
Problems with the Static Root of Trust for Measurement

John Butterworth Corey Kallenberg Xeno Kovah
Amy Herzog

jbutterworth@mitre.org, ckallenberg@mitre.org
xkovah@mitre.org, aherzog@mitre.org

The MITRE Corporation

Abstract
In 2011 the National Institute of Standard and Technol-
ogy (NIST) released a draft of special publication 800-
155. This document provides a more detailed description
than the Trusted Platform Module (TPM) PC client spec-
ification for content that should be measured in the BIOS
to provide an adequate Static Root of Trust for Measure-
ment (SRTM). In this paper we look at the implemen-
tation of the SRTM from a Dell Latitude E6400 laptop.
We describe how the implementation of the SRTM on
this system doesn’t meet all the requirements set forth by
both the TPM PC client specification and the NIST guid-
ance. We also show how a 51 byte patch to the SRTM can
cause it to provide a forged measurement to the TPM in-
dicating that the BIOS is pristine. If a TPM Quote is used
to query the boot state of the system, this TPM-signed
falsification will then serve as the root of misplaced trust.
We also show how reflashing the BIOS may not neces-
sarily remove this trust-subverting malware.

1 Introduction

The Trusted Computing Platform Alliance began work
on the Trusted Platform Module (TPM) specification in
2000. In 2003 the Trusted Computing Group (TCG) was
founded, and adopted the initial TPM 1.1 specification,
before announcing the 1.2 specification in 2004[10]. To-
day, most enterprise-grade laptops and desktops contain
a version 1.2 TPM, and the TPM 2.0 specification is un-
der active development, with Windows 8 supporting draft
compliant commands.

TPMs serve two main functions. First, a TPM can
serve as a Root of Trust for Storage (RTS), by providing a
Storage Root Key (SRK) used only to encrypt other keys.
This allows for a key hierarchy to be built, eventually al-
lowing user data to be encrypted by TPM-protected keys.
The TPM’s RTS function is not the focus of this paper.

The TPM can also provide a Root of Trust for Re-
porting (RTR) by providing tamper-evident measure-

ment storage and reporting functions. The TPM has
Platform Configuration Registers (PCRs), which contain
SHA1 hashes that represent measurements of security-
critical portions of the computer. These PCR values
are only changeable with an extend operation. The ex-
tend operation adjusts a PCR in the following manner:
PCRn ← SHA1(PCRn||data), where || is concatena-
tion and data can only be 20 bytes (the size of a SHA1
hash). Because of SHA1’s preimage resistance, it is in-
feasible for an attacker to set a PCR to an arbitrary value,
such as that which represents a clean measurement. The
TPM uses these values in one of a small number of ways
to provide a remote appraiser with the ability to securely
determine the system’s configuration. The TPM provides
the capability to “Seal” a key in storage such that the key
cannot be used unless the PCRs are in a particular (spec-
ified) state; it can also report PCR contents signed with a
special-use private key only available to the TPM via the
“Quote” operation.

In this paper we will focus exclusively on a different
root of trust: one that depends on the TPM, but does not
actually reside within it. The Static Root of Trust for
Measurement (SRTM) instead resides within the BIOS.1

The SRTM is not used for on-demand runtime measure-
ments, but rather to achieve a trusted boot. Per the TPM
PC client spec, when the system starts the SRTM will
measure itself as well as other parts of the BIOS and ex-
tend PCR0 with the resulting measurement. It is this
self-measurement property that makes it the core root
of trust. If the SRTM can be modified without the self-
measurement detecting the change, the chain of trust is
broken from the beginning and all other elements in the
trust chain can be corrupted without detection. In this
paper we demonstrate an undetected modification to the
SRTM that allows us to forge PCR0 and thereby subvert

1The SRTM is in contrast to the Dynamic RTM (DRTM), a mecha-
nism that can instantiate a trusted environment at some later time, even
if the system booted in an untrusted state. An example implementation
of a DRTM is Intel’s Trusted Execution Technology[7].

1



the entire trust chain rooted at the SRTM.
As with many specifications, the flexibility with which

the TPM PC client spec is written at times leads to am-
biguity. This can lead to implementations inadvertently
not measuring components that require change detection
to be adequately secure. In some respect, the NIST 800-
155[16] special publication can be seen as an attempt
to decrease ambiguity by providing specific areas that
should be measured to ensure a secure boot. However,
in the case of the particular SRTM code we analyzed in
this paper, we found it does not even adhere to some
of the clear recommendations from the TPM PC client
spec. Therefore we hope this paper will serve as a cau-
tionary tale of why existing SRTM implementations need
to be evaluated, and why future implementations need to
closely follow the NIST guidance.

While the NIST 800-155 guidance is an excellent
starting point, in our opinion it is insufficient because it
relies too heavily on access control to keep the attacker
out of the BIOS. We believe attackers will always find a
way to achieve the same privileges as the defender. The
history of exploits is the history of access control being
bypassed, even to the point of subverting requirements
for signed BIOS updates[27].

This paper makes the following contributions:

1. We evaluate the current and historical protection of
the BIOS against reflashing, which is generally the
protection against SRTM modification.

2. We analyze the implementation of the existing Lat-
itude E6400 SRTM, how its sets PCR values, and
how it deviates from the TPM PC client spec.

3. We describe the implementation of a tick, a PCR-
forging BIOS parasite.

4. We describe the implementation of a flea, a PCR-
forging, reflash-hopping, BIOS parasite that shows
why enforcing signed updates is insufficient to pro-
tect currently deployed systems.

This paper is organized as follows. In the next sec-
tion we discuss related work in the area of BIOS secu-
rity and trusted computing. In Section 3 we describe
how we have extracted information about SRTM imple-
mentations, and in Section 4 we analyze how the Lati-
tude E6400’s SRTM implementation was found lacking.
In Section ?? we discuss implementation details of our
timing-based attestation system, and in Section ?? we
evaluate it against various attacks. We detail our conclu-
sions in Section 5.

2 Related Work

There have been a number of papers and proof of concept
attacks that took advantage of the lack of access control

on the BIOS reflashing procedure to introduce malicious
code into the BIOS. One of the first attacks claiming to be
a “BIOS Rootkit” was described by Heasman[11]. This
attack did not target the BIOS code itself, but rather mod-
ified the ACPI tables set up by the BIOS. Subsequent
ACPI table interpretation caused beneficial effects for the
attacker, like arbitrary kernel memory writes. Later at-
tacks by both Core Security[18], and Brossard[5] relied
on the open source CoreBoot[1] project. This project
was meant to serve as an open source BIOS alternative,
although at the time of writing the newest Intel chipset
(ICH7) supported by CoreBoot is approximately 6 years
old. For in-the-wild attacks, there is the famous exam-
ple of the CIH or Chernobyl virus[28] that would ren-
der a machine unbootable by writing zeros to the BIOS
flash chip. In a much more recent attack, the Mebromi
malware[9] rewrote the BIOS of a machine with code
that would then write a typical Master Boot Record in-
fection routine to the first sector of the disk. This allowed
the malware to persist even if the hard drive was replaced
or reformatted. Both of these attacks were limited in their
spread because they supported only one chipset configu-
ration.

All of the preceding attacks on the BIOS relied on the
BIOS being unprotected and easily writeable, and only
having security through the obscurity of the knowledge
needed to reflash a BIOS. The most noteworthy excep-
tion to this assumption of an unprotected BIOS is the
attack by Invisible Things Lab (ITL) which reflashed an
Intel BIOS despite a configuration requiring all updates
be signed[27]. They achieved this by exploiting a buffer
overflow in the processing of the BIOS splash screen
image. Given the prevalence of legacy, presumably un-
audited, code in BIOSes, we expect there are many other
similar vulnerabilities lurking. This is a key reason why
we advocate for designing under the assumption that ac-
cess control mechanisms protecting the SRTM will fail.

In 2007 Kauer[12] reported that there were no mech-
anisms preventing the direct reflashing of the BIOS of a
HP nx6325, and he specifically targeted manipulation of
the SRTM. He decided to simply replace the SRTM with
an AMD-V-based DRTM to “remove the BIOS, Option-
ROMs and Bootloaders from the trust chain.”2 While
the intent of a DRTM is to not depend on the SRTM, as
was acknowledged by Kauer, the DRTM can in fact de-
pend on the SRTM for its security. ITL has shown this
through multiple attacks. In [25] they described an at-
tack where manipulation of the ACPI tables generated
by the BIOS and parsed by the DRTM could lead to ar-
bitrary code execution within the context of the DRTM;

2We believe that the security community should either attempt to
create a truly secure SRTM, as we are trying to do in this paper, or
should push for its removal everywhere so that no one falsely believes
it to be providing trust it cannot actually provide.

2



the SRTM was part of the root of trust for the DRTM.
In [26], they showed how an attacker with SMM access
could execute in the context of a TXT DRTM thanks to
the lack of a System Management Mode (SMM) Trans-
fer Monitor (STM). Given the BIOS’s control over the
code in SMM, and the longstanding lack of a published
Intel STM specification, it is expected that most systems
attempting to use TXT will be vulnerable to attacks orig-
inating from SMM for quite some time.

Because the BIOS sets the SMM code, it is worth
pointing out that the lack of a trustworthy SRTM un-
dermines security systems relying solely on SMM’s
access control to achieve their security, such as
HyperGuard[17], HyperCheck[24], HyperSentry[4],and
SICE[3]. If such systems were using timing-based attes-
tation to detect changes to their SMM code, they would
be much harder to subvert even by a malicious BIOS
flash. Similarly, a subverted SRTM undercuts load-time
attestation systems such as IMA[19] and DynIMA[8]. It
also subverts systems like BitLocker[2] that rely on seal-
ing a key against PCRs that are expected to change in the
presence of an attacker, but that don’t here.

3 Journey to the Core Root of Trust for
Measurement

To analyze a system SRTM, a BIOS firmware image
from that system must be obtained to identify both where
and how the SRTM is instantiated. There are three pri-
mary ways to obtain a BIOS image for analysis. One is
to desolder the flash chip from the mainboard and dump
the image to a binary file using an EEPROM flash de-
vice. The EEPROM device is invaluable when having
to recover a “bricked” system resulting from an experi-
ment to modify a BIOS gone awry. The second way to
get the BIOS is to use a custom kernel driver that reads
the firmware image from the flash chip and writes it to a
binary file. The third is to extract and decode the infor-
mation from vendor-provided BIOS update files. In all
cases, the binary in the obtained file can be statically an-
alyzed using software such as IDA Pro. However in situ-
ations where you want to investigate “live” BIOS/SMM
code, e.g. a routine that reads an unknown value from
an unknown peripheral, a hardware debugger such as the
Arium ECM-XDP3 is very useful.

NIST 800-155 uses the term “golden measurement”,
to refer to a PCR value provided by a trusted source (such
as the OEM) indicating the value that should exist on
an un-tampered system. However, currently no SRTM
golden measurements are provided by OEMs. This leads
to a situation where organizations must simply measure
a presumed-clean system, and treat the values as golden
measurements. The intention is that an organization

should investigate any PCR change that does not result
in an expected golden measurement value. Table 1 dis-
plays the “presumed-good” PCR hashes for our E6400.

We discovered that the SRTM measurement in PCR0
in Table 1 is derived from a hash provided to the TPM
from a function which is executed during the early BIOS
POST process. The function is called from within a ta-
ble of function pointers. Each pointer is part of a struc-
ture which includes a 4-byte ASCII name. The name
of the function that initially serves to instantiate PCR0
is “TCGm”, presumably for “Trusted Computing Group
measure”.

This function uses a software SHA1 computation (as
opposed to the TPM’s built in SHA1 function) to hash
slices of the BIOS and then presents that hash to the
TPM for extension to PCR0. A hash is constructed from
the first 64 bytes of each compressed module contained
within the BIOS ROM (there are 42 of these modules
in total); two small slices of memory; and the final byte
of the BIOS firmware image. Within the first 64 bytes
is a data structure containing the size, and therefore the
SRTM developers most likely are assuming that mea-
surement of the first 64 bytes will be sufficient to detect
any changes within the compressed module. After all of
these locations have been hashed and combined, the fi-
nal hash is extended into PCR0 of the TPM. But we also
found that a second extend is done on PCR0 with the sin-
gle last byte of the BIOS, similar to what was done with
the other PCRs as described in section 4.2.

4 SRTM Implementation Weaknesses

The Dell Latitude E6400 was released in 2008 before
NIST 800-147 and 800-155 publication, but it is up-
gradeable to NIST 800-147 protections via a BIOS up-
date. We picked the E6400 for analysis in 2010 because
it was readily available and it fit our debugging hard-
ware. The E6400 BIOS is based on Dell’s legacy BIOS
core, which is representative of legacy BIOS that do not
have some of the protections called for by recent stan-
dards. This makes these BIOS versions more accessible
targets for evaluation and modification than recent sys-
tems with a modern UEFI-based BIOS for example. It
is assumed that more recent systems may also include
bug fixes, updates, and protections that to some degree
harden the platform against similar modifications. How-
ever, at this time legacy systems rather than UEFI make
up the majority of deployed PCs.

4.1 Overwritability
As pointed out by [12], being able to freely modify the
SRTM completely undercuts its function as the root of
trust for measurement. Indeed, the TPM PC client spec

3



Table 1: Dell Latitude E6400 presumed-good PCR’s (BIOS revision A29)

hexadecimal value index TCG-provided description
5e078afa88ab65d0194d429c43e0761d93ad2f97 0 S-CRTM, BIOS, Host Platform Extensions,

and Embedded Option ROMs
a89fb8f88caa9590e6129b633b144a68514490d5 1 Host Platform Configuration
a89fb8f88caa9590e6129b633b144a68514490d5 2 Option ROM Code
a89fb8f88caa9590e6129b633b144a68514490d5 3 Option ROM Configuration and Data
5df3d741116ba76217926bfabebbd4eb6de9fecb 4 IPL Code (usually the MBR) and Boot Attempts
2ad94cd3935698d6572ba4715e946d6dfecb2d55 5 IPL Code Configuration and Data

[10] says: “The Core Root of Trust for Measurement
(CRTM) MUST be an immutable portion of the Host
Platform’s initialization code that executes upon a Host
Platform Reset.” (Emphasis ours.) Unfortunately this
immutability is not per the dictionary definition. Instead,
“In this specification, immutable means that to maintain
trust in the Host Platform, the replacement or modifica-
tion of code or data MUST be performed by a Host Plat-
form manufacturer-approved agent and method.” There
are therefore a number of reasons why the CRTM may in
practice be quite mutable. In our experience, the CRTM
is the same as the SRTM.

Unlike NIST 800-155, NIST 800-147[6] lays out
guidelines on how the BIOS of systems should be con-
figured by end users to minimize the exposure to mali-
cious changes. The most important changes are setting
a BIOS password, and turning on the capability to re-
quire all BIOS updates be signed. This signed update
process would thereby provide the immutability speci-
fied by the TPM PC client spec. Like many other legacy
systems, ours shipped without signed updates being re-
quired, leaving the SRTM vulnerable. But beyond this,
we found that the revision A29 BIOS original on our sys-
tem was not unsigned, it did not even have an option to
turn on signed updates! Only beginning in revision A30
was the BIOS signed, and a configuration option requir-
ing signed updates available. But even when signed up-
dates are available and enabled, implementation weak-
nesses (that existed in the A29 but which were fixed in
the A30) could allow an attacker to bypass signed up-
dates.

For instance, on systems with this chipset, the BIOS
flash chip can be directly overwritten by a kernel module
unless provisions are implemented by the BIOS manu-
facturer to prevent this from occurring. The mechanism
to prevent direct overwrite has two components: proper
configuration of the BIOS CNTL register’s BIOSWE
and BLE bits, and a routine in SMM to properly field the
System Management Interrupts (SMI) that subsequently
occur.

When properly configured, the BIOS CNTL regis-
ter causes an SMI to be triggered whenever an appli-

cation attempts to enable write-permission to the BIOS
flash. This provides SMM the opportunity to determine
whether this is a sanctioned write to the flash chip or not
and, in the latter case, reconfigure the BIOS CNTL regis-
ter to permit read-only access to the BIOS flash. All this
occurs prior to the application having any opportunity to
perform any writes to the flash chip.

By default on the E6400, firmware updates are vali-
dated only by a simple 32-bit Cyclic Redundancy Check
(CRC) checksum. Legitimate updates are of the “cap-
sule” type described by NIST[16]. “The OS uses SMM
to modify the BIOS, then continue without rebooting the
system.” This method allows the user to update their
BIOS without disrupting the current operation of the sys-
tem. However the BIOS update will not be applied in the
EEPROM by SMM code until the next reboot.

4.2 Inaccuracy
PCR0 is the primary PCR value that we are concerned
with as it captures the measurement of the SRTM. How-
ever, it is worth noting the obvious duplication of val-
ues among PCRs 1, 2, 3 in Table 1. Projects attempt-
ing to implement TPM-supported trusted boot capabili-
ties are often puzzled by what is actually being measured
by the SRTM to set those values. We determined the
origin of such PCRs as we had previously noted simi-
lar duplicate PCR values among many of our enterprise
systems. After observing the BIOS’s interaction with
the TPM it was determined that the oft seen duplicate
value in our PCR values was simply an extend of the
single last byte of the BIOS! Specifically, PCR1,2,3 ←
SHA1(0x0020||SHA1(0x00)); a fact that is trivially in-
dependently verifiable. This complete failure to measure
the important parts of the system associated with these
PCR values contravenes the TPM PC client spec.

As shown in Figure 1, the OEM SRTM excludes the
overwhelming majority of the BIOS memory from mea-
surement. To generate PCR0, it only measures the dark
gray portion of the BIOS, which amounts to only 0xA90
out of 0x1A 0000 bytes in the BIOS range! The bulk
of the measurements consist of measuring the first 64
bytes of each of the 42 compressed modules. (The mod-

4



ules range in size from 0x9E to 0x29583 bytes.) There
are also two slices of 8 bytes, at 0xDF45 13C0 and
0xDF45 13C7 that we have been unable to determine the
purpose of measuring.

FF6E_0000

FFFF_FFFF

C
h
a
in
 o
f

c
o
m
p
re
s
s
e
d

m
o
d
u
le
s...

FFFB_231A

FFF8_0000

FFFD_09A2

B
o
o
t

b
lo
c
k

ra
n
g
e

FFFF_0000

OEM SRTM
FFFD_097C

B
IO
S
 ra
n
g
e

Figure 1: Some components found in the BIOS range (not to
scale). Dark grey is memory measured by the SRTM, white is
unmeasured.

The intent of the SRTM is to provide trust that no crit-
ical BIOS contents have been modified. In short, this
implementation can not achieve that goal. This is an
important discovery, and we are not aware of any re-
lated work validating the functioning of an SRTM, rather
than blindly trusting it. We have conducted cursory ex-
aminations of other SRTMs and observed similar prob-
lems with incomplete coverage. This suggests the need
for more validation going forward to ensure SRTMs are
properly implementing NIST 800-155 guidance going
forward.

4.3 Proof of Concept Attacks
4.3.1 Naive

We describe a naive attack as one that reflashes the BIOS
but which can be trivially detected by PCR0 changing.
We would call this naive even in the presence of an
SRTM which had more complete coverage. In this paper
we are primarily concerned with advanced attackers who
are seeking to bypass existing trusted computing tech-
nologies that are assumed to be provisioned correctly for
use in their respective organization.

4.3.2 The Tick

We define a tick to be a piece of parasitic stealth malware
that attaches itself to the BIOS to persist, while hiding its
presence by forging the PCR0 hash. A tick has to exist in
the same space as the SRTM. Regardless of whether the
entirety of the BIOS is hashed to generate PCR0, a tick
can perform the same process on a clean copy of data, or
simply replay expected SHA1 hash values to the TPM for

PCR0 extension. On the E6400 this later strategy is eas-
ily performed at the end of the “TCGm” function just be-
fore the hash is passed to the TPM. For example, to forge
the known-good PCR0 hash shown in Table 1 for BIOS
revision A29 running on a Dell E6400, a hardcoded hash
value of “F1 A6 22 BB 99 BC 13 C2 35 DF FA 5A 15 72
04 30 BE 58 39 21” is passed to the TPM’s PCRExtend
function.3 So even though the BIOS has been tampered
with in a way that would normally change PCR0, the
change goes undetected since the dynamic calculation of
the hash to extend PCR0 with has been substituted with a
hardcoded constant of the known-good hash. It is worth
pointing out that the BIOS modifications made by Kauer
in [12] did not constitute a tick, because there was no
forgery of PCR0, only disabling TPM commands. Our
tick implementation is only a 51 byte patch to the BIOS.
After a tick is attached to the BIOS, it can make other
changes go undetected by traditional trusted boot sys-
tems.

4.3.3 The Flea

We define a flea as parasitic stealth malware that, like a
tick, forges PCR0 but is additionally capable of transfer-
ring itself (“hopping”) into a new BIOS image when an
update is being performed. A flea is able to persist where
a tick would be wiped out, by controlling the BIOS up-
date process. On the E6400 it does this with a hook in
the SMRAM runtime executable. A BIOS update is writ-
ten to memory, a soft reboot occurs, and then SMRAM
code writes the image to the EEPROM. The flea detects
when an update is about to take place and scans the in-
stallation candidate to identify which revision of BIOS is
being installed. Once the flea has identified the revision,
it patches the installation candidate in memory to main-
tain and hide its presence, and then permits the update to
continue. At a minimum the flea must modify the update
candidate with the following patches: a patch to enable
the new image to forge PCR0; the compressed module
that defines SMRAM containing the flea SMM runtime
portion that controls the update process; and the neces-
sary hooks required to force control flow to the flea’s ex-
ecution.

Our flea residing on an E6400 with BIOS Revision
A29, forges the known-good PCR0 value as described
in the previous section. A BIOS update is about to
occur which the flea has determined will be to BIOS
revision A30. The flea retrieves and applies the A30
patches, among which will be one that provides the nec-
essary constant so that PCR0 will provide the known-
good value for BIOS revision A30.

One challenge for the flea is that it must find storage

3For independent verification purposes, Table 1’s PCR0 ←
SHA1(SHA1(0x0020||SHA1(0xF1A6...21))||SHA1(0x00))

5



for its patches. We ultimately chose to use unused por-
tions of the flash chip. In our current implementation
these patches can consume upwards of 153KB per revi-
sion and there can be many BIOS revisions to support
across the lifetime of a system. However our current im-
plementation inefficiently stores the data uncompressed,
because we did not have time to utilize a compression
method that could use the BIOS’s built in decompression
routine. Our flea code implementation absent the patches
is only 514 bytes. An open question is what a flea should
do if it is not able to identify the incoming BIOS revision.
We preface this discussion by asserting that in practice
we believe this will be an uncommon situation. Any at-
tacker that cares to persist in a system’s BIOS will likely
have the resources to analyze BIOS updates and deploy
updates for the flea’s patch database well before a com-
promised organization can deploy BIOS updates. How-
ever, as a stalling strategy, our flea will begin to act as
if it is updating the BIOS, but then display an error and
not make any changes if it cannot identify the pending
update.

The key takeaway about our creation of a flea is that
it mean to underscore the point that simply following the
NIST 800-147 guidance to lock down a system and en-
able signed updates on existing deployed systems is not
enough to protect them. Once a system is compromised,
the presence of a flea means it will stay compromised.
This is why we advocate for confronting the problem
head-on with BIOS Chronomancy.

5 Conclusion

As the core root of trust for measurement, proper imple-
mentation of the SRTM is critical. However, this work is
the first (public) examination of a real implementation of
the SRTM and finds that implementation to be untrust-
worthy. So long as the core root of trust for measure-
ment is mutable (not implemented in a physical ROM
chip), there will always be opportunities for attackers to
subvert its measurements.

We believe that both NIST 800-147 and 800-155 are
important guidelines which should be followed by their
respective audiences. To demonstrate the danger of
putting false trust in opaque SRTM implementations, we
implemented a proof of concept attack that we called a
tick, that modified the BIOS on our Dell Latitude E6400
while not causing a change to any of the PCRs. A com-
mon remediation that might be employed to try to re-
move a tick is to reflash the BIOS with a known-clean
version. However this is not sufficient to protect against
existing BIOS malware maintaining a foothold on the
system. To show this we implemented a flea, which can
jump into and compromise the new BIOS image during
the update process.

References

[1] Coreboot. http://www.coreboot.org/.
Accessed: 11/01/2012.

[2] Microsoft bitlocker drive encryption.
http://windows.microsoft.
com/en-US/windows-vista/
BitLocker-Drive-Encryption-Overview.
Accessed: 2/01/2013.

[3] A. Azab, P. Ning, and X. Zhang. SICE: A
Hardware-Level Strongly Isolated Computing En-
vironment for x86 Multi-core Platforms. In Pro-
ceedings of 2011 ACM Conference on Computer
and Communications Security.

[4] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang,
and N. C. Skalsky. HyperSentry: enabling stealthy
in-context measurement of hypervisor integrity. In
Proceedings of the 2010 ACM conference on Com-
puter and Communications Security.

[5] J. Brossard. Hardware backdooring is practical. In
BlackHat, Las Vegas, USA, 2012.

[6] D. Cooper, W. Polk, A. Regenscheid, and M. Soup-
paya. BIOS Protection Guidelines). NIST Special
Publication 800-147, Apr. 2011.

[7] Intel Corporation. Intel 64 and IA-32 Ar-
chitectures Software Developer Manual,
Vol. 3b, Part 2. http://www.intel.
com/content/dam/doc/manual/
64-ia-32-architectures-software_
developer-vol-3b-part-2-manual.
pdf. Accessed: 11/01/2012.

[8] L. Davi, A.-R. Sadeghi, and M Winandy. Dynamic
integrity measurement and attestation: towards de-
fense against return-oriented programming attacks.
In Proceedings of the 2009 ACM workshop on Scal-
able trusted computing.

[9] M. Giuliani. Mebromi: the first BIOS rootkit in the
wild. http://blog.webroot.com/2011/
09/13/mebromi-the-first-bios_
rootkit-in-the-wild/. Accessed:
11/01/2012.

[10] Trusted Computing Group. TPM PC Client Spe-
cific Implementation Specification for Conven-
tional BIOS. Version 1.21 Errata version 1.0, Feb.
24 2012.

[11] J. Heasman. Implementing and detecting a ACPI
BIOS rootkit. In BlackHat Europe, Amsterdam,
Netherlands, 2006.

6



[12] B. Kauer. OSLO: improving the security of trusted
computing. In Proceedings of 2007 USENIX Secu-
rity Symposium on USENIX Security Symposium.

[13] X. Kovah, C. Kallenberg, C. Weathers, A. Her-
zog, M. Albin, and J. Butterworth. New results
for timing-based attestation. In Proceedings of the
2012 IEEE Symposium on Security and Privacy.

[14] Y. Li, J. M. McCune, and A. Perrig. SBAP:
Software-Based Attestation for Peripherals. In Pro-
ceedings of the 2010 International Conference on
Trust and Trustworthy Computing (Trust).

[15] Y. Li, J. M. McCune, and A. Perrig. VIPER: Ver-
ifying the integrity of peripherals’ firmware. In
Proceedings of the 2011 ACM Conference on Com-
puter and Communications Security (CCS).

[16] A. Regenscheid and K. Scarfone. BIOS Integrity
Measurement Guidelines (Draft). NIST Special
Publication 800-155 (Draft), Dec. 2011.

[17] J. Rutkowska and R. Wojtczuk. Preventing and de-
tecting Xen hypervisor subversions. In BlackHat,
Las Vegas, USA, 2008. Accessed: 11/01/2012.

[18] A. Sacco and A. Ortega. Persistent BIOS infection.
In CanSecWest, Vancouver, Canada, 2009.

[19] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and implementation of a TCG-based in-
tegrity measurement architecture. In Proceedings
of the 2004 conference on USENIX Security Sym-
posium - Volume 13.

[20] D. Schellekens, B. Wyseur, and B. Preneel. Remote
attestation on legacy operating systems with trusted
platform modules. Electron. Notes Theor. Comput.
Sci., 197:59–72, February 2008.

[21] A. Seshadri. A Software Primitive for Externally-
verifiable Untampered Execution and its Applica-
tions to Securing Computing Systems. PhD thesis,
Carnegie Mellon University, 2009.

[22] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van
Doorn, and P. Khosla. Pioneer: verifying code in-
tegrity and enforcing untampered code execution
on legacy systems. In Proceedings of the ACM
symposium on Operating systems principles, SOSP,
pages 1–16, 2005.

[23] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT: Software-based attestation for embedded
devices. In Proceedings of the 2004 IEEE Sympo-
sium on Security and Privacy.

[24] J. Wang, A. Stavrou, and A. Ghosh. HyperCheck:
a hardware-assisted integrity monitor. In Proceed-
ings of the 2010 international conference on Recent
advances in intrusion detection.

[25] R. Wojtczuk and J. Rutkowska. Attacking In-
tel TXT via SINIT code execution hijacking.
http://invisiblethingslab.com/
resources/2011/Attacking_Intel_
TXT_via_SINIT_hijacking.pdf. Ac-
cessed: 11/01/2012.

[26] R. Wojtczuk and J. Rutkowska. Attacking In-
tel TXT. In BlackHat Federal, Washington D.C.,
USA, 2009.

[27] R. Wojtczuk and A. Tereshkin. Attacking Intel
BIOS. In BlackHat, Las Vegas, USA, 2009.

[28] M. Yamamura. W95.CIH - Symantec.
http://www.symantec.com/security_
response/writeup.jsp?docid=
2000-122010-2655-99. Accessed:
11/01/2012.

7


