
Attack Traffic Libraries for Testing and Teaching Intrusion Detection Systems

Jeffery Burroughs
Department of Computer Science

University of Wyoming
Laramie, WY 82071, USA

jburroug@uwyo.edu

Dr. Patrick Engebretson
College of Business & Information

Systems
Dakota State University

Madison, SD 57042, USA
pat.engebretson@dsu.edu

Dr. JoshuaPauli
College of Business & Information

Systems
Dakota State University

Madison, SD 57042, USA
josh.pauli@dsu.

ABSTRACT

Various attack traffic libraries have been available for quite
some time. However, a majority of these libraries contain
additional miscellaneous or highly unorganized network
traffic. Our research aims at creating a framework for
building small, clean, reusable, attack specific network
captures. These captures can be used for teaching intrusion
detection system monitoring, access control list creation,
device configuration, and testing. The lack of organized
individual attack captures makes finding specific examples
of attack traffic difficult. Our work takes the concept of
attack traffic libraries and builds on it. The PCAP Attack
Library (PAL) that we have created is simple to use and
easily expandable. We captured individual examples of
attack traffic and classified each attack according to the
Common Attack Pattern Enumeration and Classification
(CAPEC) library. Each of our cataloged attacks include; a
re-playable traffic file, a corresponding CAPEC attack
identification number for obtaining further attack details,
and a working Snort Intrusion Detection System rule
(SIDSr) which can be used to detect the specific attack. A
framework for cataloging and extending the PCACP
Attack Library is also presented. This work is equally
valuable to instructors and professionals responsible for
maintaining an intrusion detection system. Educators and
professionals now have access to specific replayable attack
traffic without needing the original tools or knowledge
required to create the attack.

Keywords: Network Attack Traffic, Attack Library,
Snort, Intrusion Detection, PCAP, CAPEC, Ethical
Hacking, Network Security, Education

1. Introduction

Testing Intrusion Detection Systems (IDS) to ensure the
most malicious attacks are detected is a cornerstone of
these systems, but there is no standardized method to
execute these tests. Running live exploitation is not always
a viable option – especially when the rule set isn’t

finalized, and clients are often nervous about the use of
“hacker tools” on their networks. Furthermore, educators
struggle to teach IDS concepts as a standalone principle
without teaching attack methodologies at the same time.
We introduce the PCAP Attack Library (PAL) to help
solve these problems. The PCAP Attack Library consists
of individual pre-captured attack files that can be easily
replayed for IDS testing and education. This library is
completely preassembled, clean, and extendable to include
further additions of attacks. Our initial library is created
from the findings in the Common Attack Pattern
Enumeration Classification (CAPEC) from the Department
of Homeland Security [1]. The PAL can be utilized and
replayed by any tool capable of reading and sending .pcap
files. Tools such as TCP Replay allow users to send attacks
to a specific target or broadcast to an entire subnet of
machines. Additional features include the ability to select
individual or multiple simultaneous attacks as well as
provide layer 2 and 3 packet level manipulation. We
conclude by presenting a methodology for capturing
attacks and adding them to the public library.

An attack traffic library consists of a collection of
network traffic capture files. Each capture file consists of
network traffic containing packets of data, organized
chronologically in the order that the packets were produced
at the time of capture. Attack traffic libraries entries are
usually in the form of a raw TCPdump. The organization of
an attack library can vary from library to library [2][3].
However, most libraries are organized by the type of attack
that was performed or by specific parts of an attack.

In order to provide users with the most up-to-date
information we include attack examples that appear to be
most relevant. This relevance will be determined in part
from data provided by the Symantec Corporation [4].

In general our main goal is to provide users with an easy
to use, searchable attack traffic library. This goal has been
met in that our library currently includes nine attack
examples. Each of these entries are searchable by CAPEC
definition ID and include captured, sanitized network traffic
files as well as a corresponding SIDSr to detect the attacks
contained in the traffic files.

2. Related Work

The Computer Science Department at Indiana
University of Pennsylvania relies heavily on the hands on
experience [5]. Utilizing downloads from www.cert.org
and www.insecure.org they integrate several common
security tools which are free or open source. These tools
include Ethereal, Tripwire, Nmap, Nessus, logsentry,
logwatch, GnuPG, Nutcracker, John the Ripper, and Crack.
The tools are deployed on Linux. Student challenges
include keeping the systems updated, appropriate tool
selection, and the installation process of the tools [5]. This
example highlights the importance of providing students
with a hands-on experience to reinforce theoretical
material.

In order to reinforce learning the computer Science
Department at Texas A&M University also makes use of
hands on exercises. The goal of this program is to teach
students concepts of computer security [6]. Students are
divided into two teams and work as a member of either a
black or gold team. The goal of the black team is to break
into other team’s computers. The goal of the gold team is
to defend their network. Based on four years of this
structure it has been determined that “persistent
cooperative groups and active learning are effective
approaches for teaching network security and are preferred
over a lecture-based course.” [6] Lab exercises reinforce
concepts introduced in lecture as well as help with
effective thesis research. There are many benefits to
implementing hands-on learning including the ability to
create contrived situations, the ability to place
administrative limitations on the systems, and the ability
for black team members to utilize tools or platforms which
are not allowed on the school network.

The utilization of scenario driven problems which force
students to think outside of the box and provide non-
traditional formats of teaching can lead to higher student
learning and satisfaction levels [7].

The use of hands on labs can provide benefits for
testing student comprehension. Rather than using
traditional paper based tests, students are asked to
reproduce an activity based on a previous lab [8]. Labs can
be configured to produce competency or exploratory labs.
Competency labs are goal oriented and provide the student
with instructions but are not step-by-step. When the
student feels they have mastered the material they are
required to answer a series of questions based on the lab
exercise. Exploratory labs require the students to create
their own experiments based on a set of parameters and
questions. When implemented together these types of labs
help students develop a solid area-specific knowledge base
and increase their ability to think independently [8].

It is not uncommon to find students who excel at taking
exams but are labeled by employers as lacking real-world
experience and skills [9]. Students need practical
experience to augment their theoretical skill sets [10]. The
incorporation and utilization of hands on material provides

benefits to both students and employers. Students benefit
from the real-world experience which can supplement
traditional theory based lectures. Employers benefit
because students have a deeper understanding and more
experience utilizing in their networking and security skills
[11].

3. Building the PCAP Attack Library

In order to catalog the data that results from the capture
of attack traffic, some basic network infrastructure must be
assembled and tested. Recall that one goal of the PCAP
Attack Library is to produce a simple, unpolluted example
of the given attack. To accomplish this, our attack and
network set up was intentionally minimalistic.

Initially the capture set up consisted of one pc dedicated
to attacking, one pc dedicated to sniffing data sent across
the network, and one machine to host various vulnerable
services to be attacked. These machines were
manufactured by Dell and are model E-6100 Desktops.
They were connected via a Cisco switch. Figure 1
introduces the capture environment.

Figure 1. Isolated network for PAL creation.

.
Virtual machines were also added to our capture

infrastructure. In many instances, the simple network
outlined in Figure 1 still produced additional and
unnecessary network “chatter” including STP, ARP
Requests, and various network broadcasts. The use of two
virtual machines on a single host helped to eliminate these
issues and often produced a cleaner PCAP attack file. In
these situations the attacking virtual machine also served as
the sniffing machine.

The framework we created to build the .pcap Attack
Library (PAL) is broken into two separate phases; the first
phase is used to capture the actual attack while the second
phase is used to test and complete the capture file. The first
phase of the framework is presented in Figure 2.

Figure 2. Process used to capture the attack traffic

Each PAL capture corresponds directly to an attack in the
CAPEC dictionary. The steps to accurately capture and
document each .pcap Attack file are introduced in Figure 3.

Figure 3. Steps to cleanse and
document attack traffic.

The goal of mapping real attack traffic captured in

.pcap files to corresponding CAPEC definitions and Snort
IDS rules, is to provide instructors and network
administrators a way to quickly sort and search through the
growing attack library. Users can identify a CAPEC
definition for the attack that they want to perform. The
result is a framework that saves both time and effort for
instructors and system administrators wanting to teach

defensive techniques (rule set creation) or test their current
configurations.

The first step in identifying candidates for the PCAP
attack library was to choose common attacks which were
easy to setup or configure. This process reduced the
amount of time required to fully understand the details of a
given attack. After initially reviewing the CAPEC attack
dictionary we identified nearly 100 attacks and added them
to the potential capture candidates list. This list was further
narrowed down to a more manageable subset of 12 attacks.

Once a particular attack has been chosen, the attack is
performed while the data on the network is being captured.
Upon successful completion of the attack, the network
traffic capture is then terminated and the data is saved. For
our purposes we do not wish to include any irrelevant
packets of data in the capture file. Wireshark allows us the
utilization of filtering the captured packets. Filters are built
to restrict the packets displayed to only the packets sent
from the attacking machine to the victim machine. Once
this has been completed, the file is then saved. Wireshark
gives the user the option of saving either the entire capture
or only the displayed capture. Displayed packets are the
packets with filtering enabled, so this is the option that is
chosen. This is the portion of the procedure known as
“sanitization”. This process allows us to more efficiently
reproduce the attack since we are not flooding the network
with responses from the victim machine, miscellaneous
network traffic from normal operation of network
infrastructure components, or any other types of traffic on
the network at the time of the capture.

Once the network traffic has been captured and saved,
we then perform research to locate an appropriate SIDSr for
this particular attack. The Snort IDS comes with several
pre-constructed rules. This is the first place that is searched
for a rule that corresponds to the performed attack. If this
initial search fails to provide us with a rule or a good basis
for the rule that we need, then an internet search is
performed. If these two searches produce no rules then a
rule is written from scratch. When creating a SIDSr great
care is taken to try and ensure the lowest possible number
of false positives result from the rule. In the case of the
SIDSr that detects a SYN scan, it also detects a TCP
connect scan. This is of course because the SYN scan
performs the first 2 parts of the TCP/IP protocols 3-way
handshake. Since the TCP connect scan performs a full 3-
way handshake, it is logical then for the SYN scan SIDSr to
detect the TCP connect scan. Some situations like this
cannot be prevented and therefore some false-positives are
possible. However, these false-positives can be detected.
In the case of the SYN scan SIDSr, if a SYN scan event is
triggered and a TCP connect scan is not, then the SYN scan
was used. However, if the SYN scan event triggers in
addition to the TCP connect scan then we know a
reasonable amount of certainty (given a very close temporal
relationship between the two events) that the SYN scan was
only triggered by the TCP connect scan and thus can be
disregarded as a false-positive.

Upon successful completion of the attack, capture of the
attack network traffic, and the formation of an appropriate
SIDSr, the entire system can be tested. The attack traffic

1.	
 Iden(fy	
 CAPEC	
 A/ack	
 that	

you	
 want	
 to	
 model	

2.	
 Cra<	
 A/ack	
 Traffic	
 to	
 Mimick	

CAPEC	
 A/ack	
 on	
 'A/acker'	

3.	
 Ensure	
 SNORT	
 is	
 running	
 with	

up-­‐to-­‐date	
 ruleset	
 that	
 matches	

chosen	
 ID	
 from	
 step	
 #1	

4.	
 Ensure	
 Wireshark	
 is	
 running	

with	
 no	
 other	
 traffic	
 captured	

(clean	
 slate)	

5.	
 Execute	
 a/ack	
 on	
 'Vic(m'	

1.	
 Ensure	
 SNORT	
 rule(s)	
 fired;	

comment	
 with	
 specific	
 CAPEC	
 ID	

number	

2.	
 Stop	
 and	
 "cleanse"	
 .pcap	
 in	

Wireshark	
 as	
 needed	

3.	
 Save	
 .pcap	
 with	
 the	
 same	
 ID	

number	
 as	
 chosen	
 CAPEC	
 a/ack	
 	

4.	
 Save	
 .pcap	
 in	
 the	
 correct	
 directory	

to	
 be	
 available	
 to	
 SprayPAL	

5.	
 Test	
 .pcap	
 in	
 SprayPAL	
 with	

specific	
 layer	
 2	
 &	
 3	
 a/ributes	

can be replayed from any PC using a pcap replay tool such
as TCPReplay. Once the capture process is complete, the
attack is then replayed against an IDS and the
corresponding SIDSr. If the attack was correctly performed
and cataloged, the SIDSr will trigger an event
corresponding to this particular attack and generate an alert
on the IDS.

Given a successful replay of traffic, the captured
network traffic file, a brief README file describing the
attack, and the SIDSr file are zipped together into a single
file. This allows for easy access to all parts of the cataloged
attack data.

4. Attack Selection for the PAL

As previously mentioned, the CAPEC dictionary was

used to provide a list of possible attacks for inclusion into
the PAL. These attacks were chosen based on an
estimation of time requirement and complexity for
cataloging the attack. Below we present a brief outline of
each of the captured attacks. These attacks were all setup,
performed, and successfully cataloged according to
framework presented above. These attacks are all
completed and available to be downloaded free of charge.
The nine attacks and their individual characteristics are as
follows:

4.1 Password Brutforcing – CAPEC 49:
Password bruteforcing is the attempt of every possible

combination or value for a password. In this scenario an
attacker will eventually discover the correct password.

To perform this attack we utilized an instance of the
attack tool Hydra to simulate a bruteforce attack against an
FTP server.

4.2 SQL Injection – CAPEC 66
SQL Injection attacks are popular as well as XSS

attacks [4]. Based on this popularity, its inclusion as a
candidate was assured.

SQL Injection attacks were made easy to perform by
setting up a vulnerable website. We used the OWASP
WebGoat program to create such vulnerabilities and as such
were able to perform the SQL Injection attack with relative
ease [12]. Because this attack is relatively easy to detect,
we were able to catalog this particular type of attack
quickly. The majority of time spent on including this attack
was learning how it worked and how to perform it.

4.3 Embedding Script (XSS) – CAPEC 86
Cross-site Scripting (XSS) Attacks were a prime

candidate based on its growing popularity in the global
networking infrastructure [13]. Based on data provided by
Symantec Corporation [4], this type of attack has become
extremely popular and as a result was a prime candidate for
consideration for inclusion in the library.

The majority of the time required to add this attack to
the library was used in understanding what a XSS is and
how to perform the attack. Once we knew how to perform
an XSS, more time was needed to develop a vulnerable web
page. This was accomplished using Microsoft's Internet

Information Services 6.0 running on Windows XP
Professional.

The primary consideration for its inclusion in the library
was its popularity. There are many different ways to
perform an XSS attack, which makes detecting all possible
attacks quite difficult. However, since a simple XSS attack
is not that difficult to perform, it was selected as a final
candidate. Using the Snort IDS's ability to use Perl
Compatible Regular Expressions (PCRE's) detecting many
types of XSS attacks with one rule was possible. This was
a secondary consideration when choosing this rule for
inclusion in the library

4.4 Web Server Application Fingerprinting – CAPEC 170
Web server application finger printing requires the

attacker to send network traffic to the target in an attempt to
elicit a response from the web server. The goal is to
identify the specific software version or type based on the
unique response to the initial traffic.

To accomplish this capture we utilized Httprint. This
tool sends a series of probes to the target in order determine
software and version information.

4.5 TCP SYN Scan – CAPEC 287
SYN scans were included because they are easy to

produce and represent a popular choice of attack. SYN
Scans are also easy to detect and there are pre-existing
SIDSr's. One issue of concern when capturing the SYN
Scan was that most SYN Scan SIDSr’s are unable to
distinguish between traffic resulting from a SYN scan and
traffic from a TCP Connect scan. This problem is due to
the fact the SYN Scan is the first two parts of what is
known as the three-way handshake. Since the TCP Connect
scan performs all three parts of the handshake it will
naturally trigger the SYN scan event due to its performance
of the first two portions of the three-way handshake.

4.6 IMCP Echo Request Ping– CAPEC 288
During the initial testing of our infrastructure we

decided that one of the easiest ways to test was to initiate a
simple ping scan against our host. Given that a SIDSr
already existed [14], we set up the sniffing machine with
the simple ping scan rule and ran our scan. The SIDSr
indeed triggered an event. However, when we replayed the
captured traffic using a replay tool and the SIDSr failed to
trigger an event. After changing the layout of our systems
and verifying that the live simple ping scan triggered an
event, we attempted to replay the traffic again, this time
using TCPReplay. This time the SIDSr triggered an event.

This particular scan was initially chosen because it is
quite simple to implement. This made it a prime candidate
for our process as well as a great candidate for testing our
infrastructure.

4.7 TCP Connect Scan – CAPEC 301
Given that we cataloged the SYN Scan, we felt it

necessary to be able to distinguish between the SYN Scan
and the TCP Connect scan. The best way to accomplish
this was to add a SIDSr that detects the TCP Connect scan.
Doing so would allow us to know when the SYN event was
triggered, if the result was truly a SYN Scan by examining

whether or not the TCP connect scan event was triggered as
well. If both events triggered, this indicates a TCP Connect
scan and not a SYN Scan. Therefore any previous event
showing a SYN scan can be ignored.

The primary reason for choosing the TCP connect scan
as a final candidate was that it was both easy to perform and
easy to detect. Since we needed this scan to differentiate
between the SYN scan and the TCP connect scan it further
added to its need for inclusion in the library.

4.8 TCP XMAS Scan – CAPEC 303
The XMAS Tree scan was chosen as a final candidate

due to our inability to detect various types of Denial of
Service (DoS) attacks. We were unable to correctly
implement a SIDSr to alert when such an attack occurred.
As a result we replaced the DoS with the XMAS tree scan.

Nmap makes performing this scan very simple. This
allowed us to add another scan to the library with minimal
time invested. An additional reason that this scan was
selected as a final candidate included the fact that is was
simple to detect. Pre-existing SIDSr were readily available
[14]. Since so much time was invested in learning how to
perform a DoS attack, it was a good idea to then replace
that attack with one that was easy to perform.

4.9 TCP NULL Scan – CAPEC 304
Null scans were chosen primarily because the

infrastructure, capture configurations, and tools required to
perform the attack were already in place. Nmap had been
used to capture several other scans. As a result, NULL
scans were easy to perform. In addition, NULL scans were
readily detectable using a preexisting SIDSr.

5. Attacks Not Included in PAL

5.1 Denial of Service Attack
One of our original primary candidates for inclusion in

the library was the Denial of Service attack. This attack is
still quite popular since it can be easy to perform using the
right tools. At the time the decision was made to no longer
include this attack in the initial proof of concept library, we
could not find an appropriate Snort rule set. It was decided
that, based on our time constraints, we would delay the
inclusion of this attack until a later date.

5.2 Sniffing Attack
The majority of our time was spent researching network

sniffing as a type of attack. Many experiments were
performed in order to attempt to detect sniffing. Our
current efforts were unable to detect a change made to the
regular network traffic on the wire upon the beginning of a
sniffing attack. Our experiments focused on continuously
putting a NIC into promiscuous mode while sniffing traffic
on our network. We were unable to find traffic to indicate
that a card had switched to promiscuous mode.
Furthermore, it was discovered that there are tools freely-
available to users that allow for detection of sniffing
attacks. This software works by sending out ARP packets
and then examining the machine's response to the packets.

Further research will be done on this attack to include this
attack in future releases of PAL.

6. Conclusions and Future Work

PAL is available to download and utilize free of
charge. We encourage the community to help grow the
PAL by completing the steps outlined in section 3 above.
The process is simple and straight-forward. Captures can
be completed with minimal network infrastructure and
resources or the through the use of virtual machines. The
use of an isolated network ensures only traffic from
“Attacker” to “Victim” is captured, thus less cleansing of
the .pcap files needs to be done.

“Attacker” software is at the discretion of the user. We
encourage adopters to make user of widely available tools
so others can validate your .pcap files with the same
toolset. Each attack must be mapped to an individual
CAPEC Attack Pattern and be documented as such in the
.pcap file. These attack .pcap files should have as much
unnecessary traffic as possible removed. Once attacks are
captured, various tools can be used to manipulate layer 2
and 3 parameters during replay. Traffic can be captured
and .pcap files created in Wireshark
(http://www.wireshark.org/). Utilizing Wireshark on a
Windows machine requires the installation of WinPCAP as
the packet capture and filtering engine
(http://www.winpcap.org/). Attack traffic can be monitored
and alerted on with SNORT (http://www.snort.org/).

Our work is significant from the standpoint of current
academic and industry professionals looking for an easy
way to teach and test intrusion detection systems.
Instructors and administrators no longer need to possess the
technical tools or know the details of performing various
offensive security attacks. Each pcap file provides the user
with the ability to quickly and accurately recreate various
attacks. Our attacks also serve as a valuable addition to the
current CAPEC attack library. When paired with the
CAPEC dictionary, our attacks provide viewable,
replayable, instances of each attack description.

Furthermore, this work also produces a framework for
future collaboration and growth. This framework is
important as it will serve to keep the PAL standardized and
usable across professions and industries.

These files will be indexed by CAPEC ID for searches.
The entire library exists currently as a compressed folder
whose contents are .pcap files containing each entry in the
library. The process has been documented which allows for
future attacks to be cataloged and added to the PAL.

.

ACKNOWLEDGMENT
This work was supported in part by a grant from the

National Science Foundation (NSF) under grant CNS
1004843 and by the National Center for the Protection of
the Financial Infrastructure at Dakota State University.

REFERENCES
1. mitre.org, “ Common Attack Pattern Enumeration and

Classification,” http://capec.mitre.org July 23, 2010
2. Cho, K, Mitsuya K, Kato, A, “Traffic Data Repository at the

WIDE Project,” 2000 USENIX Annual Technical Conference,
June 2000

3. Lee, C, Copeland, J, “FlowTag: A Collaborative Attack-
Analysis, Reporting, and Sharing Tool for Security
Researchers,” ACM VizSEC '06 November 3, 2006

4. Fossi, M, Turner, D, Johnson, E, Mack, T, Adams, T,
Blackbird, J, Enstwisle, S, Graveland, B, McKinney, D,
Mulcahy, J, Wueest, C, “Symantec Global Internet Security
Threat Report Trends for 2009,” Volume XV, April 2010

5. S. Bhagyavati, "Agyei-Mensah, Rose Shumba, Iretta BC
Kearse, Teaching hands-on computer and information systems
security despite limited resources," 2005.

6. J. Hill, et al., "Using an isolated network laboratory to teach
advanced networks and security," ACM SIGCSE Bulletin, vol.
33, pp. 36-40, 2001.

7. M. Bishop, "Teaching context in information security,"
Journal on Educational Resources in Computing (JERIC), vol.
6, 2006.

8. S. Perez-Hardy, "A unique experiential model for teaching
network administration," 2003, pp. 119-121.

9. M. Motsidi, et al., "New Approach in Teaching Network
Security Subjects," presented at the International Conference
on Information (ICI9), Kuala Lumpur, 2009.

10. B. Hartpence and L. Hill, "Wireless carts: an inexpensive
education and research platform," presented at the Proceedings
of the 6th conference on Information technology education,
Newark, NJ, USA, 2005.

11. B. Hartpence, "Teaching wireless security for results," 2005,
pp. 89-93.

12. OWASP, “WebGoat Project,”
http://www.owasp.org/index.php/Category:OWASP_WebGoat
_Project April 18, 2010

13. McKinney, D, “Cross-site Scripting Vulnerabilities,”
Symantec Connect
(http://www.symantec.com/connect/blogs/cross-site-scripting-
vulnerabilities) , July 4, 2006

14. "Snort IDS Rules,”
https://www.snort.org/downloads/snortrules-snapshot-
2853.tar.gz July 22, 2010

