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Abstract. A cryptographic protocol possesses separability if the par-
ticipants can choose their keys independently of each other. This is ad-
vantageous from a key-management as well as from a security point of
view. This paper focuses on separability in group signature schemes.
Such schemes allow a group member to sign messages anonymously on
the group’s behalf. However, in case of this anonymity’s misuse, a trustee
can reveal the originator of a signature. We provide a generic fully separa-
ble group signature scheme and present an efficient instantiation thereof.
The scheme is suited for large groups; the size of the group’s public key
and the length of signatures do not depend on the number of group
member. Its efficiency is comparable to the most efficient schemes that
do not offer separability and is an order of magnitude more efficient than
a previous scheme that provides partial separability. As a side result, we
provide efficient proofs of the equality of two discrete logarithms from
different groups and, more general, of the validity of polynomial relations
inZamong discrete logarithms from different groups.

1 Introduction

Multiparty cryptographic protocols are typically preceded by a setup phase in
which the involved entities choose their public and secret keys besides other
system-parameters. Often their choices depend on the other entities’ choices. Not
only forces this the entities to choose new key-pairs for each (kind of) protocol
they participate in but also to re-choose their keys if other entities renew theirs or
if the system-parameters are changed. Apart from such key-management prob-
lems, a dependency between different keys can cause security problems as well.
For instance, if some entity choose weak parameters or discloses his/her secret
keys, other entities’ security can be weakened as well.
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To overcome such problems the concept of separability introduced in [30] is
promoted and refined. A cryptographic protocol is said to enjoy perfect sepa-
rability if all entities can chose not only their keys independently of the other
entities but also any instance of the required cryptographic primitives, e.g., any
existentially unforgeable signature scheme. A protocol has strong separability if
the entities are restricted in their choice of the instances of the primitives, e.g.,
only the RSA [43] signature scheme with a 1024 bit modulus, and it possesses
weak separability if their choices need to depend on some system parameters,
e.g., the generator of some prime order algebraic group. Hence, weak separabil-
ity does not overcome potential key-management problems but is satisfactory
from a security point of view. Perfect, and to some extent also strong separa-
bility, is a prerequisite that a cryptographic scheme can be set-up in absence of
all potentially involved parties: it suffices that their public keys are authenti-
cally available (and satisfy certain requirements in case of strong separability).
Furthermore, a cryptographic protocol can only have partial separability of any
kind, that is, separability only with respect to some of the participating entities.
At the cost of prohibitive inefficiency perfect separable protocols can in most
cases be obtained by combining different cryptographic primitives with general,
(e.g., circuit-based) zero-knowledge proof techniques.

In this paper we consider group signature schemes and show how perfect
separability can be achieved by providing a generic but potentially inefficient
solution. We then restrict ourselves to strong separability and point out how ef-
ficiency can be gained. A group signature scheme allows group-members to sign
messages anonymously and unlinkably on behalf of the group. To counterfeit
misuse of this anonymity the scheme enables a third party, called revocation
manager, to reveal the identity of a signature’s originator. Since its introduction
by Chaum and van Heyst [17], a number of researchers have proposed more effi-
cient solutions and diversified the model. The first schemes presented [8,17,18,40]
have the property that the length of signatures and/or the size of the group’s
public key depend on the size of the group and thus they are not suited for large
groups. This drawback is overcome by the schemes presented in [9,11] as well
as by a further one in [12]1. The less efficient scheme of [11] was shown to be
insecure but can easily be adjusted [2]. However, none of these schemes enjoys
separability since the revocation manager’s keys depend on the ones chosen by
the membership manager.

A concept dual to group signature schemes is identity escrow [30]. It can
be regarded as a group identification scheme with revocable anonymity. In fact,
any identity escrow scheme with a 3-move identification protocol can be turned
into a group signature scheme by applying the Fiat-Shamir heuristic [23] to the
identification protocol; the opposite is achieved by signing a random message and
then proving the knowledge of a signature on the chosen message. The schemes

1 Other schemes having the same properties are either completely broken [31,38] as
shown in [33,34] or do not satisfy the usual security requirements (i.e., the scheme
proposed in [1] is not secure against colluding group members while in the protocol
given in [32] signatures are linkable).
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presented in [30] are partially separable (according to our nomenclature), i.e.,
strongly separable with respect to the revocation manager but not with respect
to group members. Due to their construction, they are suitable for large groups
as well but are much less efficient compared to the schemes presented in [9,11,12].
The schemes presented in this paper possess strong separability with respect to
all participants and their efficiency is in the same order of magnitude as the ones
in [9,11,12].

As a side result, we present efficient proofs of the validity of polynomial
relations in Z among discrete logarithms from different groups, which might be
of independent interest, in particular, for obtaining separable schemes for other
cryptographic scenarios.

2 A Model of Separable Group Signature Schemes

This section describes the model of separable group signature schemes and states
the security requirements. The main difference to the model of ordinary group
signature schemes is that here the key generation of the membership manager,
the revocation manager, and the group members are individual procedures that
are independent of each other. We assume only a single revocation manager and
membership manager, but the definition extends easily to several of them.

Definition 1. Let `M , `R, and `U be security parameters. A separable group
signature scheme consists of the following procedures:

GKG-MM: A probabilistic algorithm that on input 1`M outputs the membership
manager’s secret key xM and public key yM .

GKG-RM: A probabilistic algorithm that on input 1`R outputs revocation man-
ager’s secret key xR and public key yR.

GKG-GM: A probabilistic algorithm that on input 1`U outputs a group member’s
secret key xU and public key yU.

GKG-S: A probabilistic algorithm that generates the system parameter yS and
an empty group member list GML. This list is a public board which anybody
can read but only the membership manager and a potential group member U
together can add entries related to U ’s identity.

Reg: A probabilistic interactive protocol between the group member U and the
membership manager. Their common input is the group member’s identity
IDU and public key yU. If both parties accept, their common output is the
membership certificate sU on yU . Finally, the two parties add yU and IDU to
the (public) group member list GML.

GSig: A probabilistic algorithm that on input sU, xU, the group’s public key Y,
and a message m outputs a group signature s on m.

GVer: An algorithm that on input the group’s public key Y, an alleged signature
s, and a message m outputs 1 if and only if the signature is valid w.r.t. Y.

GTrace: An algorithm which on input the revocation manager’s secret key xR, the
group’s public key Y, a message m, and a signature s on m outputs the identity
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IDU of the originator of the signature and a proof V that IDU is indeed the
originator.

The group’s public key consists of the triple Y = (yR, yM , yS). The following
security requirements must hold:

Correctness of signature generation: All signatures on any message generated by
any honest group member using GSig will get accepted by the verification al-
gorithm.

Anonymity and unlinkability and of signatures: Given two signature-message
pairs, it is only feasible to the revocation manager to find out which group
member(s) generated any of the signatures or whether the signatures have
been generated by the same group member.

Unforgeability of signatures: It is feasible to sign messages only to group mem-
bers (i.e., users that have run the registration protocol with the membership
manager) or to the membership manager herself 2.

Unforgeability of tracing: The revocation manager cannot accuse a group member
falsely of having originated a given signature.

No framing: No coalition of group members, the revocation manager, and the
membership manager can produce a signature that will be associated to a group
member not part of the coalition.

Unavoidable traceability: No coalition of group members and the revocation man-
ager (but excluding the membership manager) can generate a valid signature
that, when its anonymity is revoked, cannot be associated to a group member.

To achieve strong or perfect separability it is necessary that the four algorithms
GKG-MM, GKG-RM, GKG-GM, and GKG-S can be run completely independent
of each other. Moreover, if one of them is re-run the others need not.

The actual algorithm to set-up the group signature scheme is GKG-S and
should be carried out by representatives of the group members and the mem-
bership manager(s) or by a single party they all fully trust. The other three
key-generation algorithms are in principle key-generation algorithms of some
cryptographic primitives and could have been run in advance of the set-up of
the group signature scheme, i.e., they could in principle be excluded from the
model.

3 Preliminaries and Proof Techniques

This section summarizes various known results on proofs of knowledge of and
about discrete logarithms, combines them into new building blocks, and provides
notation for such protocols. In particular, we present new protocols to prove the
equality of two discrete logarithms in different groups and, more general, the
2 The membership manager can always invent a fake identity, i.e., run GKG-GM, and

issue a certificate on that public key. It is understood that if the revocation lead to
a public key not present in GML then the membership manager is accused.
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validity of polynomial relations in Z among discrete logarithms from different
groups.

In the following we assume different groups G = 〈g〉, Gi = 〈gi〉 (i = 1, 2)
of large known prime orders q and qi, respectively. Furthermore, let h and hi
also be generators of G and Gi, respectively, such that logg h and loggi hi are
not known. For technical reasons, we define a discrete logarithm logg h to be the
integer x with −q/2 < x < q/2 such that y = gx and assume that arithmetic
modulo q is carried out with this in mind. All protocols exposed in the following
are two-party protocols between a male prover and a female verifier.

3.1 Basic Zero-Knowledge Proofs of Knowledge

The most basic protocol is a zero-knowledge proof of knowledge of the discrete
logarithm of some group element y ∈ G to the base g [15,45]. We shortly recall
this protocol and its properties: The prover knowing x = logg y sends the verifier
the commitment t := gr, where r ∈R Zq. Then, the verifier sends the prover a
random challenge c ∈R {0, 1}k to which the prover responds with s := r − cx
(mod q). (The integer k ≥ 1 is a security parameter.) The verifier accepts if
t = gsyc. Triples (t, c, s) with t = gsyc are called accepting triples. Since this x =
logg y can be computed from two accepting triples (t, c, s) and (t, ċ, ṡ) with c 6= ċ,
i.e., x := (s− ṡ)(ċ− c)−1 (mod q), this protocol is a proof of knowledge of logg y
when sequentially repeated sufficiently many times. Furthermore, the protocol is
honest-verifier zero-knowledge3 and for k = O(log log q) zero-knowledge for any
verifier. Using notation from [11], this protocol is denoted PK{(α) : y = gα},
which can be read as “zero-knowledge Proof of Knowledge of a value α such
that y = gα holds.” The convention is that Greek letters denote the knowledge
proven while all other parameters are known to the verifier.

This basic protocol can be extended to prove the knowledge of a representa-
tion of a group element y ∈ G with respect to several bases z1, . . . , zv [15] which
is denoted PK{(α1, . . . , αv) : y = zα1

1 · . . . · zαvv }. Another extension allows to
prove the equality of the discrete logarithms of two group elements y1, y2 ∈ G
to the bases g and h, respectively [14,16]. The idea is to carry out the basic pro-
tocol for y1 and for y2 in parallel and requiring that the challenges (c) and the
responses (s) are the same [16]. If the verifier accepts, the two logarithms must
be equal as can be seen by considering how the prover’s secret can be derived
from two accepting triples with the same commitment. Such a protocol will be
denoted PK{(α) : y1 = gα∧ y2 = hα}. This technique can be generalized to prove
equalities among representations of the elements y1, . . . , yw to bases g1, . . . , gv
[11]. As an example, the protocol PK{(α, β) : y2 = gα ∧ y3 = gβ ∧ y1 = yβ2 }
allows to prove that the discrete logarithm of y1 is the product of the discrete
logarithms of y2 and y3 modulo the group’s order.

These kinds of proofs of knowledge (PK ) can be turned into signature schemes
by the so-called Fiat-Shamir heuristic [23]. That is, the prover determines the

3 Honest verifier zero-knowledge proofs can be made zero-knowledge by requiring the
verifier to commit to the challenge before she receives the prover’s commitments.
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challenge c by applying a collision-resistant hash-function H to the commitment
and the message m that is signed and then computes the response as usual.
The resulting signature consists of the challenge and the response. We denote
such Signature schemes based on a zero-knowledge Proof of Knowledge (SPK )
similarly as the PK ’s, e.g., SPK{(α) : y = gα}(m). Such SPK ’s can be proven
secure in the random oracle model [4,41] given the security of the underlying
PK ’s.

3.2 Interval Proofs for Discrete Logarithms

If we restrict ourselves to binary challenges, i.e., set k = 1, the basic protocol
PK{(α) : y = gα} can be modified to prove not only the knowledge of logg y
but also that logg y lies within some determined interval [9,13], e.g., −2` <
logg y < 2`. More precisely, this is achieved by requiring the prover’s response
s to satisfy −2`−1 < s < 2`−1. However, the prover can only carry out the
protocol successfully, if the tighter bound −2(`−2)/ε < logg y < 2(`−2)/ε holds,
where e > 1 is a security parameter4, and when choosing the value r to compute
the commitment t such that−2`−2 < r < 2`−2. This modified protocol is denoted
PKb{(α) : y = gα ∧ (−2` < α < 2`)}, where the b in PKb reminds that the
protocol uses binary challenges, i.e., is not very efficient. A further modification
allows to prove that a− 2` < logg y < a+ 2`, where a is a fixed offset [9]5. Note
that such protocols make sense only if the group’s order q is larger than 2`+1.

An alternative but less efficient method for proving bounds on a discrete
logarithm is to first commit to every bit of x = logg y and then to prove that
(1) they constitute the binary representation of x and (2) the committed values
are either a 0 or a 1. The latter can be done using techniques from [20,44]. This
method is linear in the length of x but allows to prove tighter bounds and, when
revealing the most significant bit as 1, even the exact bit-length of x.

3.3 Efficient Interval Proofs for Discrete Logarithms

The choice k = 1 is not very attractive from an efficiency point of view and thus
the quest for more efficient protocols seems natural. Indeed, one can do better
under the strong-RSA assumption [3,25] which is the following variation of the
well-known RSA assumption [43].

Assumption 1 (Strong RSA). There exists a probabilistic algorithm K such
that Pr[z G= ue ∧ e > 1 : (G, z) := K(1`g ), (u, e) := A(G, z)] < 1/p(`g) holds
for all probabilistic polynomial-time algorithms A, all polynomials p(·), all suffi-
ciently large `g, where G is a group of order ≈ 2`g , z ∈ G, and e ∈ Z.

In words, this assumption states that there exists a key-generatorK that outputs
a group G of unknown order and an element z ∈ G/{±1} such that it is infeasible

4 In fact, the parameter ε controls the tightness of the statistical zero-knowledgeness.
5 Using different techniques, Damg̊ard obtains a similar result [21].
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to find a pair (u, e) ∈ G×Z such that e > 1 and ue = z. K could be implemented
by choosing G as Zn, where n is an RSA modulus of size ≈ 2`g , and picking z
randomly from Zn.

Fujisaki and Okamoto [25] show that under this assumption the protocol
PK{(α) : y = gα} works also for groups of unknown order, e.g., for G = Z∗n,
where n is an RSA modulus. More precisely, it is pointed out that the discrete
logarithm x of y to the base g can be computed from two accepting triples (t, c, s)
and (t, ċ, ṡ) without knowing the group’s order: Since t = gsyc = gṡyċ we must
have x(c− ċ) ≡ ṡ− s (mod ord(g)). If c− ċ does not divide ṡ− s in Z, then one
can compute a non-trivial root of g (see [25]). However, due to the strong-RSA
assumption the latter is infeasible and hence c − ċ must divide ṡ− s in Z with
overwhelming probability and we can compute x without knowing the order of
g. This argument generalizes to representations w.r.t. several bases.

The fact that c− ċ divides ṡ− s in Z with overwhelming probability allows
us to draw conclusions about the size of the prover’s secret from the size of his
responses [9,13] similarly as in case of binary challenges. In combination with
the ideas that led to the protocol PK{(α) : y1 = gα ∧ y2 = hα} (cf. Section 3.1),
this technique can also be used to efficiently prove statements about the size of
discrete logarithms from groups with known orders: Let ` denote a length, ε > 1
and k be security parameter, and G = 〈g〉 be a group whose order q > 2`+1

is known. Let the prover’s secret x be an integer such that −2(`−2)/ε−k < x <
2(`−2)/ε−k and let y = gx. First, the prover and the verifier engage in a (once and
for all) set-up phase. The verifier randomly chooses two sufficiently large safe
primes, say p1 and p2, and computes n := p1p2. (The modulus n must be large
enough to avoid factoring but its size needs not to depend on ε, `, k, or q.) She
chooses two random elements h1 and h2 from Zn, sends the prover n, h1, and h2,
and proves him that n is indeed the product of two safe primes (e.g., by using the
techniques from [10]). The prover checks whether h1 6= ±1 (mod n), h2 6= ±1
(mod n), gcd (h1, n) = 1, and gcd (h2, n) = 1 holds. This will convince him that
h1 and h2 have large order (see [26]). This concludes the set-up phase. Now, the
prover chooses r ∈R Zn, computes ỹ = hr1h

x
2 , and sends the verifier ỹ. Finally,

they engage in the protocol PK{(α, β) : y G= gα ∧ ỹ Z
∗
n= hβ1h

α
2 ∧ (−2` < α < 2`)}.

If they finish the protocol successfully, the verifier will be convinced that the
prover knows a value, say x, such that y = gx and −2` < x < 2` holds.

3.4 Proving Relations among Discrete Logs from Different Groups

The protocols for proving that a discrete logarithms lies within some determined
interval, as exposed in the previous two subsections, are a powerful tool. For
instance, as is shown in [10], they allow to prove that a discrete logarithm is
the product (or sum) of two other discrete logarithms in Z, i.e., not modulo
the group’s order. This extends naturally to the validity of arbitrary polynomial
equations over Z in the prover’s secrets. Moreover, these protocols allow to prove
the equality of discrete logarithms from different groups as is explained in the
next paragraph. We believe this is a new building block of independent interest,
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which in combination with the results from [10] allows to prove the validity of
polynomial relations (in Z) among discrete logarithms from different groups.

Let G1 = 〈g1〉 and G2 = 〈g2〉 be two distinct groups of orders q1 and q2, re-
spectively, and let ` be a integer such that 2`+1 < min{q1, q2} holds. Let y1 = gx1
and y2 = gx2 . If x lies in between −2(`−2)/ε and 2(`−2)/ε, where e > 1 is a security
parameter (cf. Section 3.2), the prover can convince the verifier that logg1 y1 =

logg2 y2 (in Z) by carrying out PKb{(α) : y1
G1= gα1 ∧y2

G2= gα2 ∧ (−2` < α < 2`)}
with her. Since this protocol uses binary challenges it is not very efficient. How-
ever, under the strong RSA assumption and if x lies in between −2(`−2)/ε−k and
2(`−2)/ε−k, where k denotes the number of bits of the challenge, the prover can
efficiently convince the verifier that logg1 y1 = logg2 y2 holds as follows. First the
prover and the verifier engage in the (once and for all) set-up phase to generate
the modulus n and the elements h1 and h2 as described in the previous sub-
section. Then the prover chooses r ∈R Zn, computes ỹ = hr1h

x
2 (mod n), sets

it to the verifier, and carries out PK{(α, β) : y1
G1= gα1 ∧ y2

G2= gα2 ∧ ỹ
Z∗n=

hβ1h
α
2 ∧ (−2` < α < 2`)} together with the verifier. We describe this protocol

in detail:

1. The prover picks r1 ∈R {−2`−2, . . . , 2`−2} and r2 ∈R {−(n2k)ε, . . . , (n2k)ε}
and computes the commitments t1 := gr11 , t2 := gr12 , t3 := hr21 h

r1
2 . He sends

the verifier (t1, t2, t3).
2. The verifier returns a random challenge c ∈R {0, 1}k.
3. The prover computes the responses s1 = r1 − cx and s2 = r2 − cr (both in
Z) and sends the verifier (s1, s2).

4. The verifier accepts if and only if −2`−1 < s1 < 2`−1, t1 = gs11 y
c
1, t2 = gs12 y

c
2,

and t3 = hs21 h
s1
2 ỹ

c hold.

Clearly, this kind of protocol generalizes to several different groups, to rep-
resentations, and to arbitrary modular relations.

4 A Generic Separable Group Signature Scheme

This section provides the definitions of some cryptographic primitives and then
presents a generic separable group signature scheme based on these primitives.

4.1 Definition of Some Cryptographic Primitives

The first primitive is a shadow encryption scheme (SE). It consists of three
algorithms EKG, Enc, and Dec for key generation, encryption, and decryption,
respectively. Participants are a sender and a receiver. On input of a security
parameter, EKG outputs the key pair (x, y) of the receiver. On input of the
receiver’s public key y and a message m, Enc outputs the ciphertext c. On
input of the public key y, the secret key x, and the ciphertext c, Dec outputs a
value v, called the shadow. Unlike as for ordinary public key encryption schemes,
decryption does not reveal the encrypted message m but only a value v such that
the pair (m, v) satisfies a predefined binary relation R.
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Definition 2. Let ` be a security parameter and R ⊆ {0, 1}` × {0, 1}∗ a bi-
nary one-to-one relation that can be recognized in polynomial time. A triple
(EKG,Enc,Dec) of probabilistic polynomial-time algorithms is a secure public-
key shadow encryption scheme with respect to R if the following properties
hold.

Correctness: For every (x, y) ∈ EKG(1`) and all m1, m2 ∈ {0, 1}` we have
(m1,Dec(y, x,Enc(y,m2))) ∈ R if and only if m1 = m2.

Security: For all probabilistic polynomial-time algorithms T and M , all polyno-
mials p(·), and all sufficiently large ` we have

Pr[T (1`, y,m0, m1, d) = i : (x, y) := EKG(1`); (m0, m1) := M(y, 1`);
i ∈R {0, 1}; d := Enc(y,mi)] < 1/2 + 1/p(`) .

Furthermore, as encryption and decryption should be efficient, for all messages
m values v such that (m, v) ∈ R must be efficiently computable. Any seman-
tically secure public key encryption scheme (e.g., [29,37]) will give an shadow
encryption scheme with basically the same efficiency. However, if R is a hard
relation (i.e., given v it is infeasible to find an m such that (m, v) ∈ R), the con-
verse seems to be possible only at a loss of efficiency, e.g., by shadow-encrypting
every bit of the message separately. Hence, a shadow encryption scheme is a
weaker primitive from an efficiency point of view but is sufficient in applications
where full encryption is not necessary. A concept similar to shadow encryption
is confirmer commitments [35].

The rest of the primitives are rather standard and therefore we introduce
them only informally (for formal definitions see, e.g., [28]). Let f be a one-way
function. Let SIG = (SKG, Sig,Ver) denote a signature scheme, where SKG is
the key-generation algorithm (that on input 1` outputs a key pair (x, y)), Sig is
the signing algorithm (that on input of a secret key x, the corresponding public
key y, and a message m outputs a signature s on m), and Ver is the verification
algorithm (that on input of a public key y, an alleged signature s, and a message
m outputs 1 if and only if s is a signature on m with respect to y). We require
that the signature scheme is existentially unforgeable under a certain kind of
chosen-message attack, that is the attacker gets only signatures on messages
of which he knows a pre-image under some predetermined one-way function f .
Finally, we need an unconditionally hiding commitment scheme, i.e., a function
Com that takes as input a string x to commit to and a random string r. One
can commit to a value x by C := Com(x, r), where r is randomly chosen. We
require that the distribution of C committing to different x’s are statistically
indistinguishable, i.e., x is information theoretically hidden from the receiver.
Furthermore, it should be hard to open a commitment in two ways, i.e., hard to
find strings x, x′ 6= x, r, and r′ such that Com(x, r) = Com(x′, r′)

4.2 A Generic Realization of a Separable Group Signature Scheme

This section describes a generic separable group signature scheme and shows its
security. The construction extends ideas from [11,12]. Let SE = (EKG,Enc,Dec)
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be a probabilistic shadow encryption scheme, SIG = (SKG, Sig,Ver) a signature
scheme, f a one-way function, and Com an unconditionally hiding commitment
scheme. With these primitives a generic separable group signature scheme can
be constructed as follows.

GKG-MM: This is the key generation algorithm SKG of the signature scheme
SIG.

GKG-RM: This is the key generation algorithm EKG of the probabilistic shadow
encryption scheme SE.

GKG-GM: The group member chooses a random value xU from the domain of f
as secret key and computes his public key yU = f(xU ).

GKG-S: This algorithm chooses a hash function H suitable for use in the SPK ’s
and sets up a commitment scheme Com.

Reg: The group member sends (IDU , yU) to the membership manager and proves
in zero-knowledge that he knows xU such that yU = f(xU ) holds. If he is suc-
cessful, the membership manager computes the signature sU :=
Sig(xM , yM , yU) and sends it to U . The tuple (yU , IDU ) is added to GML.
The group member’s output is sU .

GSig: To sign a message m ∈ {0, 1}∗ a group member U computes z :=
Enc(yR, yU ), C := Com(yU , r), where r is a random string, and the three
SPK ’s (using informal notation)

SI := SPK{(α, β) : C = Com(α, β) ∧ z = Enc(yR, α)}(C, z,m)

SII := SPK{(α, β, δ) : C = Com(α, β) ∧ α = f(δ)}(SI )

SIII := SPK{(α, β, γ) : C = Com(α, β) ∧ Ver(yM , γ, α) = 1}(SII) .

The signature on m is the tuple (z, C, SI, SII , SIII).
GVer: A group-signature σ = (z, C, SI, SII , SIII) on a message m can be verified

by checking the SPK ’s SI , SII , and SIII .
GTrace: Given (z, C, SI, SII , SIII) andm, the revocation manager checks whether

the signature is valid, shadow-decrypts z as v = Dec(yR, xR, z), finds an
(yU , IDU ) from GML such that (yU , v) ∈ R, and computes V := SPK{(α) :
v = Dec(yR, α, z)}(m, σ, v, yU).

Theorem 1. In the random oracle model, the above construction is a secure
group signature scheme, provided that the requirements of the used commitment
scheme, shadow encryption scheme, the one-way function, and the signature
scheme are satisfied.

Proof (sketch). The correctness of the signature generation is obvious.

Anonymity and unlinkability of signatures: Any two different signatures
(z, C, SI , SII , SIII) and (z′, C ′, S′I , S

′
II , S

′
III) are computationally indistin-

guishable due to the security requirement for the shadow-encryption scheme,
the hiding property of the commitment scheme, and the zero-knowledge prop-
erty of the proofs underlying the SPK ’s SI , SII , and SIII .
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Unforgeability of group signatures: Assuming the soundness of the SPK ’s SI ,
SII , and SIII and the commitment scheme’s security, a non-group-member
being able to forge signatures is also able to compute values sŨ , yŨ , and xŨ
such that yŨ = f(xŨ ) and Ver(yM , sŨ , yŨ ) = 1. However, the latter implies
that the attacker must have existentially forged a signature of the membership
manager which is assumed to be infeasible.

Unforgeability of tracing: If the revocation manager could claim that another yU
than the one whose shadow-encryption is contained in a valid signature, either
the correctness property of the shadow encryption scheme or the soundness
of the SPK V would not hold.

No framing: Assume that some coalition can sign on behalf of a group member
with membership key yU . Given the unforgeability of tracing, yU must be
shadow-encrypted in z. Due to the SPK ’s SI and SII the coalition must be
able to compute f−1(yU ) or to break the commitment scheme, i.e., open a
commitment in two ways. Both is assumed to be infeasible.

Unavoidable traceability: Based on the same arguments as in the case of unforge-
ability of group signatures, we can conclude that a successfully attacking coali-
tion must be able to forge signatures of the membership manager under a
known signature-message pair attack, which is assumed to be infeasible. ut

This scheme indeed achieves perfect separability since the algorithms GKG-MM,
GKG-RM, GKG-GM, and GKG-S can be run independent of each other. For all
procedures but GSig it follows from the construction that they are efficient if the
underlying primitives are efficient. To achieve efficiency for GSig as well, it seems
necessary to restrict the choices of the instances of the cryptographic primitives
in which case we get group signature scheme with strong separability. We refer
to the next section for possible instances of the employed primitives.

It can easily be seen that the size of the group’s public key and the length
of signatures do not depend on the number of group members. However, in the
tracing algorithm GTrace, the revocation manager has to check the membership
key of every group member, hence the running-time of this algorithm is linear
in the number of group members. We will later see that in our implementation
this can be overcome and the tracing algorithm can also be made independent
from the group’s size. This problem could as well be solved by using semantically
secure encryption (e.g., [29,37]) instead of shadow encryption. However, finding
an instance of the resulting generic group signature scheme with efficient signing
and verification procedures is an open problem.

We note that a (generic) identity escrow scheme can be obtained from the
above scheme by replacing the SPK ’s in the signature generation algorithm by
the underlying PK ’s.

5 Instances

This section provides concrete instances of cryptographic primitives that allow
an efficient realization of the SPK ’s in the procedures GSig and GTrace of our
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generic group signature scheme. All these instances are based on the discrete
logarithm problem and some are additionally based on the hardness of factoring
or computing roots modulo a composite. The somewhat less efficient instances
which are solely based on the discrete logarithm problem are presented in the
full paper.

Throughout this section, m ∈ {0, 1}∗ denotes the message that a group mem-
ber U wants to sign, k and ε > 1 are security parameters (k denotes the bit-
length of the challenges in the SPK ’s and ε controls the tightness of the zero-
knowledgeness, cf. Section 3), 2`U is an upper-bound on number of elements in
the domain and the image of the one-way function f : {0, 1}`U/2 ×{0, 1}`U/2 →
{0, 1}`U , and `M and `R are length-parameters of the crypto-systems chosen by
the membership and the revocation manager, respectively.

5.1 A Commitment Scheme

As commitment scheme Com we apply the one due to Pedersen [39] which is
information theoretically hiding and computational binding (i.e., the binding
property relies on the hardness of computing discrete logarithms). Deviating
from the original proposal, we use this scheme with an algebraic group of large
unknown order. This does not alter the scheme’s properties, but will allow us
to use this group also for the efficient interval-proofs described in Section 3. An
example of such a group is a subgroup of Z∗n, where n is a large RSA modulus
whose factors are unknown. Either this modulus is chosen by a trusted third
party or by representatives of the group members and the membership man-
ager(s). In the latter case, the parties can employ the protocols presented in
[6,24,42] to choose such a modulus jointly without the participants learning its
factors. In the following we stick to the latter.

These choices have the following consequences for the affected procedures of
our group signature scheme.

GKG-S (commitment part): The representatives of the group members and the
membership manager jointly choose an RSA modulus nS > 2`S , such that
the factors of nS are unknown, and a random element hS ∈ Z∗nS (e.g., using
techniques from [6,24,42]). Furthermore, they all choose a random exponent
ri ∈ {0, 1}`S and commit to hi = hriS (mod nS) using some secure commit-
ment scheme. If all commitments are published, they open the commitments,
prove their knowledge of loghS hi, and compute gS =

∏
i hi. The parameters

nS , GS = 〈hS〉, gS , hS , and `S are published as part of the group’s public key.
GSig (commitment part): A group member can commit to yU by computing C :=
gyUS hrS , where r is randomly chosen from {−2`S , . . . , 2`S}.

5.2 A Shadow Encryption Scheme

This section provides a shadow encryption scheme that is based upon the El-
Gamal [22] encryption scheme which we briefly summarize. The public key of
the recipient consists of a group GR = 〈gR〉, its prime order qR , and yR = hxRR ,
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where the recipient’s secret key xR is randomly chosen from ZqR . The encryption
of a message w ∈ G is a pair (A := grR, B := wyrR), where r is randomly chosen
from ZqR . Decryption works by computing B/AxR(= w). From this scheme a
shadow encryption scheme for the relation R = {(u, v)|v = guR} can be derived
by encrypting gwR instead of w, where now w ∈ ZqR . Deciding whether some mes-
sage w̃ ∈ ZqR is indeed shadow-encrypted in a pair (A,B) can be done (when
knowing the secret key) by checking whether gw̃R equals B/AxR . The security
properties (cf. Def. 2) of this shadow encryption scheme are inherited from the
ElGamal scheme, which is equivalent to the Diffie-Hellman decision problem [46].

With this shadow encryption scheme the affected procedures of our group
signature scheme are as follows. Recall that the group member has committed
to yU by C = gyUS hrS (cf. Section 5.1).

GKG-RM: The revocation manager chooses a group GR = 〈gR〉 of order qR, a ran-
dom secret key xR ∈R ZqR , computes yR := gxRR , and publishes (yR, gR, GR, qR)
as her public key. Let `R = blog2 qRc.

Part I of GSig: In the following, we assume that6 `R > (`U+k)ε+2 holds. A group
member U shadow-encrypts yU by computing A := grR and B := gyUR yrR. He
then can compute the first SPK as

SI := SPK
{

(α, β, γ) : A GR= gαR ∧ B
GR= gβRy

α
R ∧

C
GS= gβSh

γ
S ∧ (−2`R < β < 2`R)

}
(A,B, C,m) .

The SPK SI shows that the value committed to by C is indeed shadow-
encrypted in (A,B) under yR.

GTrace: Knowing xR the revocation manager can check whether some yŨ is
shadow-encrypted in a pair (A,B) that is part of a valid group signature
σ on m by testing if gyU′R

GR= B/AxR holds. If it does, she can prove this by

V := SPK
{

(α) : yR
GR= gαR ∧ B/g

yŨ
R

GR= Aα
}

(m, σ, gyŨR , yŨ ) .

Remark 1. The tracing algorithm can be made independent of the number of
group members if the “shadows” gyUR are stored along with yU , IDU , and sU .
Then, tracing can be done with a single look-up in the database. This has of
course the disadvantage, that the database must be updated if the revocation
manager changes her public key.

5.3 A One-Way Function f(·)

Let the function f : primes`U/2×primes`U/2 → {0, 1}`U be the multiplication of
two `U/2-bit primes, i.e., f(p′U , p

′′
U) := p′Up

′′
U . For large enough `U , this function

is believed to be one-way.

6 For a solution for the case `R < (`U + k)ε+ 2 we refer to the full paper.
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GKG-GM: Group member U chooses two suitable primes p′U and p′′U with 2`U/2−1

< p′U , p
′′
U < 2`U/2 and computes yU = p′Up

′′
U . He publishes his public key yU

and keeps (p′U , p
′′
U) as his secret key.

Part II of GSig: Given the factors p′U and p′′U of yU , where yU is committed to by
C (cf. Section 5.1), group member U can compute the third SPK as follows.
He picks r1, r2 ∈R {−2`S , . . . , 2`S}, computes F := g

p′U
S hr1S , L := g

p′′U
S hr2S , and

SII := SPK
{

(ω, θ, ν, ψ, κ) : F GS= gωSh
θ
S ∧ L

GS= gνSh
ψ
S ∧ C

GS= F νhκS ∧
(−2(`U/2+k)ε+2 < ω, ν < 2(`U/2+k)ε+2)

}
(SI , F, L) .

This SPK shows that the integer committed to by C is the product (in Z) of the
two integers committed to by F and L. Assuring that F and L are nontrivial
factors of the integer committed to by C requires (`U /2 + k)ε+ 2 < `U and that
the membership manager signs only yU ’s that lie between 2`U−1 and 2`U .

5.4 A Signature Scheme

Signature schemes that are applicable must allow an efficient proof of knowledge
of a membership manager’s signature on yU ’s that are committed to by some
C = Com(yU ) (cf. Section 5.1). Typically, signature schemes require the use of a
hash function as redundancy function to be existentially unforgeable. However,
the need for efficient proofs requires that the redundancy function allows to
compute the commitment C ′ = Com(red(yU )) given C only. An example that
allows this is red(x) = x2K + d, where a randomly chosen d ∈ {0, . . . , 2K − 1} is
fixed and K is a security parameter. Note that some attacks on RSA with such
simple redundancy schemes are known [27,36]. However, these attacks seem not
to work, if K is chosen sufficiently large. Moreover, they are (arbitrary) chosen-
message attacks and are therefore not applicable as our construction requires
only a signature scheme that is existential unforgeable under a restricted kind
of chosen message attack (cf. Section 4.1). Hence, the RSA signature scheme
together with this simple redundancy function seems to satisfy our requirements.

In the following we assume `U and `M are such that `U + K ≤ `M holds.
Using the RSA signature scheme [43] together with this redundancy function
has the following consequences.

GKG-MM: The membership manager chooses two `M/2-bit primes p′M and p′′M ,
computes nM = p′Mp

′′
M , chooses a prime eM > 1, selects a random integer

d ∈R {0, . . . , 2K − 1}, publishes (nM , eM , d) as her public key, and stores
(p′M , p

′′
M) as her secret key.

Reg: The group member sends (yU , IDU ) to the membership manager and proves
her (1) that yU is the product of two primes and (2) that these primes are
of size ≈ 2`U/2. The first can be done with protocols from [7,10,47]; for the
latter the group member computes c2′ := g

p′U
S h

vp′
S and c2′′ := g

p′′U
S h

vp′′
S , where
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vp′′ , vp′ ∈R {−2`S , . . . , 2`S}, and carries out the protocol

PKb
{

(α, β, γ, δ, κ) : c2′
GS= gαSh

β
S ∧ c2′′

GS= gγSh
δ
S ∧ gyUS

GS= cγ2′h
κ
S ∧

(−2ε`U/2+2 ≤ α, γ ≤ 2ε`U/2+2)
}

with the membership manager. If all these proofs are fine and if yU is an `U -bit
number, the membership manager signs yU , i.e., computes sU := red(yU )1/eM

≡ (yU2K+d)1/eM (mod nM ), and sends sU to the group member who checks
its validity. Finally, the two parties enter (yU , IDU ) in the membership list
GML.

Part III of GSig: We assume that eM = 3 (other cases can be done similarly).
Group member U computes D := gsUS hr1S , E := g

s2U (mod nM )
S hr2S , with r1, r2

∈R {−2`S , . . . , 2`S}, and

SIII := SPK
{

(β, γ, ψ, λ, τ, π, δ, ζ, ρ, ξ) : C GS= gβSh
γ
S ∧ D

GS= gψSh
λ
S ∧

E
GS= gτSh

π
S ∧ E

GS= Dψ(gnMS )δhζS ∧

C2KgdS
GS= Eψ(gnMS )ρhξS ∧ (−2(`U+k)ε+2 < β < 2(`U+k)ε+2) ∧

(−2(`M+k)ε+2 < ψ, τ, δ, ρ < 2(`M+k)ε+2)
}

(SI , SII , D, E) .

This SPK shows that the cubicle of the integer committed to by D equals
the integer obtained when applying the redundancy function red to integer
committed to by C (modulo nM ).

5.5 Efficiency Considerations and Remarks

To make the efficiency consideration easier, we first put the different parts of the
signature generation algorithm together. Furthermore, we merge the SPK ’s SI ,
SII , and SIII into a single one.

GSig (all parts): Knowing yU = p′Up
′′
U , xU = (p′U , p

′′
U), and sU , group mem-

ber U can sign a message m ∈ {0, 1}∗ on the group’s behalf by choosing
r1, r3, r4, r5, r6 ∈R {−2`S , . . . , 2`S} and r2 ∈R ZqR and computing A := gr2R ,

B := gyUR yr2R , C := gyUS hr1S , D := gsUS hr3S , E := g
s2U (mod nM )
S hr4S , F := g

p′U
S hr5S ,

L := g
p′′U
S hr6S , and

SI−III := SPK
{

(α, β, γ, ψ, λ, τ, π, δ, ζ, ω, θ, ν, µ, ρ, ξ, κ) :

A
GR= gαR ∧ B

GR= gβRy
α
R ∧ C

GS= gβSh
γ
S ∧ D

GS= gψSh
λ
S ∧

E
GS= gτSh

π
S ∧ E

GS= Dψ(gnMS )δhζS ∧ F
GS= gωSh

θ
S ∧

L
GS= gνSh

µ
S ∧ C2KgdS

GS= Eψ(gnMS )ρhξS ∧ C
GS= F νhκS ∧

(−2ε(`U+k)+2 < β < 2ε(`U+k)+2) ∧ (−2ε(`M+k)+2 < ψ, τ, δ, ρ < 2ε(`M+k)+2) ∧
(−2ε(`U/2+k)+2 < ω, ν < 2ε(`U/2+k)+2)

}
(A,B, C,D,E, F, L,m) .
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Provided that elements from GS and GR have roughly the same size, the
signer’s computational load is about 17 multi-exponentiations and the verifier’s
computational effort is about 10 multi-exponentiations. If elements in GR and
GS are about `R and `S bits long, respectively, a signature takes 5`S + 2`R +
`R+2(ε(`U /2 +k)+2)+(ε(`U +k)+2)+8(ε(`S +k)+2)+4(ε(`M +k)+2)+k
bits. The following choices of security parameter (such that `R > ε(`U + k) + 2
(cf. Section 5.2), (`U/2 + k)ε + 2 < `U (cf. Section 5.3), and `M > `U + K
(cf. Section 5.4)) could be used: ε = 9/8, `U = 768, `R = 1100, `M = 1630,
`S = 1024, K = 850, and k = 160. With these choices a signature is about 3, 5
kilobytes long. Compared to the most efficient non-separable group signature
schemes [9,11,12], we lose roughly a factor of 3 in terms of the length of signatures
as well as the number of exponentiations.

6 Extensions and Open Problems

In order to keep the system manageable it is desirable to be able to remove
group members from the group. This implies that the group’s public key must be
changed each time that a group member is removed and also that each group sig-
nature is time-stamped. In principle, group members can be removed by changing
the membership manager’s key and by issuing new certificates to the remaining
group members. A more elegant way to realize this is using so-called one-way
accumulators (OWA) [3,5,19], in particular by using the efficient realization of
an OWA given in [3]. Details are provided in the full paper.

Another possible extension is to distribute the role the membership and the
revocation manager among several parties while still ensuring the separability
with respect to all parties. This can be done by combining standard secret sharing
techniques with the proof techniques described in Section 3, in particular those
in Section 3.4.

Further research is required for an exact security analysis of the signature
scheme presented in Section 5.4. Finding a signature schemes with simple redun-
dancy functions and designing a separable group signature scheme with efficient
signature generation and verification that is exclusively based on standard as-
sumptions are challenging open problems.
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