our three-beta model.

options’strike price and the underlying price is between 0 and 5. We thank Josh Coval and Tyler Shumway
for providing their updated data series to us.
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Characteristic-sorted test assets

Table 5 Panel A shows the estimated betas for the 25 size- and book-to-market portfolios
over the 1931-1963 period. The portfolios are organized in a square matrix with growth
stocks at the left, value stocks at the right, small stocks at the top, and large stocks at the
bottom. At the right edge of the matrix we report the differences between the extreme growth
and extreme value portfolios in each size group; along the bottom of the matrix we report the
differences between the extreme small and extreme large portfolios in each BE/ME category.
The top matrix displays post-formation cash-flow betas, the middle matrix displays post-
formation discount-rate betas, while the bottom matrix displays post-formation variance
betas. In square brackets after each beta estimate we report a standard error, calculated
conditional on the realizations of the news series from the aggregate VAR model.

In the pre-1963 sample period, value stocks have both higher cash-flow and higher
discount-rate betas than growth stocks. An equal-weighted average of the extreme value
stocks across size quintiles has a cash-flow beta 0.12 higher than an equal-weighted average
of the extreme growth stocks. The difference in estimated discount-rate betas, 0.20, is in
the same direction. Similar to value stocks, small stocks have higher cash-flow betas and
discount-rate betas than large stocks in this sample (by 0.14 and 0.34, respectively, for an
equal-weighted average of the smallest stocks across value quintiles relative to an equal-
weighted average of the largest stocks). These differences are extremely similar to those in
Campbell and Vuolteenaho (2004), despite the exclusion of the 1929-1931 subperiod, the
replacement of the excess log market return with the log real return, and the use of a richer,
heteroskedastic VAR.

The new finding in Table 5 Panel A is that value stocks and small stocks are also riskier
in terms of volatility betas. An equal-weighted average of the extreme value stocks across
size quintiles has a volatility beta 0.21 lower than an equal-weighted average of the extreme
growth stocks. Similarly, an equal-weighted average of the smallest stocks across value
quintiles has a volatility beta that is 0.18 lower than an equal-weighted average of the largest
stocks. In summary, value and small stocks were unambiguously riskier than growth and
large stocks over the 1931-1963 period.

Table 6 Panel A reports the corresponding estimates for the post-1963 period. As doc-
umented in this subsample by Campbell and Vuolteenaho (2004), value stocks still have
slightly higher cash-flow betas than growth stocks, but much lower discount-rate betas. Our
new finding here is that value stocks continue to have much lower volatility betas, and the
spread in volatility betas is even greater than in the early period. The volatility beta for the
equal-weighted average of the extreme value stocks across size quintiles is 0.52 lower than
the volatility beta of an equal-weighted average of the extreme growth stocks, a difference
that is more than 42% higher than the corresponding difference in the early period.

One interesting aspect of these findings is the fact that the average βV of the 25 size-
and book-to-market portfolios changes sign from the early to the modern subperiod. Over
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the 1931-1963 period, the average βV is -0.25 while over the 1964-2011 period this average
becomes 0.36. Of course, given the strong positive link between PE and volatility news
documented in the lower right panel of Table 3, one should not be surprised that the market’s
βV can be positive. Moreover, given the change in sign over time in PE’s correlation with
some of the key state variables driving EV AR documented in the Online Appendix, one
should not be surprised that βV changes sign as well. Nevertheless, Table 12 examines the
robustness of this finding to different VAR specifications and estimation methods.

These results imply that in the post-1963 period where the CAPM has diffi culty ex-
plaining the low returns on growth stocks relative to value stocks, growth stocks are relative
hedges for two key aspects of the investment opportunity set. Consistent with Campbell and
Vuolteenaho (2004), growth stocks hedge news about future real stock returns. The novel
finding of this paper is that growth stocks also hedge news about the variance of the market
return.

Risk-sorted test assets

Table 5 Panel B shows the estimated betas for the six risk-sorted portfolios over the
1931-1963 period. The portfolios are organized in a rectangular matrix with low CAPM
beta stocks at the left, high CAPM beta stocks at the right, low volatility beta stocks at
the top, and high volatility beta stocks at the bottom. At the right edge of the matrix we
report the differences between the high CAPM beta and the low CAPM beta portfolios in
each volatility beta group; along the bottom of the matrix we report the differences between
the high volatility beta and the low volatility beta portfolios in each CAPM beta category.
As in Panel A, the top matrix displays post-formation cash-flow betas, the middle matrix
displays post-formation discount-rate betas, while the bottommatrix displays post-formation
volatility betas.

In the pre-1963 sample period, high CAPM beta stocks have both higher cash-flow and
higher discount-rate betas than low CAPM beta stocks. An equal-weighted average of the
high CAPM beta stocks across the two volatility beta categories has a cash-flow beta 0.19
higher than an equal-weighted average of the low CAPM beta stocks. The difference in
estimated discount-rate betas is 0.44 and in the same direction. Similar to high CAPM beta
stocks, low volatility beta stocks have higher cash-flow betas and discount-rate betas than
high volatility beta stocks in this subsample (by 0.06 and 0.11, respectively, for an equal-
weighted average of the low volatility beta stocks across the three CAPM beta categories
relative to a corresponding equal-weighted average of the high volatility beta stocks).

High CAPM beta stocks and low volatility beta stocks are also riskier in terms of volatility
betas. An equal-weighted average of the high CAPM beta stocks across volatility beta
categories has a post-formation volatility beta 0.16 lower than an equal-weighted average of
the low CAPM beta stocks. Similarly, an equal-weighted average of the low volatility beta
stocks across CAPM beta categories has a post-formation volatility beta that is 0.09 lower
than an equal-weighted average of the high volatility beta stocks. In summary, high CAPM
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beta and low volatility beta stocks were unambiguously riskier than low CAPM beta and
high volatility beta stocks over the 1931-1963 period.

Table 6 Panel B shows the estimated betas for the six risk-sorted portfolios over the
post-1963 period. In the modern period, high CAPM beta stocks again have higher cash-
flow and higher discount-rate betas than low CAPM beta stocks. An equal-weighted average
of the high CAPM beta stocks across the two volatility beta categories has a cash-flow beta
0.08 higher than an equal-weighted average of the low CAPM beta stocks. The difference in
estimated discount-rate betas is 0.55 and in the same direction. However, high CAPM beta
stocks are no longer riskier in terms of volatility betas. Now, an equal-weighted average of
the high CAPM beta stocks across the two volatility beta categories has a post-formation
variance beta 0.28 higher than a corresponding equal-weighted average of the low CAPM
beta stocks. Since, in the three-beta model, covariation with aggregate volatility has a
negative premium, the three-beta model can potentially explain why stocks with high past
CAPM betas have offered relatively little extra return, at least in the modern period.

In the post-1963 period, sorts on volatility beta continue to generate economically and
statistically significant spread in post-formation volatility beta. An equal-weighted average
of low volatility beta stocks across the three CAPM beta categories has a post-formation
volatility beta that is 0.26 lower than the post-formation volatility beta of a corresponding
equal-weighted average of high volatility beta stocks. Sorts on volatility beta also generate
spread in discount-rate beta, but essentially no spread in cash-flow betas in the post-1963
period.

Non-equity test assets

Finally, Table 6 Panel C reports the three ICAPM betas of the S&P 100 index straddle
position analyzed in Coval and Shumway (2001) along with the corresponding ICAPM betas
of the three equity factors and the default bond factor of Fama and French (1993) over the
period 1986:1 - 2011:4. Consistent with the nature of a straddle bet, we find that the straddle
has a very large volatility beta of 1.51 along with a large negative discount-rate beta of -1.71
and a large (relatively speaking) negative cash-flow beta of -0.39. As one would expect, the
betas of the Fama-French equity factors are consistent with the findings for the size- and
book-to-market-sorted portfolios in Table 6 Panel B. Finally, the riskier component of Fama
and French’s (1993) risky bond factor, HY RET , has a cash-flow beta of 0.06, a discount-rate
beta of 0.26, and a volatility beta of -0.20. These betas are economically and statistically
significant from those of the safer component, IGRET . The difference in volatility beta
between HY RET and IGRET is consistent with the fact that risky corporate debt is short
the option to default.
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5.3 Beta pricing

We next turn to pricing the cross section with these three ICAPM betas. We evaluate
the performance of five asset-pricing models: 1) the traditional CAPM that restricts cash-
flow and discount-rate betas to have the same price of risk and sets the price of variance risk
equal to zero; 2) the two-beta intertemporal asset pricing model of Campbell and Vuolteenaho
(2004) that restricts the price of discount-rate risk to equal the variance of the market return,
3) our three-beta intertemporal asset pricing model that restricts the price of discount-rate
risk to equal the variance of the market return and constrains the price of cash-flow and
variance risk to be related by equation (24), with ρ = 0.95 per year; 4) a partially-constrained
three-beta model that restricts the price of discount-rate risk to equal the variance of the
market return but freely estimates the other two risk prices (effectively decoupling γ and ω),
and 5) an unrestricted three-beta model that allows free risk prices for cash-flow, discount-
rate, and volatility betas. Each model is estimated in two different forms: one with a
restricted zero-beta rate equal to the Treasury-bill rate, and one with an unrestricted zero-
beta rate following Black (1972).

Characteristic-sorted test assets

Table 7 reports results for the early sample period 1931-1963, using 25 size- and book-
to-market-sorted portfolios as test assets. The table has ten columns, two specifications for
each of our five asset pricing models. The first 16 rows of Table 7 are divided into four sets
of four rows. The first set of four rows corresponds to the zero-beta rate (in excess of the
Treasury-bill rate), the second set to the premium on cash-flow beta, the third set to the
premium on discount-rate beta, and the fourth set to the premium on volatility beta. Within
each set, the first row reports the point estimate in fractions per quarter, and the second
row annualizes this estimate, multiplying by 400 to aid in interpretation. These parameters
are estimated from a cross-sectional regression

R
e

i = g0 + g1β̂i,CFM + g2β̂i,DRM + g3β̂i,VM + ei, (27)

where a bar denotes time-series mean and R
e

i ≡ Ri−Rrf denotes the sample average simple
excess return on asset i. The third and fourth rows present two alternative standard errors
of the monthly estimate, described below.

Below the premia estimates, we report the R2 statistic for a cross-sectional regression of
average returns on our test assets onto the fitted values from the model. We also report a
composite pricing error, computed as a quadratic form of the pricing errors. The weighting
matrix in the quadratic form is a diagonal matrix with the inverse of the sample test asset
return volatilities on the main diagonal.

Standard errors are produced with a bootstrap from 10,000 simulated realizations. Our
bootstrap experiment samples test-asset returns and first-stage VAR errors, and uses the
first-stage and second-stage WLS VAR estimates in Table 1 to generate the state-variable

28



data.14 We partition the VAR errors and test-asset returns into two groups, one for 1931 to
1963 and another for 1963 to 2011, which enables us to use the same simulated realizations
in subperiod analyses. The first set of standard errors (labeled A) conditions on estimated
news terms and generates betas and return premia separately for each simulated realization,
while the second set (labeled B) also estimates the first-stage and second-stage VAR and the
news terms separately for each simulated realization. Standard errors B thus incorporate
the considerable additional sampling uncertainty due to the fact that the news terms as well
as betas are generated regressors.

Two alternative 5-percent critical values for the composite pricing error are produced
with a bootstrap method similar to the one we have described above, except that the test-
asset returns are adjusted to be consistent with the pricing model before the random samples
are generated. Critical values A condition on estimated news terms, while critical values B
take account of the fact that news terms must be estimated.

Finally, Table 7 reports the implied risk-aversion coeffi cient, γ, which can be recovered as
g1/g2, as well as the sensitivity of news about risk to news about market variance, ω, which
can be recovered as −2 ∗ g3/g2. The three-beta ICAPM estimates are constrained so that
both γ and the implied ω are strictly positive.

Table 7 shows that in the 1931-1963 period, the restricted three-beta model explains the
cross-section of stock returns reasonably well. The cross-sectional R2 statistics are almost
56% for both forms of this model. Both the Sharpe-Lintner and Black versions of the CAPM
do a slightly poorer job describing the cross section (both R2 statistics are roughly 52%).
The two-beta ICAPM of Campbell and Vuolteenaho (2004) performs slightly better than the
CAPM and slightly worse than the volatility ICAPM. None of the theoretically-motivated
models considered are rejected by the data based on the composite pricing test. Consistent
with the claim that the three-beta model does a good job describing the cross-section, Table 7
shows that the constrained and the unrestricted factor model barely improve pricing relative
to the three-beta ICAPM.

Figure 6 provides a visual summary of these results. The figure plots the predicted
average excess return on the horizontal axis and the actual sample average excess return on
the vertical axis. In summary, we find that the three-beta ICAPM improves pricing relative
to both the Sharpe-Lintner and Black versions of the CAPM.

This success is due in part to the inclusion of volatility betas in the specification. For the
Black version of the three-beta ICAPM, the spread in volatility betas across the 25 size- and
book-to-market-sorted portfolios generates an annualized spread in average returns of 1.46%
compared to a comparable spread of 7.41% and 3.18% for cash-flow and discount-rate betas.
Variation in volatility betas accounts for 2% of the variation in explained returns compared
to 39% and 7% for cash-flow and discount-rate betas respectively. The remaining 52% of the
explained variation in average returns is due of course to the covariation among the three

14When simulating the bootstrap, we drop realizations which would result in negative RV AR and redraw.
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types of betas.

Results are very different in the 1963-2011 period. Table 8 shows that in this period,
both versions of the CAPM do a very poor job of explaining cross-sectional variation in
average returns on portfolios sorted by size and book-to-market. When the zero-beta rate
is left as a free parameter, the cross-sectional regression picks a negative premium for the
CAPM beta and implies an R2 of roughly 5%. When the zero-beta rate is constrained to
the risk-free rate, the CAPM R2 falls to roughly -37%. Both versions of the static CAPM
are easily rejected at the five-percent level by both sets of critical values.

In the modern period, the unconstrained zero-beta rate version of the two-beta Campbell
and Vuolteenaho (2004) model does a better job describing the cross section of average
returns than the CAPM. However, the implied coeffi cient of risk aversion, 20.70, is arguably
extreme.

The three-beta model with the restricted zero-beta rate also does a poor job explaining
cross-sectional variation in average returns across our test assets. However, if we continue
to restrict the risk price for discount-rate and variance news but allow an unrestricted zero-
beta rate, the explained variation increases to roughly 69%, three-quarters larger than the
R2 of the corresponding two-beta ICAPM. The estimated risk price for cash-flow beta is
an economically reasonable 30 percent per year with an implied coeffi cient of relative risk
aversion of 9.63. Both versions of our intertemporal CAPM with stochastic volatility are not
rejected at the 5-percent level by either set of critical values.

Figure 7 provides a visual summary of these results. For the Black version of the three-
beta ICAPM, spread in volatility betas across the 25 size- and book-to-market-sorted port-
folios generates an annualized spread in average returns of 6.52% compared to a comparable
spread of 3.90% and 2.24% for cash-flow and discount-rate betas. Variation in volatility
betas accounts for 92% of the variation in explained returns compared to 20% for cash-flow
betas as well as 7% for discount-rate betas. Covariation among the three types of betas is
responsible for the remaining -19% of explained variation in average returns.

The relatively poor performance of the risk-free rate version of the three-beta ICAPM is
due to the derived link between γ and ω. To show this, Figure 8 provides two contour plots
(one each for the risk-free and zero-beta rate versions of the model in the top and bottom
panels of the figure respectively) of the R2 resulting from combinations of (γ,ω) ranging from
(0,0) to (40,16). On the same figure we also plot the relation between γ and ω derived in
equation (24). The top panel of Figure 8 shows that even with the intercept restricted to
zero, R2’s are as high as 70% for some combinations of (γ,ω). Unfortunately, as the plot
shows, these combinations do not coincide with the curve implied by equation (24). Once
the zero-beta rate is unconstrained, the contours for R2’s greater than 60% cover a much
larger area of the plot and coincide nicely with the ICAPM relation of equation (24).

Consistent with the contour plots of Figure 8, the pricing results in Table 8 based on
the partially-constrained factor model further confirms that the link between γ and ω is
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responsible for the poor fit of the restricted zero-beta rate version of the three-beta ICAPM
in the modern period. When removing the constraint linking γ and ω but leaving the
constraint on the discount-rate beta premium in place, the R2 increases from -57% to 74%.
Nevertheless, the risk prices for γ and ω remain economically large and of the right sign.

Risk-sorted test assets

We confirm that the success of the three-beta ICAPM is robust by expanding the set of
test portfolios beyond the 25 size- and book-to-market-sorted portfolios. First, we show that
our three-beta model not only describes the cross section of characteristics-sorted portfolios
but also can explain the average returns on risk-sorted portfolios. We examine risk-sorted
portfolios as Daniel and Titman (1997, 2012) and Lewellen, Nagel, and Shanken (2010) argue
that asset-pricing tests using only portfolios sorted by characteristics known to be related to
average returns, such as size and value, can be misleading due to the low-dimensional factor
structure of the 25 size and book-to-market-sorted portfolios.

Table 9 prices the six risk-sorted portfolios described in Table 5 Panel B in conjunction
with six of the 25 size- and book-to-market-sorted portfolios of Table 5 Panel A (the low,
medium, and high BE/ME portfolios within the small and large ME quintiles). We continue
to find that the three-beta ICAPM improves pricing relative to both the Sharpe-Lintner and
Black versions of the CAPM. Moreover, the relatively highR2 (57%) is not disproportionately
due to characteristics-sorted portfolios as the R2 for the risk-sorted subset (69%) is not only
comparable to but also larger than the R2 for the characteristics-sorted subset (51%). Figure
9 shows this success graphically.

Table 10 prices the cross section of characteristics- and risk-sorted portfolios in the mod-
ern period. We find that the zero-beta rate three-beta ICAPM is not rejected by the data
while both versions of the CAPM are rejected. Again, the relatively high R2 for the zero-beta
rate version of the volatility ICAPM (76%) is not disproportionately due to characteristics-
sorted portfolios as the R2 for the risk-sorted subset (81%) is not only comparable to but
also larger than the R2 for the characteristics-sorted subset (77%). Figure 10 provides a
graphically summary of these results.

Non-equity test assets

We also show that our three-beta model can help explain average returns on non-equity
portfolios designed to be highly correlated with aggregate volatility risk, namely the S&P
100 index straddles of Coval and Shumway (2001). We first calculate the expected return on
straddle portfolio based on the estimates of the zero-beta rate volatility ICAPM in Table 8.
The contributions to expected quarterly return from the straddle’s cash-flow, discount-rate,
and volatility betas are -2.92%, -1.33%, and -3.87% respectively. As the average quarterly
realized return on the straddle is -21.66%, an equity-based estimate of the three-beta model
explains roughly 38% of the realized straddle premium.

Table 11 shows that our intertemporal CAPM with stochastic volatility is not rejected at
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the 5-percent level when we price the joint cross-section of equity, bond, and straddle returns.
The implied risk aversion coeffi cient (roughly 15 for both the risk-free and zero-beta rate
implementations of the model) is high but not unreasonable. In sharp contrast, the CAPM
is strongly rejected. Though the two-beta ICAPM is not rejected, the required risk aversion
is too extreme (over 53 for both versions of the model) to be realistic.

Summary of US financial history

Figure 11 (third panel) plots the time-series of the smoothed combined shock γNCF −
NDR − 1

2
ωNV based on the estimate of the zero-beta model for the modern period (Table

7). The correlation of this shock with the associated NCF is 0.90. Similarly, the correlation
of this shock with the associated NDR is 0.26. Finally, the correlation of this shock with the
associated NV is -0.76. Figure 11 also plots the corresponding smoothed shock series for the
CAPM (NCF − NDR) and for the two-beta ICAPM (γNCF − NDR). The two-beta model
shifts the history of good and bad times relative to the CAPM, as emphasized by Campbell,
Giglio, and Polk (2012). The model with stochastic volatility further accentuates that
periods with high market volatility, such as the 1930s and the late 2000s, are particularly
hard times for long-term investors.

5.4 Robustness

Table 12 examines the robustness of our findings. Where appropriate, we include in bold
font our baseline model as a benchmark. Panel A shows results using various subsets of
variables in our baseline VAR. These results indicate that including both DEF and PE are
generally essential for our finding of a negative βV for HML, consistent with the importance
of these two variable to long-run volatility forecasting. Moreover, successful zero-beta-rate
volatility ICAPM pricing in the modern period requires PE, DEF , and V S in the VAR. The
results in Panel A also show that the positive RMRF βV in the modern period is due to the
inclusion of PE and DEF in the VAR. This finding makes sense once one is convinced (and
the long-horizon regressions of Table 4 make a strong case) that, controlling for DEF , high
PE forecasts high volatility in the future. Since the market will certainly covary positively
(and quite strongly) with the PE shock, one should expect this component of volatility news
to be positive and an important determinant of RMRF’s βV .

Panel B presents results based on different estimation methods for the VAR. These meth-
ods include OLS, WLS but with OLS betas, two different bounds on the maximum ratio of
WLS weights, a single-stage approach where the weights are proportional to RV AR rather
than EV AR, and a partial VAR where we throw out in each regression those variables with t-
statistics under 1.0 (in an iterative fashion, starting with the weakest t-statistic first). These
results show that our major findings (a negative βV for HML and successful zero-beta rate
ICAPM pricing in both time periods) are very robust to using different methods.

In Panel C, we augment the set of variables under consideration to be included in the
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VAR. We first explore different ways to measure the market’s valuation ratio. In the second
column of the Table, we replace PE with PERe al where we construct the price-earnings
ratio by deflating both the price and the earnings series by the CPI before taking their
ratio. In the third column, we use the log price-dividend ratio, PD, instead of PE. In
column four, we replace PE with PERe al and the CPI inflation rate, INFL. Panel C also
explores adding two additional state variables. In column five, we add CAY (Lettau and
Ludvigson (2001)) to the VAR as CAY is known to be a strong predictor of future market
returns. Finally, column six adds the quarterly FIGARCH forecast to the VAR as Table
4 Panel B documents that GARCH-based methods are useful predictors of future market
return variance. In total, this Panel confirms that our finding of a negative βV for HML and
successful zero-beta rate ICAPM pricing in both time periods is generally robust to these
variations.

Panel D reports the results when we vary the excess zero-beta rate. One might argue that
our excess zero-beta rate estimate of 86 basis points a quarter is too high to be consistent
with equilibrium. Fortunately, we find that R2s remain reasonable for excess zero-beta rates
that are as low as 40 bps/quarter.

Panels E and F present information to help us better understand the volatility betas we
have estimated for the market as a whole, and for value stocks relative to growth stocks.
Panel E reports components of RMRF andHML’s βV in each period (estimated either with
WLS or OLS). Specifically, these results use the elements of the vector defined in equation
(17) and the corresponding VAR shock to measure how each shock contributes to the βV in
question. Panel E documents, consistent with Panel A, that RMRF has a positive βV in
the modern period due in part to the PE state variable. The results in Panel E also show
that all of the non-zero components of HML’s βV in the modern period are negative. This
finding is comforting as it further confirms that our negative HML beta finding is robust.
Panel E also reports OLS estimates of simple betas on RV AR and the 15-year horizon
FIGARCH forecast (FIG60) for HML and RMRF . The HML betas based on these two
simple proxies have the same sign as our more sophisticated and more appropriate measure
of volatility news. However, conclusions about the relevance of volatility risk for the value
effect clearly depend on measuring the long-run component of volatility well.

Finally, Panel F reports time-series regressions of HML on NV,t by itself as well as on
all three factors together. We find that NV,t explains over 20% of HML’s returns in the
modern period. The three news factors together explain slightly over 28%. Thus our model
is able to explain not only the cross-sectional variation in average returns of the 25 size- and
book-to-market-sorted portfolios of Fama and French (1993) but also a significant amount
of time series variation in realized returns on the key factor that they argue is multifactor-
minimum-variance (Fama and French, 1996).
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6 Conclusion

We extend the approximate closed-form intertemporal capital asset pricing model of Camp-
bell (1993) to allow for stochastic volatility. Our model recognizes that an investor’s invest-
ment opportunities may deteriorate either because expected stock returns decline or because
the volatility of stock returns increases. A conservative long-term investor will wish to hedge
against both types of changes in investment opportunities; thus, a stock’s risk is determined
not only by its beta with unexpected market returns and news about future returns (or
equivalently, news about market cash flows and discount rates), but also by its beta with
news about future market volatility. Although our model has three dimensions of risk, the
prices of all these risks are determined by a single free parameter, the coeffi cient of relative
risk aversion.

Our implementation models the return on the aggregate stock market as one element
of a vector autoregressive (VAR) system; the volatility of all shocks to the VAR is another
element of the system. The empirical implementation of our VAR reveals new low-frequency
movements in market volatility tied to the default spread. We show that the negative
post-1963 CAPM alphas of growth stocks are justified because these stocks hedge long-
term investors against both declining expected stock returns, and increasing volatility. The
addition of volatility risk to the model helps it to deliver a moderate, economically reasonable
value of risk aversion.

Our empirical work is limited in one important respect. We test only the unconditional
implications of the model and do not evaluate its conditional implications. A full conditional
test is likely to be a challenging hurdle for the model. To see why, recall that we assume
a rational long-term investor always holds 100% of his or her assets in equities. However,
time-variation in real stock returns generally gives the long-term investor an incentive to
shift the relative weights on cash and equity, unless real interest rates and market volatility
move in exactly the right way to make the equity premium proportional to market volatility.
Although we do not explicitly test whether this is the case, previous work by Campbell
(1987) and Harvey (1989, 1991) rejects this proportionality restriction.

One way to support the assumption of constant 100% equity investment is to invoke
binding leverage constraints. Indeed, in the modern sample, the Black (1972) version of our
three-beta model is consistent with this interpretation as the estimated difference between
the zero-beta and risk-free rates is positive, statistically significant, and economically large.
However, the risk aversion coeffi cient we estimate may be too large to explain why leverage
constraints should bind.

Nevertheless, our model does directly answer the interesting microeconomic question: Are
there reasonable preference parameters that would make a long-term investor, constrained
to invest 100% in equity, content to hold the market rather than tilting towards value stocks
or other high-return stock portfolios? Our answer is clearly yes.
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Appendix

Deriving the equation for ω

Here we show how to solve for the unknown parameter ω as discussed in section 3. We
start from the definition of ω

ωσ2
t = Vart [mt+1 + rt+1]

= Vart

[
θ

ψ
ht+1 + (1− γ)rt+1

]
= Vart

[
θ

ψ

(
(ψ − 1)NDR,t+1 +

1

2

ψ

θ
ωNV,t+1

)
+ (1− γ)rt+1

]
= Vart

[
(1− γ)NDR,t+1 +

1

2
ωNV,t+1 + (1− γ)rt+1

]
= Vart

[
(1− γ)NCF,t+1 +

1

2
ωNV,t+1

]
= (1− γ)2Vart

[
NCFt+1

]
+ ω(1− γ)Covt

[
NCFt+1,NVt+1,

]
+
ω2

4
Vart

[
NVt+1

]
,

deriving equation (19). Since cash flow and volatility news can be expressed in terms of the
VAR parameters as

NV,t+1 = e′2(I − ρΓ)−1σtut+1

NCF,t+1 = (e′1 + e′1ρΓ(I − ρΓ)−1)σtut+1

we can define the covariance matrix of VAR shocks as Σ =Vart [ut+1] =Var[ut+1] and the
error-to-news vectors xCF and xV , defined in equations (20) and (21), to write ω as the
solution to

0 = ω2 1

4
xV Σx′V − ω (1− (1− γ)xCFΣx′V ) + (1− γ)2 xCFΣx′CF

as was presented in equation (22).

Selecting the correct root of the quadratic equation

The equation defining ω will generally have two solutions

ω =
1− (1− γ)xCFΣx′V ±

√
(1− (1− γ)xCFΣx′V )2 − (1− γ)2 (xV Σx′V ) (xCFΣx′CF )

1
2
xV Σx′V

.

As was discussed in the paper, this is an artifact of the loglinear approximation. While the
(approximate) Euler equation holds for both roots, the correct solution is the one with the
negative sign on the radical shown in equation (23).
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This can be confirmed from numerical computation, and it can also be easily seen by
observing the behavior of the solutions in the limit as volatility news goes to zero and the
model become homoskedastic. With the false solution, ω becomes infinitely large as xV → 0.
This corresponds to the log value of invested wealth going to negative infinity. On the other
hand, we can use the correct solution for ω converges to (1− γ)2 xCFΣx′CF . This is what we
would expect, since in that case ω = 1

σt
Vart [(1− γ)NCF,t+1].

An approximation for ω

As discussed in section 3, we will not find a real solution for ω if

(1− γ)2 (xV Σx′V ) (xCFΣx′CF ) > (1− (1− γ)xCFΣx′V )
2
.

This an unfortunate artifact of the loglinearization approach, as the conditional variance
defining ω =Vart

[
mt+1+rt+1

σt

]
will be real and finite for the true stochastic discount factor,

mt+1. We propose an alternative approach that will allow us to approximate ω even when
γ > 6.4, the region where there is no real solution given our estimated VAR parameters.

We start from the definition of ω

ω =
1

σ2
t

Vart

[
(1− γ)NCF,t+1 +

1

2
ωNV,t+1

]
= ω2 1

4
xV Σx′V + ω (1− γ)xCFΣx′V + (1− γ)2 xCFΣx′CF

and approximate the variance term on the right hand side so that it is a linear function of
ω rather than quadratic. Taking a Taylor approximation about ω = 0

ω ≈ (1− γ)2 xCFΣx′CF + (1− γ)xCFΣx′V ω

where the first term on the right hand side is the traditional value that we would see in
the homoskedastic case, as pointed out in the text. The second term is the additional effect
coming from stochastic volatility. Now, solving for ω, we generate the approximation used
in the empirical analysis.

ω ≈ (1− γ)2 xCFΣx′CF
1− (1− γ)xCFΣx′V
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Table 1: VAR Estimation
The table shows the WLS parameter estimates for a first-order VAR model. The state
variables in the VAR include the log real return on the CRSP value-weight index (rM), the
realized variance (RV AR) of within-quarter daily simple returns on the CRSP value-weight
index, the log ratio of the S&P 500’s price to the S&P 500’s ten-year moving average of
earnings (PE), the term yield spread (TY ) in percentage points, measured as the difference
between the log yield on the ten-year US constant-maturity bond and the log yield on
the three-month US Treasury Bill, the default yield spread (DEF ) in percentage points,
measured as the difference between the log yield on Moody’s BAA bonds and the log yield
on Moody’s AAA bonds, and the small-stock value spread (V S), the difference in the log
book-to-market ratios of small value and small growth stocks. The small-value and small-
growth portfolios are two of the six elementary portfolios constructed by Davis et al. (2000).
For the sake of interpretation, we estimate the VAR in two stages. Panel A reports the
WLS parameter estimates of a first-stage regression forecasting RV AR with the VAR state
variables. The forecasted values from this regression are used in the second stage of the
estimation procedure as the state variable EV AR, replacing RV AR in the second-stage
VAR. Panel B reports WLS parameter estimates of the full second-stage VAR. Initial WLS
weights on each observation are inversely proportional to RV ARt and EV ARt in the first
and second stages respectively and are then shrunk to equal weights so that the maximum
ratio of actual weights used is less than or equal to five. Additionally, the forecasted values
for both RV AR and EV AR are constrained to be positive. In Panels A and B, the first
seven columns report coeffi cients on an intercept and the six explanatory variables, and the
remaining column shows the R2 and F statistics. Bootstrapped standard errors that take
into account the uncertainty in generating EV AR are in parentheses. Panel C of the table
reports the correlation ("Corr/std") and autocorrelation ("Autocorr.") matrices of both the
unscaled and scaled shocks from the second-stage VAR; the correlation matrix reports shock
standard deviations on the diagonal. The sample period for the dependent variables is
1926.3-2011.4, 342 quarterly data points.

Panel A: Forecasting Quarterly Realized Variance (RV ARt+1)
Constant rM,t RV ARt PEt TYt DEFt V St R2%/F
-0.082 -0.016 0.394 0.023 -0.002 0.023 0.006 23.46%
(0.033) (0.020) (0.064) (0.009) (0.002) (0.006) (0.010) 18.42
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Panel B: VAR Estimates
Second stage Constant rM,t EV ARt PEt TYt DEFt V St R2%/F

rM,t+1 0.219 0.057 0.312 -0.054 0.004 -0.010 -0.032 3.32%
(0.120) (0.068) (0.571) (0.034) (0.008) (0.022) (0.035) 1.91

EV ARt+1 -0.065 -0.010 0.440 0.018 -0.001 0.016 0.007 47.28%
(0.029) (0.005) (0.097) (0.008) (0.002) (0.005) (0.008) 50.07

PEt+1 0.154 0.138 0.284 0.955 0.004 -0.011 -0.015 96.79%
(0.116) (0.064) (0.546) (0.033) (0.007) (0.021) (0.033) 1684.87

TYt+1 -0.047 -0.097 1.273 0.030 0.820 0.166 0.004 72.42%
(0.543) (0.336) (2.789) (0.157) (0.035) (0.111) (0.160) 146.63

DEFt+1 0.191 -0.383 1.649 -0.056 0.000 0.834 0.067 78.75%
(0.263) (0.155) (1.259) (0.074) (0.017) (0.051) (0.077) 206.96

V St+1 0.138 0.075 0.762 -0.017 -0.004 -0.004 0.939 91.15%
(0.108) (0.063) (0.524) (0.031) (0.007) (0.021) (0.031) 575.20
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Panel C: Correlations and Standard Deviations
Corr/std rM EV AR PE TY DEF V S

unscaled
rM 0.106 -0.488 0.907 -0.022 -0.489 -0.036

EV AR -0.488 0.018 -0.575 -0.074 0.645 0.121
PE 0.907 -0.575 0.099 -0.011 -0.601 -0.064
TY -0.022 -0.074 -0.011 0.561 0.006 -0.024

DEF 0.000 -0.489 0.645 -0.601 0.006 0.290
V S -0.036 0.121 -0.064 -0.024 0.316 0.086

scaled
rM 0.568 -0.484 0.904 -0.043 -0.383 0.023

EV AR -0.484 0.090 -0.561 -0.069 0.627 0.088
PE 0.904 -0.561 0.522 -0.033 -0.488 0.004
TY -0.043 -0.069 -0.033 3.247 0.018 -0.033

DEF -0.383 0.627 -0.488 0.018 1.363 0.261
V S 0.023 0.088 0.004 -0.033 0.261 0.496

Autocorr. rM,t+1 EV ARt+1 PEt+1 TYt+1 DEFt+1 V St+1

unscaled
rM,t -0.074 0.092 -0.067 0.047 0.100 0.045

EV ARt 0.071 -0.153 0.083 -0.126 -0.183 -0.087
PEt -0.086 0.177 -0.151 0.070 0.221 0.093
TYt -0.046 0.075 -0.029 -0.088 0.081 0.050

DEFt 0.152 -0.124 0.186 -0.157 -0.311 -0.147
V St 0.022 -0.034 0.020 -0.076 -0.080 -0.097

scaled
rM,t 0.002 0.045 -0.004 0.009 0.007 -0.006

EV ARt 0.060 -0.102 0.073 -0.082 -0.120 -0.060
PEt -0.012 0.125 -0.077 0.027 0.109 0.027
TYt -0.036 0.067 -0.028 -0.058 0.073 0.039

DEFt 0.094 -0.083 0.123 -0.111 -0.218 -0.107
V St 0.018 -0.031 0.009 -0.044 -0.066 -0.083
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Table 2: VAR Specification Test
The table reports the results of regressions forecasting the squared second-stage residuals
from the VAR estimated in Table 1 with EV ARt. Bootstrap standard errors that take into
account the uncertainty in generating EV AR are in parentheses. The sample period for the
dependent variables is 1926.3-2011.4, 342 quarterly data points.

Heteroskedastic Shocks
Squared, second-stage,
unscaled residual Constant EV ARt R2%

rM,t+1 -0.003 0.478 19.78%
(0.004) (0.076)

EV ARt+1 0.000 0.018 5.86%
(0.000) (0.006)

PEt+1 -0.004 0.484 19.61%
(0.004) (0.076)

TYt+1 0.205 3.770 1.67%
(0.084) (1.837)

DEFt+1 -0.117 6.960 26.12%
(0.044) (0.922)

V St+1 0.004 0.118 5.47%
(0.002) (0.034)
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Table 3: Cash-flow, Discount-rate, and Variance News for the Market Portfolio
The table shows the properties of cash-flow news (NCF ), discount-rate news (NDR), and
volatility news (NV ) implied by the VARmodel of Table 1. The upper-left section of the table
shows the covariance matrix of the news terms. The upper-right section shows the correlation
matrix of the news terms with standard deviations on the diagonal. The lower-left section
shows the correlation of shocks to individual state variables with the news terms. The lower-
right section shows the functions (e1′+ e1′λDR, e1′λDR, e2′λV ) that map the state-variable
shocks to cash-flow, discount-rate, and variance news. We define λDR ≡ ρΓ(I − ρΓ)−1 and
λV ≡ ρ(I−ρΓ)−1, where Γ is the estimated VAR transition matrix from Table 1 and ρ is set
to 0.95 per annum. rM is the log real return on the CRSP value-weight index. RV AR is the
realized variance of within-quarter daily simple returns on the CRSP value-weight index. PE
is the log ratio of the S&P 500’s price to the S&P 500’s ten-year moving average of earnings.
TY is the term yield spread in percentage points, measured as the difference between the
log yield on the ten-year US constant-maturity bond and the log yield on the three-month
US Treasury Bill. DEF is the default yield spread in percentage points, measured as the
difference between the log yield on Moody’s BAA bonds and the log yield on Moody’s AAA
bonds. V S is the small-stock value-spread, the difference in the log book-to-market ratios of
small value and small growth stocks. Bootstrap standard errors that take into account the
uncertainty in generating EV AR are in parentheses.

News cov. NCF NDR NV News corr/std NCF NDR NV

NCF 0.00213 -0.00042 -0.00106 NCF 0.046 -0.101 -0.221
(0.00074) (0.00106) (0.00089) (0.007) (0.229) (0.239)

NDR -0.00042 0.00823 -0.00085 NDR -0.101 0.091 -0.091
(0.00106) (0.00261) (0.00209) (0.229) (0.014) (0.350)

NV -0.00106 -0.00085 0.01074 NV -0.221 -0.091 0.104
(0.00089) (0.00209) (0.00312) (0.239) (0.350) (0.021)

Shock correlations NCF NDR NV Functions NCF NDR NV

rM shock 0.523 -0.901 -0.019 rM shock 0.924 -0.076 -0.051
(0.210) (0.036) (0.329) (0.030) (0.030) (0.053)

RV AR shock -0.056 0.434 0.452 RV AR shock -0.092 -0.092 1.289
(0.143) (0.106) (0.150) (0.233) (0.233) (0.414)

PE shock 0.180 -0.967 -0.090 PE shock -0.856 -0.856 0.758
(0.240) (0.035) (0.351) (0.159) (0.159) (0.282)

TY shock 0.104 0.078 -0.113 TY shock 0.010 0.010 -0.016
(0.155) (0.110) (0.227) (0.013) (0.013) (0.023)

DEF shock -0.160 0.490 0.741 DEF shock -0.009 -0.009 0.314
(0.192) (0.116) (0.242) (0.036) (0.036) (0.063)

V S shock -0.435 -0.179 0.566 V S shock -0.244 -0.244 0.412
(0.184) (0.138) (0.262) (0.125) (0.125) (0.220)
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Table 4: Forecasting Long-Horizon Realized Variance
The table reports the WLS parameter estimates of constrained regressions fore-
casting the annualized discounted sum of future RV AR over the next h quarters

(
h∑
k=1

ρ(k−1)RV ARt+k/
h∑
k=1

ρ(k−1)). The forecasting variables include the VAR state variables

defined in Table 1, the corresponding long-horizon forecast implied from estimates of the
VAR in Table 1 (V ARh) as well as FIGARCH (FIGh) and two-factor EGARCH (EGh)
models estimated from the full sample of daily returns. rM is the log real return on the
CRSP value-weight index. RV AR is the realized variance of within-quarter daily simple re-
turns on the CRSP value-weight index. PE is the log ratio of the S&P 500’s price to the S&P
500’s ten-year moving average of earnings. TY is the term yield spread in percentage points,
measured as the difference between the log yield on the ten-year US constant-maturity bond
and the log yield on the three-month US Treasury Bill. DEF is the default yield spread
in percentage points, measured as the difference between the log yield on Moody’s BAA
bonds and the log yield on Moody’s AAA bonds. V S is the small-stock value-spread, the
difference in the log book-to-market ratios of small value and small growth stocks. Panel B
reports the WLS parameter estimates of constrained regressions forecasting the annualized
discounted sum of future RV AR at the 10-year horizon using not only PE andDEF but also
orthogonalized (to each other) versions that we denote by PEO and DEFO. Initial WLS
weights are inversely proportional to the corresponding FIGh long-horizon forecast except
in those regressions involving V ARh or EGh forecasts, where the corresponding V ARh or
EGh long-horizon forecast is used instead. Newey-West standard errors estimated with lags
corresponding to twice the number of overlapping observations are in square brackets. The
sample period for the dependent variable is 1930.1-2011.4.
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Panel A: Varying the Horizon h in (
h∑
k=1

ρ(k−1)RV ARt+k/

h∑
k=1

ρ(k−1))

Constant rM RV AR PE TY DEF V S V ARh EGh FIGh R2%/F
h = 4 (1 years ahead)

-0.089 -0.027 0.211 0.026 -0.002 0.025 0.007 31.24%
[0.027] [0.021] [0.094] [0.008] [0.001] [0.008] [0.007] 25.53
-0.002 0.998 31.33%
[0.005] [0.218] 148.85
-0.007 1.054 34.38%
[0.004] [0.172] 170.79
-0.001 0.998 25.01%
[0.004] [0.185] 109.06
-0.071 -0.026 -0.132 0.018 -0.002 0.016 0.004 0.926 41.37%
[0.022] [0.018] [0.086] [0.006] [0.001] [0.006] [0.007] [0.220] 33.66
-0.082 -0.025 -0.038 0.024 -0.002 0.020 0.003 0.679 34.41%
[0.026] [0.019] [0.092] [0.008] [0.001] [0.007] [0.008] [0.215] 25.28

0.713 0.507 34.16%
[0.196] [0.176] 85.06

0.005 0.857 28.86%
[0.006] [0.197] 66.72

h = 8 (2 years ahead)
-0.099 -0.024 0.131 0.030 -0.004 0.026 0.009 32.42%
[0.031] [0.014] [0.071] [0.010] [0.002] [0.009] [0.008] 26.59
-0.003 1.028 31.33%
[0.006] [0.265] 148.85
-0.013 1.024 24.62%
[0.007] [0.217] 105.53
0.001 0.936 15.69%
[0.006] [0.234] 60.54
-0.096 -0.027 -0.097 0.024 -0.004 0.018 0.007 0.772 38.12%
[0.029] [0.014] [0.075] [0.009] [0.002] [0.008] [0.007] [0.233] 29.16
-0.097 -0.025 -0.014 0.029 -0.005 0.023 0.006 0.480 33.72%
[0.030] [0.014] [0.105] [0.010] [0.002] [0.009] [0.008] [0.361] 24.25

0.879 0.330 31.51%
[0.274] [0.264] 74.60

0.004 0.955 29.63%
[0.007] [0.246] 68.36

h = 20 (5 years ahead)
-0.081 -0.004 0.097 0.028 -0.001 0.019 0.002 30.13%
[0.020] [0.007] [0.059] [0.006] [0.002] [0.006] [0.006] 23.14
-0.005 0.964 23.82%
[0.006] [0.265] 97.29
-0.030 1.037 18.25%
[0.015] [0.299] 69.77
0.000 0.865 10.41%
[0.006] [0.224] 36.80
-0.090 -0.005 0.055 0.026 -0.001 0.017 0.003 0.288 35.68%
[0.024] [0.008] [0.051] [0.007] [0.002] [0.006] [0.006] [0.413] 25.41
-0.082 -0.005 -0.021 0.026 -0.001 0.016 0.000 0.527 31.75%
[0.019] [0.008] [0.046] [0.006] [0.002] [0.006] [0.005] [0.334] 21.47

0.794 0.330 28.02%
0.210 0.286 60.95

0.002 0.915 25.92%
[0.004] [0.214] 54.89



Panel A cont.: Varying the Horizon h in (
h∑
k=1

ρ(k−1)RV ARt+k/

h∑
k=1

ρ(k−1))

Constant rM RV AR PE TY DEF V S V ARh EGh FIGh R2%/F
h = 40 (10 years ahead)

-0.066 -0.008 0.095 0.024 0.000 0.013 0.001 43.67%
[0.017] [0.005] [0.030] [0.005] [0.001] [0.002] [0.002] 38.22
-0.009 0.989 26.28%
[0.007] [0.256] 103.69
-0.067 1.458 32.36%
[0.016] [0.269] 138.76
-0.006 0.987 16.95%
[0.006] [0.177] 59.78
-0.106 -0.010 0.018 0.023 0.000 0.011 0.001 0.792 53.73%
[0.021] [0.005] [0.022] [0.004] [0.001] [0.002] [0.002] [0.250] 48.78
-0.075 -0.011 -0.023 0.023 0.000 0.010 -0.001 0.776 47.89%
[0.016] [0.005] [0.021] [0.005] [0.001] [0.001] [0.001] [0.222] 38.81

0.780 0.480 39.59%
[0.243] [0.228] 95.37

0.002 0.943 34.08%
[0.003] [0.266] 75.43

h = 60 (15 years ahead)
-0.058 -0.007 0.069 0.023 0.001 0.012 -0.002 38.19%
[0.022] [0.004] [0.018] [0.007] [0.000] [0.002] [0.002] 28.60
-0.009 0.967 19.76%
[0.008] [0.260] 67.00
-0.059 1.254 21.55%
[0.025] [0.386] 74.62
-0.003 0.812 10.12%
[0.008] [0.210] 31.17
-0.110 -0.009 0.016 0.024 0.001 0.010 -0.002 0.824 48.30%
[0.038] [0.004] [0.015] [0.007] [0.001] [0.002] [0.002] [0.378] 36.77
-0.074 -0.010 -0.022 0.024 0.001 0.010 -0.004 0.797 42.39%
[0.023] [0.003] [0.014] [0.007] [0.000] [0.001] [0.001] [0.211] 29.17

0.735 0.401 25.58%
[0.264] [0.266] 47.05

0.002 0.846 21.91%
[0.003] [0.333] 38.61
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Panel B: Forecasting 10-year Realized Variance (
40∑
h=1

ρ(h−1)RV ARt+h/
40∑
k=1

ρ(h−1))

Constant PEt DEFt PEot DEFot R2%
-0.006 0.009 -0.53%
(0.026) (0.009)
0.012 0.008 21.75%
(0.005) (0.004)
-0.052 0.025 29.36%
(0.014) (0.005)
0.002 0.018 50.60%
(0.003) (0.004)
-0.070 0.025 0.017 51.42%
(0.019) (0.006) (0.004)
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Table 5: Cash-flow, Discount-rate, and Variance Betas in the Early Sample
The table shows the estimated cash-flow (β̂CF ), discount-rate (β̂DR), and variance betas
(β̂V ) for the 25 ME- and BE/ME-sorted portfolios (Panel A) and six risk-sorted portfolios
(Panel B). “Growth”denotes the lowest BE/ME, “Value”the highest BE/ME, “Small”the
lowest ME, and "Large" the highest ME stocks. b̂∆V AR and b̂rM are past return-loadings on
the weighted sum of changes in the VAR state variables, where the weights are according
to λV as estimated in Table 3, and on the market-return shock. “Diff.” is the difference
between the extreme cells. Bootstrapped standard errors [in brackets] are conditional on the
estimated news series. Estimates are based on quarterly data for the 1931:3-1963:2 period
using weighted least squares where the weights are the same as those used to estimate the
VAR.

Panel A: 25 ME- and BE/ME-sorted portfolios

β̂CF Growth 2 3 4 Value Diff
Small 0.44 [0.13] 0.41 [0.11] 0.39 [0.10] 0.41 [0.10] 0.43 [0.10] -0.01 [0.06]
2 0.29 [0.07] 0.33 [0.09] 0.33 [0.08] 0.36 [0.08] 0.41 [0.10] 0.12 [0.04]
3 0.29 [0.08] 0.27 [0.08] 0.32 [0.09] 0.32 [0.08] 0.44 [0.12] 0.15 [0.05]
4 0.25 [0.07] 0.26 [0.07] 0.30 [0.08] 0.33 [0.08] 0.43 [0.11] 0.18 [0.05]
Large 0.22 [0.07] 0.22 [0.07] 0.25 [0.08] 0.32 [0.10] 0.38 [0.29] 0.16 [0.04]
Diff -0.22 [0.07] -0.19 [0.05] -0.14 [0.04] -0.09 [0.03] -0.05 [0.03]

β̂DR Growth 2 3 4 Value Diff
Small 1.13 [0.15] 1.12 [0.16] 1.09 [0.17] 1.07 [0.17] 1.05 [0.16] -0.07 [0.07]
2 0.85 [0.11] 0.94 [0.14] 0.91 [0.14] 0.92 [0.16] 1.06 [0.13] 0.21 [0.08]
3 0.86 [0.13] 0.77 [0.09] 0.88 [0.11] 0.86 [0.12] 1.07 [0.15] 0.21 [0.09]
4 0.66 [0.07] 0.75 [0.10] 0.78 [0.09] 0.85 [0.14] 1.11 [0.16] 0.44 [0.13]
Large 0.67 [0.08] 0.63 [0.08] 0.69 [0.11] 0.89 [0.15] 0.89 [0.12] 0.22 [0.13]
Diff -0.45 [0.14] -0.49 [0.11] -0.41 [0.16] -0.18 [0.13] -0.17 [0.08]

β̂V Growth 2 3 4 Value Diff
Small -0.32 [0.20] -0.36 [0.17] -0.38 [0.18] -0.37 [0.16] -0.40 [0.17] -0.07 [0.09]
2 -0.18 [0.11] -0.20 [0.14] -0.25 [0.13] -0.26 [0.14] -0.38 [0.18] -0.20 [0.08]
3 -0.20 [0.13] -0.13 [0.10] -0.21 [0.12] -0.23 [0.13] -0.39 [0.18] -0.20 [0.08]
4 -0.04 [0.09] -0.11 [0.10] -0.16 [0.12] -0.24 [0.15] -0.39 [0.19] -0.35 [0.13]
Large -0.05 [0.09] -0.07 [0.10] -0.22 [0.16] -0.31 [0.18] -0.30 [0.14] -0.25 [0.11]
Diff 0.27 [0.15] 0.29 [0.10] 0.17 [0.10] 0.05 [0.07] 0.10 [0.07]

51



Panel B: 6 risk-sorted portfolios

β̂CF Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.22 [0.07] 0.33 [0.09] 0.43 [0.11] 0.21 [0.05]
Hi b̂V AR 0.18 [0.06] 0.26 [0.08] 0.36 [0.10] 0.17 [0.05]
Diff -0.04 [0.02] -0.07 [0.03] -0.08 [0.02]

β̂DR Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.61 [0.07] 0.87 [0.11] 1.09 [0.14] 0.48 [0.09]
Hi b̂V AR 0.55 [0.06] 0.76 [0.09] 0.95 [0.11] 0.40 [0.07]
Diff -0.07 [0.04] -0.12 [0.06] -0.14 [0.05]

β̂V Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR -0.08 [0.09] -0.20 [0.13] -0.30 [0.16] -0.22 [0.09]
Hi b̂V AR -0.06 [0.09] -0.09 [0.10] -0.17 [0.13] -0.11 [0.07]
Diff 0.02 [0.05] 0.11 [0.07] 0.13 [0.06]
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Table 6: Cash-flow, Discount-rate, and Variance Betas in the Modern Sample
The table shows the estimated cash-flow (β̂CF ), discount-rate (β̂DR), and variance betas (β̂V )
for the 25 ME- and BE/ME-sorted portfolios (Panel A), six risk-sorted portfolios (Panel B),
and the S&P 100 index straddle portfolio (STRADDLE), the Fama-French factors RMRF ,
SMB,HML, and the return on high yield (HY RET ) and investment grade (IGRET ) bonds
(Panel C). “Growth”denotes the lowest BE/ME, “Value”the highest BE/ME, “Small”the
lowest ME, and "Large" the highest ME stocks. b̂∆V AR and b̂rM are past return-loadings on
the weighted sum of changes in the VAR state variables, where the weights are according
to λV as estimated in Table 3, and on the market-return shock. “Diff.” is the difference
between the extreme cells. Bootstrapped standard errors [in brackets] are conditional on the
estimated news series. Estimates are based on quarterly data for the 1963:3-2011:4 period in
Panels A and B and the 1986:1-2011:4 period in Panel C using weighted least squares where
the weights are the same as those used to estimate the VAR.

Panel A: 25 ME- and BE/ME-sorted portfolios

β̂CF Growth 2 3 4 Value Diff
Small 0.23 [0.06] 0.24 [0.05] 0.24 [0.04] 0.23 [0.04] 0.26 [0.05] 0.03 [0.03]
2 0.22 [0.05] 0.22 [0.04] 0.24 [0.04] 0.24 [0.04] 0.26 [0.05] 0.04 [0.03]
3 0.20 [0.05] 0.22 [0.04] 0.22 [0.04] 0.23 [0.04] 0.24 [0.04] 0.05 [0.03]
4 0.19 [0.04] 0.21 [0.04] 0.22 [0.04] 0.22 [0.04] 0.24 [0.04] 0.05 [0.03]
Large 0.13 [0.03] 0.17 [0.03] 0.16 [0.03] 0.17 [0.03] 0.19 [0.04] 0.05 [0.03]
Diff -0.10 [0.04] -0.07 [0.03] -0.08 [0.02] -0.06 [0.02] -0.07 [0.03]

β̂DR Growth 2 3 4 Value Diff
Small 1.31 [0.10] 1.06 [0.08] 0.89 [0.07] 0.83 [0.07] 0.87 [0.09] -0.44 [0.08]
2 1.21 [0.09] 0.97 [0.07] 0.85 [0.06] 0.76 [0.06] 0.80 [0.08] -0.42 [0.08]
3 1.14 [0.07] 0.89 [0.05] 0.77 [0.06] 0.72 [0.06] 0.72 [0.07] -0.42 [0.08]
4 1.03 [0.06] 0.85 [0.05] 0.74 [0.06] 0.72 [0.06] 0.75 [0.07] -0.28 [0.08]
Large 0.84 [0.05] 0.71 [0.04] 0.60 [0.05] 0.59 [0.06] 0.64 [0.06] -0.20 [0.06]
Diff -0.46 [0.10] -0.35 [0.08] -0.29 [0.06] -0.24 [0.07] -0.23 [0.08]

β̂V Growth 2 3 4 Value Diff
Small 0.73 [0.29] 0.47 [0.24] 0.34 [0.22] 0.29 [0.20] 0.13 [0.28] -0.59 [0.11]
2 0.77 [0.27] 0.48 [0.24] 0.32 [0.21] 0.25 [0.22] 0.18 [0.24] -0.59 [0.10]
3 0.74 [0.25] 0.43 [0.22] 0.32 [0.20] 0.18 [0.22] 0.23 [0.17] -0.51 [0.12]
4 0.69 [0.23] 0.42 [0.21] 0.24 [0.23] 0.22 [0.24] 0.17 [0.24] -0.53 [0.10]
Large 0.53 [0.20] 0.41 [0.15] 0.23 [0.17] 0.16 [0.22] 0.17 [0.19] -0.37 [0.08]
Diff -0.19 [0.14] -0.06 [0.12] -0.11 [0.08] -0.13 [0.08] 0.03 [0.13]
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Panel B: 6 risk-sorted portfolios

Lo b̂V AR 0.16 [0.03] 0.17 [0.03] 0.25 [0.05] 0.08 [0.04]
Hi b̂V AR 0.15 [0.03] 0.17 [0.04] 0.23 [0.05] 0.08 [0.04]
Diff -0.01 [0.02] 0.00 [0.02] -0.01 [0.02]

β̂DR Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.55 [0.05] 0.71 [0.05] 1.11 [0.09] 0.56 [0.08]
Hi b̂V AR 0.73 [0.06] 0.95 [0.06] 1.27 [0.09] 0.54 [0.11]
Diff 0.18 [0.07] 0.24 [0.07] 0.16 [0.06]

β̂V Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.22 [0.19] 0.31 [0.22] 0.50 [0.29] 0.27 [0.13]
Hi b̂V AR 0.44 [0.16] 0.64 [0.18] 0.72 [0.27] 0.28 [0.15]
Diff 0.21 [0.07] 0.33 [0.09] 0.22 [0.06]

Panel C: Option, equity, and bond portfolios
STRADDLE RMRF SMB HML HY RET IGRET

β̂CF -0.39 [0.28] 0.18 [0.05] 0.04 [0.02] 0.05 [0.03] 0.06 [0.02] 0.00 [0.01]

β̂DR -1.71 [0.46] 0.81 [0.06] 0.19 [0.05] -0.26 [0.09] 0.26 [0.07] 0.03 [0.03]

β̂V 1.51 [0.86] -0.02 [0.29] -0.01 [0.07] -0.47 [0.11] -0.20 [0.21] 0.05 [0.03]
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Table 7: Asset Pricing Tests for the Early Sample
The table shows the premia estimated from the 1931:3-1963:2 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the b premium is restricted, and an unrestricted factor model. The test assets are the
25 ME- and BE/ME-sorted portfolios. The first column per model constrains the zero-beta rate () to equal the risk-free rate
( ) while the second column allows  to be a free parameter. Estimates are from a cross-sectional regression of average simple

excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (b ), discount-rate (b), and variance
betas (b ). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate full estimation
uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestrictedb less  (b0) 0 -0.002 0 0.001 0 0.002 0 0.015 0 0.023
% per annum 0% -0.90% 0% 0.21% 0% 0.82% 0% 6.08% 0% 8.98%
Std. err. A 0 [0.016] 0 [0.014] 0 [0.012] 0 [0.017] 0 [0.022]
Std. err. B 0 (0.016) 0 (0.016) 0 (0.015) 0 (0.017) 0 (0.019)b premium (b1) 0.038 0.040 0.096 0.094 0.087 0.082 0.081 0.009 0.075 0.057
% per annum 15.11% 15.82% 38.33% 37.74% 34.75% 32.91% 32.48% 3.67% 29.88% 22.69%
Std. err. A [0.015] [0.024] [0.054] [0.079] [0.041] [0.053] [0.061] [0.104] [0.124] [0.129]
Std. err. B (0.015) (0.024) (0.145) (0.110) (0.096) (0.091) (0.105) (0.118) (0.129) (0.138)b premium (b2) 0.038 0.040 0.016 0.016 0.016 0.016 0.016 0.016 0.018 -0.012
% per annum 15.11% 15.82% 6.40% 6.40% 6.40% 6.40% 6.40% 6.40% 7.28% -4.78%
Std. err. A [0.015] [0.024] [0.004] [0.004] [0.004] [0.004] [0.004] [0.004] [0.050] [0.064]
Std. err. B (0.015) (0.024) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.074) (0.087)b premium (b3) -0.012 -0.010 -0.019 -0.057 -0.020 -0.064
% per annum -4.73% -4.09% -7.67% -22.66% -7.99% -25.76%
Std. err. A [0.010] [0.014] [0.048] [0.059] [0.053] [0.077]
Std. err. B (0.063) (0.034) (0.166) (0.166) (0.193) (0.215)c2 53.01% 53.12% 54.72% 54.73% 55.59% 55.75% 55.74% 57.94% 55.75% 58.87%
Pricing error 0.024 0.023 0.022 0.022 0.020 0.021 0.020 0.022 0.020 0.023
5% critic. val. A [0.064] [0.031] [0.060] [0.038] [0.067] [0.044] [0.044] [0.038] [0.038] [0.039]
5% critic. val. B (0.064) (0.031) (0.106) (0.046) (0.133) (0.053) (0.049) (0.040) (0.039) (0.043)
Implied b N/A N/A 5.99 5.90 5.43 5.14 N/A N/A N/A N/A
Implied b N/A N/A N/A N/A 1.48 1.28 N/A N/A N/A N/A



Table 8: Asset Pricing Tests for the Modern Sample
The table shows the premia estimated from the 1963:3-2011:4 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the b premium is restricted, and an unrestricted factor model. The test assets are the
25 ME- and BE/ME-sorted portfolios. The first column per model constrains the zero-beta rate () to equal the risk-free rate
( ) while the second column allows  to be a free parameter. Estimates are from a cross-sectional regression of average simple

excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (b ), discount-rate (b), and variance
betas (b ). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate full estimation
uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestrictedb less  (b0) 0 0.027 0 -0.019 0 0.009 0 -0.004 0 -0.005
% per annum 0% 10.62% 0% -7.71% 0% 3.45% 0% -1.66% 0% -2.00%
Std. err. A 0 [0.014] 0 [0.014] 0 [0.013] 0 [0.013] 0 [0.013]
Std. err. B 0 (0.014) 0 (0.019) 0 (0.016) 0 (0.016) 0 (0.015)b premium (b1) 0.020 -0.004 0.074 0.161 0.064 0.075 0.112 0.128 0.175 0.199
% per annum 7.98% -1.67% 29.41% 64.39% 25.54% 29.95% 44.65% 51.35% 70.17% 79.55%
Std. err. A [0.010] [0.018] [0.047] [0.070] [0.036] [0.023] [0.051] [0.071] [0.069] [0.083]
Std. err. B (0.010) (0.018) (0.087) (0.114) (0.051) (0.070) (0.116) (0.118) (0.126) (0.130)b premium (b2) 0.020 -0.004 0.008 0.008 0.008 0.008 0.008 0.008 -0.018 -0.020
% per annum 7.98% -1.67% 3.11% 3.11% 3.11% 3.11% 3.11% 3.11% -7.30% -7.83%
Std. err. A [0.010] [0.018] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.023] [0.025]
Std. err. B (0.010) (0.018) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.055) (0.056)b premium (b3) -0.017 -0.026 -0.024 -0.022 -0.001 0.002
% per annum -6.76% -10.26% -9.41% -8.90% -0.18% 0.90%
Std. err. A [0.019] [0.013] [0.016] [0.017] [0.023] [0.023]
Std. err. B (0.030) (0.041) (0.107) (0.104) (0.114) (0.111)c2 -36.51% 5.22% 25.10% 39.97% -57.29% 69.16% 73.90% 74.45% 76.46% 77.25%
Pricing error 0.110 0.107 0.058 0.042 0.157 0.037 0.027 0.025 0.026 0.023
5% critic. val. A [0.051] [0.035] [0.061] [0.055] [0.478] [0.106] [0.051] [0.037] [0.046] [0.031]
5% critic. val. B (0.050) (0.035) (0.095) (0.085) (0.458) (0.149) (0.106) (0.080) (0.065) (0.050)
Implied b N/A N/A 9.46 20.70 8.21 9.63 N/A N/A N/A N/A
Implied b N/A N/A N/A N/A 4.35 6.60 N/A N/A N/A N/A



Table 9: Asset Pricing Tests for the Early Sample: Inclusion of Risk-sorted Portfolios
The table shows the premia estimated from the 1931:3-1963:2 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the b premium is restricted, and an unrestricted factor model. The test assets are six ME-
and BE/ME-sorted portfolios and six risk-sorted portfolios. The first column per model constrains the zero-beta rate () to equal
the risk-free rate ( ) while the second column allows  to be a free parameter. Estimates are from a cross-sectional regression of

average simple excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (b ), discount-rate (b),
and variance betas (b ). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate
full estimation uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.
Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestrictedb less  (b0) 0 0.002 0 0.004 0 0.003 0 0.022 0 0.023
% per annum 0% 0.73% 0% 1.53% 0% 1.20% 0% 8.96% 0% 9.30%
Std. err. A 0 [0.015] 0 [0.013] 0 [0.011] 0 [0.015] 0 [0.018]
Std. err. B 0 (0.015) 0 (0.014) 0 (0.013) 0 (0.016) 0 (0.017)b premium (b1) 0.035 0.034 0.085 0.074 0.079 0.072 0.055 -0.048 -0.075 -0.035
% per annum 14.05% 13.47% 34.05% 29.70% 31.66% 28.82% 21.85% -19.28% -30.06% -13.90%
Std. err. A [0.015] [0.023] [0.053] [0.074] [0.041] [0.051] [0.075] [0.101] [0.163] [0.174]
Std. err. B (0.015) (0.023) (0.141) (0.110) (0.089) (0.089) (0.133) (0.146) (0.179) (0.200)b premium (b2) 0.035 0.034 0.016 0.016 0.016 0.016 0.016 0.016 0.060 0.010
% per annum 14.05% 13.47% 6.40% 6.40% 6.40% 6.40% 6.40% 6.40% 24.18% 4.02%
Std. err. A [0.015] [0.023] [0.004] [0.004] [0.004] [0.004] [0.004] [0.004] [0.069] [0.083]
Std. err. B (0.015) (0.023) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.109) (0.124)b premium (b3) -0.009 -0.007 -0.044 -0.100 -0.064 -0.100
% per annum -3.69% -2.86% -17.62% -40.14% -25.65% -39.93%
Std. err. A [0.010] [0.012] [0.066] [0.075] [0.072] [0.088]
Std. err. B (0.046) (0.037) (0.187) (0.204) (0.258) (0.286)c2 54.08% 54.17% 54.58% 55.08% 56.44% 56.82% 59.57% 68.92% 62.02% 68.95%
characteristics 46.98% 46.77% 48.95% 48.47% 51.86% 51.15% 59.22% 68.12% 58.99% 68.43%
risk-sorted 73.65% 73.14% 65.68% 70.77% 63.40% 68.78% 48.51% 62.82% 63.77% 61.61%
Pricing error 0.012 0.012 0.012 0.012 0.012 0.011 0.014 0.012 0.012 0.012
5% critic. val. A [0.042] [0.018] [0.036] [0.019] [0.043] [0.024] [0.029] [0.025] [0.020] [0.019]
5% critic. val. B (0.042) (0.018) (0.060) (0.024) (0.073) (0.031) (0.032) (0.027) (0.023) (0.023)
Implied b N/A N/A 5.32 4.64 4.95 4.50 N/A N/A N/A N/A
Implied b N/A N/A N/A N/A 1.15 0.89 N/A N/A N/A N/A



Table 10: Asset Pricing Tests for the Modern Sample: Inclusion of Risk-sorted Portfolios
The table shows the premia estimated from the 1963:3-2011:4 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the b premium is restricted, and an unrestricted factor model. The test assets are six ME-
and BE/ME-sorted portfolios and six risk-sorted portfolios. The first column per model constrains the zero-beta rate () to equal
the risk-free rate ( ) while the second column allows  to be a free parameter. Estimates are from a cross-sectional regression of

average simple excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (b ), discount-rate (b),
and variance betas (b ). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate
full estimation uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.
Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestrictedb less  (b0) 0 0.017 0 -0.004 0 0.008 0 0.005 0 0.006
% per annum 0% 6.60% 0% -1.74% 0% 2.98% 0% 2.00% 0% 2.26%
Std. err. A 0 [0.009] 0 [0.011] 0 [0.011] 0 [0.010] 0 [0.011]
Std. err. B 0 (0.009) 0 (0.013) 0 (0.010) 0 (0.012) 0 (0.011)b premium (b1) 0.016 0.001 0.057 0.078 0.062 0.078 0.111 0.090 0.136 0.074
% per annum 6.26% 0.44% 22.63% 31.12% 24.63% 31.28% 44.55% 36.07% 54.41% 29.63%
Std. err. A [0.009] [0.014] [0.050] [0.072] [0.040] [0.037] [0.055] [0.073] [0.108] [0.124]
Std. err. B (0.009) (0.014) (0.086) (0.102) (0.048) (0.060) (0.127) (0.132) (0.153) (0.158)b premium (b2) 0.016 0.001 0.008 0.008 0.008 0.008 0.008 0.008 -0.001 0.013
% per annum 6.26% 0.44% 3.11% 3.11% 3.11% 3.11% 3.11% 3.11% -0.58% 5.10%
Std. err. A [0.009] [0.014] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.035] [0.036]
Std. err. B (0.009) (0.014) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.063) (0.061)b premium (b3) -0.015 -0.029 -0.027 -0.029 -0.019 -0.033
% per annum -6.15% -11.51% -10.77% -11.39% -7.61% -13.18%
Std. err. A [0.024] [0.018] [0.016] [0.017] [0.034] [0.035]
Std. err. B (0.025) (0.031) (0.105) (0.107) (0.123) (0.120)c2 -19.85% 8.49% 16.45% 17.89% 14.84% 75.92% 74.67% 76.37% 74.97% 76.43%
characteristics -4.98% 15.02% 28.30% 32.35% 36.60% 76.66% 76.90% 77.21% 76.66% 77.18%
risk-sorted -48.82% 10.69% -11.29% -23.53% -62.29% 81.42% 73.13% 81.24% 81.42% 81.72%
Pricing error 0.050 0.041 0.032 0.032 0.046 0.016 0.016 0.016 0.016 0.015
5% critic. val. A [0.035] [0.022] [0.042] [0.031] [0.259] [0.089] [0.037] [0.023] [0.030] [0.016]
5% critic. val. B (0.035) (0.022) (0.049) (0.028) (0.251) (0.102) (0.065) (0.046) (0.040) (0.023)
Implied b N/A N/A 7.28 10.01 7.92 10.06 N/A N/A N/A N/A
Implied b N/A N/A N/A N/A 3.96 7.40 N/A N/A N/A N/A



Table 11: Asset Pricing Tests for the Equity and Option Sample
The table shows the premia estimated from the 1986:1-2011:4 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the b premium is restricted, and an unrestricted factor model. The test assets are the three
equity factors of Fama and French (1993), the returns on high yield and investment grade bond portfolios, and the S&P 100 index
straddle return from Coval and Shumway (2001). The first column per model constrains the zero-beta rate () to equal the
risk-free rate ( ) while the second column allows  to be a free parameter. Estimates are from a cross-sectional regression of

average simple excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (b ), discount-rate (b),
and variance betas (b ). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate
full estimation uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.
Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestrictedb less  (b0) 0 -0.023 0 -0.028 0 -0.018 0 -0.020 0 -0.002
% per annum 0% -9.02% 0% -11.04% 0% -7.12% 0% -7.82% 0% -0.68%
Std. err. A 0 [0.009] 0 [0.022] 0 [0.011] 0 [0.017] 0 [0.013]
Std. err. B 0 (0.009) 0 (0.016) 0 (0.009) 0 (0.011) 0 (0.012)b premium (b1) 0.087 0.084 0.439 0.430 0.123 0.121 0.110 0.187 -0.726 -0.681
% per annum 34.76% 33.57% 175.70% 172.13% 49.16% 48.30% 43.79% 74.79% -290.31% -272.30%
Std. err. A [0.026] [0.027] [0.330] [0.406] [0.033] [0.032] [0.317] [0.344] [0.459] [0.565]
Std. err. B (0.026) (0.027) (0.386) (0.424) (0.085) (0.084) (0.302) (0.315) (0.530) (0.609)b premium (b2) 0.087 0.084 0.008 0.008 0.008 0.008 0.008 0.008 0.161 0.154
% per annum 34.76% 33.57% 3.20% 3.20% 3.20% 3.20% 3.20% 3.20% 64.52% 61.71%
Std. err. A [0.026] [0.027] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.137] [0.174]
Std. err. B (0.026) (0.027) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.196) (0.216)b premium (b3) -0.097 -0.092 -0.100 -0.075 -0.151 -0.147
% per annum -38.63% -36.65% -39.98% -29.81% -60.47% -58.64%
Std. err. A [0.066] [0.065] [0.082] [0.068] [0.144] [0.179]
Std. err. B (0.099) (0.097) (0.171) (0.165) (0.275) (0.289)c2 82.13% 87.64% 82.56% 90.91% 91.65% 94.99% 91.66% 95.26% 98.24% 98.26%
Pricing error 1.648 2.603 1.716 2.835 1.626 2.226 1.641 2.229 0.785 0.842
5% critic. val. A [0.799] [1.002] [2.231] [4.852] [2.064] [3.432] [2.371] [3.757] [1.103] [1.091]
5% critic. val. B (0.803) (1.056) (2.557) (3.995) (1.983) (2.165) (1.358) (1.042) (1.142) (1.066)
Implied b N/A N/A 54.93 53.81 15.37 15.10 N/A N/A N/A N/A
Implied b N/A N/A N/A N/A 24.16 22.91 N/A N/A N/A N/A



Table 12: Robustness
The table provides a variety of robustness tests. When appropriate, the baseline model
appears in bold font. Panel A reports the results when only a subset of state variables from
the baseline VAR (D ≡ DEF , T ≡ TERM , V ≡ V S, P ≡ PE) are used to forecast returns
and realized variance. Panel B reports the results when different estimation techniques are
used. Panel C reports the results when other state variables either replace or are added
to the VAR. These variables include the log real PE ratio (PERe al), the log price-dividend
ratio (PD), log inflation (INFL), CAY , and the quarterly FIGARCH variance forecast.
Panel D reports results when the excess zero-beta rate is varied from 40 to 86 basis points
per quarter. Panel E reports the components of RMRF and HML’s β̂V by re-estimating
β̂V using each component of e2′λV . Panel E also reports simple loadings of RMRF and
HML on RV AR and the 15-year FIGARCH variance forecast. Panel F reports time-series
regressions explaining HML with the three news terms described in Table 3.
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Panel A: Results using various subsets of the Baseline VAR (rM and RV AR always included)
None D D/T/V ALL P/D/V P/D P

γ̂Max
Exact 3.72 3.53 3.36 6.93 6.67 8.88 6.99

Early Period
β̂V

RMRF -0.07 -0.09 -0.09 -0.11 -0.10 -0.09 -0.07
SMB 0.01 0.01 0.01 -0.08 -0.08 -0.07 0.01
HML 0.00 -0.02 -0.02 -0.24 -0.24 -0.16 0.00

Risk-free Rate ICAPM
γ̂ 2.15 2.46 2.86 5.43 5.43 5.57 5.88
ω̂ 0.50 0.68 1.03 1.48 1.51 1.22 1.48
R̂2 51.27% 50.43% 51.62% 55.59% 55.57% 52.08% 46.72%

Zero-beta Rate ICAPM
R̂zb less Rf -0.06% -0.14% -0.05% 0.21% 0.21% -0.10% 0.21%
γ̂ 2.18 2.53 2.89 5.14 5.14 5.72 5.51
ω̂ 0.52 0.75 1.06 1.28 1.31 1.31 1.26
R̂2 51.27% 50.47% 51.63% 55.75% 55.73% 52.10% 46.79%

Modern Period
β̂V

RMRF -0.15 -0.12 -0.13 0.41 0.43 0.29 -0.15
SMB -0.04 -0.03 -0.03 0.09 0.11 0.05 -0.04
HML -0.01 -0.01 -0.01 -0.43 -0.43 -0.21 -0.01

Risk-free Rate ICAPM
γ̂ 2.41 2.47 2.73 8.21 7.41 20.81 5.73
ω̂ 0.73 0.69 0.89 4.35 3.44 26.47 1.39
R̂2 -38.25% -40.64% -16.27% -57.29% -95.01% 15.82% -45.58%

Zero-beta Rate ICAPM
R̂zb less Rf 2.20% 2.18% 1.72% 0.86% 1.02% -0.05% 1.60%
γ̂ 0.00 0.00 0.50 9.63 9.36 20.51 0.00
ω̂ 0.40 0.34 0.07 6.60 6.37 25.61 0.06
R̂2 4.58% 5.29% -5.43% 69.16% 64.36% 15.99% -0.59%
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Panel B: Results using different estimation methods
All OLS WLS WLS WLS RVAR Partial
OLS Betas 3 5 8 Weighted VAR

γ̂Max
Exact 198.44 6.93 7.00 6.93 6.68 5.82 4.15

Early Period
β̂V

RMRF -0.32 -0.24 -0.19 -0.11 -0.03 -0.06 0.02
SMB -0.11 -0.11 -0.10 -0.08 -0.07 -0.08 -0.06
HML -0.32 -0.27 -0.27 -0.24 -0.21 -0.20 -0.25

Risk-free Rate ICAPM
γ̂ 5.79 4.65 5.16 5.43 5.77 5.55 5.21
ω̂ 0.05 0.97 1.31 1.48 1.75 1.62 3.18
R̂2 53.82% 55.24% 54.94% 55.59% 56.35% 56.17% 53.84%

Zero-beta Rate ICAPM
R̂zb less Rf 0.21% 0.28% 0.26% 0.21% 0.15% 0.16% 0.71%
γ̂ 5.41 4.30 4.82 5.14 5.53 5.31 4.37
ω̂ 0.04 0.79 1.09 1.28 1.57 1.45 1.73
R̂2 53.95% 55.50% 55.19% 55.75% 56.45% 56.27% 57.98%

Modern Period
β̂V

RMRF 0.26 0.29 0.34 0.41 0.47 0.35 0.70
SMB 0.08 0.06 0.08 0.09 0.09 0.07 0.18
HML -0.37 -0.37 -0.41 -0.43 -0.46 -0.51 -0.53

Risk-free Rate ICAPM
γ̂ 9.81 9.74 9.04 8.21 7.22 9.07 2.48
ω̂ 0.16 6.81 5.63 4.35 3.18 5.76 0.25
R̂2 33.87% -1.42% -18.05% -57.29% -105.60% -1.14% -336.37%

Zero-beta Rate ICAPM
R̂zb less Rf -2.46% 0.60% 0.68% 0.86% 1.08% 0.60% 1.92%
γ̂ 24.94 10.12 9.75 9.63 9.35 9.14 5.17
ω̂ 1.22 7.52 6.86 6.60 6.32 5.87 3.09
R̂2 62.29% 67.29% 68.94% 69.16% 68.73% 69.24% 55.84%
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Panel C: Results replacing/adding other state variables to the VAR
PE PERe al PD INFL CAY FIGARCH

γ̂Max
Exact 6.93 8.78 4.49 8.98 14.70 5.37

Early Period
β̂V

RMRF -0.11 0.04 -0.48 0.06 0.22 -0.12
SMB -0.08 -0.04 -0.21 -0.04 0.03 -0.07
HML -0.24 -0.14 -0.41 -0.14 -0.01 -0.10

Risk-free Rate ICAPM
γ̂ 5.43 5.41 3.13 5.78 23.77 5.11
ω̂ 1.48 0.98 0.69 1.13 18.99 1.58
R̂2 55.59% 55.80% 57.75% 55.86% -897.89% 56.39%

Zero-beta Rate ICAPM
R̂zb less Rf 0.21% -0.17% -0.15% -0.24% 1.83% 0.12%
γ̂ 5.14 5.68 3.23 6.18 15.19 4.96
ω̂ 1.28 1.10 0.76 1.32 7.85 1.44
R̂2 55.75% 55.89% 57.82% 56.01% 18.99% 56.44%

Modern Period
β̂V

RMRF 0.41 0.50 -0.04 0.53 0.23 0.37
SMB 0.09 0.10 -0.06 0.11 0.06 0.11
HML -0.43 -0.30 -0.35 -0.33 -0.18 -0.30

Risk-free Rate ICAPM
γ̂ 8.21 17.16 4.01 16.45 12.60 5.80
ω̂ 4.35 12.64 1.53 10.98 5.35 2.29
R̂2 -57.29% 38.28% -1.89% 36.79% -9.34% -156.00%

Zero-beta Rate ICAPM
R̂zb less Rf 0.86% 0.37% -1.89% 0.46% -0.79% 1.30%
γ̂ 9.63 19.68 7.20 19.61 32.11 8.29
ω̂ 6.60 16.76 10.66 15.61 33.49 6.82
R̂2 69.16% 48.13% 30.81% 53.49% 40.00% 57.14%
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Panel D: Varying the Excess Zero-beta Rate in the Modern Period

R̂zb less Rf 0.40% 0.50% 0.60% 0.70% 0.80% 0.86%
γ̂ 8.61 8.77 8.96 9.19 9.46 9.63
ω̂ 4.92 5.16 5.46 5.84 6.30 6.60
R̂2 35.69% 49.35% 59.33% 65.78% 68.88% 69.16%
Pricing error 0.061 0.048 0.040 0.036 0.035 0.037

Panel E: Components of and Proxies for β̂V
Early Period

RMRF HML
WLS OLS WLS OLS

β̂V -0.11 -0.24 -0.24 -0.27
β̂λ1V rM Shock 0.00 0.00 0.00 0.00
β̂λ2V EV AR Shock -0.22 -0.21 -0.10 -0.10
β̂λ3V PE Shock 0.58 0.58 0.26 0.31
β̂λ4V TY Shock 0.00 0.00 0.00 0.00
β̂λ5VDEF Shock -0.54 -0.51 -0.37 -0.35
β̂λ6V V S Shock -0.07 -0.09 -0.09 -0.12
β̂RV AR 0.00 0.37
β̂FIGARCH 0.02 0.04

Modern Period
RMRF HML

WLS OLS WLS OLS
β̂V 0.41 0.29 -0.43 -0.37
β̂λ1V rM Shock 0.00 0.00 0.00 0.00
β̂λ2V EV AR Shock -0.32 -0.28 -0.04 -0.04
β̂λ3V PE Shock 0.55 0.55 -0.10 -0.08
β̂λ4V TY Shock 0.00 0.00 -0.01 -0.01
β̂λ5VDEF Shock -0.07 -0.09 -0.06 -0.05
β̂λ6V V S Shock 0.12 0.11 -0.19 -0.18
β̂RV AR -0.83 -0.13
β̂FIGARCH -0.08 -0.01
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Panel F: Time series regressions explaining HML

Early Period
(1) (2)

Intercept 0.01 [1.30] 0.01 [1.99]
NCF 0.39 [3.78]
−NDR 0.40 [6.69]
NV -0.50 [-6.61] -0.33 [-5.02]
R̂2 25.14% 50.91%

Modern Period
(1) (2)

Intercept 0.01 [2.30] 0.01 [2.54]
NCF 0.25 [2.27]
−NDR -0.24 [-4.69]
NV -0.25 [-7.09] -0.17 [-4.46]
R̂2 20.33% 28.45%
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Figure 1: This figure graphs the approximate relation between the parameter γ and the
parameter ω described by equation (24) as well as the quadratic solution for ω described
in equation (23). These functions depend on the loglinearization parameter ρ, set to 0.95
per year and the empirically estimated VAR parameters of Table 1. γ is the investor’s risk
aversion while ω is the sensitivity of news about risk, NRISK , to news about market variance,
NV .
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Figure 2: This figure plots plots the coeffi cient A(γ, ψ) relating the conditional volatility
of consumption growth to the volatility of returns for different values of γ and ψ for the
homoskedastic case (left panel) and for the heteroskedastic case (right panel), where A(γ, ψ)
is a function of the variances and covariances of the scaled residuals ut+1. In each panel, we
plot A(γ, ψ) as γ varies between 1 and 20, for different values of ψ. Each line corresponds
to a different ψ between 0.5 and 1.5.
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Figure 3: This figure plots quarterly observations of realized within-quarter daily return
variance over the sample period 1926:2-2011:4 and the expected variance implied by the
model estimated in Table 1 Panel A.
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Figure 4: This figure plots normalized cash-flow news, the negative of normalized discount-
rate news, and normalized variance news. The series are smoothed with a trailing
exponentially-weighted moving average where the decay parameter is set to 0.08 per quarter,
and the smoothed news series is generated asMAt(N) = 0.08Nt+(1−0.08)MAt−1(N). This
decay parameter implies a half-life of six years. The sample period is 1926:2-2011:4.
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Figure 5: We measure long-horizon realized variance (LHRV AR) as the annualized dis-

counted sum of within-quarter daily return variance, LHRV ARh =
Σhj=1ρ

j−1RV ARt+j

Σhj=1ρ
j−1 . Each

panel of this figure plots quarterly observations of ten-year realized variance, LHRV AR40,
over the sample period 1930:1-2001:1. In Panel A, in addition to LHRV AR40, we also plot
lagged PE and DEF . In Panel B, in addition to LHRV AR40, we also plot the fitted value
from a regression forecasting LHRV AR40 with DEFO, defined as DEF orthogonalized to
demeaned PE. Table 4 Panel B reports the WLS estimates of this forecasting regression.
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Figure 6: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPMwith a free zero-beta rate, and the three-factor ICAPMwith the zero-beta rate
constrained to the risk-freee rate. The horizontal axes correspond to the predicted average
excess returns and the vertical axes to the sample average realized excess returns for the 25
ME- and BE/ME-sorted portfolios. The predicted values are from regressions presented in
Table 7 for the sample period 1931:3-1963:2.
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Figure 7: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPMwith a free zero-beta rate, and the three-factor ICAPMwith the zero-beta rate
constrained to the risk-freee rate. The horizontal axes correspond to the predicted average
excess returns and the vertical axes to the sample average realized excess returns for the 25
ME- and BE/ME-sorted portfolios. The predicted values are from regressions presented in
Table 8 for the sample period 1963:3-2011:4.
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Figure 8: The two contour plots show how the R2 of the cross-sectional regression explaining
the average returns on the 25 size- and book-to-market portfolios varies for different values
of γ and ω for the risk-free rate (top panel) and zero-beta rate (bottom panel) three-beta
ICAPM model estimated in Table 8 for the sample period 1963:3-2011:4. The two plots also
indicate the approximate ICAPM relation between γ and ω described in equation (24).
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Figure 9: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPMwith a free zero-beta rate, and the three-factor ICAPMwith the zero-beta rate
constrained to the risk-free rate. The horizontal axes correspond to the predicted average
excess returns and the vertical axes to the sample average realized excess returns for six ME-
and BE/ME-sorted portfolios (denoted by triangles) and six risk-sorted portfolios (denoted
by asterisks). The predicted values are from regressions presented in Table 9 for the sample
period 1931:3-1963:2.
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Figure 10: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPM with a free zero-beta rate, and the three-factor ICAPM with the zero-beta
rate constrained to the risk-freee rate. The horizontal axes correspond to the predicted
average excess returns and the vertical axes to the sample average realized excess returns for
six ME- and BE/ME-sorted portfolios (denoted by triangles) and six risk-sorted portfolios
(denoted by asterisks). The predicted values are from regressions presented in Table 10 for
the sample period 1963:3-2011:4.
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Figure 11: This figure plots the time-series of the smoothed combined shock for the CAPM
(NCF−NDR), the two-beta ICAPM (γNCF−NDR), and the three-beta ICAPM that includes
stochastic volatility (γNCF−NDR− 1

2
ωNV ) for the unconstrained zero-beta rate specifications

estimated in Table 8 for the modern subperiod. The shock is smoothed with a trailing
exponentially-weighted moving average. The decay parameter is set to 0.08 per quarter, and
the smoothed news series is generated as MAt(SDF ) = 0.08SDFt + (1 − 0.08)MAt−1(N).
This decay parameter implies a half-life of six years. The sample period is 1926:2-2011:4.
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