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Abstract

This thesis presents a compilation framework for translating ANSI C programs into hardware dataflow ma-
chines. The framework is embodied in the CASH compiler, a Compiler for Application-Specific Hardware.
CASH generates asynchronous hardware circuits that directly implement the functionality of the source
program, without using any interpretative structures. This style of computation is dubbed “Spatial Compu-
tation.” CASH relies extensively on predication and speculation for building efficient hardware circuits.

The first part of this document describes Pegasus, the internal representation of CASH, and a series of
novel program transformations performed by CASH. The most notable of these are a new optimal register-
promotion algorithm and partial redundancy elimination for memory accesses based on predicate manipu-
lation.

The second part of this document evaluates the performance of the generated circuits using simulation.
Using media processing benchmarks, we show that for the domain of embedded computation, the circuits
generated by CASH can sustain high levels of instruction level parallelism, due to the effective use of
dataflow software pipelining. A comparison of Spatial Computation and superscalar processors highlights
some of the weaknesses of our model of computation, such as the lack of branch prediction and register
renaming. Low-level simulation however suggests that the energy efficiency of Application-Specific Hard-
ware is three orders of magnitude better than superscalar processors, one order of magnitude better than
low-power digital signal processors and asynchronous processors, and approaching custom hardware chips.

The results presented in this document can be applied in several domains: (1) most of the compiler
optimizations are applicable to traditional compilers for high-level languages; (2) CASH itself can be used
as a hardware synthesis tool for very fast system-on-a-chip prototyping directly from C sources; (3) the
compilation framework we describe can be applied to the translation of imperative languages to dataflow
machines; (4) we have extended the dataflow machine model to encompass predication, data-speculation
and control-speculation; and (5) the tool-chain described and some specific optimizations, such as lenient
execution and pipeline balancing, can be used for synthesis and optimization of asynchronous hardware.
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Chapter 1

Introduction

1.1 Motivation

For most computer users the speed and capabilities of today’s computer systems were unthinkable as little
as a decade ago. The relentless advance of technology at an exponential pace for more than 40 years has
produced amazingly complex and powerful machines – in September 2003 Intel released the Itanium 2
processor for servers, built out of 410 million transistors on a single 374mm2 chip and consuming 130W. A
desktop microprocessor with more than 1 billion transistors is expected by 2007. The exponential increase
in computing resources is expected to last at least another decade, and perhaps even more if the promises of
nanotechnology come true.

However, all this progress has come at a cost. The very success of miniaturization creates new unex-
pected obstacles. Figure 1.1 illustrates one such difficulty: the complexity of the hardware design increases
with the number of transistors, at an exponential pace [itr99]. For instance, the complexity of a hardware de-
sign depends on the number ofexceptionsthat cannot be automatically handled by Computer-Aided Design
(CAD) tools [HMH01]; the number of these exceptions grows with the number of transistors. Although the
productivity of hardware designers increases too, due to improvements in CAD tools, it does so at a slower
pace. The end result is a growingproductivity gapbetween what we have and what we can economically
use. Fewer and fewer companies can close this gap, and when they do, they employ larger and larger design,
test, verification and manufacturing teams.

The problems of hardware design productivity are nowhere near being solved. In fact, more ominous
obstacles are surfacing. Figure 1.2 shows the signal propagation delay through logic gates and “average-
sized” wires. Since many structures of a modern processor such as the forwarding paths on the pipeline, the
multi-ported register files, the instruction wake-up logic, etc., require global signals (i.e., spanning multiple
modules), there simply is not enough time for the signals to propagate along these wires at very high clock
speeds. In fact, at 10GHz a signal can cover less than 1% of the surface of a chip in one clock cycle
[AMKB00], making any architecture relying on global signals infeasible.

The research presented in this document is aimed directly at these problems. We explore(A) a new
computational model which requires no global synchronization, and(B) a new CAD methodology aimed
at bridging both software compilation and microarchitecture. Our model is named Spatial Computation. In
Spatial Computation, applications written in high-level languages are compiled directly into hardware cir-
cuits. The synthesized circuits feature only localized communication, require no broadcast, no global con-
trol, and are timing-insensitive, and therefore correct even when the communication latency is not statically
predictable. The compiler we have developed requires no designer intervention (i.e., it is fully automatic),

1
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Figure 1.1:Complexity and productivity versus technology generation.
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Figure 1.2:Wires and not gates dominate the delay in advanced technologies.

is fast, and exploits both instruction-level parallelism and pipelining. This thesis is an investigation of the
compilation methodology and of the properties of the synthesized circuits.

1.2 Application-Specific Hardware and Spatial Computation

One can view Spatial Computation in several ways:

• As a pre-von Neumann model of computation [vN45]: a computer which has no stored program in the
form of a sequence of instructions. In this sense, ASH is a big automatically-generated Application-
Specific Integrated Circuit (ASIC).

• As aspecializationof the pipeline of a processor through the “unrolling” and “constant folding” of a
fixed program, as illustrated in Figure 1.3.
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Figure 1.3:ASH can be seen as the unrolling and specialization of the pipeline of a traditional wide pro-
cessor, by removing the forwarding paths, specializing the type and number of functional units, simplifying
the interconnection network to point-to-point links, removing the global register file and instruction issue
logic.

• As the limit result of clustering a very long instruction-word (VLIW) processor with a virtually un-
limited instruction word.

From an architectural point of view Spatial Computation exhibits some desirable attributes:

• It is program-specificand therefor it has no interpretation overhead.

• It can exploit virtually unlimited instruction-level parallelism (ILP).

• It features mostly short and fast point-to-point wires driven by a single writer each (i.e., wires that
require no arbitration).

• It is asynchronous and therefore latency tolerant. This makes it correct by design, even when it
employs global structures, such as the memory access network.

• As in superscalar processors and dataflow machines, its computation is dynamically scheduled, based
on the availability of data.

• It requires no centralized control structures.
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Figure 1.4:Application-Specific Hardware is generated by the automatic synthesis of computational struc-
tures, memories and an interconnection network from C programs.

• It has a modular structure.

• It is composed ofleanhardware, in particular, both datapath and control-path contain no broadcast
structures, no arbitration, no multi-ported memory or register files, no content-addressable structures,
and would therefore be able to run at a very high speed.1

• It is easy to reason about. Therefore we believe it is easily amenable to formal verification.

In this thesis we investigate in detail a particular instance of Spatial Computation, with the following
features:

• Each source procedure is translated into a distinct hardware structure.

• Each source operation is synthesized as a different hardware arithmetic unit. As a result, our circuits
exhibitno computational resource sharing.

• All program data is stored in a single monolithic memory, accessible through a conventional memory
hierarchy, including a load-store queue and caches.

• The synthesized hardware is an application-specificstatic dataflow machine. This means that (1)
operations are executed based on the availability of data; and (2) at any point in time there can exist
in the circuit at most one result for each operation.2

We define Application-Specific Hardware (ASH), as the hardware structure implementing a particular
program, synthesized under compiler control from the application source code. The translation is illustrated
in Figure 1.4.

From now on, when we use the terms “Spatial Computation” and “ASH” we will only refer to this
particular architecture. There can be other reasonable definitions for these terms (e.g., application-specific
processor), but here we use these terms with the meanings as defined.

1However, the memory access network requires some complex structures.
2In contrast, in dynamic dataflow [AN90], at some point in time, there can be an arbitrary number of results “live” for each

operation.
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1.2.1 ASH and Computer Architecture

The features of Spatial Computation suggest that it may provide very good performance on data-intensive
programs, which have high amounts of instruction-level parallelism. Indeed, as we show in Chapter 7, ASH
can surpass by a comfortable margin a 4-wide out-of-order superscalar on media processing kernels.3

However, as our analysis shows, some of the strengths of ASH are also its weaknesses when we consider
control-intensive programs. The lack of branch prediction in ASH is a severe handicap for benchmarks
where the ILP is low and the computation of the branch conditions is on the critical path. The distributed
nature of ASH makes reaching memory expensive and squashing speculation difficult.

These behaviors suggest that a versatile computer system should combine the strengths of both out-
of-order processors for control-intensive code, and Spatial Computation for data-intensive kernels. This
research opens the exploration for the detailed architecture of such a system, and mostly of a low-overhead
hardware substrate suitable for Spatial Computation (when compared to contemporary FPGA devices [ZRG+02]).

1.3 Research Approach

A good characterization of this research would be “translating programs to hardware in the absence of
resource constraints.” This approach is certainly extreme and could be dismissed as relying on unrealistic
assumptions. However, we think that there is merit in such a methodology:

1. First, such an approach forces a change of perspective in treating the problem and may provide fresh
insights into the solution space, allowing one to reconsider methods traditionally excluded. As a
result, even though the constraints are relaxed, such an approach may produce results usable within a
realistic setting.

For example, Spatial Computation blurs the notion of instruction set architecture (ISA). This enabled
us to explore the addition of new computational primitives, such as the token generator (whose use
is described in Section 4.5.4), which dynamically controls the slip between two loops. The use of
this primitive enables a new type of parallelization/pipelining optimization, which we named loop
decoupling. An important but subtle aspect of the lack of the ISA is the fact that the computational
primitives no longer have to be encoded in fixed-size machine instructions. This enables us to use
primitives with a potentially large number of inputs, such as multiplexors or token combine operators
(the latter described in Section 4.4). We currently are investigating how the use of primitives similar
to token generators in a more traditional multithreaded architecture can enable the same benefits.

The register promotion algorithm from Section 4.6 is the result of a similar shift in the point of view
regarding the “layering” of a system: that algorithm takes a traditional compile-time construct —
dataflow availability information — and transforms it into a run-time object. This transformation en-
ables an accurate dynamic computation of availability and therefore obtains dynamic optimality of the
number of memory accesses. As the computational bandwidth of processors increases, these kinds
of optimizations may become more advantageous. In the case of register promotion, the benefit from
removing expensive memory operations outweighs the increase in scalar computations to maintain
the dataflow information. We named this new kind of dataflow analysis — Static Instantiation, Dy-
namic Evaluation (SIDE). The compiler statically determines which dataflow facts are beneficial in
a run-time computation, and inserts code in the program to dynamically compute the dataflow facts.
The register promotion algorithm is the application of the SIDE method to the classical dataflow

3This is assuming our assumptions for the architectural parameters are realistic.
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availability problem. We are currently investigating whether the SIDE methodology can be applied
to other dataflow analyses.

Another example of the power of an unconventional framework is shown by the algorithms we have
devised for treating memory dependences. In traditional systems, memory dependence information
is computed first by the compiler and then completely discarded and re-created dynamically by the
processor. So there can be some benefit if the static and dynamic stages can share information.
In Spatial Computation the token edges used to ensure memory consistency are both a compile-
time and a run-time object. We are currently investigating the benefit of such a scheme in classical
architectures.

2. Second, while we relax some constraints, we do maintain some hard limits for other parameters. For
example, we do not modify the semantics of C, we do not exclude any language constructs, and we
do not enforce a particular coding style for programs translated to hardware, as does the vast majority
of the research on high-level synthesis from C.

3. Third, our results provide understanding on the limits of a particular model of computation, as evi-
denced in Chapter 8, which compares ASH with superscalar processors.

1.4 Contributions

Even though the research presented in this document is only the beginning of a long-term endeavor, and
many more refinements need be made before a complete end-to-end solution is obtained, it still has produced
some worthwhile results. To our knowledge, the following points are original research contributions of this
work:

• Predicated Static-Single Assignment dataflow internal representation:We are the first to report
on the wide scale usage of a compiler internal program representation that brings together static
single-assignment, predication, forward speculation and a functional representation of side-effects.
Several features of this representation make compiler development particularly efficient: (1) it has
precise semantics; (2) enables a succinct expression of most common program optimizations; (3) it
enables efficient reasoning about memory state and therefore enables powerful memory optimiza-
tions; and (4) it makes dataflow analyses simple and efficient.

• SIDE as a new framework for dataflow analysis:Our new hybrid dataflow analysis framework,
Static Instantiation Dynamic Evaluation, uses code to dynamically evaluate dataflow information
when a static evaluation is too conservative.

• New compiler algorithms: We describe new optimization algorithms for redundancy elimination
in memory accesses: register promotion and partial redundancy elimination for memory. We also
describe algorithms for enhancing the pipelining of loops, such as a scheme for pipeline balancing,
memory access pipelining in loops through fine-grained synchronization, and loop decoupling.

• Language extension:We have studied the efficiency of user annotations in C programs (through the
use of#pragma statements) to convey pointer non-aliasing information to the compiler.

• Dataflow model extensions:We have realized the first translation of the complete C language to a
dataflow machine. This effort has crystallized a methodology for implementing imperative languages,
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including unstructured flow-of-control, recursion, side effects and modifiable storage. We have in-
corporated predication and speculation in the dataflow model of execution and we have suggested
a way to perform the equivalent of branch prediction in dataflow machines. Other contributions to
the dataflow model of execution are the use of lenient operations and an enhanced form of pipeline
balancing.

• Hardware synthesis:We have built the first complete system able to translate arbitrary C programs
into hardware. This tool differs from most prior approaches in its change of perspective: C is not
regarded as a hardware-description language, destined to describe an independently-executing piece
of hardware. Instead, the goal of the synthesis system is to directly implement a given application as
a hardware circuit.

• Asynchronous circuit design: We have provided the first tool that can be used to translate C pro-
grams into asynchronous circuits. The translation methodology is general enough to be applicable to
any imperative language.

• Embedded systems construction:We have built the CASH compiler, which can be used as a tool for
very fast prototyping of embedded systems hardware accelerators and has shown its effectiveness on
a wide range of media processing applications. Although not detailed in this document, we have sug-
gested a new way of performing hardware-software partitioning, which relies on separating the policy
from the mechanism. This partitioning is easily amenable to automatization. CASH, together with
the partitioning methodology, constitute a very efficient method of exploring the design of complex
application-specific system-on-a-chip devices using only the application source code.

• New perspective on superscalars:We have performed a new limit study on the subject of instruction-
level parallelism and the effectiveness of architectural features for exploiting it. Namely, by contrast-
ing a static dataflow model with unbounded resources (ASH) against a superscalar processor imple-
mentation, we have highlighted the effectiveness of a monolithic architecture at performing memory
accesses, prediction and speculation, and emulating a full dynamic dataflow model of execution.

1.4.1 Thesis Statement

Software compilation technology for targeting predicated architectures can be naturally adapted for per-
forming the automatic synthesis of application-specific, custom hardware dataflow machines. This com-
pilation methodology translates media processing kernels into hardware with a high degree of instruction-
level and pipeline parallelism. However, the resulting distributed computation structures are not as easily
amenable as traditional monolithic superscalar processors at using acceleration mechanisms such as (cor-
related) prediction, speculation and register renaming. The lack of these mechanisms is a severe handicap
when executing control-intensive code.

1.5 Thesis Outline

This document has been divided into two parts. Part I, encompassing chapters 2–5, is concerned with
the “static” aspects of ASH, i.e., compilation. Chapter 2 is a broad overview of the compilation process.
Chapter 3 describes in detail Pegasus, the internal representation of the CASH compiler and the process of
building it starting from a control-flow graph. Chapter 4, the most substantial of this thesis, is devoted to a
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description of the program transformations performed on Pegasus with the goal of increasing performance.
Chapter 5 is a collection of advice for other developers of research compilers.

Part II of this thesis, encompassing chapters 6–8, is about the dynamic behavior of ASH. Chapter 6
looks at some emergent properties of the execution of ASH fabrics and discusses some particular optimiza-
tions that are only applicable for such a model of computation. A particularly important subject covered
is dataflow software pipelining, the main source of parallelism exploited in Spatial Computation. The next
two chapters are all about performance. Chapter 7 uses ASH to implement kernels for embedded-type
benchmarks and compares its speed with both VLIW and superscalar processors. It also evaluates the per-
formance of the generated circuits using low-level Verilog simulations. Chapter 8 dwells on the hypothetical
capabilities of ASH for executing complete control-intensive programs, and contrasts those capabilities with
the ones available in a superscalar processor.

Appendix A describes briefly our benchmarking methodology. Appendix B contains both some correct-
ness arguments about the behavior of ASH and a formal definition of the semantics of all its computational
primitives.
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Chapter 2

CASH: A Compiler for Application-Specific
Hardware

This chapter is devoted to a bird’s eye view of CASH, the compiler translating C programs into Application-
Specific Hardware (ASH). While the subsequent chapters go into many more details, the material here
justifies some of the design decisions and describes the compilation process end-to-end.

2.1 Overview

Figure 2.1 shows CASH within its environment. The inputs to the compiler are programs written in ANSI
C.1 CASH represents the input program using a dataflow internal representation called Pegasus. The output
of CASH is a custom hardware dataflow machine which directly executes the input program. The result can
be implemented either as a custom hardware device or on a reconfigurable hardware substrate.

We envision two different uses for CASH:

• CASH can be used as a pure CAD tool, using C as a hardware description language (HDL) and
generating a complete hardware implementation of a program. An evaluation of CASH from this
perspective is given in Chapter 8.

• CASH can be used as a piece of a more complex tool-chain targeting a hybrid system-on-a-chip.
CASH can then be used to translate selected parts of a larger C program into hardware. The remaining
code is executed on a traditional microprocessor, relatively tightly coupled with the custom hardware.
Chapter 7 analyses the effectiveness of this configuration.

CASH translates the input program into a flat computational structure which contains no interpretation
engine. Roughly, to each operation in the source corresponds one arithmetic unit in the output circuit.
This kind of computation structure is called Spatial Computation. It exhibits maximum parallelism and
minimal resource sharing. The only resource sharing is at the procedure level since different calls to the
same procedure re-use the same circuit.

Currently CASH translates each procedure of a program into a different, completely independent com-
putational circuit. However, by using inlining and by writing carefully crafted library functions2 one can
control to some degree the sharing of the structures in the resulting circuit.

1The Kernighan & Ritchie dialect mostly works, but may cause occasional difficulties.
2For example, by implementing all floating-point operations as library calls.
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Figure 2.2:The interface between hardware and software in traditional settings and in ASH.

2.2 The Virtual Instruction Set Architecture

Figure 2.2 shows the relationship between hardware and software in two settings: the traditional processor-
centric world to the left and ASH to the right. In the traditional setting the software and hardware worlds
are separated clearly by the Instruction Set Architecture (ISA), which is a tight contract between the two
worlds. The ISA is basically the set of machine instructions recognized by the CPU. The compiler has to
express any program as a combination of these instructions. The traditional ISAs are quite rigid, producing
a “tyranny of the ISA”: even if the compiler has more knowledge about the application at hand, it has no
way to send this information to the hardware. Rebellion against this tyranny is quite difficult, as illustrated
by the case of the Itanium microprocessors. These processors were designed to accommodate advances
in compiler technologies, and therefore required radically different ISAs compared to the traditional x86
processors manufactured by the same company. Intel has needed more than 20 years to decide to switch to
this new ISA, despite known shortcomings in the x86 processors. Mistakes in the design of an ISA are very
hard to fix.

This state of affairs changes completely in ASH, as shown to the right in Figure 2.2. The interface
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Figure 2.3:The CASH compiler is composed of a Suif front-end for carrying out parsing and high-level
optimizations and a custom back-end using a new internal representation called Pegasus.

exposed by the hardware is composed of raw computation gates. This frees, but also complicates, the com-
pilation process. In order to handle the great semantic gap between the source code and the target machine
our approach consists in building a “virtual ISA.” This time the ISA is entirely a compile-time notion.
Think of the virtual ISA as the set of computational primitives the compiler uses to express the meaning of
the program. In our setting the virtual ISA is the interface between the compiler core and the back-ends.
Unlike in the traditional setting, the virtual ISA is not bound by any rules and can be changed. CASH’s
virtual ISA is the set of computation primitives of the Pegasus intermediate representation, described in
Section 3.2. While virtual ISA resembles a traditional ISA in many respects, it also features substantial
differences. For example, it is not bound by machine resources, i.e., does not require a fixed encoding (say,
32 bits) for each instruction. Second, it may be changed by the compiler implementer without touching
the external hardware/software interface. The Pegasus virtual ISA contains constructs usually not found in
traditional processors, such as a direct representation of memory dependences, described in Section 3.2.3.5.
Exploring the space of virtual ISAs may be a rich and rewarding research activity, which may also suggest
improvements to traditional ISAs.

2.3 Compiler Structure

The CASH compiler is a tool-chain consisting of a Suif-based [WFW+94] front-end, a custom-developed
core, and several back-ends tightly integrated with the core, all tied together by Perl scripts and Makefiles,
as shown in Figure 2.3. Occasionally we will refer to the core also as CASH.

CASH is built on top of the Suif 1 infrastructure — the code base is Suif 1.3.0.5. No optimizations
are used from the original Suif distribution. The only functionality used consists in parsing and un-parsing,
linking, and basic object manipulation of symbol tables, instructions and static data initializers. All major
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Figure 2.4:Suif front-end structure. The passes communicate with each other through Suif files.

Suif optimizations and analyses used in CASH are locally developed (however, as described below, some
are borrowed from different research groups).

2.3.1 Front-End Transformations

The front-end is composed of multiple Suif compilation passes built as separate executables communicating
through Suif files. Figure 2.4 shows the transformations performed in the front-end. The front-end will be
rarely mentioned in this document.

• Parsing is performed by the Suif driverscc . It is invoked without any optimizations. The result of
parsing are high-Suif representation files (i.e., containing high-level constructs, such asfor , while
loops andif statements, nested scopes and array accesses).

• The procedure inlining pass was written by Tim Callahan from Berkeley as part of his GarpCC
[CW98] compiler. It is highly configurable, allowing the use of various policies for inlining. Cur-
rently we do not perform cross-file inlining, although the pass supports this functionality.

• The loop unrolling was written by Todd Mowry, then at Stanford. It can unroll bothwhile and
for loops, both with and without compile-time constant bounds. Loop unrolling has been tuned
to aggressively unroll loops, proving very beneficial for embedded-type benchmarks (see Chapter 7).

14



Currently we do not unroll loops containing function calls3 or expensive operations, such as division.4

• The lowering pass removes all high-level constructs and nested scopes; the result of lowering is low-
Suif, roughly a three-operand representation of the original program.

• Linksuif is a Suif pass which unifies the symbol tables of several files allowing them to be used as a
unit. It is a prerequisite of the following passes.

• The “static globalization” pass transforms procedurestatic variables into globals by mangling
their names and moving them to the global symbol table. It is solely used to remove the syntactic
sugar ofstatic locals, which are just globals with a local visibility.

• The call-graph pass computes a conservative approximation of the program call-graph. The main
usage of the call-graph is to detect recursive procedures, which require a more heavyweight approach
in CASH. Since call-graph computation for a language with pointers is P-SPACE complete [Wei80],
we resort to several approximations. First, the whole program is scanned and all procedures whose
address is taken are noted. Second, a flow-sensitive, intra-procedural pointer analysis is used to
restrict as much as possible the points-to set of all functions called through pointers. Third, the strong
type-based heuristics described in [Atk02] are applied to prune the candidates for each call through
pointers. The strongly-connected components are computed — these contain exactly the recursive
functions. The resulting call-graph is written to a text file and cached (i.e., it is not recomputed unless
the source program changes). It is important to note that it is not enough to know which procedures
are recursive. It is also necessary to know which call instructions are potentially recursive.

• Finally, the “address-taken” pass is a Suif built-in flow-insensitive analysis, which tags all objects
whose address is taken (and global variables as well). Next, all accesses to such objects are trans-
formed to explicit memory loads and stores through pointers. This step clearly separates scalar ac-
cesses from ambiguous accesses which can have side-effects.

2.3.2 Core Analyses and Transformations

The core of the compiler is the main subject of this thesis. It consists of two parts: a translation from the
Suif intermediate representation to our own predicated representation called Pegasus; and the bulk of the
program transformations and optimizations, carried on Pegasus. Unlike the front-end, the entire processing
of the core and the back-ends are tightly integrated in a single binary executable. Figure 2.5 illustrates the
structure of the core.

In order to simplify the build process of the Pegasus representation several analyses are carried out on
the three-operand code. Let us briefly discuss them, as shown in the top part of Figure 2.5. The complete
implementation of the core was developed by us. It uses some Suif libraries that we have developed to build
control-flow graphs and to perform generic dataflow analyses.

• If the call-graph is supplied, it is read at this moment. The call-graph structure is used both to con-
struct the control-flow graph (CFG) and later in the compilation process to synthesize code differently
in recursive/non-recursive procedures.

3There are two reasons for not unrolling loops with function calls: (1) the performance of the unrolled loop cannot be predicted
statically; and (2) it changes the pre-computed call-graph of the program.

4The reason for not unrolling such loops is detailed in Section 6.8.
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Figure 2.5:The structure of the core of the compiler.

• Building the CFG is fairly straightforward. However, as described in Section 3.3, some constructs
are handled specially; namely,return instructions are always in a basic block of their own, and
recursive procedure calls always start a new basic block.

• A simple reachability computation performs unreachable code removal on the CFG.

• The CFG is partitioned into disjoint hyperblocks. This algorithm is based on a depth-first traversal of
the CFG and is discussed in Section 3.3.3.

• A live variable computation, which marks for each program point all live scalar variables. There is
no lifetime analysis of memory-resident objects, only of the virtual registers.

• A simple pointer analysis is carried out. This step computes a read-write set for each memory access
instruction (load, store, call). The set contains symbolic memory locations that may be accessed
at run-time by the instruction. For procedure calls it is conservatively assumed that all objects in
the read-write set may be modified within the callee and its children.5 The read-write set is used
later during the Pegasus build to insert token edges between non-commuting memory operations
(Section 3.3.9).

Since the cost of a points-to analysis can be quite substantial (the space-complexity is|CFG| ×
|V ars|, (i.e., the number of basic blocks multiplied by the number of symbolic objects that can
appear in the points-to-sets), a simple heuristic may decide to forgo completely the points-to analysis
if the CFG is too large. If this is the case, a very conservative approximation is used instead — all
memory operations may access all memory locations. Just a handful of procedures in our benchmarks
are too large for pointer analysis.

5The write-set of a call may be further reduced by using information about arguments qualified withconst . But we have not
implemented this feature yet.
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The actual Pegasus building algorithm is described in detail in Section 3.3, while the Pegasus-based
optimizations are covered in detail in Chapter 4. The order of the Pegasus optimizations is the subject of
Section 4.2.

2.3.3 Back-Ends

Currently CASH has three back-ends, illustrated in Figure 2.3:

• A dot back-end used to generate drawings of the internal representation of one compiled function.
The representation is a fairly simple textual representation of the Pegasus graph in the language of
the Graphviz [GN99] graph visualization tool. This “back-end” can be invoked also from a debugger,
to print the state of the representation at various points during the compilation process. Thedot
output has a very simple structure and is easily manipulated by various Perl scripts for debugging and
illustrations. Thedot tool automatically computes the graph layouts from the textual description.
Many of the illustrations in this text were produced in this way. The conventions used for drawing
Pegasus representations and some shortcomings ofdot are discussed in Section 3.2. The use of this
back-end for debugging and performance analysis is further described in Section 5.3, Section 6.3 and
Section 6.6.

• A C-simulator back-end is used to generate a relatively high-level simulation of each program. This
simulator was used to gather most of the numeric results presented in this document. The simulator
models the finite-state machine of each asynchronous operation and is parameterized with operation
latencies. However, the simulator ignores the effects caused by the physical layout.

• A Verilog back-end generates direct asynchronous circuits from the Pegasus representation. This
back-end was written entirely by Girish Venkataramani.

Most of the translation is fairly straightforward, using libraries for technology mapping each Pegasus
primitive. The generation of the memory access network is somewhat complex; the network for
handling procedure calls is still under design. The discussion of this back-end is out of the scope
of this document. Preliminary measurements using the Verilog code generated by this back-end are
presented in Section 7.5. These simulations are more accurate than the ones of the C simulator and
do include the effects of the technology mapping libraries and circuit layout.

2.4 Optimizations Overview

The rest of this document is only concerned with the core of CASH compiler, as described in Section 2.3.2,
operating on the Pegasus representation. In this section we briefly overview the optimizations performed by
CASH on the compiled program. A detailed discussion of this topic is the subject of Chapter 4.

2.4.1 What CASH Does Not Do

Before we summarize the optimizations performed, let us mention some optimizations which arenot part
of our compiler.
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• A peculiarity of the Pegasus representation is that it is a pure dataflow representation (see Chapter 3).
As such, it does not contain any control-flow information.6 In consequence, many control-flow related
optimizations are irrelevant (but see Section 4.1 for a discussion).

• Since CASH targets Spatial Computation, which does not have a fixed instruction set, its back-ends
are substantially different from traditional compilers. For instance, CASH does not contain either
a register allocator (because we can allocate arbitrarily many registers) or a scheduler (because the
circuits synthesized are asynchronous, dynamically scheduled).7 It also does not contain the lowest
level optimizations, such as instruction selection (because we can implement almost any instruction),
peephole optimization, or instruction-cache optimizations (because there is no instruction issue in
Spatial Computation).

• Although CASH is inspired in many respects from the compilation methodology for Explicitly Paral-
lel Instruction Computing (EPIC) architectures [ACM+98], it does not use at all profiling information
for guiding its decisions. It is a “pure static” compiler. While the use of profile information would
certainly help improve some of the code transformations, it requires a more sophisticated tool-set for
mapping back run-time information to the original source-code. We believe that our static approach
still provides an interesting reference point in the design space. Some of the features of Spatial
Computation, such as lenient execution (see Section 6.4), can make up for the lack of profiling in-
formation. Investigating the use of run-time hints for improving Pegasus is an interesting subject of
future research.

• CASH is a C compiler. As such it does not implement optimizations which are useless for C programs,
such as array bounds checking removal or exception handling. The latter is actually a liberating
assumption — since C does not really have an exception model, CASH does not implement any (but
see Section 2.5.3.1 for a discussion).

• CASH is not a parallelizing compiler. As such, it does not perform any of the loop- and data-
restructuring transformations customarily found in parallelizing FORTRAN compilers. The C lan-
guage is not easily amenable to such transformations.

• CASH does not do any inter-procedural optimizations, except a special handling of recursion and
a rather traditional procedure inlining. This is not really a limitation of the model. There is no
fundamental reason that inter-procedural analyses and optimizations could not be added to a spatial
compiler. This reflects our belief that scalable compilation methodology has to be modular and to
support separate compilation. We think that the need for interprocedural analysis and optimization
actually reflects a source language shortcoming. In Section 7.3 we explore the way a simple language
extension (through the use of a C#pragma statement) can be used to supplant expensive inter-
procedural aliasing information.

• While CASH tries to exploit parallelism at the program level, it still does too little in exploiting it at
the memory level. We expect that reorganizing data layout can provide substantial benefits [SSM01,
BRM+99]. However, the C language makes such optimizations difficult, since memory layout has

6However, a compiler targeting a traditional machine could, with little difficulty, reconstruct a control-flow representation from
Pegasus. Predication is deeply enmeshed in Pegasus and therefore targeting an architecture without direct support for predication
would probably be rather suboptimal.

7However, we do plan to add some scheduling-related optimizations, i.e., optimizations taking into account the expected exe-
cution order of the operations.
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to be exactly preserved for all objects for which some program accesses cannot be disambiguated at
compile-time.

• Finally, CASH could do much more in terms of hardware-targeted optimizations. The BitValue anal-
ysis [BSWG00], which discovers useless bits in C programs and can narrow the size of the words
computed on, is not yet integrated into CASH. Many important hardware-related optimizations are
relegated to the post-processing tools, (i.e., the hardware synthesis tool-chain used to process the Ver-
ilog output from CASH). CASH is also not taking full advantage of the immense freedom afforded by
the Virtual ISA by using custom operations (except in some modest ways, such as using tokens at run-
time (Section 6.5.2) and the token generator operation (Section 4.5.4)). In the simulations presented
in this text, CASH ends up by using a rather restricted set of computational primitives, rather similar
to the machine code of a contemporary processor (with somewhat fewer limitations on the instruc-
tion size, such as the register set or immediate values encoding). Potentially important performance
improvements may be unleashed by the use of a truly arbitrary set of computational primitives, as
afforded by a truly custom hardware target, as shown in the research about reconfigurable computing.

2.4.2 What CASH Does

With regard to the range of program transformations performed, CASH is much closer to a software com-
piler than to a CAD tool. We have implemented in CASH most textbook scalar optimizations. In addition,
CASH has proven to be a great vehicle for implementing some memory-related optimizations, such as
redundancy elimination and register promotion.

Most optimizations in CASH are applied at the level of hyperblocks, which tend to be relatively coarse
program regions (see Section 3.3.3). Optimizations are therefore, as effectiveness goes, somewhere between
purely local, basic-block-based optimizations, and global, whole-procedure optimizations. While it is very
hard to quantify the quality of optimizations in a precise way, we believe that the quality of the code is
closer to that achieved by global optimizations than to purely local transformations. An important point is
that most innermost loops8 are hyperblocks and therefore are treated as an optimization unit.

As already discussed, the front-end performs procedure inlining and loop unrolling. The CASH core
performs (truly) global constant propagation, constant folding, partial redundancy elimination for both
scalars and memory, a wide range of algebraic optimizations, loop-invariant code motion, scalar promo-
tion based on powerful memory disambiguation, strength reduction, unreachable- and dead code removal
and Boolean simplifications. The compiler also performs pipeline balancing for enhancing the throughput
of the circuits which exhibit dataflow software pipelining.

2.5 Compiling C to Hardware

One can find many arguments that C is a strong contender for the title of “worst possible hardware descrip-
tion language.” The main argument about using C is its huge installed code base and its undisputed use in
systems programming at all levels.

2.5.1 Using C for Spatial Computation

The question arises naturally: if we consider C a “difficult” language for hardware description, why use it
in the first place? Our motivations are several:

8Unless they contain a recursive call, as described in Section 3.3.11.
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• The C language has a huge installed code base. This makes CASH a domain-independent compiler,
equally applicable for digital signal processing, scientific computation or almost any other domain.

• C is frequently the language of choice for describing reference implementations. Indeed, many com-
plex standards now contain not only textual specifications, but also a sample implementation and
criteria for correctness, such as bit-exactness. For example, the General Systems Mobile (GSM)
standard for mobile telephony relies on an EFR speech codec defined by the European Telecommuni-
cations Standards Institute (ETSI) specifications, which is specified by a reference C program along
with a set of testing sequences [Ins]. So CASH can be used as a very fast prototyping tool for imple-
menting custom hardware starting from a specification — just feed the source program to CASH and
you can obtain a hardware circuit in a matter of man-minutes.

• While some aspects of the compilation process in CASH are specific to C, most of the techniques
are equally applicable to other (imperative) programming languages. In fact, the input of the core
CASH compiler can be considered the Low Suif representation (see Figure 2.5), which is closer to
machine code than to C. Any language that can be translated to three-operand code could therefore
be a source for our spatial compiler. Moreover, the freedom that C allows in pointer manipulation
makes the translation task harder. Therefore, if CASH works for C, it ought to be easier to extend to
other languages. For example, handling FORTRAN would mostly require replacing the algorithm for
memory dependence estimation. It is somewhat less obvious whether the translation and optimization
methodologies employed in CASH can be successfully applied to an explicitly parallel language,
which would arguably be a better source for hardware description.

Some other motivations for using C have more to do with the pragmatics of the research process than
with the economics of the solution:

• Choosing such a small and well-understood language, and leveraging existing tools (e.g., Suif) for
tedious chores, allows us to focus our effort on the translation process and not on language design or
parser implementation.

• Our own expertise is mainly in the area of software compilation, and so we have chosen this approach.
While the trade-offs are certainly different when creating hardware and software artifacts, we believe
that a hardware-design tool-chain looking more, and acting as fast as a software tool-chain, would
bring increased productivity benefits to hardware design. This is already one of the main critical
resources in the design cycle of new devices.

• As described in the introduction, the original motivation of this research is to address the challenge
of creating multi-billion device designs by effectively handling complexity. We have therefore gener-
ously given ourselves virtually unlimited hardware resources. By constraining the research to the use
of C, and making a requirement to handle all language features, we have anchored one end-point of
the design space in “reality.” This allows us to evaluate the effectiveness of our methodology much
better than if we were using a custom designed, special-purpose language.

2.5.2 Related Work

While there is a substantial amount of research on hardware synthesis from high-level languages, and even
from dialects of C and C++, none of it supports C as fully as CASH does. One major difference between
our approach and the vast majority of the other synthesis from C efforts is the difference in the role of
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the language itself. Most projects use C as a hardware description language (HDL), used to describe the
functionality of a particular piece of hardware. We are not interested in using C as a description language.
We are just interested inimplementingthe C program so that it produces the expected result.

Another way to express the difference between using C as an HDL and our approach is with regard
to reactivity: hardware designs customarily assume that the environment can change at any moment and
that the hardware must react immediately. In contrast, our view of the environment is extremely restricted.
Even when CASH compiles only part of a program, it implicitly assumes that there is a single thread of
control and that there are no unexpected external changes.9 The stack (last-in, first-out) nature of procedure
invocation/completion is also a typical aspect of software assumed by CASH.

This difference of optics is translated in a different approach. Other projects either add constructs (such
as reactivity, concurrency and variable bit-width) to C in order to make it more suitable to expressing hard-
ware properties, or/and remove constructs (such as pointers, dynamic allocation and recursion) which do not
correspond to natural hardware objects, obtaining “Register Transfer C.” Other efforts impose a strict coding
discipline in C in order to obtain a synthesizable program. There are numerous commercial products using
variants of C as an HDL [Mic99]: Cynlib from Cynapps [RR00, RR99], Cyber from NEC [Wak99, WO00],
A| RT builder, now from Xilinx [Joh99, Joh00], Scenic/CoCentrinc from Synopsis [LTG97, Syn], N2C from
CoWare [CoW00], compilers for Bach-C (originally based on Occam) from Sharp [KNY+99], OCAPI from
IMEC [SVR+98], Compilogic’s (acquired by Synopsis), System Compiler from C-level Design, (acquired
by Synopsis) [lD99], c2verilog [SP98], Celoxica’s Handel-C compiler [Cor03], and Cadence’s ECL (based
on C and Esterel) compiler [LS99]. University research projects include SpC from Stanford [SSM01],
PACT from Northwestern [JBP+02] and also [GKL99, Arn99, GSD+02, GSK+01, KC98]. For an interest-
ing appraisal of the effectiveness of many of these tools, see [Coo00].

A completely different approach to hardware design is taken in the research on reconfigurable comput-
ing, which relies on automatic compilation of C or other high-level languages to target reconfigurable hard-
ware [Wir98]. Notable projects are: PRISM/PRISM II [AS93, WAL+93b], PRISC [RS94], DISC [WH95],
NAPA [GM95], DEFACTO [DHP+01], Chimaera [YSB00, YMHB00], OneChip [Esp00, WC96], RaPiD
[ECF+97], PamDC [TS99], StreamC [GSAK00], WASMII [TSI+99], XCC/PACT [CW02], the systems de-
scribed in [SSC01] and [MH00], compilation of Term-Rewriting Systems [HA00], or synthesis of dataflow
graphs [RCP+01]. Our approach is original because (1) it compiles arbitrary ANSI C programs, without re-
strictions or extensions; (2) it generates asynchronous, dynamically scheduled circuits; and (3) it generates
circuits which implement directly the program, without the use of interpretive structures.

More remotely related is the work on “custom processors”, whose goal is to synthesize a domain-
specific processor. This is largely a problem of instruction-set design. In this group we can rank the Hewlett-
Packard PICO project [SA02, MRS+01, SGR+01], the Tensilica products [WKMR01, Ten], and automatic
“super-instruction” selection: [AC01, LCD02, ZWM+01, CTM02, SRV98, WKMR01, LVL03], and many
others. PICO handles only a restricted C subset, namely using dense matrix operations. Tensilica processors
can be extended with arbitrary instructions, whose behavior is described in a Verilog-like language. These
new instructions get automatically incorporated in the hardware and compilation tools. These methods often
involve profiling execution traces of existing microprocessors and collapsing repeated patterns in custom
instructions.

CASH has been profoundly influenced by the work of Callahan on the GARP C compiler [Cal02,
CW98], whose ideas were incorporated in the Nimble compiler [LCD+00]. GarpCC is still one of the

9Of course, some of the standard C language mechanisms, such asvolatile qualifiers, can be used in the same way as in
system code to prevent optimizations from relying too much on the model of single thread of control when external effects need to
be modeled.
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systems with the broadest scope targeting C to a reconfigurable fabric.
Our goals are most closely related to the “chip-in-a-day” project from Berkeley [DZC+02], but our

approach is very different: that project starts from parallel statechart descriptions and employs sophisticated
hard macros to synthesize synchronous designs with automatic clock gating. In contrast we start from C,
use a small library of standard cells, and build asynchronous circuits.

ASH circuits are somewhat more remotely related to other exotic computational models, such as WaveScalar
[SMO03], the grid processor TRIPS [SNBK01], RAW [LBF+98], SmartMemories [MPJ+00], Imagine
[RDK+98], and PipeRench [GSM+99].

2.5.3 Limitations

The current incarnation of CASH should be able to handle almost any portable legal C program, includ-
ing pointers, structures, unions, and recursive functions. However, the following C constructs are not yet
supported:

• Library functions. We do not compile the library functions, although they may account for a sub-
stantial part of the program execution time. ASH has no notion of I/O or system calls, so the library
functions handling these could not be mapped to ASH anyway. In simulations we assume that the
time spent in library functions is zero, both for ASH and for the baseline processors we consider.

• alloca() , the stack-based memory allocator. There is no fundamental reasonalloca cannot be
handled and support for it should appear in CASH soon.

• Functions with variable arguments (varargs). Again, there is no fundamental reason CASH cannot
support varargs. Implementing varargs however will require a different parameter-passing implemen-
tation since CASH currently does never pass arguments on the stack.

• Exceptions,signal() andexit() : see below for a discussion of these interrelated subjects.

• setjmp and longjmp are not handled at all.longjmp could be handled by using an exception-
handling mechanism to unwind the stack;setjmp would probably require the same kind of machin-
ery as for saving the complete state of a recursive procedure, described in Section 3.3.11.

2.5.3.1 Exception Handling

Strictly speaking, the C language does not have any exception model. The semantics of a program that
causes exceptions is left undefined by the C standard. CASH guarantees to never introduce exceptions
which did not exist in the original program. If the source program executes safely, the compiled program
should also do so. However, as many other C optimizing compilers do, CASH may remove some exceptions.
For example, the register promotion algorithm may store variables in registers rather than memory, causing
the optimized program to perform only a subset of the memory accesses of the source program. Currently
we assume that run-time exceptions terminate the program.

Handling asynchronous function invocations (as doessignal() in C) in Spatial Computation seems
to be a very difficult task. In C the whole infrastructure for signal delivery and handling is really hidden
within a substantial run-time support piece of machinery, usually built within the operating system kernel.

Exceptions are however important and need to addressed; at the very least, an exception should cause
a clean program shutdown. It is not entirely obvious how shutdown (or reset) is to be achieved in the
distributed computation structure of Spatial Computation.

22



A possible solution is to explicitly encode exceptions as control-flow within the program before pro-
ceeding to the program transformation and optimization. Exception handling done this way is likely to have
a major impact on the efficiency of the generated code and may inhibit or complicate the task of some op-
timizations because potentially almost any memory access operation can generate an exception. A careful
implementation would probably use some sort of “batch processing” of exceptions, accumulating excep-
tions, checking relatively infrequently for exceptions10 and following a special execution path on exception
detection. Function return values would need to be augmented to indicate the occurrence of exceptions in
callees, to allow them to propagate through call chains.

At the very least, exception support is required for implementing the seemingly banalexit() function.
As with signal() , the machinery behindexit() in a processor-based system is very complicated,
involving the process destruction and resource reclaiming. A natural solution is to handleexit() as a
synchronous, program-generated fatal exception and implement it in the way described above.

2.6 Code Complexity

By all measures, the core CASH is a small compiler. Table 2.1 shows the amount of source code used
for the various parts of CASH, including the front-end, the back-ends and the libraries, as counted by the
sloccount [Whe01] utility which ignores white spaces and comments. The line count for the libraries is
only approximate since CASH does not always use the full functionality provided by each library. The first
line of this table refers to the compiler components described in this thesis. The “build and optimize core”
includes all the code described in Section 3.3, used to translate from a CFG representation to Pegasus, and
all optimizations described in Chapter 4. A further breakdown of the code complexity for each optimization
is presented in Table 4.1 in Section 4.1. The “build and optimize” core is the result of about 2.5 man-years
of effort.

2.7 Compilation Speed

In this section we compare the compilation speed of CASH andgcc 2.95.1. The procedure is as follows:

• We disable inlining and loop unrolling in both compilers to control the code size, which has a direct
bearing on the compilation speed.

• We compile with maximum set of optimizations enabled with both compilers. We usegcc -O2 ,
since according to thegcc manual, it involves all optimizations except unrolling and inlining.

• For CASH we do not time the Suif front-end since it performs no useful operations in this config-
uration (except parsing). Since the front-end passes communicate through files, timing them would
introduce too much noise.

• We stop compilation at the assembly level forgcc .

• We measure the complete compilation process end-to-end. Both compilers are fed all source files on
a single command-line.

10For example, at the end of each hyperblock.
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Figure 2.6:Compilation speed slowdown compared to gcc (how many times CASH is slower). The time
is broken down into: parsing the Suif intermediate representation, building the Pegasus representation,
optimizations except Boolean simplification, Boolean simplification, intra-procedural flow-sensitive pointer
analysis and other time (i.e., file I/O, code generation).
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Part Functionality LOC Imported
Core Build and optimize 15,517

gcc code 768 Y
Verilog back-end 9.800
dot back-end 444
C back-end (based on Suif scc) 9,416 Y

Libraries data structures and CFG and dataflow analyses14,815
Espresso Boolean minimization 11,457 Y
Suif library suif1 16,434 Y
Suif library useful 18,022 Y

Front-end Suif scc/snoot (parsing) 14,540 Y
Suif porky (lowering) 16,679 Y
Suif linking (linksuif) 2,352 Y
inlining 789 Y
loop unrolling 6,470 Y
call-graph 172

Total Locally developed code 40,784

Table 2.1:C++ source lines of code in CASH v2.0. “Imported” code was developed elsewhere.

• gcc does some extra work compared to CASH in this setup. It performs parsing (which in CASH is
done by the Suif front-end)11, instruction selection, register allocation and scheduling.

• We only display the programs for which CASH has compiled all functions. As described in Sec-
tion 2.5.3, functions with variable arguments or functions callingalloca were excluded from the
CASH compilation.

• We also compile some FORTRAN programs after translating them to C withf2c .

• CASH takes advantage of the call-graph to skip compilation of the unreachable functions.

Figure 2.6 shows that CASH is a relatively slow compiler. On average it is about 11 times slower than
gcc , but it can be as much as 137 times slower! Looking at the breakdown of the compilation time, we
notice that the three slowest programs (168.wupwise,099.go and300.twolf ) spend a lot of time
in Boolean minimization. In fact, the168.wupwise outlier spends almost all its Boolean minimization
in processing a single moderately large Boolean expression with 15 inputs and 21 outputs. In general the
Boolean minimizer Espresso, which we are using, (which has been designed for hardware logic minimiza-
tion), has behaved very well by minimizing much larger formulas quickly.

The next two slowest programs are two different versions ofvortex , 147 from SpecInt95 and255
from SpecInt2K. Both these programs spend an inordinate amount of time in parsing the Suif intermediate
file before even reaching the build phase (129.compress also spends more than half of its time in pars-
ing). The abnormal parsing times are due to the inefficient data structures and procedures used by Suif for
merging the symbol tables of several files.

11However, even parsing the Suif intermediate files is a very time-consuming operation, sometimes much slower than parsing
the original text files. It is unlikely that parsing unjustly penalizesgcc .
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Finally, the sixth worst program (301.apsi ) spends one third of its time in pointer analysis.
If we discount these extreme examples, for all programs most of the time is spent in optimization. We

have not explored trade-offs between compilation time and code quality.
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Chapter 3

Pegasus: a Dataflow Internal
Representation

3.1 Introduction

The original motivation for this research was the creation of a C compiler, CASH, which translates programs
into hardware circuits. Pegasus is the internal representation of CASH. During the compiler development
the intended target has guided many of the design decisions. We think that it is easier for the reader to follow
the details of this representation if the explicit connection to actual hardware is kept in mind. Probably the
most important feature of Pegasus from this point of view is itscompleteness— the representation is self-
contained, enabling a complete synthesis of the circuits, without requiring further information. Internal
representations with this property are calledexecutable[PBJ+91]. The naming suggests that one can write
an interpreter for executing such a representation.

Three important computational paradigms are brought together in Pegasus: (1) executable intermediate
representations; (2) dataflow machines; and (3) asynchronous hardware circuits. Indeed, the most natural
way to implement a custom dataflow machine (i.e., one executing a fixed program) is by using asynchronous
hardware. Both the dataflow machine operations and the asynchronous hardware computational units start
computing when they receive their input operands and both use fine-grained synchronization between data
producers and consumers to indicate the availability and consumption of data. Pegasus is original because it
is used for compiling an imperative language, such as C, into dataflow machines. The overwhelming major-
ity of the work in compilation for dataflow machines dealt with functional, single-assignment languages. On
the other hand, asynchronous circuits are customarily described in some form of Communicating Sequential
Processes (CSP). Both these classes of languages are very different in nature from C.

Certainly, the adequacy of dataflow intermediate forms for compiling imperative language has been
noted before. In fact, many of the Pegasus features are inspired by Dependence Flow Graphs [JP93], which
is a dataflow representation used to represent FORTRAN programs. The key technique allowing us to bridge
the semantic gap between imperative languages and asynchronous dataflow is Static Single Assignment
(SSA) [CFR+91]. SSA is an intermediate representation used for compiling imperative programs in which
each variable is assigned only once. As such it can be seen as a functional program [App98]. Indeed,
Pegasus represents the scalar part of the computation of C programs as a functional, static-single assignment
representation.

The main contribution of this work in the domain of compiler intermediate representations is the
seamless extension of SSA to incorporate other modern features of compiler representations, such as a
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representation of memory dependences, predication, and (forward) speculation. While other intermediate
program representations have each previously unified some of these aspects, we believe we are the first to
bring all of them together in a coherent, semantically precise representation.

Pegasus contains a mixture of high-level and low-level primitives. The high-level subset is suitable as a
framework for general compilation being more or less target-independent (i.e., it can even be used to com-
pile for a regular processor). The vast majority of the optimization algorithms we present in this text operate
on the high-level representation and therefore are applicable in traditional compilers as well. The low-level
Pegasus features deal mostly with implementing procedure calls in hardware. Namely, the “code” to cre-
ate, destroy and populate stack frames and the calling conventions are rather specific to application-specific
hardware. Although, for completeness, we present in this chapter all these features together, the reader
should remember that the high-level features of Pegasus constitute a very general program representation.

3.1.1 Summary of Pegasus Features

Pegasus integrates several important compiler technologies, drawing on their strengths:

Dependence representation:Pegasus is a form of program-dependence graph, summarizing data-flow,
data dependence and control-flow information. Pegasus makes explicitall the dependences between
operations (either scalar computations or memory operations).

Soundness:As any representation exposing parallelism, Pegasus is non-deterministic (i.e., it does not en-
force a total execution order of the operations). However, it can be easily proved that Pegasus has the
Church-Rosser property (i.e., confluence) — the final result of the computation is the same, for any
legal execution order of the operations.

Precision: Pegasus’ building blocks have a precise semantics, given in detail in Appendix B. The semantics
is compositional. Moreover, a Pegasus representation is a complete executable form, which describes
unambiguously the meaning of a program without the need for external annotations.1

Single-Assignment: Pegasus is a sparse intermediate representation, based on a (slightly modified) form
of static-single assignment. As such, it shares with SSA the space and time asymptotic complexity,
enabling fast and efficient compiler manipulations. Pegasus uses classical SSA to represent value
flow within each hyperblock. The modification consists in the treatment of the inter-hyperblock flow.
We place a merge operator (φ node) at each hyperblock entry point for each variable live at that point.
While this modification theoretically has worse asymptotic properties, in practice it is completely
acceptable.

Expressive: Pegasus enables very compact implementations for a large number of important program op-
timizations. In fact, most of the common scalar optimizations can be rephrased as simple term-
rewriting rules operating on Pegasus graphs, implementing some of these optimizations on CFGs
requires the computation of dataflow information.2 This fact is important not because it saves the
compiler the time to perform the dataflow analysis itself (for most of the optimizations only simple
bit-vector, or other constant-depth lattice analyses are required). The importance is in saving the ef-
fort to updatethe dataflow information when program transformations are applied. Although research

1However note that Pegasus also includes symbol tables. Since symbol tables do not change through the compilation process,
we will ignore them from now on.

2Unfortunately the termdataflowis overloaded; in this document it is used to denote both dataflow machines and dataflow
analyses. We hope that the context is always clear enough to disambiguate its meaning.
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has shown how to perform incremental dataflow updates, maintaining several pieces of dataflow in-
formation while performing complex program transformations is a daunting compiler-engineering
task.

Verifiable: Due to the compositionality of the semantics, the correctness of many optimizations can be
easily argued (especially the ones performing term-rewriting). If a program fragment is replaced
by an equivalent one, the end-to-end program semantics does not change. An important piece of
future work is to apply formal verification techniques to prove that Pegasus transformations preserve
program semantics.

Compositionality also simplifies the presentation of the examples in this text. We can unambiguously
isolate contiguous subgraphs of a larger code fragment independent of their environment, since the
semantics of the subgraph is well-defined.

Predication and speculation: These are core constructs in Pegasus. The former is used for translat-
ing control-flow constructs into dataflow, and the latter for reducing the criticality of the control-
dependences. Both these transformations are borrowed in their form used in the compilation for
EPIC architectures. They are effective in boosting the exposed instruction-level parallelism. Both
predication and speculation are employed in Pegasus at the hyperblock level. Speculation is therefore
only forward speculation, which evaluates all outcomes of forward branches within a hyperblock.

The rest of this chapter is devoted to describing Pegasus in detail: its basic components, and the algo-
rithm for constructing Pegasus from a control-flow graph. (An early version of this chapter was published
as [BG02b], and abridged as [BG02a].) Some low-level features needed to translate Pegasus to a static
dataflow machine are also presented. The next chapter of this document is devoted entirely to program
transformations on Pegasus, customarily called program optimizations.

3.1.2 Related Work

Most of the work on compilation for dataflow machines has started with functional languages such as Id
[AN90, SAJ96] or restricted subsets of array-based languages [Gao90]. Prior approaches for compiling C
to dataflow machines considered only a subset of the language [VvdB90]. To our knowledge CASH is the
first compiler to handle the full language. Pegasus is a form of dataflow intermediate language, an idea
pioneered by Dennis [Den74]. The crux of Pegasus is properly handling memory dependences without
excessively inhibiting parallelism. The core ideas on how to handle this by using tokens to express fine-
grained location-based synchronization was introduced by Beck, et al. [BJP91]. However, Beck’s paper
only considers reducible control-flow graphs and suggests the use of code restructuring to compile arbitrary
programs. By using hyperblocks we elegantly solve this difficulty without any code overhead.

Our representation builds on Static Single Assignment [CFR+91] and extends it to cope with mem-
ory dependences and predication. The explicit representation of memory dependences between program
operations has been suggested numerous times in the literature: for example, in Pingali’s Dependence
Flow Graph [PBJ+91]; or Steensgaard’s adaptation to Value-Dependence Graphs [Ste95]. As Steens-
gaard has observed, this type of representation is actually a generalization of SSA designed to handle value
flow through memory. Other researchers have explored adapting SSA for handling memory dependences,
e.g.,[CG93, Gal95, LH98, CLL+96, CX02, LCK+98, LC97]. But we think that none of the approaches is as
simple as ours, as shown by the simple semantics of the intermediate language that we offer in Appendix B.
The presentation of the semantics is inspired by the one used in [PBJ+91] for Dependence Flow Graphs.
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The Program Dependence Web [OBM90] attempts to unify the representation of various forms of de-
pendences. The algorithms described in that paper are complex, rely on reducible control flow graphs, and
it is not clear whether they have ever been implemented. Gated-SSA [TP95] relies on an algorithm for
optimal insertion of the Pegasus “control-flow” operators in arbitrary irreducible flow-graphs, but does not
deal with memory dependences.

The integration of predication and SSA has been also made in PSSA [CSC+99, CSC+00]. PSSA how-
ever does not useφ functions and therefore loses some of the appealing properties of SSA. The methodology
of using the hyperblock as a basic unit and the algorithm used by CASH for computing block and path pred-
icates are inspired from this work.

The suitability of SSA- and dependence-based representations for simple dataflow analysis was noticed
in [JP93]. On the other hand, research on adapting dataflow analyses to predicated representations has
produced some complex algorithms: [GJJS96, KCJ00]. We integrate these two approaches very cleanly
without any overhead. In fact, our dataflow analyses are as simple as the ones in [JP93], despite operating
on predicated code.

3.2 Pegasus Primitives

In this section we describe the basic building blocks used by the Pegasus program representation.

3.2.1 Basic Model

Pegasus is a directed multi-graph whose nodes are operations and whose edges indicate value flow. A node
may fanout the data value it produces to multiple nodes. The fanout is represented in the figures as multiple
graph edges, one for each destination. An edge runs between the producer of the value and the consumer of
the value.

The data is produced by the source of an edge, transported by the edge and consumed by the destination.
Once the data is consumed, it is no longer available. In general, nodes need all their inputs to compute a
result, though there are some notable exceptions.

Each node performs a computation on its inputs to produce its outputs. We assume the existence of
primitive nodes for all the major arithmetic and logic operations. We also have nodes which represent
constant values and some special nodes for complex operations, such as memory access or procedure calls.
Argumentnodes denote procedure arguments.

All scalar values are sent from node to node on the edges. Pointer and array accesses are made using
memory access nodes which perform updates/inspections of an imperative memory store. One can give
several interpretations to a data edge and to a computation. The model we have targeted isstatic dataflow:
one edge can hold at most one value at a time.3

We believe that keeping in mind the hardware target model of Pegasus can ease the understanding of
the representation. One should therefore see each point-to-point edge as a bundle of three uni-directional
wires as in Figure 3.1.

• A “data” wire, carrying the information from the producer to the consumer.

3Pegasus can be easily adapted for targeting other models, such as (1) FIFO dataflow, where each edge can hold an unbounded
number of values and delivers them to the destination strictly in the order they have been inserted by the producer; or (2) tagged-
token dataflow, in which each edge can hold multiple values, each tagged with an “iteration instance.” Static dataflow is more
appropriate for a direct hardware implementation.
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ready

ackdata

register

Figure 3.1:Signaling protocol between data producers and consumers.

• A “data ready” wire, also from producer to consumer, which indicates when the “data” wire can be
safely read by the consumer.

• An “acknowledgment” wire, going from the consumer to the producer, indicating when the value has
been read and therefore the “data” wire can be reused.

When there are multiple consumers, the bundle will contain one acknowledgment wire from each of
them (see Figure 6.1). This signaling method is widely employed in the world of asynchronous circuits and
is known as “bundled data protocol.”

We will frequently use the term “wire” for such a bundle. Notice that data wires have a broadcast nature
— they can have a fanout larger than one when the source value is used by several consumers. Physically
we see this as a single bus, with one writer and many readers. In the figures a wire is represented as multiple
graph edges, one for each consumer.

If the graph nodes should be thought of as small arithmetic units, corresponding to the program com-
putations, the closest approximation for the program (scalar) variables in Pegasus are the wires themselves.
Multiple wires may correspond to a single variable. In fact, there will be exactly one wire for each as-
signment. If the original program is in the classical SSA form, then each scalar SSA-renamed variable
corresponds unambiguously to a single wire. However, program transformations can destroy this one-to-
one correspondence.

The single assignment nature of Pegasus translates in the hardware world as the property that each data
wire has a single writer. This is important for the synthesized circuits since it means that there is no need
for arbitration for sending data, making data transfer a lightweight operation.

3.2.2 Data Types

Pegasus does not do any interesting type-related transformations and therefore types are passive objects
during compilation, and will not be mentioned further. Each wire has an associated type, indicating the
nature of the value transported. As a compilation invariant, all Pegasus representations are well-typed.
All casts required for transforming the original program into a well-typed representation (according to
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the C standard conversion rules) are inserted by a preprocessing step, before the creation of the Pegasus
representation begins. All Pegasus code transformations preserve types.

In the hardware view of the representation, the wire is a bus wide enough to represent all possible values
of the data type. The BitValue program analysis algorithm [BSWG00] can be used to discover bits which
do not carry useful information.

Pegasus programs manipulate the following types:

• All original scalar C types:enum, signed and unsigned char , signed and unsigned
short , signed andunsigned int , signed andunsigned long , the gcc extensionsigned
andunsigned long long , float , double , long double .

• All legal C pointer types.

• A Boolean type, requiring a single bit.

• A tokentype, used to serialize operations with side effects. Its usage is described in detail in Sec-
tion 3.2.3.5.

• A program counter (pc)type. “pc” is actually a bad name choice for this type, whose values stand for
the return address of functions (i.e., they represent the identities of the continuation nodes). Program
counters occasionally need to be saved in memory to implement recursive procedures.

• A current execution pointtoken. This value indicates which of the hyperblocks is currently executed.
(An invariant is maintained that at any moment there is exactly one such value in the whole program.)

• Occasionally some of the wires can transport “wide” objects, such as structures, which in C can be
passed by value and copied with a single statement. Currently we assume that these are implemented
literally as very wide buses. But a practical hardware solution should involve some more complicated
communication protocol.

In a traditional setting the “program counter” serves several purposes, which have been decoupled in
Pegasus:

1. Its saved value at run-time is used to indicate return addresses. In Pegasus this purpose is taken by
the “pc” type values.

2. It indicates the currently executing instruction. In Pegasus this is coarsely approximated by the “cur-
rent execution point”, which indicates the currently active hyperblock.

3. It is used to give a “program order” for memory operations, which is used to limit the reordering of
dependent instructions. This purpose in Pegasus is achieved by the tokens.

We use the following graphical convention in all the figures in this document:

• Solid lines represent regular program value flow.

• Dotted lines represent Boolean values, most often used to implement predicates.

• Dashed lines represent tokens or the current execution point.
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data1 data2 data3 tkout1 tkout2

addr tkin pred

Figure 3.2:A load operation with three inputs and two outputs. The data output (solid line) has a fanout
of 3 and the token output (dashed line) has a fanout of 2. The three inputs are: data (solid line), predicate
(dotted line), and token (dashed line).

3.2.3 Operations

In this section we describe the complete assortment of computational primitives used in Pegasus to represent
and manipulate programs. We resort here to an exhaustive description — the purpose of some of these
operations may be cryptic until we show how it is actually used, later in this document.

Most operations have multiple inputs and some operations may produce more than one value. For
example, a memory load operation produces not only the loaded data, but also a token indicating that
memory access has completed. We will call the values produced by an operation itsoutputs. Do not
confuse the number of outputs with the fanout of each output. An operation may produce two outputs (see
one example in Figure 3.2), the first of which is consumed by three other operations, while the second of
which is consumed by two other operations. We say that the fanout of output 0 is 3, while the fanout of
output 1 is 2. Unfortunately, at the time of this writing,dot [GN99], the program which we use to draw
most of these figures allows no control on the placement of the arrows. Therefore, in Figure 3.2 the two
outputs with a total of five consumers are drawn as five different lines. This particular figure can be read
unambiguously by knowing that for a load operation output 0 is data (solid line) and output 1 is token
(dashed line), so each of the five lines can be uniquely attributed. In thedot drawings we use color to
disambiguate inputs. Unfortunately colors cannot be reproduced clearly in this document and therefore the
reader will have to cope with this ambiguity.

Usually the outputs are easy to tell apart. However, as Figure 3.3 illustrates, in general there will be no
relationship between input order and the order the arrows are drawn in figures.

3.2.3.1 Arithmetic

We assume the existence of primitive operations for all essential arithmetic C operations, for all the legal
type combinations. Table 3.1 gives their complete list.

3.2.3.2 Boolean

The complete list of operations producing Boolean results is given in Table 3.2.

3.2.3.3 Multiplexors

Like SSA, Pegasus has an explicit representation for indicating that different assignments of a variable are
“merged”, i.e., they reach a same consumer. SSA uses for this purposeφ functions. In Pegasus however
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result

right left

Figure 3.3:A subtraction operation. Unfortunately the order of the arrows in the figure does not indicate
which one is the left input and which is the right input.

Name Symbol Types Observations
Plus + arithmetic types One input can be a pointer and other integral.
Minus − arithmetic types One or both inputs can be pointers.
Negation − signed arithmetic types
Noop all types Instantaneous propagation from in to out.
Register all types Delayed propagation from in to out.
Multiply ∗ arithmetic types
Multiply high muluh signed , unsigned Upper 32 bits of a 32×32 bit product.
Division / all arithmetic types Third input is predicate.
Modulo % integral idem
Cast (t) all types (except structures)
Equality == arithmetic types Output is Boolean.
Inequality != arithmetic types idem
Less than < arithmetic types idem
Less or equal <= arithmetic types idem
Complement ˜ integral types idem
Bitwise and & integral types idem
Bitwise or | integral types idem
Bitwise xor ˆ integral types idem
Left shift << integral types idem
Right arithmetic shift >> signed integral types idem
Right logical shift >> unsigned integral types idem

Table 3.1: All arithmetic operations used by Pegasus. The arithmetic types are: signed , unsigned ,
long long , unsigned long long , float , double , long double .

Name Symbol Observations
Negation !
And && Arbitrary fan-in allowed
Or || idem
Comparisons see Table 3.1 Output is Boolean.

Table 3.2:All operations producing Boolean values.

there are two types of merge operators: mu (µ) which expect only one of the inputs to be present; and
multiplexors, which expectall inputs to be present and dynamically select one of them. The latter are used
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p2 d1 d2

Figure 3.4:Decoded multiplexors can have a variable number of inputs — each predicate input controls a
data input. Unfortunately in the figures there is no easy way to tell which controls which.

eta

dout

mu switch

out out

p dind1 d2 d3 data1 data2 data3

Figure 3.5:Control-flow operations, from left to right: mu, switch, eta.

to support speculation across all branches. We introduce the latter in this paragraph and the former in the
next one.

Pegasus explicitly usesdecoded multiplexors(they correspond to theγ operations in GSA, PDW [OBM90]
and VDG). A decoded multiplexor selects one ofn reaching definitions of a variable. It has2n inputs: one
data and one predicate input for each definition. When a predicate evaluates to “true”, the multiplexor
selects the corresponding input. The program transformations maintain the invariant that the predicates
driving a multiplexor are always disjoint, making its behavior unambiguous. Note that it is possible forall
predicate inputs of a mux to be simultaneously “false;” this happens when all input values are irrelevant for
the result of the computation (i.e., they are generated on paths which are mis-speculated). The output value
is then also irrelevant.

Although the decoded representation is somewhat redundant, its explicitness makes graph transforma-
tions during the optimization phase significantly easier to express. Unlike the SSAφ functions, the presence
of the predicates explicitly encodes the path taken by each value to reach the merge point. Figure 3.4 shows
a multiplexor representation.

3.2.3.4 Control-Flow: Eta, Mu and Switches

Pegasus makes use of three computational primitives borrowed from dataflow machines to steer data. They
are used to transform control-flow into data-flow, as described in detail in Section 3.3. Figure 3.5 shows
how they are represented.

Mu (µ)4 operations together with multiplexors stand for all SSAφ functions. They must haven data
inputs and one data output. At each moment at most one of then data inputs should be available. That input

4We will occasionally use the term “merge” for “mu.”
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is copied to the output immediately. Mu operations are necessary to handle initialization of loop-carried
variables but Pegasus uses them to model all inter-hyperblock transfers of data (see Section 3.3). Mu nodes
can optionally have a second output, whose value is theindexof the input that has last received data. We
have depicted this second output with a bold line in Figure 3.5 — its only purpose is to drive “switch”
nodes.

Switch nodes serve the same purpose as mu nodes, havingn data inputs and one data output. However,
they also have acontrol input, which indicates which of the data inputs is expected to fire next. They are
similar to multiplexors, in the sense that the control input selects which of the data inputs to forward. Unlike
multiplexors, they expect only one data input to be present (and not all of them). If a data input different
from the one indicated by the control arrives, it is blocked (i.e., not acknowledged). Switch nodes are not
used at all during program optimizations. They are used only by the back-end synthesizing a static dataflow
machine from the program.

Eta (η) operations are also called gateways. The name “eta” was introduced in the Gated-Single As-
signment form [OBM90]. They correspond to “T-gates” in the dataflow model. Each eta has two inputs:
one for data and one for a predicate. There is only one output. Theη is the only node which can consume
inputs without producing outputs. It works in the following way: if the predicate is true, data is forwarded
to the output; if the predicate is false, data is simply consumed (acknowledged) and nothing is forwarded.

When both the data and predicate inputs are compile-time constants5, eta nodes havethreeinputs instead
of two. The third input is thecurrent execution point, as described in Section 3.2.2 (thecurrent execution
point can never be constant). The third input does not influence the computation at all — however its
presence is required in order to generate the output. Without its presence, there would be no indication of
whenthis value is needed.

3.2.3.5 Tokens

There is no clear notion of “program counter” for Pegasus programs. Execution happens immediately on
availability of data, therefore beingdependence-driven. However, not all program data dependences are
explicit. Operations with side-effects can interfere with each other through memory. To ensure correctness,
the compiler adds edges between those operations whose side-effects may not commute. Such edges do not
carry data values. Instead, they carry an explicit synchronizationtoken, an idea borrowed from Dependence
Flow Graphs [BJP91]. Operations with side-effects wait for the presence of a token before executing. On
completion, these instructions generate an output token to enable execution of their dependents. The token is
really a data type with a single value, requiring 0 bits of information. In hardware it can be implemented with
just the “data ready” signal. At run-time, once a memory operation has started execution and its execution
order with respect to other side-effecting operations isguaranteed, the operation generates tokens for its
dependents. The token can then be generatedbeforememory has been updated. See Section 6.5.2 for more
details on the run-time behavior of tokens.

The operations with memory side-effects (loads, store, calls, returns, stack frame manipulations, all
described below) have a token input. When a side-effect operation depends on multiple other operations
(e.g., a write operation following a series of reads), it must collect one token from each of them. For this
purpose acombineoperator is used. A combine has multiple token inputs and a single token output — the
output is generated after it receives all its inputs. The combine was called “synch” in [BJP91]. Figure 3.6(a)
shows a token combine operator, depicted by “V” — dashed lines indicate token flow and boxes indicate

5In this case the predicate must be constant “true” because etas controlled by constant “false” predicates are deleted by an
optimization pass described in Figure 4.5.
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Figure 3.6: (A) “Token combine” operations emit a token only on receipt of tokens on each input. (B)
Reduced representation of the same circuit (used only to simplify figures) , omitting the token combine.

tkin

G(3)

tkout

pred

Figure 3.7: A token generatorG has a token and a predicate input and a token output. Its behavior is
characterized by a constant parameter whose value is 3 in this figure.

operations with side-effects. In some figures, to reduce clutter, we elide combines without introducing
ambiguity, depicting Figure 3.6(a) as in Figure 3.6(b).

Token edges explicitly encode data flow through memory. In fact, the token network can be interpreted
as an SSA form encoding of the memory values, where combine operations are similar toφ-functions
[Ste95]. The tokens encode both true-, output- and anti-dependences, and they are “may” dependences.

Another operation manipulating tokens is thetoken generator, shown in Figure 3.7. A token generator
has two inputs: a token and a predicate, and one token output. It also has a constant (compile-time) param-
etern, the token reserve.n is a positive integer, modeling thedependence distancebetween two memory
accesses (see Section 4.5.4). The token generator maintains a counter, initialized withn. On receipt of a
“true” predicate, the generator decrements the counter, and if the counter is positive, it emits a token. On
receipt of a token, it increments the counter. On receipt of a “false” predicate, the predicate input is not
acknowledged until the token counter becomesn again.

3.2.3.6 Memory Access

Variables in the original program become wires in Pegasus. Such a transformation is applicable as long as
all the updates to the variable are known. However, for updates made through pointers, this solution is no
longer applicable.

Let us note that the compiler front-end lowers all memory accesses to pointer form. Accesses in arrays
or structure fields are all transformed to pointer accesses. Therefore Pegasus deals with memory using only
two operations: load and store.

Since by default all operations may be executed speculatively in Pegasus, operations with side-effects
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Figure 3.8:Loads and stores. Besides address (and data for stores), they also require predicates and tokens
as inputs. They both generate tokens at the output. The width of the data manipulated is indicated in some
figures between the square braces.

Operation Inputs Outputs
Call procedure,n arguments, predicate, token, currenttoken
Continuation token from call returned value, token, current
Return returned value, program counter, current, token —
Argument — procedure argument

Table 3.3:Pegasus operations for handling procedure calls.

need to be controlled by a predicate indicating whether they are safe or not. When the predicate is dynami-
cally “false”, the operation is not executed. A load with a “false” predicate input may generate an arbitrary
value. Note that at run-time the arrival of a “false” predicate doesnot enable the token release. A token at
the input is required for this purpose as well because the emission of a token implies that all prior dependent
operations have executed in the right order (see also Section 3.3.9.2).

Occasionally, to simplify some figures, we will explicitly indicate within a load or store operation the
address accessed as a symbolic expression (see for example Figure 3.15).

3.2.3.7 Procedure Call and Return

Currently procedure invocation is a high-level primitive in Pegasus, with no low-level counterpart. How-
ever, stack management is explicit, as described below. For program optimizations this representation is
sufficient. However, for mapping to real hardware a more detailed solution has to be crafted. The low-level
solution is complicated by the need to support four arcane C features: (1) functions with a variable number
of arguments; (2) calls through function pointers; (3) recursion; and (4) call-by-value for structures and
unions.

Four operations are provided for handling procedures, shown in Table 3.3. The call is predicated, like all
other operations with side-effects. The return lacks a predicate because of the way the compiler structures
the code: as described in Section 3.3, each procedure has a unique epilogue, and therefore exactly one return
instruction. “Control-flow” enters the epilogue only if the return is to be executed.

Figure 3.9 illustrates the call-return process. Besides an input which indicates the identity of the callee,
the call node also receives a token and thecurrent execution pointtoken, both of which are sent to the callee.
The call also sends the identity of acall continuationnode, which will be the target of the return instruction.

Each procedure has a preamble containingargumentnodes. When a call operation is executed, each
of its parameter inputs is sent to a corresponding procedure input node. Besides the declared C procedure
arguments, each procedure has three extra argument nodes: (1) the identity of the continuation node (i.e., the
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Figure 3.9: Information exchange during the invocation of a procedure with only one argument arg1 .
Note that we have used a dashed-dotted line to indicate the fact that one of the arguments passed is the
identity of the continuation node. This identity is used by the return instruction to route the returned value
retval . This diagram shows the actual information flow at run-time and not the Pegasus representation.
In particular, Pegasus does not represent any inter-procedural edges.

program counter in the caller) where the return has to send the final result; (2) a token for serializing memory
accesses; and (3) acurrent execution pointinput which effectively transfers control to the procedure.

The return instruction has four inputs, one being optional: the returned value (which is missing for
procedures returningvoid ). The other three arguments are a token, indicating completion of side-effects in
the procedure, thecurrent execution pointand the identity of the continuation node. Finally, the continuation
node receives from the return node the returned value, the token andcurrent execution pointand injects them
back in the caller.

Due to separate compilation, the caller and callee may not be available simultaneously to the compiler.
As a consequence, Pegasus does not include any edges spanning multiple procedures, i.e., the communi-
cation caller-callee is not explicitly represented. The representation contains however a “fake” token edge
between the call and the continuation node, illustrating the fact that at run-time apparently execution is
transfered directly from the call to the continuation node. However note that for recursive procedures the
“call” node may be invoked multiple times before the “continuation” node gets control.

3.2.3.8 Constants

Nodes representing constants deserve special attention. There are three types of “constant” nodes in Pega-
sus, described in Table 3.4.

Constantnodes represent a compile-time constant. They are characterized by the constant value and its
type (i.e., signed 0 is different from unsigned 0). To enable efficient optimizations, mostly to help common
subexpression elimination, constants are kept in a hash table and each constant is represented only once in
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Operation Description
Constant Compile-time constant, characterized by value and type.
Uninitialized Describes an uninitialized value, characterized by type.
Hold Loop-invariant value, inputs: predicate, value; output: value.

Table 3.4:Nodes representing constant values.

a hyperblock. However, to reduce clutter in figures, we draw a different constant node for each destination
of its output wire.

We can differentiate two types of constants: compile-time constants and link-time constants. The latter
include, for example, global symbol addresses which are not known until link-time. Note that not all symbol
addresses are constant: symbols that are allocated on the stack have addresses which are not run-time
constants.6 As an optimization, CASH globalizes local objects whose address is taken from non-recursive
functions, therefore transforming their addresses into constants.

Occasionally the user may not initialize some variables, or some compilation algorithms may need to
introduce uninitialized values ( for example, see our new register promotion algorithm in Section 4.6). For
representing these in the dataflow framework, CASH makes use of a constant-like operation which is called
uninitialized.

Constants are somewhat tricky to implement and formalize in a dataflow model, since, unlike the other
nodes, they cannot just “fire” when their input is ready because they have no inputs. Their output is therefore
permanently ready. Probably the best solution is to actually give each constant one input coming from the
current execution point. In this manner, the constant will produce a result only when the current execution
point indicates its value is needed. We have adopted a somewhat less elegant solution (but more efficient
in terms of hardware) in the current implementation. We assume that in the synthesized circuit, constants
are not independent nodes but are part of the destination. For example instead of a node “2” input to a node
“+,” one would have a specialized node “+2.” Therefore constants are folded by the circuit synthesis back-
end into each of their destinations. A node having all inputs constant should be constant-folded. The only
exception is the eta, which should not be constant-folded; etas with both predicate and data inputs constant
have a third input, thecurrent execution point. Constants also cannot directly feed “mu” operations. Such
constants must insteadalwaysfeed an “eta” operation, which is the source of the mu.

Finally, in order to make more efficient the treatment of loop-carried values that never change in a loop,
Pegasus uses the “hold” operations. Holds can be simply implemented in hardware as a register. However,
the difference from a “register” operation is that on each iteration the hold operation needs to generate a new
“data ready” signal, to enable the non-loop-invariant operations to consume a new value. The hold operation
works in the following way: it loads and stores into a register the first value it sees on the input. Then, for
each “true” predicate (indicating that the loop has not yet completed), it outputs a data-ready signal. When
seeing a “false” predicate (indicating that the loop has completed), it resets the data in the register and waits
for a new data item at the input.

3.2.3.9 Stack Frame Manipulation

The last set of operations we present, summarized in Table 3.5, deals with creation and destruction of stack
frames for local per-procedure storage. In languages like C, stack frames have two purposes which are
usually coupled: to hold caller/callee-saved registers, and to hold local variables which cannot be allocated

6Unfortunately Suif represents these as constants as well, making the translation from CFG somewhat more involved.
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Operation Inputs Outputs Observations
Create current address, token Allocate a symbol; used internally.
Delete address, token token Destroy a symbol; used internally.
Frame token frame address, token Create a fresh stack frame.
Pop token token Destroy last stack frame created.
Sp token frame address Get current frame address (stack pointer).

Table 3.5:Pegasus operations for manipulating the run-time stack.

in registers (e.g., local variables whose address is taken). The CASH compiler completely separates these
two usages of the stack. Since in Spatial Computation there are no shared registers between different
procedures, only recursive procedures need to save registers. The discipline is caller-save only, as described
in Section 3.3.11.

Stack-allocated locals are handled in two phases. First,createand deleteoperations are inserted to
create and destroy each variable. This simplifies dataflow analyses for these variables, making the lifetime
of each of them explicit. Acreateoperation is parameterized with the size and type of the object to allocate.
It receives as inputs thecurrent execution pointtoken and generates a new memory region, returning as
outputs its base address and a token for serializing accesses to this region (it is known that the frame is
disjoint from any other live memory region, so a new token is generated for serializing its manipulation).
Thedeleteoperation is the dual: it receives the address and token and returns a token.

After optimizations for efficiency, allcreateoperations of a procedure are lumped into a singleframe
operation and alldeleteoperations are lumped into a singlepop. These act similarly to create and delete.
They are parameterized with the size of the frame to create/destroy. Therefore a single frame does the work
of multiple create operations. Thespoperation can be used to retrieve the base address of the last created
stack frame.

* * *

This completes the tedious description of all Pegasus primitives. Most operations are straightforward.
The use of the other operations will be hopefully made more clear in the next section, detailing an algorithm
for creating Pegasus representations starting from traditional control-flow graphs.

3.3 Building Pegasus Representations

In this section we present an algorithm for constructing a Pegasus representation starting from a conven-
tional control-flow graph (CFG). There are several reasons for presenting the Pegasus construction starting
from a CFG rather than directly from source-level:

• Unlike source-level programs, CFG representations are “portable” across several languages.

• The semantics of a CFG is much simpler than that of a source language.

• As described in Chapter 2, our prototype compiler CASH uses Suif as a front-end for parsing and
generating a CFG; the CFG is used as a basis for building Pegasus.
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3.3.1 Overview

CASH performs almost exclusively intra-procedural optimizations. Therefore each procedure is parsed,
optimized and generated independently. Pegasus contains no inter-procedural information. The only piece
of inter-procedural information used by CASH is a conservative approximation of the program call-graph.
The call-graph is used to identify and treat specially non-recursive procedures — in ASH recursion is rather
heavyweight and therefore it is avoided if possible.

The construction of the Pegasus intermediate representation from a program is achieved in several
stages: the program is parsed and translated to a CFG by the front-end. Next the CFG is decomposed
into large fragments called hyperblocks, (Section 3.3.3), some of which will be the innermost loops. Each
fragment is compiled into speculatively executed code, in order to extract the maximum ILP. For this pur-
pose the control-flow inside each fragment is transformed into data-flow (Section 3.3.4) and branches are
transformed into multiplexors (Section 3.3.5), resulting in an SSA representation. In order to maintain the
correct program execution, predicated execution is used for the operations that cause side-effects or ex-
ceptions (Section 3.3.7). Operations with side-effects are serialized according to dependences using token
edges (Section 3.3.9). The hyperblocks are linked together into a complete Pegasus graph by using special
control-flow operators (Section 3.3.8). Structure is normalized by creating unique procedure prologue and
epilogue sections (Section 3.3.10) and by handling the stack for implementing recursion (Section 3.3.11).

The various algorithms and data structures that we describe have the following asymptotic complexities:

• The complexity of the entire construction algorithm is given by the complexity of the component
phases, the most complicated of which is a dataflow analysis used to determine points-to sets. Given
the results of this analysis, constructing the intermediate representation (IR) takes linear time in the
size of the resulting structure.

• The Pegasus graph is a sparse representation: its space complexity is similar to a classical SSA
representation.

• Many of the optimization algorithms we present in Chapter 4 have linear time and space complexity in
the size of the Pegasus representation. We discuss this aspect further when presenting the algorithms.

3.3.2 Input Language: CFGs

First let us briefly review the notion of control-flow graph. The input to the CASH compiler is a CFG, as
represented by the Suif compiler. The atomic components of a CFG are three-operand instructions: each
has two sources and one destination. The sources and destinations are either program variables or symbolic
registers. Two special instructions, load and store, are used to denote memory accesses.

Instructions are grouped together intobasic blocks, which are maximal contiguous program fragments
which always get executed together. Each basic block starts with a label and ends with a branch instruction.
In our illustrations we will represent CFGs as directed graphs, basic blocks are nodes, while branches are
edges connecting the source block with the destination block. Figure 3.10 shows a source-level program
fragment and its associated CFG.

We should note two important peculiarities in the way the CFG used to build Pegasus is structured:

1. Eachreturn instruction is in a basic block on its own.

2. Potentially recursive procedure calls start a new basic block.
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if (fa1 < - 8191)
a2p -= 100;

else if (fa1 > 8191)
a2p += 0xff;

else
a2p += fa1 >> 5;

a2p += fa1 >> 5;a2p += 0xFF;

(fa1 > 8191)

(fa1 < -8191)

a2p -= 100;

f

e
d

c

a

b

(A) (B)

Figure 3.10:(A) A code fragment from the g721 Mediabench program; (B) Its control-flow graph. Each
basic block (labeled from a to f) contains just one statement (except branches and labels).

3.3.3 Decomposition in Hyperblocks

Building the Pegasus representation of a procedure starts by partitioning the CFG into a collection ofhy-
perblocks. Hyperblocks were introduced in compilers that targeted predicated execution [MLC+92]. A
hyperblock is a contiguous portion of the CFG, having a single entry point and possibly multiple exits.
The whole CFG in Figure 3.10 is a single hyperblock. In Pegasus a hyperblock is the unit of (speculative)
execution: once execution enters a hyperblock, all component instructions are executed to completion. We
will come back to this aspect in Section 3.3.7.

As pointed out in the literature about predicated execution, there are many choices for hyperblock
boundary selection. At one extreme, one can make each basic block a separate hyperblock. In this case
there will be no speculation. Howeverm CASH is at the other extreme, attempting heuristically to minimize
the number of hyperblocks covering the CFG.

Hyperblock selection is made by a depth-first traversal. Hyperblock entry points are created with the
following rules:

• at CFG back-edge destinations

• at return instructions

• at recursive calls

• at targets of edges exiting natural loops

• at blocks having incident edges from multiple different hyperblocks

In the process of hyperblock formation, CASH performs no code duplication or loop peeling and cur-
rently does not use any profiling information. Note that this algorithm does not need to do anything special
for irreducible CFGs. Since each basic block is a hyperblock, we are guaranteed that a hyperblock cover of
an arbitrary CFG always exists. This algorithm turns each reducible innermost loop body in the CFG into a
hyperblock (if the loop contains no recursive calls). Outer loops always span multiple hyperblocks. Since
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Figure 3.11:(A) Sample CFG with (B) partition into hyperblocks. Hyperblock 2 contains multiple back-
edges. Only cross-edges are shown in (B).

most optimizations in CASH are at the hyperblock level, it is very desirable to have loops mapped to single
hyperblocks. Although detecting outer loops using the hyperblocks structure is certainly feasible, it still
requires some work. In contrast, hyperblocks containing innermost loop bodies are always specially tagged
by the compiler and optimized specially. In hindsight we regret not having made outer loops first-class
citizens.

After partitioning in hyperblocks we can classify each CFG edge as eitherinternal, if its end-points are
within the same hyperblock, orcross-edgewhen it connects two different hyperblocks. Technically, we will
call all back-edges cross-edges, even though both their endpoints reside within the same hyperblock. The
back-edges are the ones having as their target the hyperblock entry point. They are always loop-closing
edges. A hyperblock can have not only multiple cross-edges, but also multiple back-edges as well. These
can arise, for example, due to the use of Ccontinue statements. Note that two different cross-edges
may have the same destination. Figure 3.11 shows a sample non-trivial CFG and its cover with maximal
hyperblocks according to the described algorithm.

Since they contain no loops, hyperblocks are directed acyclic graphs (DAGs). Then we can speak of the
topological sort of a hyperblock with respect to the induced CFG.

3.3.4 Block and Edge Predicates

The next compilation step analyzes each hyperblock separately. It associates apredicateto each basic block
and control-flow edge. These predicates are similar to the full-path predicates from PSSA [CSC+00] and
to the gating paths from GSA [OBM90, TP95]. Let us denote the set of CFG edges originating from a
hyperblock byE (E comprises both internal edges as well as the cross-edges originating in the current
hyperblock).
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The predicate associated to basic blockb, denoted byp(b), is a run-time value which describes the con-
dition under whichb is on some execution path starting at the entry point of the hyperblock. In other words,
b is (non-speculatively) executed whenp(b) evaluates to “true.” Similarly, the predicatep(b, c) associated
with a hyperblock edge(b, c) evaluates to “true” when the edge is on some non-speculative execution path
starting at the entry point. Notice that these predicates are defined with respect to a hyperblock, and not
with respect to the CFG.

The predicates are defined recursively, and can all be computed inO(|E|) time in depth first order, as
follows:

p(hyperblock entry) = true
the hyperblock entry block is always executed (when the hyperblock itself is executed)

p(x, y) = p(x) ∧B(x, y)
edge(x, y) is executed if blockx is executed andx branches toy

p(y) = ∨(z,y)∈E p(z, y)
blocky is executed if some predecessorz branches to it

The predicatesB(x, y) correspond to the branch conditions in the code. Their computation is part of the
computation of the basic blockx. If x branches toy unconditionally,B(x, y) = true.

For the CFG in Figure 3.10, the predicates associated to the blocks and edges are:

p(a) = True
B(a, b) = (fa1 < −8191)
p(a, b) = p(a) ∧B(a, b) = B(a, b)
B(a, c) = ¬B(a, b)
p(a, c) = p(a) ∧B(a, c) = B(a, c)
p(b) = p(a, b)
p(c) = p(a, c)

B(c, d) = (fa1 > 8191)
p(c, d) = p(c) ∧B(c, d) = B(a, c) ∧B(c, d)
p(d) = p(c, d)
p(e) = p(c, e)

B(b, f) = B(d, f) = B(e, f) = True
p(b, f) = p(b) ∧B(b, f) = p(b)
p(d, f) = p(d) ∧B(d, f) = p(d)
p(e, f) = p(e) ∧B(e, f) = p(e)
p(f) = p(b, f) ∨ p(d, f) ∨ p(e, f) = p(b) ∨ (p(d) ∨ p(e)) = p(b) ∨ p(c) = True

Predicate expressions are simplified using algebraic manipulations and by exploiting the CFG structure.
The latter simplifications are based on the fact (noted in [GJJS96]) that if basic blocksa andb are control-
equivalent in the hyperblock-induced CFG, thenp(a) = p(b) (by definition,a is control-equivalent tob if a
dominatesb andb post-dominatesa7). Notice thata andb can be control-equivalent in a hyperblock while
not being control-equivalent in the procedure CFG. However, the reverse is always true. In Figure 3.10,
blocks f anda are control equivalent and therefore have the same predicate. CASH carries a control-
equivalence computation prior to computing predicates, and for control-equivalent nodes it always uses

7Recall that a basic blocka dominatesb if all paths from the start tob go througha. b post-dominatesa if all paths froma to
the exit of the procedure go throughb.
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the predicate of the earliest node in the topological sort because it will have the “smallest” formula, being
dependent on fewer conditions.

The predicate computations are synthesized asexpressions explicitly represented in Pegasus. In our
figures edges carrying predicate values are denoted by dotted lines (see Figure 3.12).

3.3.5 Multiplexors

The next step in building the Pegasus graph is to convert each hyperblock into Static Single Assignment
[CFR+91] form, that is, to connect variable definitions to uses within hyperblocks. Instead ofφ nodes,
Pegasus uses multiplexors (see also Section 3.2.3.3). Unlikeφ nodes, multiplexors explicitly represent the
conditions under which each variable flows from a definition to a use, a method use in other intermediate
representations such as GSA [OBM90], DFG [PBJ+91], TGSA [Hav93], or VDG [WCES94].

Since hyperblocks are acyclic, the problem of mux placement is substantially simpler than the most
general SSA case. The acyclic nature also makes the notion of controlling predicate for multiplexors well-
defined. CASH uses a relatively simple implementation, which does not directly build a minimal SSA
representation but adds multiplexors at all join points in the CFG. The insertion of muxes is preceded by a
live variable computation. A mux will be inserted for variablex at a program point only if the variable is
live there.

The mux insertion algorithm maintains for each basic blockb and each live variablev the “last definition
point” def(b, v).

For each basic blockb in topological order
For each variablev live at the entry ofb

Create a muxm(v)
def(b, v) = m(v)
For each predecessorb′ of b

Connectdef(b′, v) tom(v)
Set corresponding control predicate top(b′, b)

For each instructioni in b
If v is referred as a source ini, add edgedef(b, v) to i
If v is referred as a destination ini, def(b, v) = i

A subsequent multiplexor optimization phase (see Section 4.3 and Figure 4.4) removes the redundant
multiplexors. In practice, the performance of our implementation is very good, especially since the com-
plexity is bounded by the hyperblock size and not by the whole procedure CFG size. We have not found it
necessary to implement the more efficient algorithm for multiplexor placement described in [TP95]. Fig-
ure 3.12 illustrates how edge predicates are used to drive the multiplexors for the example in Figure 3.10.

3.3.6 Predication

Traditional predication annotates each instruction in blockbwith the predicatep(b). At run-time the instruc-
tion is executed if and only if its associated predicate evaluates to “true.” In Pegasus, predicates become
an additional input to each operation. The semantics of each operation is then slightly changed: if the
predicate is “true”, the instruction generates the expected output; if the predicate is “false”, the instruction
generates (immediately) an arbitrary value. In well-formed graphs the arbitrary value will be discarded by
some multiplexor later in the code.
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Figure 3.12:Pegasus representation of the program fragment from Figure 3.10. The labels indicate to which
basic block each predicates corresponds. The trapezoids are multiplexors. The dotted lines carry predicate
values. This is the representation prior to multiplexor optimizations.

3.3.7 Speculation

Speculative execution exposes ILP through the removal of control dependences [LW92] and reduces the
control-height [SKA94] of the code. Pegasus aggressively exploits speculation for these purposes.

Predicate promotion, described in [MHM+95], replaces the predicate guarding an instruction with a
weaker one, causing the instruction to be executed even if the block including it is not. This is a form of
control speculation, allowing the instruction to be executed before knowing the outcome of all controlling
branches in the hyperblock (which have been folded into predicates).

Pegasus promotesall instructions without side-effects by replacing their predicate with “true.” This
aggressive speculation enables many program optimizations because all the speculated instructions behave
as if part of a large “straight-line” code region.

Some instructions cannot be speculatively executed. These are division (which can generate division-
by-zero exceptions), control-flow transfers (e.g., inter-hyperblock branches, procedure calls) and memory
operations (including also reads, since reading an illegal address can cause an exception). For these in-
structions we keep the controlling predicate unchanged. Since we use speculation, most instructions do not
require a predicate input.

3.3.8 Control-Flow

The compilation phases described so far deal with hyperblocks in isolation. The next phase stitches the
hyperblocks together into a graph representing the whole procedure by creating dataflow edges connecting
each hyperblock to its successors. It therefore synthesizes objects corresponding to the CFG cross-edges.
A special instance of cross-edges are loop back-edges, which are also synthesized in this step.

A cross-edges is synthesized for each live variable along that edge — each gives rise to aneta-node.
Etas are depicted by triangles pointing down (see Figure 3.13 and Figure 3.5). Eta-nodes have two inputs—a
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int fib(int k)
{

int a = 0;
int b = 1;

while (k) {
int tmp = a;
a = b;
b = b+tmp;
k--;

}
return a;

}

 a

ret

 k

 k

!=

 b a

 a

1

!0

0

0

 b  k a

 a

 a

+ −

 b  k!

0

!=

1

merge node

argument
1

2

3

merge nodes

loop again

loop done

eta nodes

eta nodes
to hyper 2

to hyper 3

(A) (B)

Figure 3.13:(A) Iterative C program computing the k-th Fibonacci number and (B) its (slightly simplified)
Pegasus representation comprising three hyperblocks. This figure does not include the program counter, the
token edges, or the current execution point.

value and a predicate—and one output. When the predicate evaluates to “true”, the input value is moved to
the output. When the predicate evaluates to “false”, the input value and the predicate are simply consumed,
generating no output. Each eta is controlled by the edge predicate.

Hyperblocks with multiple predecessors may receive control at run-time from one of several different
points. Such join points are indicated bymergenodes, shown as triangles pointing up.

Putting together all the transformations above, Figure 3.13 illustrates the representation of a program
comprising three hyperblocks, including a loop. The eta nodes in hyperblock 1 will steer data to either
hyperblock 2 or 3, depending on the testk != 0 . Note that the etas going to hyperblock 2 are controlled
by this predicate, while the eta going to hyperblock 3 is controlled by the complement. There are merge
nodes in hyperblocks 2 and 3. The ones in hyperblock 2 accept data either from hyperblock 1 or from the
back-edges in hyperblock 2 itself. The back-edges denote the flow of data along the “while” loop. The
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Figure 3.14:Two possible implementations of cross-edges having the same source and destination hyper-
blocks.

merge node in hyperblock 3 can accept control either from hyperblock 1 or from hyperblock 2.
The merge and eta nodes essentially transform control-flow into data-flow. The Pegasus IR tends to

be more verbose than the classical CFG-based representations because the control-flow for each variable is
represented separately. Notice for example how in hyperblock 2 of Figure 3.13 there are eta and merge nodes
for all three loop induction variables,a, b andk . There are many benefits in this explicit representation,
which naturally exposes parallelism.

3.3.8.1 Handling Back-Edges

If multiple cross-edges have the same destination they can be handled in two ways: either use a separate
eta for each of them, or build a multiplexor for all instances of a variable and use a single eta. Figure 3.14
illustrates the two alternatives. Functionally these two variants are equivalent, but the multiplexor may
lengthen the critical path.

CASH uses both these representations: the multiplexor edges are used for implementing all back-edges,
while the simple eta solution is used in all other cases.8 The result is that for all hyperblocks there is exactly
one back-edge for each live variable; in other words, for each mu/switch node there is exactly one back-
edge eta. This invariant simplifies dramatically the implementation of some algorithms, such as induction
variable detection.

3.3.9 Token Edges

As described in Section 3.2.3.5, interfering operations with side effects have to execute in program order.
These operations are: loads, store, procedure calls, returns, operations for stack manipulation. The compiler
therefore has to respectdependencesbetween these. Dependences are first-class objects in Pegasus, being
explicit inputs and outputs of operations.

8However, a compile-time option can be used to force the simple eta implementation for all cases.
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extern int a[], b[];

void g(int *p, int i)
{

b[i+2] = i & 0xf;
a[i] = b[i] + *p;

}

b[i+2]=

=b[i] =*p

a[i]=
(A) (B)

Figure 3.15: A program and the implementation of its memory synchronization, assuming all memory
instructions can access any memory word.

3.3.9.1 Token Edge Insertion

During the construction of Pegasus, token edges are inserted using the following algorithm:

• A flow-insensitive analysis determines local scalar values whose address is never taken. These are
assigned to symbolic registers and become wires. In Figure 3.13 valuesa, b andk are scalars. All
other data values (non-scalars, globals or scalars whose address is taken) are manipulated by load
and store operations through pointers. This analysis and transformation is performed by the Suif
front-end.9

• Each memory access operation has an associated read/write set [GH98] (also called “tags” in [LC97],
M-lists in [CX02] or effects in [GJLS87]): the set contains the memory locations that the operation
mayaccess. This set can be computed through pointer analysis, or, if no pointer analysis is performed,
it is approximated to contain the entire memory.

• Memory instructions are created by traversing the control-flow graph in program order.

• Instructioni receives tokens from all instructionsj such that there is a control-flow path fromj to
i, andi does not commute withj (i.e., i andj are not both memory reads) and the read/write sets
of i and j overlap. If an instruction receives tokens from multiple predecessors, atoken combine
operation is inserted.

Figure 3.15 shows a sample program and the subgraph induced by the token edges. Notice that the two
memory reads (ofb[i] and*p ) have not been sequentialized, since read operations always commute.

The algorithm to insert token edges is somewhat similar to the one for multiplexor insertion. It is
somewhat complicated by some special properties of pointer operations:

1. To synthesize the inter-hyperblock tokens, a scan is made of the whole hyperblock and all the objects
modified through pointers are noted. Then a separate “mu” node is created for carrying a token for
each of them.

9Using the commandporky -only-simple-var-ops .
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2. A pointer may access many values; therefore updates through pointers are in general non-destructive.

3. Since, in the absence of whole-program analysis, potentially each memory object is live at each
program point,10 each hyperblock has to carry tokens “covering” together the whole memory. For
representing all “anonymous” objects (i.e., objects which are not accessed by name in the current
hyperblock, such as heap objects or objects accessed through pointers passed as arguments), a special
object callednonlocals is used.

4. The lack of inter-procedural analysis makes the treatment of procedures calls quite conservative.11

Procedures are assumed to read and write all symbols whose address is accessible from the procedure
arguments or globals.

5. The return instruction stands for a control-transfer to an unknown procedure, therefore it collects all
the tokens before executing.

Figure 3.16 shows the token network created by application of these rules for a small program.

3.3.9.2 Transitive Reduction of the Token Graph

The graph formed by token edges is maintained in a transitively reduced form by the compiler throughout
the optimization phases. This is required for the correctness of some of the optimizations described in
Section 4.4. Since some graph transformations may break this property, the graph is repeatedly transitively
reduced. The reduction is accomplished by scanning the subgraph induced by the token edges and removing
the token edges whose destination is already reachable from the source. This operation is potentially very
costly (O(n3)), but the sparsity of the token graph makes in practice this canonicalization quite acceptable.12

The presence of a token edge between two memory operations in a transitively reduced graph implies
the following properties:

• the two memory operations may access the same memory location,and

• there is no intervening memory operation affecting that location.

These properties are heavily used by our memory operation redundancy elimination (Section 4.4) and
register promotion algorithms (Section 4.6).

3.3.10 Prologue and Epilogue Creation

The unique “entry” basic block of a procedure always belongs to a loop-less hyperblock, used as the function
prologue. This hyperblock contains theargumentnodes, which stand for the procedure arguments. Code
is synthesized in this hyperblock to create all stack-allocated local variables (these are all locals that may
be accessed through pointers). For each such variable the compiler instantiates acreateoperation. This
operation returns both the address of the variable, used for subsequent pointer manipulations, and a token
mediating access to this variable.

10The only known information about lifetime available at this point is that local objects are dead at thereturn instruction.
11The lack of information on procedure calls is not an intrinsic feature of Pegasus, but of our current implementation. More

refined information could be easily accommodated.
12One can construct examples which require dense (non-sparse) token-edge subgraphs to be accurately represented. In practice,

however, the token edge subgraphs tend to be quite sparse. See Section 3.4 for an experimental quantification of this fact.
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int f(void)
{

int i, s = 0;

for (i=0; i < 10; i++)
s *= a[i] + a[9-i] + a[3+i/2];

return s;
}

@*

@nonlocals

@a@nonlocals

=[ ] =[ ] =[ ]

@nonlocals

@nonlocals

V*

@a

@a

V@*

ret

(A) (B)

Figure 3.16: (A) program manipulating an array and (B) the representation of its token network. The
top node labeled “@*” is the procedure token argument. The nodes labeled with “@a” transport tokens
mediating access to the array a[] , while the nodes labeled as “@nonlocals” transport tokens for all other
memory locations.

After the translation from CFG to Pegasus, a function containing manyreturn statements contains
one hyperblock for each of them. All these hyperblocks are identical. The epilog creation normalizes the
graph by keeping only one of these and diverting all control-flow towards returns to go to the canonical
return. Code is next inserted in the newly created epilog to handle the destruction of stack-allocated local
variables: for each such variable adeleteoperation is created. The delete receives a token and the address,
and destroys the local variable.

Optimizations may deem some stack-allocated locals useless (for example, after register promotion),
and then the code manipulating them is simply deleted. Representing creation and destruction for each
variable separately enables simpler dataflow analyses and optimizations. The compiler back-end efficiently
synthesizescreateanddeleteoperations by bundling operations for all variables together in a single stack
frame, whose allocation (using theframe operation) and destruction (using thepop operation) is more
efficient.

Figure 3.17 shows a simple procedure and the synthesized representation. The resulting representation
has exactly two hyperblocks: the prolog and the epilog. The prolog contains the inputs and the bulk of the
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int f(int x)
{

int z, *p;
p = &z;
*p = x;
return *p + 1;

}

 x

[4]=

 @crt

tmp pc @crtaddof_z

C(z)

 pc @*

@nonlocals

V@*

tmp pc @crtaddof_z

@z

@z@nonlocals

=[4]

+

1

1

1

1 1 1111

ret

D(z)

V@*

(A) (B)

Figure 3.17:Representation of a procedure containing a local variable whose address is taken. C(z ) indi-
cates a createoperation which allocates variable z , and D(z ) a delete.

computation. Note thecreateoperation, denoted by a C, which generates a new local (z ). The outputs of
the “create” are the address ofz , denoted byaddof z , and the token mediating access toz , denoted by
@z. The epilog contains thedeleteoperation D followed by a return.

A discussion of the other nodes in Figure 3.17 is given below in Section 3.3.12. Figure 3.18 shows the
final result of optimizing the example in Figure 3.17. The load fromz is removed by register promotion
(Section 4.4) and thestorefollowed by thedeleteis deemed useless (Section 4.7.3). Next, since there is no
access left toz (shown by the fact that thedeleteimmediately follows thecreate), the local variablez is
completely removed and this function requires no stack frame at all. While this particular example is very
simple, such optimization occurs in real programs using local temporary arrays.

3.3.11 Handling Recursive Calls

The handling of recursive procedures is a low-level issue in Pegasus. ASH circuits have no centralized
register file. All scalar data values are transported by “wires” directly between producers and consumers.
If no procedure in a program is recursive, this model can be simply extended without the need of saving
and restoring registers at procedure boundaries because each procedure has its own register set. The story
is different when a procedure is recursive because a local variable may have simultaneously several live
instances.

The policy in ASH is to leave the whole burden of saving “registers” on the caller. In order to simplify
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 @*
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ret
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Figure 3.18:The program in Figure 3.17 after all optimizations are applied.

recursive call

save live values

restore live values

hyperblock

local
stack

Figure 3.19:Schematic implementation of recursion. The stack frame may be local or not. Currently the
stack is co-located within the global memory space: this automatically handles stack overflow handling and
passing the address of locals to other procedures.

the task of deciding which values are live at the point of a recursive call, each such call must be the first
instruction in a hyperblock. In C programs in general it is difficult to ascertain which procedures are recur-
sive. Since the conservative solution of always saving all live values would entail substantial overhead, and
worse, would break hyperblocks needlessly in too many pieces, CASH uses a conservative approximation
of the call-graph to decide which calls may be recursive.13 (The call-graph is also used to avoid compiling
unreachable functions.)

Once a call is the first instruction in a hyperblock, the live values that need to be saved are all the
hyperblock inputs, except the ones which are only passed as arguments to the call. Figure 3.19 shows this
process schematically. All tokens are collected using a “combine” and passed as a single token input to the
recursive call. Prior to making the call a stack frame is created (using the “frame” operation) for all live
locals. The locals are stored in the frame prior to the call and restored on return. Figure 3.21 shows how
the recursive procedure from Figure 3.20 is represented in Pegasus. The variables that need to be saved
aren andpc . (In this example thepc is encoded in 12 bytes andn on 4, therefore theframe instruction
allocates 16 bytes.n is saved at offset 0, whilepc at offset 4.) Note thattmp2 , whose value isn-1 , is not
live past the recursive call, and is not saved. Also, notice how the tokens for nonlocals and for the newly

13The call-graph is exact in the absence of calls through function pointers.
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int rec(int n)
{

if (!n)
return 0;

return
n + rec(n-1);

}

Figure 3.20:Sample recursive procedure.
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Figure 3.21:Pegasus representation of the recursive procedure in Figure 3.21.

created stack frame are combined before making the recursive call.
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3.3.12 Program Counter, Current Execution Point

Figure 3.17 and Figure 3.21 show complete Pegasus representations. Most of the other figures in this
document are simplified to highlight only the important features. In particular, in these two examples we
show the flow of the valuesprogram counter(labeledpc ) andcurrent execution point(labeled@crt ).
These values are invariant in a procedure (can never change).

The pc holds the identity of the continuation node where the current procedure returns control on
completion. How node names are encoded is not specified by Pegasus. A newpc is created by acall
operation and is used by areturn . Recursive procedures need to save thepc on the stack.

The @crt nodes and edges are used to propagate the so-calledcurrent execution pointtoken. The
invariant maintained at run-time is that there is exactly one such value “set” in the whole program. The
hyperblock containing this value is sometimes called the “current execution point.” However, note that this
notion is more than vague since computations can be carried simultaneously in multiple hyperblocks, or
even procedures, at once. The@crt value has several important uses at run-time:

• It is used to drive eta nodes with all inputs constant.

• It is used to pass control from caller to callee and vice-versa.

• Themunodes for@crt are used to drive theswitchnodes (see Section 6.3.1).

3.3.13 Switch Nodes

In Chapter 6 we discuss some invariants maintained by the proper execution of ASH circuits. In Sec-
tion 6.3.1 we show a scenario in which some of these invariants may be violated unless some extra care is
taken. The fix for these problems is described in the same section and involves transforming some “mu”
nodes into “switch” nodes. Currently this transformation is performed late in the compilation process. This
is of some concern, since it implies that the representation up to that point does not accurately reflect the
program semantics. Ideally “switch” nodes should be created right from the start. However, the compilation
process is correct because all the optimizations we have implemented operate in the same way on “mu” or
“switch” nodes. The reason is the fact that there is only a very limited set of code motion transformations
applied (mostly within the same hyperblock), and the “switch” nodes only affect the flow of data between
different hyperblocks.

3.4 Measurements

In this section we present static measurements on the program representation. While we have observed
empirically that the trends presented in this section are the same for all programs we have compiled, we
quantify them precisely here only for nine randomly programs from three of our benchmark suites, displayed
in Table 3.6. The program size is just the raw number of source lines, counted withwc.

A first concern is the “verbosity” of Pegasus when compared to a traditional CFG. Figure 3.22 shows
that for the selected programs the representation is indeed larger, but never more than two times as large,
even if aggressive loop unrolling and procedure inlining are used in both cases. This overhead is quite
acceptable. We are measuring the size of the Pegasus representation after all optimizations have been
applied. Optimization can both increase the number of nodes (for example, expanding constant multipliers)
and reduce it (for example, CSE or dead-code).
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Benchmark suite Program Lines
Mediabench adpcme 319

epic d 2,482
mpeg2d 9,844

SpecInt95 099.go 29,275
124.m88ksim 19,168
147.vortex 67,220

SpecInt2K 175.vpr 17,744
197.parser 11,402
256.bzip2 4,661

Table 3.6:Selected programs for static measurements

Figure 3.22:How much larger a Pegasus representation is compared to Suif, with and without unrolling and
inlining. The size is given in “nodes” for Pegasus and operations of the CFG for Suif.

Figure 3.23:Increase in representation size due to fine-grained memory dependence representation.
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Figure 3.24:Estimated hardware resources for implementing each the programs completely in hardware.
The values are given in bit-operations per source line of code and complex operations per 100 lines of code.
The data is obtained without unrolling or inlining.

The space complexity of the scalar network of Pegasus (i.e., ignoring the memory tokens) is asymp-
totically the same as a classical SSA representation. There was some concern that explicitly representing
may-dependences would blow up quadratically. However, independent of which memory optimizations
were turned on or off, the size of the IR never varied by more than 20%, as shown in Figure 3.23.

We have also attempted a back-of-the-envelope calculation of the required hardware resources for im-
plementing the programs entirely in hardware. We are evaluating the number of “bit-operations” required,
which is roughly the same as the number of Boolean gates. While we can give a relatively reasonable
estimate for arithmetic operations, the complex operations (memory access, call, return) require measure-
ments of a real implementation. Moreover, the cost of the complex operations may be dependent on the
program size. For example, a program with many procedures may require a complex dynamically routed
communication network for handling procedure invocations. While a program with just a few may have
direct caller/callee connections. Figure 3.24 shows the hardware resources for each of the programs, using
the arguably volatile metric of resources per lines of source code.

We can nevertheless use these measurements to get a coarse estimate of the capabilities of ASH. For
example, assuming that a complex operation requires about 200 bit-operations, and using the geometric
average from Figure 3.24, we deduce that we can expect to use approximately50×100+25×200 = 10000
bit-operations for every 100 lines of code. On a hardware budget of 1 million bit operations, we can expect
to be able to implement programs as large as 10,000 lines of code completely in hardware. In Section 7.5
we present actual resource measurements on synthesizable Verilog generated from CASH’s back-end.
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Chapter 4

Program Optimizations

4.1 Introduction

In this chapter we discuss in some detail the optimizations performed by CASH. We make several research
contributions to the subject of compiler optimizations:

• We present several new, more powerful versions of classical optimizations. Some of them are ap-
plicable in the context of traditional compilers as well, while others are more intimately tied to the
features of the Pegasus internal representation.

• We suggest a new class of optimizations, based ondynamic dataflow analysis. As an example we
present in Section 4.6 a new, optimal algorithm for register promotion which handles inter-iteration
promotion in the presence of control-flow. The idea of these optimizations is, instead of using static
conservative approximations to dataflow facts, toinstantiate the dataflow computation at run-time
and therefore to obtain dynamic optimality.

• We show that Pegasus can uniformly handle not only scalar optimizations, but also optimizations
involving memory. Other efficient program representations treat memory as a second-order object,
resorting to external annotations and analyses in order to handle efficiently side-effect analysis. For
example, while SSA [CFR+91] is an IR that is widely recognized as enabling many efficient and
powerful optimizations, it cannot be easily applied in the presence of pointers. (Several schemes have
been proposed [LCK+98, SJ98, BGS00, CG93, LH98, CLL+96, Ste95], but we believe that none
of them fits as naturally as Pegasus in the framework of single-assignment.) We show how Pegasus
enables efficient and powerful optimizations in the presence of pointers.

• We show how Pegasus not only handles optimizations naturally in the presence of predication and
speculation (most classical optimizations and dataflow analyses breakdown in the presence of predi-
cation), but even takes advantage of predicates in order to implement very elegant and natural program
transformations without giving up any of the desirable features of SSA. We show how to use pred-
ication and SSA together for memory code hoisting (subsuming partial redundancy elimination and
global common-subexpression elimination for memory operation), removing redundant loads, loads
after stores, and dead stores in Section 4.4.

• Unlike other intermediate representations, Pegasus represents essential information in a program
without the need for external annotations. Moreover, the fact that Pegasus directly connects defin-
ers and users of values makes many traditional dataflow analyses unnecessary: they are summarized
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by the edges. Therefore, many optimizations are reduced to a local rewriting of the graph. This is
important not because of the elimination of the initial dataflow computation, but becausedataflow in-
formation is maintained automatically in the presence of program transformations. Therefore, there
is no need for cumbersome (incremental or complete) re-computations of dataflow facts after opti-
mizations.

• As a by-product of the sparsity of the representation and of the lack of need of dataflow analyses,
many optimizations are linear time, either worst-case or in practice. This enabled us to use a very
aggressive optimization schedule by iterating most optimizations until convergence, shown in Sec-
tion 4.2. We believe that CASH is unique in this respect. All compilers that we know of have a
relatively fixed schedule of optimizations, while in CASH some optimizations may be applied many
times.

• The sparsity of Pegasus and its “def-use” nature makes the implementation of dataflow analyses
practically trivial. We illustrate this by describing a general dataflow framework and showing how
several analyses fit into it in Section 4.7.

• In Section 4.5.4 we introduceloop decoupling, a new loop parallelization algorithm for handling
memory dependences which relies on creating a computation structure thatdynamically controls the
slip between two parallel computations.

• We bring new insights into the implementation of software pipelining. Our approach, inspired by the
paradigm of dataflow software pipelining, was devised for implementation in Spatial Computation
and is discussed more fully in Section 6.7. Our approach is immediately applicable on multithreaded
processors and is much simpler than traditional software pipelining, while being also tolerant of
unpredictable latency events.

An important caveat is in order: many of the optimizations we describe operate naturally (only) at the
hyperblock level. Therefore, while they are stronger than basic-block optimizations, they are weaker than
global (whole procedure) optimizations. The price we pay for speed and compactness is some level of
sub-optimality. While it is relatively difficult to characterize the loss, we believe that the benefits we get in
terms of simplicity and speed outweigh the loss in global optimality.

Let us note an interesting phenomenon: while the CASH compiler was devised as an exploration into the
subject of application-specific hardware, perhaps the most important by-product of this research has been the
creation of several new compiler algorithms, most of which are applicable in traditional settings. However,
we believe that the discovery of these optimizations has been substantially facilitated by thechange in
perspectivebrought by this new viewpoint of compilation, seen as synthesis of Spatial Computation. These
results show again that research is an unpredictable journey and that setting remote goals can lead one on
fruitful paths, even if they do not always end at the expected destination.

For some optimizations Pegasus allows extremely efficient implementations, much simpler than when
using other IRs. The standard we compare to is always the description of the optimization given in [Muc97].
The actual code implementing these optimizations is extremely compact and easy to understand. Table 4.1
shows the complete amount of C++ code required to implement each optimization, including whitespace
and comments.

In this chapter we discuss the various optimizations implemented in Pegasus. Some optimizations are
barely mentioned. Most of them are versions of well-known program transformations rewritten to take
advantage of Pegasus. Some are completely new. We discuss pragmatic issues even for some of the well-
known transformations, highlighting aspects ignored in the literature about how to efficiently handle special
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Optimization LOC
Hyperblock optimizations

Constant folding 750
Algebraic optimizations 950
Strength reduction (constant multiply, divide, modulo) 502
Mux simplifications 255
Re-association 220
Loop-invariant code motion 195
Induction variable strength reduction 118
Transitive reduction of tokens 187
Common subexpression elimination 282
Induction variable discovery 646
PRE for memory 235
Inter-iteration register promotion 309
Lifting loop-invariant memory accesses 284
Loop decoupling 180
Memory disambiguation 257
independent pragma disambiguation 293
Reachability test 127

Global optimizations
Unreachable hyperblock removal 38
Dead local variable removal 99
Global dead code elimination 41
Global constant propagation 99

Table 4.1:C++ lines of code (including whitespace and comments) required for implementing major Pega-
sus optimizations.

cases or how to engineer an efficient implementation. The hope is that these highlights may be useful to
other compiler developers, even if their value as a research contribution is hard to quantify.

4.2 Optimization Order

An important subject in current compiler research is the actualorderingof the optimizations (e.g., [TVVA03,
YLR+03]). While we cannot claim to solve this problem, we believe that the approach taken in the CASH
compiler is an interesting and rather extreme design point in the space of possibilities.

It is well known that some optimizations have to be repeatedly applied in order to be effective or to
speed-up the compilation process [Muc97]. CASH actually iterates many optimizations until no changes
are observed in the graph. Some optimizations may be therefore applied more than 10 times over each
program fragment!1 This should make the final result somewhat less sensitive to optimization order (al-
though certainly not completely insensitive). Most optimizations are amortized linear-time because they are
applied separately to acyclic code regions (i.e., individual hyperblocks) and therefore require a single pass.

1We have instrumented the compiler to provide warnings if more than 10 different iterations are required to convergence. With
the current optimization order and input programs this warning was never displayed.
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Another important aspect of optimization efficiency is that Pegasus already encodes explicitly many impor-
tant dataflow facts, such as liveness, reachability, def-use, and may-dependence. Therefore, optimizations
do not need to compute and more importantly, recompute these dataflow facts.

The current ordering for the optimizations has been achieved mostly by experimentation. Some of the
choices can be justified on relatively solid grounds, some were observed to produce better results, while
some were found not to have too much of an importance. We have unfortunately noticed that as more
optimizations passes are added, the results seem to becomemoresensitive to the ordering.

The optimization process is broken into two parts — core optimizations and post-processing optimiza-
tions:

Core optimizations: these consist of a series of code transformations, most of which are applied repeat-
edly. The bulk of the optimization process occurs in this phase. The pseudo-code for this phase is
given in Figure 4.1. However, some optimizations in this phase are only applied once, either because
they are idempotent, or because applying them repeatedly can lead to code degradation.

Post-processing optimizations:these are a series of code transformations applied only once on the pro-
gram in a very careful order. Figure 4.2 shows the pseudo-code for this optimization phase. All
post-processing optimizations are target-oriented (i.e., they are motivated by the hardware target).
There are two types of post-processing optimizations:

(a) Optimizations that break some representation invariants. For example, a “mu” node with a single
input is removed. Such a removal cannot occur earlier, since most code analysis expects each
hyperblock to start with “mu” nodes (except the entry hyperblock, which starts with “argument”
nodes).

(b) “Reversible” term-rewriting optimizations that break a canonical representation of a formula.
An example of such an optimization is rewritinga + (-b) asa - b . Section 4.3.2.1 gives
a complete list and a more detailed explanation.

Most of the non-obvious optimizations are described in detail in the rest of this chapter.

4.3 Classical Optimizations

Pegasus’ strength is apparent when we examine how it expresses program optimizations. In this section we
examine informally most of the scalar optimizations described by Muchnick [Muc97] and their implemen-
tation in Pegasus. The next sections are devoted to novel optimizations.

Before reviewing the optimizations, it is important to note that Pegasus converts all control flow into
data flow, so some optimizations no longer strictly correspond to their original definition. For example,
straightening is an operation that chains multiple basic blocks in a single basic block under some appropriate
conditions. However, there are no basic blocks in Pegasus, so we cannot speak of straightening any longer.
Nevertheless, we define a transformationS on Pegasus and claim it is equivalent to straightening, in the
following sense: if we apply straightening on a CFG and next translate to Pegasus, we obtain the same
result as if we translate the CFG to Pegasus and next applyS. In other words, the following diagram
commutes:

CFG −−−→ Pegasus

straightening
y yS

optimized CFG−−−→ optimized Pegasus
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global_optimizations() {
do {

unreachable_hyperblock_removal();
global_constant_propagation();
global_dead_code();

} while (changes);
}

hyperblock_optimizations(hyperblock h) {
reassociation(h);
do {

transitive_token_reduction(h);
cse(h);
term_rewriting(h);
pre_for_memory(h);

} while (changes);
boolean_optimizations(h);

}

core_optimizations() {
repeat twice {

for each hyperblock h
hyperblock_optimizations(h);

global_optimizations();
}

/* One-time optimizations */
for each hyperblock h {

reassociation(h);
hyperblock_optimizations(h);
immutable_loads(h);
memory_disambiguation(h);
loop_invariant_code_motion(h);
loop_register_promotion(h);
loop_decoupling(h);
loop_strength_reduction(h);

}
remove_unused_locals();
build_local_stack_frame();

repeat twice {
for each hyperblock h

hyperblock_optimizations(h);
global_optimizations();

}
}

Figure 4.1:Pseudo-code for the order of the core optimizations in CASH. Many of these passes also invoke
local (hyperblock-level) dead-code elimination as a clean-up phase.
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post_processing() {
for each hyperblock h {

if (no_computation(h))
remove(h)

else
create_switch_nodes(h);

}

for each hyperblock h {
term_rewriting(h);
reversible_optimizations(h);
pipeline_balancing(h);
pipeline_operations(h);

}

global_dead_code();
}

Figure 4.2:Post-processing optimizations in CASH.

4.3.1 Free Optimizations

These optimizations are implicitly executed during the creation of the Pegasus representation. They do not
require any code to be implemented.

Copy propagation and constant propagationat a hyperblock level occur automatically during the con-
struction of the SSA form.

Straightening and branch chaining occur because unconditional branches are transformed into constant
“true” predicates that are removed from all path expressions by Boolean formula simplifications.

Unreachable code eliminationoccurs during the partition in hyperblocks because the depth-first traversal
does not assign unreachable blocks to any hyperblock.

Removal of if statements with empty branchesoccurs due to predicate simplification and dead-code
elimination. Basic blocks before and after an empty conditional are control-equivalent, therefore
the conditional expression from an emptyif will not control any multiplexor and in consequence
becomes dead code.

4.3.2 Term-Rewriting Optimizations

All these optimizations look for a pattern subgraph in the Pegasus graph and then replace it with another
pattern with equivalent functionality. Most patterns are constant-size, while some others can be arbitrarily
large. A pattern is matched always starting from the “root”, by searching its descendants. Figure 4.3
illustrates schematically the pattern-replacement process. The replacing pattern is synthesized separately
and the outputs of the replaced graph are rewired from the replacement. The old pattern is left in place to
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Figure 4.3:Generic term-rewriting optimization: a pattern is always a DAG matched starting from the root
and replaced with a different DAG.

be cleaned up by dead-code elimination. This approach is particularly convenient if the DAG has multiple
“outputs” and not all of its nodes become dead.

Term-rewriting optimizations include new algebraic optimizations involving the new constructs (multi-
plexor, mu, eta) as shown in Figure 4.4 and Figure 4.5(c). A special form of dead-code can be applied to
predicated operations guarded by constant “false” predicates, as illustrated for some examples in Figure 4.5.
Such operations can be simply discarded, since their result is irrelevant (a “false” predicate indicates that
control-flow can never reach such an operation, or that the operation is/has become redundant as shown in
Section 4.4).

Collectivelyall the term-rewriting optimizations can be applied in linear time to a hyperblock, by pro-
cessing the graph in topological order (ignoring the back-edges). The pseudo-code is given in Figure 4.3.
This code is linear time under the assumption that all source and replacement patterns have constant size.

4.3.2.1 Reversible Optimizations

In some cases there are reasons for performing a term-rewriting either of pattern A into B or of B into A.
For example,a− b for integer types is the same asa+ (−b). The former takes fewer operations, while the
latter may enable other optimizations, for example re-association, ifa is itself the result of an addition. So
which way should the compiler perform the transformation?

The answer to this question in CASH is: both. Usually this question will arise if one form of an expres-
sion is better at enabling other optimizations, and the other reduces run-time or hardware area. Therefore
the solution is to dub the form which enables other optimizations a “canonical” form. This idea has been
advanced in [Fra70]. During the bulk of the optimizations, the compiler brings all such expressions to the
canonical form. After the main optimizations are completed the compilers enters the “post-processing”
phase (see Section 4.2) and at this point each canonical form is dismantled into its corresponding minimal
form. Table 4.3 lists all such optimizations currently applied.
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Figure 4.4: Algebraic simplifications for multiplexors: (a) a multiplexor with constant “true” predicate
is replaced with the selected input; (b) multiplexor with constant “false” predicate has the selected input
removed; (c) multiplexor with only one input is removed; (d) multiplexor with two identical data inputs
merges the inputs and “or”s the predicates; (e) chained multiplexors.
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Figure 4.5:Optimization of operations controlled by false predicates: (A) stores, (B) loads and calls, (C)
etas. Since these operations can never be dynamically executed, they can be safely removed from the graph.
For (A) and (B), the token edge is “short-circuited” from the input to the output because it must preserve
dependences between prior and later operations. The data generated by a removed call or load can be simply
replaced with an uninitialized node. The uninitialized node will most likely be proved dead and removed
by further optimizations.
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Optimization Comments

Constant folding Quite complicated to implement due to the large number of combination of
possible operations and types. This optimization is also quite hard to imple-
ment if the target machine is not the same as the compiler machine (e.g., in
cross-compilation). CASH’s implementation uses native arithmetic to carry
the constant folding.

Strength reduction The code for constant multiplication, constant division and modulus [GM94]
has been adapted from gcc.

Induction variable
strength reduction

Multiplications of induction variables with constants are turned into repeated
additions.

Algebraic
optimizations

a+0, a-0, a*0, a*1, a*-1 as -a, 0/a, a/1, a>>0,
a<<0, a|0, a&0, ˜a-1 as -a, 0-a, -1-a as ˜a, 0/a,
(a+C1)*C2 as a*C2+C1*C2, a%1 as 0, 0%a, -a/-b, a%-b
as a%b, a-b==0 as a==b, (a-b)!=0 as a!=b, -a==C as
a==-C, -a*-b as a*b, !!a as a, !(a==b) as a!=b, a&a,
a&˜a, ˜a&˜b as ˜(a|b), a<<b<<c as a<<(b+c), --a, -
(a-b) as b-a, a-(-b) as a+b, a-b as a+(-b), a-(a&b) as
a&˜b, a-a, a+a as a<<1, a==a as 1, a!=a as 0, -a<-b as
a>b, a*C+a as (a+1)*C, (a*b)+(a*c) as a*(b+c) . (C stands
for a constant; none of these is applicable to floating-point.)

False predicates See Figure 4.5.
Multiplexor
optimizations

See Figure 4.4.

PRE for memory See Section 4.4.

Table 4.2:Term-rewriting optimizations

Canonical form Minimal form Comments
˜a -1 - a
a - b == 0 a == b Also for !=
a + b == 0 a == -b Also for !=
!(a == b) a != b Simpler Boolean tree leaves
!(a < b) b <= a
a + (-b) a - b
a + a a << 1
(a * b) + (a * c) a * (b+c) Also for -
and(a, b, c) and(and(a, b), c) Also for or , V, mux

Table 4.3:Reversible optimizations used in CASH.

The minimization transformation on the last line in Table 4.3 breaks some associative operations (Boolean
and, or, token combines and muxes) with large fan-in into an un-balanced tree of operations with a smaller
fan-in. The operation for muxes basically undoes the transformation from Figure 4.4(e). In this example,
the minimal form is faster when inputc is the last one to arrive.
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sort topologically hyperblock ignoring back-edges

foreach node n in topological order {
switch (n->operation) {

case addition:
if (root_of_pattern_1(n))

replace(n, replacement_pattern_1);
else if (root_of_pattern_2(n))

replace(n, replacement_pattern_2);
else

...
break;

case multiplication:
....

}
}

Figure 4.6:Pseudo-code for performing term-rewriting optimizations.

4.3.3 Other Optimizations

Dead code elimination (at the hyperblock level) is a trivial optimization: each side-effect-free operation
whose output is not connected to another operation can be deleted. Even loads whose data output is uncon-
nected can be removed. The removal of a load connects the token input to the output, as for the removal
of loads with constant “false” predicates illustrated in Figure 4.5. Once an operation has been removed,
the operations producing its inputs are also candidates for removal if their output had a fanout of 1. Dead
code removal is therefore a linear-time operation, which is very frequently invoked to perform clean-up
after term-rewriting optimizations. As shown in Figure 4.3, term-rewriting replaces the root of a pattern
with a different pattern, leaving the old root “hanging” in the circuit. A dead code pass is used to clean-up
after a batch of term-rewriting operations has been performed in topological order.2 Performing dead-code
elimination on each hyperblock separately repeatedly brings most of the benefits, but does not guarantee the
removal of all dead code. A complete solution, relying on a dataflow analysis, is described in Section 4.7.2.

Re-association is the process of reordering a chain of commutative and associative operations. We used
the algorithm from [BC94]. Trees of associative and commutative operations are re-ordered to operate first
on constants, then on link-time constants, then on loop-invariant values and then on all other terms. This
ordering enables constant propagation and loop-invariant code motion for the corresponding parts of the
tree. The trees are also height-balanced during this process. An important question is the re-association of
DAGs: how should nodes with fanout be handled? Our current implementation blows up these nodes for
each output, potentially creating an exponentially-sized tree out of a DAG. While in practice this has not
been a problem, a more careful implementation ought to test how large the expansion is and stop duplicating
subtrees if the cost is excessive.

2Doing term-rewriting by checking roots in topological order ensures that newly created dead code is never considered for
term-rewriting.

68



Constant conditionals inif statements are eliminated by algebraic simplifications for multiplexors and
etas. Such constant conditionals are translated into constant selectors for multiplexors or etas, which can be
simplified as in Figure 4.4(a,b) and Figure 4.5(c).

More unreachable code removal, for code proved unreachable due to constant propagation, is achieved
by removing the hyperblocks havingmergenodes with no inputs.

SSA form minimization is obtained after repeatedly simplifying multiplexors as shown in Figure 4.4.3

Global common-subexpression elimination (CSE), value numbering, partial redundancy elimination
are actually all the same operation, due to the speculation and copy-propagation. The algorithm to imple-
ment all of these is trivial and is as complex as strictly local traditional common-subexpression elimina-
tion. A prerequisite for an efficient CSE is that constant nodes are unique per hyperblock. Then all nodes
performing the same computation and having exactly the same inputs can be “coalesced.” A linear time
implementation can be obtained by hashing nodes on their inputs. To handle commutative operations, the
inputs of each operation are first sorted in an arbitrary canonical order.4

Even operations with side-effects (memory loads and stores, function calls and returns) that have iden-
tical inputs (including the predicate) are coalesced by CSE. CSE can be performed truly globally: nothing
prevents us from applying CSE to two mu nodes having the same inputs coming from a different hyperblock.

Note that since side-effect-free operations had their predicates promoted to “true”, CSE may be applied
to operations residing originally in different basic blocks. This is why CSE in Pegasus is as powerful as
global value numbering.

Scalar promotion using a new optimal algorithm which is extensively described in Section 4.6.

Code hoisting and tail merging are subsumed by GCSE because expressions which compute the same
value in different basic blocks of the same hyperblock can be merged by CSE after predicate promotion.

Loop-invariant code motion is illustrated in Figure 4.7. A loop-invariant expression is defined [Muc97]
as (1) a constant; (2) an expression not changed within the loop; or (3) a computation having all inputs
loop-invariant. In this figure, (1) the 5 is a constant; (2) the mu-eta loop carries an unchanged value; and (3)
the addition has all inputs loop-invariant.

Finding the maximal loop-invariant code then amounts to a simple hyperblock-level dataflow computa-
tion in two steps: (a) marking all constant and simple loop-invariant expressions (i.e., just a trivial mu-eta
cycle, with no intervening computation; see also induction variable discovery in Section 4.3.4) and (b)
traversing the graph forward and marking the expressions reachable only from already marked expressions.
Lifting a loop-invariant expression “before” the loop requires the creation of a newmu–etacycle, which is
used to carry around the newly created loop-invariant value (the leftmost loop in Figure 4.7(B)).

In order to lift loop-invariant expressions out of a loop aloop pre-headerhyperblock is created. Since
each loop has a single entry point, it is relatively easy to insert a new hyperblock before the loop: all
mu input edges coming from other hyperblocks are diverted to the pre-header. The pre-header branches
unconditionally to the loop: all its eta nodes are controlled by a constant “true.”

3A minimal SSA representation results for each individual hyperblock. The form is not globally minimal.
4Strictly speaking sorting is not linear time, since some operations, such as Booleans, can have arbitrarily large fan-in.
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Figure 4.7:Loop-invariant code motion.

4.3.4 Induction Variable Analysis

Induction variable analysis has the purpose of discovering expressions whose value grows by a constant
amount in every iteration of a loop. They include loop-invariant expressions (whose value grows by 0). In-
duction variable analysis proves to be extremely powerful since (a) it can be applied to very low-level code,
such as Pegasus, and (2) the information it produces can be used for a variety of complex optimizations.

For induction variable discovery we use the excellent linear-time algorithms proposed by Wolfe [Wol92],
which are described on an SSA form. The discovery is a three step-process: (1) find loop-invariant values
(0-th level induction variables); (2) find basic induction variables: strongly connected components that
amount to a change by a constant step in every iteration; (3) finding derived induction variables which are
linear combinations of basic induction variables.

Information about induction variables is stored in separate program annotations. This is the first ex-
ample of an important program summarization that is not directly represented in Pegasus. Since induction
variable annotations are “external” objects, they are not automatically updated on program transformations.
However, since computing this information is a linear-time process, the information is simply discarded and
recomputed from scratch every time it is needed.

Unfortunately, the current representation of induction variable information is not as general as it could
be. The information is attached to a node and describes the behavior of the node with respect to successive
iterations. The attached information contains two fields: a base, which is the initial value of the node output;
and a step, which indicates the change in every iteration. The base is represented as alinear combination
of values of other nodes. Although the step can theoretically be any loop-invariant expression, the current
representation only handles compile-time constant values.

Figure 4.9 shows an example labeling of induction variables for a small program. Nodes [12],[51],[77]
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void f(void)
{

extern int xx[];
int i;

for (i=1; i<10; i++)
{

xx[i]++;
if (i != 5)

xx[i+2] = xx[i];
}

}

Figure 4.8:Sample program for illustrating induction variable analysis.

contribute to the computation of the basic induction variablei . Their step is 1. The base value for node
[12] is 1, obtained from scanning the predecessor hyperblock. Node [134] is a loop-invariant value, actually
a link-time constant, with basexx+8 and step 0.5 Finally, nodes [108] and [136] are derived induction
variables. Node [136] has the most complicated expression: step 4 and basexx +12 (i.e.,xx +4*[12]+8).

One of the most useful applications of induction variable information in CASH is for analyzing memory
accesses. In this example it is clear that the load [24] and the store [29] access the same memory locations,
since they have the same address, the output of [22]. Comparing the addresses of the load [24] and store
[49] is easily achieved: since they have the same step 4, it is enough to subtract their bases: (xx +12) –
(xx +4) = 8. Since the difference is greater than the size of the data accessed (both operate on 4 bytes), this
enables CASH to conclude that:

• Accesses [24] and [49] are always independent, therefore there is no need for a token edge between
them.

• They have a constant dependence distance of(base1 − base2)/step = 8/4 = 2 (i.e., operation [49]
accesses the same locations as [24] two loop iterations later). This information is used for register
promotion (Section 4.6).

Notice that induction variable analysis has enabled the extraction of useful information from a rather
low-level program representation. For example, no information is used about the fact that [24] and [49]
correspond tox[i] andx[i+2] respectively. Therefore, this analysis would work even if the accesses
were written with pointer accesses (xx+2 ) and not with arrays.

Our initial implementation of induction variable analysis was applied on a per-hyperblock basis. How-
ever, this led to an interesting problem: loop-invariant code lifting led to a decrease of the quality of the
induction variable analysis. Consider Figure 4.7 again, wheree is loop-invariant. In the left-hand side of
this figure, CASH can easily prove thate = op+5 . However, in the right-hand side the computationop+5
has been lifted out and replaced with a different mu-eta loop. Just from the loop hyperblock CASH cannot

5In standard C notation,xx stands for the address of the first element of the arrayxx . Pointer arithmetic is always made on
bytes, using the Suif convention, and since an integer has 4 bytes, the&xx[2] is xx+8 .
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Figure 4.9: Pegasus representation of the program in Figure 4.8 with labeled induction variables. The
labeling has the form <base,step>. The baseis a linear combination of constant values and other node
values. Nodes numbers are within square braces. Node [134] is the value of &xx[2] , node [136] the value
of &xx[i+2] , and node [22] is &x[i] .

prove this relationship anymore. Therefore we had to extend the algorithm for the computation of the base
to also analyze the predecessor hyperblock of the loop, if it is unique.

Induction variable analysis could still be improved in CASH to handle arbitrarily loop-invariant steps
and not only compile-time constants. This kind of information could potentially enable further optimiza-
tions.

4.3.5 Boolean Minimization

As we show in Section 4.4, CASH relies extensively on predicate manipulation for implementing optimiza-
tions. In CASH predicate manipulation is the counterpart of CFG restructuring in traditional compilers:
since the predicate guarding an operation corresponds uniquely to a basic block, modifying this predicate
corresponds to moving the instruction to a different basic block.

Predicate computation is also very important for performance, as shown in Chapter 8, since predicates
control the eta operations which feed data to the successor hyperblocks. These predicates correspond di-
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rectly with CFG branch conditions. Therefore, efficient predicate computations are paramount for effective
compilation.

Unfortunately predicate expressions can become quite involved due to the unrolling of loops with stat-
ically unknown bounds and due to the memory optimizations from Section 4.4. As discovered also by
[SAmWH00], predication can build Boolean expressions with hundreds of variables.

There are two types of beneficial predicate simplifications: first, proving that some predicates are con-
stant may trigger other optimizations. Proving predicates “false” may enable removal of controlled opera-
tions. Proving predicates “true” may enable loop-invariant lifting of controlled operations and better register
promotion. Second, reducing the depth of a Boolean formula may speed-up its evaluation at run-time.

For the purpose of Boolean simplification CASH uses three different methods:

• For Boolean networks with few inputs (i.e., less than 16), CASH performs an exhaustive evaluation
of the Boolean function and discovers constant-valued nodes.

• For testing conservatively certain Boolean relationships between predicates (e.g.,p⇒ q), CASH uses
simple pattern-matching (e.g.,q = p ∧ r, for somer). It is important to note that these tests are not
exact and that they may err always conservatively (e.g., in this case the test may decide thatp 6⇒ r
even ifp⇒ r, but it will never decree thatp⇒ r when it is not true).

• Finally, to reduce the complexity of Boolean expressions, CASH uses the Espresso CAD tool from
Berkeley [BSVHM84]. Espresso rewrites Boolean formulas given as a tabular form using a variety of
heuristics and outputs a sum-of-products form. If a Boolean network is too large to write as a table,
CASH tries to optimize separately each output of the network. Even so some formulas are too large
and therefore may be unoptimized.

Neither of these three methods is ideal. In the future we plan to transition to a different set of tools:

• The integration of a BDD [Bry86]-based package is under way [Som]. BDDs in general will allow for
a more complexity-effective testing for constant values and for exact Boolean tests of relationships
(e.g.,p⇒ q).

• For depth reduction we plan to transition to a more appropriate tool such as SIS [SSL+92], which
does not require the input to be in two-level form. A better tool will enable us to handle Boolean
networks with a larger number of variables.

• Finally, currently Boolean optimization treats the leaves of the Boolean network as opaque. For ex-
ample, for integer variablesa andb, the Boolean expression(a < b) ∨ (a >= b) treats the two com-
parisons as independent variables. However, in this case the two variables are clearly complementary
and the Boolean expression can be reduced to “true.” This kind of information can be integrated in
BDDs using techniques described in [SAmWH00, ASP+99], and in Boolean minimizers using don’t
cares.

Predicate-carrying eta operations can be sometimes specially optimized: let us consider an eta node
with predicatep and whose data value is a predicate as well,d. Then, if p ⇒ d, one can safely replace
d with “true.” If p ⇒ ¬d, thend can be replaced with “false.” These optimizations are quite important
because they may create new opportunities for global constant propagation ofd.
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void f(unsigned*p,
unsigned a[],
int i)

{
if (p)

a[i] += *p;
else

a[i] = 1;
a[i] <<= a[i+1];

}

Figure 4.10:Simple code example manipulating memory. Optimization of this example is shown in Fig-
ure 4.11. No assumption is made on the aliasing of p and a.

4.4 Partial Redundancy Elimination for Memory

The previous sections of this chapter have been devoted to the discussion of scalar optimizations in Pegasus.
We have seen that most of these can be handled very efficiently in a quasi-global form (e.g., per-hyperblock)
due to the SSA representation. This section shows that optimizing memory accesses, a class of optimiza-
tions that require substantial machinery in other IRs — be they based on CFGs or SSA — can be tackled
cleanly when using Pegasus. The core assumption behind all the memory optimizations is that it is legal to
temporarily keep memory values in registers, perform updates on these registers and only store the result at
the end (i.e., use register promotion). The semantics of C permits such manipulations. An early version of
this section has been published as [BG03b].

As described in Section 3.2 and Section 3.3, Pegasus usestoken edgesto indicate may-dependences
between memory operations. We show here how this representation can be seen as a kind of SSA for
memory itself, and how its sparsity enables very efficient dependence tests. We also show a novel way of
performing register promotion and partial redundancy elimination for memory by manipulating strictly the
predicates associated to operations, without any CFG-like code restructuring.

4.4.1 An Example

We illustrate succinctly the power of the Pegasus framework for handling memory with the example in
Figure 4.10. This program contains no loops; it usesa[i] as a temporary variable. A good optimizer for
memory accesses ought to use a scalar register instead of going to memory for the temporary.

We have compiled this program using the highest optimization level using eight different compilers,
shown in Table 4.4. Only CASH and the AIX compiler removed all the useless memory accesses made
for the intermediate result stored ina[i] (two stores and one load). The other compilers retain the in-
termediate redundant stores toa[i] , which are immediately overwritten by the last store in the function.
We believe that, since none of the pointers is declaredvolatile , they do so not in order to preserve
exceptions but because this optimization is not fully implemented. CASH performs very simple analyses
and transformations for achieving this goal: only reachability computations in a DAG and term-rewriting
code transformations. The point of this comparison is to point out that optimizations which are complicated
enough to perform in a traditional representation (so that many commercial compilers forgo them), are very
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Compiler Architecture Flags
gcc 3.2 Intel P4 -O3
Sun WorkShop 6 update 2 Sparc -xO5
DEC CC V5.6-075 Alpha -O4
MIPSpro Compiler Version 7.3.1.2m SGI -O4
SGI ORC version 1.0.0 Itanium -O4
Microsoft Visual C++ version 12.00.8168 Windows /Ox
IBM AIX cc version 3.6.6.0 Power4 -O3
CASH ASH all

Table 4.4:Eight compilers used to optimize the example in Figure 4.11
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Figure 4.11:Program transformations for the code in Figure 4.10: (A) removal of two extraneous depen-
dences between a[i] and a[i+1]; (B) load from a[i] bypasses directly stored value(s); (C) store to a[i] kills
prior stores to the same address; (D) final result.

easy to express, implement, and reason about when using a better program representation. The optimization
in Pegasus occurs in three steps detailed in Figure 4.11.

Figure 4.11(A) depicts a slightly simplified representation of the program, (we have elided the address
computation representation), before any optimizations. Recall that dashed lines represent token edges,
indicating may dependencesfor memory access operations. At the beginning of the compilation (Fig-
ure 4.10(A)), the token dependences track the original program control-flow.

CASH first proves thata[i] and a[i+1] access disjoint memory regions and therefore commute
(node pairs 3/5, 2/5 and 5/6). By removing the token edges between these memory operations the program
is transformed as in Figure 4.11(B). Notice that a new combine operator is inserted at the end of the program.
Its execution indicates that all prior program side-effects have occurred.

In Figure 4.11(B), the load froma[i] labeled 4 immediately follows the two possible stores (2 and 3).
No complicated dataflow or control-flow analysis is required to deduce this fact: it is indicated by the tokens
flowing directly from the stores to the load. As such, the load can be removed and replaced with the value
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- maybe dependent
- no intervening
   memory operations

[ ]=

=[ ]

independent

[ ]=

=[ ]

(B)(A)

Figure 4.12:In a transitively reduced graph (A) the presence of a token edge between two memory op-
erations implies the following properties: (1) the two memory operations may access the same memory
location, and (2) there is no intervening memory operation affecting that location. (B) The absence of a
token path indicates complete independence of the operations.

of the executed store. This replacement is shown in Figure 4.11(C), where the load has been replaced by a
multiplexor7. The multiplexor is controlled by the predicates of the two stores toa[i] , 2 and 3: the store
that executes (i.e., has a “true” predicate at run-time), is the one that will forward the stored value through
the multiplexor.

As a result of the load elimination, in Figure 4.11(C) the store 6 toa[i] immediately follows (and post-
dominates) the other two stores, 2 and 3, to the same address. In consequence, 2 and 3 are useless and can
be completely removed, as dead code. Again, the post-dominance test does not involve any control-flow
analysis: it follows immediately from the representation because (1) the stores immediately follow each
other, as indicated by the tokens connecting them; (2) they occur at the same address; and (3) each predicate
of an earlier store implies the predicate of the latter one, which is constant “true” (shown as 1), indicating
the post-dominance. The post-dominance is determined by only elementary Boolean manipulations. The
transformation from Figure 4.11(C) to (D) is accomplished in two steps: (a) the predicates of the prior stores
are “and”-ed with the negation of the predicate of the latter store (i.e., the prior stores should occur only
if the latter one does not overwrite them) and (b) stores with a constant “false” predicate are completely
removed from the program as dead code.

4.4.2 Increasing Memory Parallelism

CASH performs a series of optimizations with the goal of increasing the available memory parallelism. The
basic idea is to remove token edges between memory operations that are actually independent, enabling
them to be executed in parallel.

4.4.2.1 Transitive Reduction of Token Edges

As we mentioned in Section 3.3.9.2, the token edge subgraph is maintained in a transitively reduced form
during compilation.6 This invariant is required for the correctness of some optimizations; see Figure 4.12.

6That is, if there are edgesa→ b→ c, there will be no edgea→ c.
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4.4.2.2 Removing Dead Memory Operations

As mentioned, memory operations are predicated and should be executed only when the run-time value
of the predicate is “true.” In particular, a side-effect operation having a constant “false” predicate can be
completely removed by the compiler from the program. Its token input is connected to its token output
(see Figure 4.5). Such constant false predicates can arise due to control-flow optimizations (such asif
statements with constant tests) or due to redundancy removal, as described in Section 4.4.3.

4.4.2.3 Immutable Objects

Accesses made through pointers to immutable constants (such as constant strings or pointers declared
const ) can be optimized: if the pointed value is statically known, the pointer access can be removed
completely and the loaded value can be replaced with the actual pointed value;7 otherwise, the access does
not requireany token since it does not need to be serialized with any other operation. The access also does
not need to generate a token.

4.4.2.4 Memory Disambiguation using Token Edges

One of the important roles of the token edges is to indicate which memory operations have to be tested for
dependence by a memory disambiguation pass. Static memory disambiguation is a compile-time technique
which determines whether or not two memory instructions (may) access the same memory location at
run-time. CASH features amodular memory disambiguator, which clearly separates the policy from the
mechanism. In fact, it has a plug-in nature for handling multiple policies.

The memory disambiguator chooses pairs of nodes denoting memory accesses and then invokes in
order a series of plug-in policies to determine whether the two nodes are dependent. Pseudo-code for the
disambiguation engine is given in Figure 4.13.

CASH uses five different policies, roughly in increasing order by cost. What is important is that queries
for the disambiguator are only made for the program token edges. Token edges constitute a sparse repre-
sentation of the essential program dependences. If two nodesa andb are not directly linked by a token
edge, then for most purposes it is useless to query the disambiguation engine whether they commute: (1)
either there is no token edge patha→∗ b, and then it is known that they do commute, or (2) there is a path
a → c →∗ b, and thena andb cannot be reordered aroundc, and therefore it is pointless to check whether
they commute.

When two nodes are proved independent, the token edge connecting them is removed. The removal
is not trivial: since the transitive closure of the token graph (minus the removed edge) must be preserved,
new token edges are inserted. The basic algorithm step is illustrated in Figure 4.14. (Notice that, although
the number of explicit synchronization tokens may increase, the total number of synchronized pairs in the
transitive closure of the token graph is always reduced as a result of token removal.)

4.4.3 Partial Redundancy Elimination for Memory

In this section we describe several optimizations that take advantage of the SSA-like nature of Pegasus
for memory dependences in order to discover useless memory accesses. The explicit token representa-
tion makes the following optimizations easy to describe and implement for memory operations: redundant

7The access must be a read. A write to a value declared immutable is a type error.
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enum dependent {
yes,
no,
maybe

};

typedef enum dependent disambiguation_policy(Node*, Node*);
disambiguation_policy policies[N] = {

points_to_information,
address_difference,
base_address_test,
symbolic_address_comparison,
induction_variable_test

};

/* Memory disambiguation engine */

forall (t is tokenEdge(n1, n2)) {
for (i=0; i < N; i++) {

switch ((policies[i])(n1, n2)) {
case yes: /* clearly dependent */

break;
case no: /* clearly independent */

remove_token_edge(n1, n2);
break; /* next pair */

case maybe:
continue;

}
}

}

Figure 4.13:Pseudo-code for memory disambiguation mechanism implementation.

Figure 4.14:Removing one unnecessary token edge when memory disambiguation can prove that the two
stores do not alias.
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Figure 4.15: (A) Load operations from the same address and having the same token sourcecan be (B)
coalesced — the predicate of the resulting load is the disjunction of the original predicates.
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Figure 4.16:(A) Store operations at the same address and having the same token sourcecan be (B) coalesced
— the predicate of the resulting store is the disjunction of the original predicates. A multiplexor selects the
correct data.

load merging and redundant store merging (subsuming partial redundancy elimination and global common-
subexpression elimination), dead store removal, load-after-store removal (a form of register promotion).
Token edges summarize simultaneously both control-flow and dependence information, and make it easy
for the compiler to focus its optimizations on interfering memory operations. These transformations are
implemented simply as term-rewriting rules, much as depicted in the associated figures.

The optimizations described in this section all assume aligned memory accesses. All are applicable
only when the optimized memory operations access the same address and manipulate the same amount of
data (i.e., they do not handle the case of a store word followed by a load byte). Testing for address equality
is trivial in an SSA representation: two accesses are made to the same address if their address input wire
comes from the same source node.

4.4.3.1 Merging Repeated Memory Operations

This transformation generalizes GCSE, PRE and code hoisting for memory accesses, by merging multiple
accesses to the same memory address into one single operation. It is a simple term-rewriting optimization;
the transformation is applied to loads as shown in Figure 4.15 and to stores as shown in Figure 4.16. If the
two predicates originate at the same node, this optimization becomes simply CSE for memory operations.
It is easy to see how this transformation can be applied to coalesce more than two operations having the
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Figure 4.17:Redundant store-after-store removal: (A) a store immediately preceding another store having
the same address should execute only if the second one does not. (B) After this transformation the two stores
can never occur at the same time and therefore the token edge connecting them can be safely removed.

same token source.
As a sanity check, note that when merging two loads into one, the resulting pattern implies that the two

loaded values must be identical. This is easy to ascertain from the token graph: since the two loads have
the same token source, there is no intervening store between them and the state of the referred location is
the same for both (i.e., the state at the end of the execution of their immediate predecessor). Therefore they
mustproduce the same result.

An important by-product of this optimization is that the token network is simplified. The operations
which used to receive tokens from each of the coalesced operations will now all have an unique token
source (the result of the coalescing), and therefore will become candidates for further applications of this
transformation.

If we transpose these optimizations in the CFG framework, creating an operation with a predicatep1∨p2

is the counterpart oflifting the partially redundant code to a basic block that dominates the basic blocks
having predicatesp1 andp2 and that is post-dominated by them. In general such a block may not even exist
in the CFG, and therefore for optimal PRE new control flow might need to be created.

4.4.3.2 Redundant Store Removal

Figure 4.17 depicts the store-before-store code transformation (used in the example in Figure 4.11C). The
goal of this transformation is to ensure that at run time the first store is executed only if the second one is
not, since the second one will overwrite the result. If the predicate of the prior stores implies the predicate
of the following store (which happens if the second post-dominates the first), the first predicate will become
constant “false.” If the Boolean manipulation performed by the compiler can prove this fact, the first store
can be eliminated using the rule from Figure 4.5. Notice that, if the predicate is false, but the Boolean
manipulation cannot simplify it, the store operation nevertheless does not occur at run-time.

This transformation is easily generalized to handle one storeS followed by (i.e., connected directly
using token edges) multiple storesSi, i ∈ {1 . . . n} to the same address. If the predicate ofS is p and the
predicate of eachSi is pi, then the optimization replacesp with p ∧ ¬(∨ipi), i.e., theS should be executed
only if none of theSi is. If the set of operations{Si : i ∈ {1 . . . n}} post-dominatesS (as formally defined
in [Gup92]), then∨ipi ⇒ p, and thereforep becomes constant “false”, leading to the elimination ofS.
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Figure 4.18:Removal of (A) a load following multiple stores at the same address. (B) The stored value is
directly forwarded if any of the stores occurs, otherwise the load has to be performed.

4.4.3.3 Load After Store Removal (Register Promotion)

In Figure 4.18 we show how loads following a set of store operations at the same address can directly bypass
the stored value (Figure 4.11B shows an application of this transformation). This transformation ensures
that if either of the stores is executed (i.e., its predicate is dynamically “true”), then the load is not executed.
Instead, the stored value is directly forwarded. The load is executed only when none of the stores takes
place. This is achieved by using the predicates in a manner similar to the redundant store transformation
above. Additionally, a multiplexor is constructed to forward data from the correct store or from the load if
none of the stores is executed.

Note that it isguaranteedthat two of the stores cannot execute simultaneously, since there is no token
edge between either two stores (such an edge would make the token graph not be transitively reduced). If
the stores collectively dominate the load, the latter is completely removed by acquiring a “false” predicate,
and the mux is simplified by the Figure 4.4(b) transformation.

4.4.3.4 The Cycle-Free Condition

Optimizations involving memory operations must properly handle the controlling predicates: an optimiza-
tion should not create cycles in the program representation. For example, when merging two loads, a cycle
may be created if the predicate of one of the loads is a function of the result of the other load, as in Fig-
ure 4.19. Such a pattern is produced by code such as: ‘if (*p) a+=*p ’.

Testing for the cycle-free condition is easily accomplished with a reachability computation that ignores
the back-edges. By caching the results of the reachability computation for a batch of optimizations, and
performing the optimizations in reverse topological order (so that the reachability does not change for
operations which have not been processed yet), the amortized cost of reachability testing remains linear.
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Figure 4.19:(A) Redundancy elimination operations may not be applied if they lead to cycles in the graph
as in (B). The edge *p→p2 in this figure stands for an arbitrary simple path.
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Figure 4.20:Optimization of the pattern in Figure 4.19(A).
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Figure 4.21:Optimization of the pattern in Figure 4.19(A) and Figure 4.20 when p2 ⇒ p1.
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Patterns which would lead to cycles can still be optimized (and brought to a dynamically optimal form)
by eliminating redundancy as shown in Figure 4.20. This optimization is closely related to our new algo-
rithm for register promotion from Section 4.6. The idea is to execute the second load only if the first one
does not take place;8 the predicate controlling the second load becomesp2 := p2 ∧ ¬p1. A mux is used
to select the output of either the first or the second load. Note that ifp2 ⇒ p1 then one of the mux and
load controlling predicates becomes constant “false”, and the whole structure reduces (after mux and false
predicate simplifications) to the one in Figure 4.21. Note that a pattern such as ‘if (*p) a+=*p ’ is
simplified in this way, leading to the execution of a single load at run-time.

4.4.3.5 Comments

Let us make several comments about the optimizations presented in this section:

• They are all very simple to implement. The reachability test in a DAG is trivial (Table 4.1 indicates
that it requires 127 lines). All the complexity is in managing the cache of reachability relations
properly. Once the reachability test passes the cycle-free condition, the transformation is a simple
generalization of term-rewriting (it is not exactly term-rewriting, since it can match patterns with
arbitrarily many operations). Only 235 lines of code are required to implement all of them.

• As indicated when presenting each optimization, some optimizations are more drastic when certain
dominance relationships between operations occur. (For example, if a store dominates the load to
which it forwards the value, the load is completely eliminated.) However, note that in describing
these optimizationswe did not need to make any control dependence tests. The dominance relation-
ship is entirely encoded in the predicates, and partially in the token edges, and therefore there is no
need to answer complex queries about the graph structure in order to decide when the optimizations
apply. The importance of this encoding lies not in the savings it provides for computing the control
relationships, but because the control relationship does not need to bere-computedwhen the program
is optimized. For example, as we commented above, “or”-ing to predicate is the same as lifting an
operation to a new basic block, which may not exist in the original CFG. In a CFG-based framework
on each change of the CFG the control relationship has to be updated, a rather complex endeavor.

• An interesting insight is that, at least for acyclic graphs, the dominance relationships (even generalized
dominance and post-dominance) are encoded compactly in the basic-block predicates. Implication is
the same as testing (post)dominance, predicate or-ing is the same as creating a basic block control-
equivalent to a given set of blocks, the negation of a predicate corresponds to the exclusion of all
paths going through a basic block, etc.

• In the same vein, we have transformed CFG manipulations into Boolean manipulations. To really
take advantage of the whole power of this method the compiler should feature a rather sophisticated
Boolean simplification engine. (For example, if the predicate expression guarding a load is constant
“false” the load is never executed dynamically. However, if the compiler is able to prove statically that
the expression is “false”, it can remove the load completely, and therefore enable further optimizations
due to the simplification of the token network.) From a computational complexity point of view it is
not clear that the Boolean encoding is a good deal, since Boolean minimization is NP-hard. However,
from a pragmatic point of view, it seems to be a worthwhile representation.

8Since there is a true dependence between the two loads, they are ordered in a topological sort and we can now speak of the
first and the second.
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• The structure token network enables powerful inferences about memory state. For example, as we
have discussed above, when merging two parallel loads with the same token source weknow that
they will load the same value. Similar arguments can be made about the correctness of the other
transformations. Note that the token network enables us to reason about the contents of the accessed
location independently on what goes on in the rest of memory.

• This brings about a final point: the use of strong memory disambiguation is a prerequisite for making
these algorithms useful. Unfortunately, in general good disambiguation is prohibitive in C. When us-
ing hand-annotations to indicate pointer independence the effectiveness of the above transformations
increases substantially (Section 7.3).

• Some of these optimizations seem to have a negative effect on the length of the critical path. For
example, when merging two parallel loads, the merged load predicate needs both original predicates
to be executed. This seems to make the critical path the worse of the two initial paths. Two factors
alleviate the impact of this transformation. First, a lenient implementation Section 6.4 of the Boolean
operation will only increase the critical path by the delay of the “or”: if one input of the “or” is “true”,
it can immediately generate a “true” output. Second, memory operations are issued to the load-store
queue (LSQ; see Section 6.5.3) even without the predicates being known. The LSQ can do dynamic
memory disambiguation using run-time addresses and execute speculatively load operations, without
knowing their predicate.

4.4.4 Experimental Evaluation

In this section we evaluate the effectiveness of our memory redundancy elimination algorithms. We use
programs from the Mediabench, SpecInt95 and SpecInt2K benchmark suites.

4.4.4.1 Static Measurements

Figure 4.22 shows that on average 8.8% of the loads and 8.6% of the static memory operations are removed
from the program by these optimizations. Notice we can not directly compare these metrics with compilers
such as gcc since CASH can use an unbounded number of registers, while gcc must sometimes spill registers
to memory, increasing memory traffic.

4.4.4.2 Dynamic Measurements

We evaluated the effectiveness of our optimizations by evaluating the reduction in memory traffic. Fig-
ure 4.23 shows the number of removed memory accesses for each benchmark. The average reduction is
2.6% for loads and 2.4% for stores. There are three ways in which memory operation removal can increase
the performance of a program:

• By reducing the number of memory operations executed

• By overlapping many memory operations (increasing traffic bandwidth) through loop pipelining

• By creating more compact schedules and issuing the memory operations faster

Finally, Figure 4.24 shows the impact of these optimizations on the end-to-end performance. While
the average performance increase is only about 2.44%, the improvement is likely to increase as memory
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Figure 4.22:Static reduction of memory accesses, in percentages. The baseline is obtained with CASH
and only scalar optimizations (memory optimizations turned off). The optimized program has the scalar
replacement algorithm described in Section 4.6 turned off.

becomes relatively slower and farther. We will also revisit those numbers after presenting a new register
promotion, which can remove loads and stores from loops with control flow, the subject of the Section 4.6.
Interestingly, the correlation with the number of removed operations is not very strong. The biggest peaks
on the two graphs do not correspond to each other.

4.5 Pipelining Memory Accesses in Loops

4.5.1 Motivation

Pipelining loops is especially important to fully realize the performance of dataflow machines. See Sec-
tion 6.7 for a discussion of dataflow software pipelining. The optimizations presented in this section increase
the opportunities for pipelining by removing dependencies between memory operations from different loop
iterations and by creating structures that allow them to execute in parallel.

The key to increasing the amount of pipeline parallelism available is to correctly handle memory syn-
chronization across loop iterations. We do this by carrying fine-grained synchronization information across
loop iterations using several merge-eta token loops. Figure 4.25 illustrates schematically how pipelining
is enabled by fine-grained synchronization. In Figure 4.25(A) is a schematic code segment which reads
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Figure 4.23:Reduction of dynamic memory traffic in percentages.

a source array, computes on the data and writes the data into a distinct destination array. Figure 4.25(B,
left) a traditional implementation which executes the memory operations in program order: the reads and
writes are interleaved. Meanwhile Figure 4.25(B, right) shows how separately synchronizing the accesses
to the source and destination array “splits” the loop into two separate loops which can advance at different
rates. The “producer” loop can be several iterations ahead of the “consumer” loop, filling the computation
pipeline.

The optimizations described in this section all manipulate just the token network, trying to decompose it
into several strongly connected components, which can then advance at different paces. These optimizations
will be useful however only if the scalar part of the computation does not actually enforce a lock-step
execution of the loops. If the scalar network involving the memory accesses is a single strongly connected
component, then the benefit of applying the transformations in this section is much reduced.

4.5.2 Fine-Grained Memory Tokens

Figure 4.26 shows an example loop and its token network. Notice that each merge-eta circuit is associated
with a particular set of memory locations. There are circuits fora andb and one, labelednonlocals ,
which represents all anonymous memory objects. The merge node tagged witha represents all accesses
made toa in the programbeforethe current loop iteration, while the eta represents the accessesfollowing
the current loop iteration.
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Figure 4.24:Reduction of execution cycles, in percentages.

The circuit was generated using the following algorithm:

• The read-write sets of all pointers in the loop body are analyzed. For the example in Figure 4.26, the
read-write sets are as follows:

a→ {a[] } pointera points to arraya[]
b→ {b[] }
p→ {a[],b[],nonlocals } p can point to anything

The objects in the read-write sets area[] , b[] andnonlocals .

• A merge-eta cycle is created for each object.

• The merge and eta are treated as writes to the corresponding objects.

• The loop body is synthesized as straight-line code, as if preceded by all merges and succeeded by all
etas.

The token-insertion algorithm for building loops treats the merge and eta operations as writes to the
corresponding object(s) when building the token edges. Doing so ensures that all operations accessing the
object in thei-th iteration will complete before thei+ 1-th iteration can start.
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for (;;) {
data = *(src++);
res = f(data);
*(dst++) = res;

}

=*s

f

=*s

f

traditional pipelined

*d= *d=

(A) (B)

Figure 4.25:(A) Sample code reading and writing to separate buffers. (B) A traditional implementation per-
forms accesses to the source and destination buffers in lockstep. A pipelined implementation synchronizes
separately the accesses to the source and destination buffers, enabling software pipelining.

extern int a[], b[];

void g(int *p, int i)
{

b[i+2] = i & 0xf;
a[i] = b[i] + *p;

}

a

=*p

b

b[i+2]=

nonlocals

=b[i]

b

a[i]=

nonlocalsa

(A) (B)

Figure 4.26:Implementation of memory synchronization in loops.

4.5.3 Using Address Monotonicity

Treating the token-carrying mu and eta as “writes” may provide excessive synchronization between accesses
in different iterations. There is no need to synchronize writes to different addresses (it is even less necessary
to do so for the reads ofa). For example, all writes tob in Figure 4.27 are to different addresses. CASH
attempts to discover such accesses, whose addresses vary strictly monotonically from one iteration to the
next, using the induction variable analysis from Section 4.3.4.

If a token loop contains only monotone accesses, it is optimized by splitting it intotwo parallel loops
enabling parallel accesses to all locations: (1) ageneratorloop, which generates tokens to enable the
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for (i=0; i < 10; i++)
b[i] = a[i] + a[i+2];

@a

=a[i+2] =a[i]

@b

b[i]=

@b@a

(A) (B)

Figure 4.27:Sample program and naive implementation of a loop containing monotone accesses to arrays
a and b.

ba

=a[i+2] b[i]==a[i]

ba

b

b

generator collector

monotone

Figure 4.28:The loop in Figure 4.27 after optimizing for address monotonicity.

operations for all the loop iterations, allowing operations from multiple iterations to issue simultaneously,
and (2) acollector loop, which collects the tokens from operations in all iterations. This ensures that the
loop terminates only when all operations in all iterations have occurred. The result after the optimization of
Figure 4.27 is shown in Figure 4.28.

4.5.4 Dynamic Slip Control: Loop Decoupling

In this section we present a novel form of loop parallelization that is particularly effective for Spatial Com-
putation. This transformation,loop decoupling, is remotely related to loop skewing and loop splitting.
Analogously to the optimization for monotone accesses, it “vertically” slices a loop into multiple indepen-
dent loops which are allowed toslip with respect to each other (i.e., one can get many iterations ahead of
the other). The maximum slip is derived from thedependence distanceand ensures that the loops slipping
ahead do not violate any program dependence. To dynamically control the amount of slip a new operator is
used, atoken generator.

We illustrate decoupling on the circuit in Figure 4.29, obtained after the previously described optimiza-
tions are applied to the shown program. Dependence analysis (based on induction variable analysis, as
described in Section 4.3.4) indicates that the two memory accesses are at a fixed distance of three iterations.
Loop decoupling separates the two accesses into two independent loops by creating a token for each of
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for (i=0; i<N-3; i++) {
a[i] = ...;
... = a[i+3];

}

a

=a[i+3] a[i]=

a

(A) (B)

Figure 4.29:Program and its implementation before loop decoupling.

a+3

=a[i+3]

a

a[i]=

G(3)

a+3 a

p

Figure 4.30:The program from Figure 4.29 after loop decoupling. We have also depicted p, the loop-
controlling predicate.

them. Thea[i+3] loop can execute as quickly as possible. However, the loop fora[i] can be ahead
only three or fewer iterations of thea[i+3] loop because otherwise it would violate the dependences. To
dynamically bound the slip between these two loops atoken generatoroperation which can generate three
tokens is inserted between the two loops. The resulting structure is depicted in Figure 4.30. The token
generator can “instantly” generate three tokens. Subsequently it generates additional tokens upon receipt of
tokens at the input.

More precisely, a token generator G(n) has two inputs: a predicate and a token, and one output: a
token (see also Section 3.2.3.5).n is a positive integer, the dependence distance between the two accesses.
The token generator maintains a counter, initialized withn. The predicate input is the loop-controlling
predicate. On receipt of a “true” predicate, the generator decrements the counter, and if the counter is
positive, it emits a token. On receipt of a token it increments the counter. On receipt of a “false” predicate
(indicating completion of the loop), the predicate input is not acknowledged until the token counter becomes
n again (indicating that all input tokens have been received). There is a strong similarity between the token
generator operation and Dijkstra semaphores [Dij65]. In the general case, forn different addresses accessed,
loop decoupling createsn− 1 token generators, chained as shown schematically in Figure 4.31.

Thea[i] loop must receive tokens from thea[i+3] loop in order to make progress. It may receive
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a[i+3] a[i] a[i-2]

G(3) G(2)

Figure 4.31:An instance of decoupling involving three components.

a+3 a+3

=a[i+3]

a+3

a

a+3

a

a[i]=

a a

G(3)

Figure 4.32:The program in Figure 4.29 after loop decoupling and monotone memory address optimization.

the first three tokens before any iteration of the latter has completed, directly from the token generator, so
it can slip up to three iterations ahead. Afterwards, it will receive a new token enabling it to make progress
only after thea[i+3] loop completes one iteration. In contrast, thea[i+3] loop can slip an arbitrary
number of iterations ahead (the token generator stores the extra tokens generated by this loop in its internal
counter).

Notice that after loop decoupling each of the resulting loops contains only monotone addresses, so it
can be further optimized as described in Section 4.5.3. The final result is shown in Figure 4.32.

The idea of explicitly representing the dependence distances in a program can be found in Johnson’s
paper “An executable representation of distance” [JLP91]. While that paper gives a general scheme for
representing dependence distances in nested loops as functions of multiple loop indices, it does not discuss
how the resulting representation can be used to optimize the program. Our scheme can also be generalized
to deal with nested loops, although our current implementation handles only innermost loops. The incar-
nation of the dependence distance in the “token generator” operator, used to dynamically control the slip
between decoupled loop iterations is a new idea, which, we believe, is indeed anexecutable representation
of distance.
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4.6 Optimal Inter-Iteration Register Promotion

In this section we revisit the classical problem of scalar replacement of array elements and pointer accesses.
We generalize the state-of-the-art algorithm, by Carr and Kennedy [CK94], to optimally handle a combi-
nation of both conditional control-flow and inter-iteration data reuse. (In this text we are not considering
at all speculative promotion, which has been extensively studied since then. However, the technique we
describe is also applicable to speculative scalar promotion as well.) The basis of our algorithm is to make
the dataflow availability information precise by computing and using it at runtime.

Our algorithm operates within the same assumptions of the classical one, that is, perfect dependence
information, and has the same limitations, i.e., increased register pressure. It is, however, optimal in the
following sense: (assuming the availability of enough scalar registers) within each code region where scalar
promotion is applied, each memory location is read at most once and written at most once.

The basis of our algorithm is to make the dataflow availability information precise using a technique
we call Statically Instantiate and Dynamically Evaluate (SIDE). In SIDE the compiler inserts explicit code
to evaluate the dataflow information at runtime. As the computational bandwidth of processors increases,
these kinds of optimizations may become more advantageous. In the case of register promotion, the benefit
from removing expensive memory operations outweighs the increase in scalar computations to maintain
the dataflow information. Applying this technique to other dataflow analyses may be a fruitful avenue of
research.

4.6.1 Preliminaries

The goal of scalar replacement (also called register promotion) is to identify repeated accesses made to the
same memory address, either within the same iteration or across iterations, and to remove the redundant
accesses (CASH performs promotion within the innermost loop bodies. But the ideas we present are appli-
cable to wider code regions as well). The state-of-the-art algorithm for scalar replacement was proposed in
1994 by Steve Carr and Ken Kennedy [CK94]. This algorithm handles very well two special instances of
the scalar replacement problem: (1) repeated accesses made within the same loop iteration in code having
arbitrary conditional control-flow; and (2) code with repeated accesses made across iterationsin the absence
of conditional control-flow. For (1) the algorithm relies on PRE, while for (2) it relies on dependence anal-
ysis and rotating scalar values. However, that algorithm cannot handle a combination of both conditional
control-flow and inter-iteration reuse of data.

Here we present a very simple algorithm which generalizes and simplifies the Carr-Kennedy algorithm
in an optimal way. The optimality criterion that we use throughout this section is the number of dynamically
executed memory accesses. After application of our algorithm on a code region, no memory location is read
more than once and written more than once in that region. Also, after promotion, no memory location is
read or written if it was not so in the original program (i.e., our algorithm does not perform speculative
promotion). Our algorithm operates under the same assumptions as the Carr-Kennedy algorithm. That is,
it requires perfect dependence information to be applicable. It is therefore mostly suitable for FORTRAN
benchmarks. Since CASH is a C compiler, we have tested its applicability only to C programs and we have
found numerous instances where it is applicable as well.

For the impatient reader, the key idea is the following: for each value to be scalarized, the compiler
creates a 1-bit runtime flag variable indicating whether the scalar value is “valid.” The compiler also creates
code which dynamically updates the flag. The flag is then used to detect and avoid redundant loads and to
indicate whether a store has to occur to update a modified value at loop completion. This algorithm ensures
that only the first load of a memory location is executed and only the last store takes place. This algorithm
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is a particular instance of a new general class of algorithms: it transforms values customarily used only at
compile-time for dataflow analysis into dynamic objects. Our algorithm instantiatesavailability dataflow
information into run-time objects, therefore achieving dynamic optimality even in the presence of constructs
which cannot be statically optimized.

We introduce the algorithm by a series of examples which show how it is applied to increasingly com-
plicated code structures. We start in Section 4.6.3 by showing how the algorithm handles a special case, that
of memory operations from loop-invariant addresses. In Section 4.6.4.1 we show how the algorithm opti-
mizes loads whose addresses are induction variables. Finally, we show how stores can be treated optimally
in Section 4.6.4.4. In Section 4.6.5.2 we show how the algorithm is implemented in Pegasus. Although
a CFG variant is simpler to implement, Pegasus simplifies the dependence analysis required to determine
whether promotion is applicable. Special handling of loop-invariant guarding predicates is discussed in
Section 4.6.6. Finally, in Section 4.6.8, we quantify the impact of an implementation of this algorithm when
applied to the innermost loops of a series of C programs.

This section makes the following new research contributions:

• It introduces a linear-time9 term-rewriting algorithm for performing inter-iteration register promotion
in the presence of control-flow.

• It shows that this new optimization is a program transformation which materializes compiler dataflow
values as dynamic, run-time variables. This suggests a new research direction for adapting other
dataflow algorithms, creating dynamically-optimal code for constructs which cannot be statically
made optimal.

• It describes register promotion as implemented in Pegasus, showing how it takes advantage of the
token network for effective dependence analysis.

4.6.2 Conventions

We present all the optimizations examples as source-to-source transformations of schematic C program
fragments instead of showing how they manipulate Pegasus. For simplicity of the exposition we assume
that we are optimizing the body of an innermost loop. We also assume that none of the scalar variables
in our examples have their address taken. We writef(i) to denote an arbitrary expression involvingi
which has no side effects (butnot a function call). We writefor(i) to denote a loop havingi as a basic
induction variable.

For pedagogical purposes, the examples we present all assume that the code has been brought into a
canonical form through the use ofif-conversion[AKPW83], such that each memory statement is guarded
by a predicate; i.e., the code has the shape in Figure 4.33. Our algorithms are easily generalized to handle
nested natural loops and arbitrary forward control-flow within the loop body.

4.6.3 Scalar Replacement of Loop-Invariant Memory Operations

In this section we describe a new register promotion algorithm which can eliminate memory references
made to loop-invariant addresses in the presence of control flow. This algorithm is further expanded in Sec-
tion 4.6.4.1 and Section 4.6.4.4 to promote memory accesses into scalars when the memory references have
a constant stride.

9This time does not include the time to compute the dependences, only the actual register promotion transformation.
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while (1) {
if (cond1) statement1;
if (cond2) statement2;
...
if (cond_break1) break;
...

}

Figure 4.33:For ease of presentation we assume that prior to register promotion, all loop bodies are predi-
cated.

for (i)
*p += i;

-------------

tmp = *p;
for (i)

tmp += i;
*p = tmp;

Figure 4.34:A simple program before and after register promotion of loop-invariant memory operations.

for (i)
if (i & 1)

*p += i;

Figure 4.35:A small program that is not amenable to classical register promotion.

4.6.3.1 The Classical Algorithm

Figure 4.34 shows a simple example and how it is transformed by the classical scalar promotion algorithm.
Assumingp cannot point toi , the key fact is*p always loads from and stores to the same address, therefore
*p can be transformed into a scalar value. The load is lifted to the loop pre-header, while the store is moved
after the loop. (The latter is slightly more difficult to accomplish if the loop has multiple exits going to
multiple destinations. Our implementation handles these as well, as described in Section 4.6.5.2.)

4.6.3.2 Loop-Invariant Addresses and Control-Flow

However, the simple algorithm is no longer applicable to the slightly different Figure 4.35. Lifting the load
or store out of the loop may be unsafe with respect to exceptions: one cannot lift a memory operation out
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/* prelude */
tmp = uninitialized;
tmp_valid = false;

for (i) {
/* load from *p becomes: */
if ((i & 1) && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* store to *p becomes */
if (i & 1) {

tmp += i;
tmp_valid = true;

}
}

/* postlude */
if (tmp_valid)

*p = tmp;

Figure 4.36:Optimization of the program in Figure 4.35.

of a loop it if may never be executed within the loop.

However, to optimize Figure 4.35, it is enough to maintain avalid bit in addition to the thetmp
scalar. Thevalid bit indicates whethertmp indeed holds the value of*p ; see Figure 4.36. Thevalid
bit is initialized tofalse. A load from*p is performed only if thevalid bit is false. Either loading from
or storing to*p sets thevalid bit to true. This program will forward the value of*p through the scalar
tmp between iterations arbitrarily far apart.

The insight is that it may be profitable to compute dataflow information at runtime. For example, the
valid flag within an iteration is nothing more than the dynamic equivalent of theavailability dataflow
information for the loaded value, which is the basis of classical PRE. When PRE can be applied statically,
it is certainly better to do so. The problem with Figure 4.35 is that the compiler cannot statically summarize
when condition(i&1) is true, and therefore has to act conservatively, assuming that the loaded value is
never available. Computing the availability information at run-time eliminates this conservative approxi-
mation. Maintaining and using runtime dataflow information makes sense when we can eliminate costly
operations (e.g., memory accesses) by using inexpensive operations (e.g., Boolean register operations).

This algorithm generates a program which is optimal with respect to the number of loads within each
region of code to which promotion is applied (if the original program loads from an address, then the
optimized program will load from that address exactly once), but may execute one extra store:10 if the
original program loads the value but never stores to it, thevalid bit will be true, enabling the postlude
store. In order to treat this case as well, adirty flag, set on writes, has to be maintained, as shown in

10However, this particular program is optimal for stores as well.
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/* prelude */
tmp = uninitialized;
tmp_valid = false;
tmp_dirty = false;

for (i) {
/* load from *p becomes: */
if ((i & 1) && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* store to *p becomes */
if (i & 1) {

tmp += i;
tmp_valid = true;
tmp_dirty = true;

}
}

/* postlude */
if (tmp_dirty)

*p = tmp;

Figure 4.37:Optimization of store handling from Figure 4.36.

Figure 4.37.11

Note: in order to simplify the presentation, the examples in the rest of the section will not include the
dirty bit. However, its presence is required for achieving an optimal number of stores.

4.6.4 Inter-Iteration Scalar Promotion

Here we extend the algorithm for promoting loop-invariant operations to perform scalar promotion of
pointer and array variables with constant stride. We assume that the code has been subjected to standard
induction dependence analysis prior to scalar promotion.

4.6.4.1 The Carr-Kennedy Algorithm

Figure 4.38 illustrates the classical Carr-Kennedy inter-iteration register promotion algorithm from [CCK90],
which is only applicable in the absence of control-flow. In general, reusing a value afterk iterations requires
the creation ofk distinct scalar values, to hold the simultaneously live values ofa[i] loaded fork consec-
utive values ofi . This quickly creates register pressure and therefore heuristics are usually used to decide
whether promotion is beneficial. Since register pressure has been very well addressed in the literature
[CCK90, Muc97, CMS96, CW95], we will not concern ourselves with it anymore in this text.

11The dirty bit may also be required for correctness, if the value is read-only and the writes within the loop are always
dynamically predicated “false.”
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for (i = 2; i < N; i++)
a[i] = a[i] + a[i-2];

--------------------------------------------

/* pre-header */
a0 = a[0]; /* invariant: a0 = a[i-2] */
a1 = a[1]; /* a1 = a[i-1] */
for (i = 2; i < N; i++) {

a2 = a[i]; /* a2 = a[ i ] */
a2 = a0 + a2;
a[i] = a2;

/* Rotate scalar values */
a0 = a1;
a1 = a2;

}

Figure 4.38: Program with no control-flow before and afer register promotion performed by the Carr-
Kennedy algorithm.

A later extension to the Carr-Kennedy algorithm [CK94] allows it to also handle control flow. The
algorithm optimally handles reuse of valueswithin the same iteration, by using PRE on the loop body.
However, this algorithm can no longer promote valuesacrossiterations in the presence of control-flow.
The compiler has difficulty in reasoning about the intervening updates between accesses made in different
iterations in the presence of control-flow.

4.6.4.2 Partial Redundancy Elimination

Before presenting our solution let us note that even the classical PRE algorithm (without the support of spe-
cial register promotion) is quite successful in optimizing loads made inconsecutiveiterations. Figure 4.39
shows a sample loop and its optimization bygcc , which doesnot have a register promotion algorithm at
all. By using PRE alonegcc manages to reuse the load fromptr2 one iteration later.

The PRE algorithm is unable to achieve the same effect if data is reused in any iteration other than the
immediately following iteration or if there are intervening stores. In such cases an algorithm like Carr-
Kennedy is necessary to remove the redundant accesses. Let us notice that the use ofvalid flags achieves
the same degree of optimality as PREwithin an iteration, but at the expense of maintaining run-time infor-
mation.

4.6.4.3 Removing All Redundant Loads

However, the classical algorithm is unable to promote all memory references guarded by a conditional, as
in Figure 4.40. It is, in general, impossible for a compiler to check whenf(i) is true in both iterationi
and in iterationi-2 , and therefore it cannot deduce whether the load froma[i] can be reused asa[i-2]
two iterations later.
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do {
*ptr1++ = *ptr2++;

} while(--cnt && *ptr2);

------------------------

tmp = *ptr2;
do {

*ptr1++ = tmp;
ptr2++;
if (--cnt) break;
tmp = *ptr2;
if (! tmp) break;

} while(1);

Figure 4.39:Sample loop and its optimization using PRE. (The output is the equivalent of the assembly
code generated by gcc .) PRE can achieve some degree of register promotion for loads.

for (i = 2; i < N; i++)
if (f{i}) a[i] = a[i] + a[i-2];

Figure 4.40: Sample program which cannot be handled optimally by either PRE or the classical Carr-
Kennedy algorithm.

Register promotion has the goal of only executing thefirst load and thelast store of a variable. The
algorithm in Section 4.6.3 for handling loop-invariant data is immediately applicable for promoting loads
across iterations, since it performs a load as soon as possible. By maintaining availability information at
runtime, usingvalid flags, our algorithm can transform the code to perform a minimal number of loads
as in Figure 4.41. Applying constant propagation and dead-code elimination will simplify this code by
removing the unnecessary references toa2 valid .

4.6.4.4 Removing All Redundant Stores

Handling stores seems to be more difficult, since one should forgo a store if the value will be overwritten
in a subsequent iteration. However, in the presence of control-flow it is not obvious how to deduce whether
the overwriting stores in future iterations will take place. Here we extend the register promotion algorithm
to ensure that only one store is executed to each memory location, by showing how to optimize the example
in Figure 4.42.

We want to avoid storing toa[i+2] , since that store will be overwritten two iterations later by the store
to a[i] . However, this is not true for the last two iterations of the loop. Since, in general, the compiler
cannot generate code to test loop-termination several iterations ahead, it looks as if both stores must be
performed in each iteration. However, we can do better than that by performing, within the loop, only the
store toa[i] , which certainly will not be overwritten. The loop in Figure 4.43 does exactly that. The
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a0_valid = false;
a1_valid = false;
a2_valid = false;
for (i) {

fi = f(i);

/* load a[i-2] */
if (fi && !a0_valid) {

a0 = a[i-2];
a0_valid = true;

}

/* load a[i] */
if (fi && !a2_valid) {

a2 = a[i];
a2_valid = true;

}

/* store a[i] */
if (fi) {

a2 = a0 + a2;
a[i] = a2;
a2_valid = true;

}

/* Rotate scalars and valid flags */
a0 = a1;
a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

Figure 4.41:Optimal version of the code in Figure 4.40.

loop body never overwrites a stored value but may fail to correctly update the last two elements of arraya.
Fortuitously, after the loop completes, the scalarsa0 , a1 hold exactly these two values. So we can insert a
loop postlude to fix the potentially missing writes. (Of course,dirty bits should be used to prevent useless
updates.)

4.6.5 Implementation

This algorithm is probably much easier to illustrate than to describe precisely. Since the important message
was hopefully conveyed by the examples, we will just briefly sketch the implementation in a CFG-based
framework and describe in somewhat more detail the Pegasus implementation.
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for (i) {
a[i]++;
if (f(i)) a[i+2] = a[i];

}

---------------------------------------

a0_valid = true;
a0 = a[0]; /* a[i] */
a1_valid = false;
a2_valid = false;
for (i) {

fi = f(i);

/* load a[i] */
if (!a0_valid)

a0 = a[i];

/* store a[i] */
a[i] = a0+1;

/* store a[i+2] */
if (fi) {

a2 = a0;
a[i+2] = a2;
a2_valid = true;

}

/* Rotate scalars and valid flags */
a0 = a1;
a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

Figure 4.42:Program with control-flow and redundant stores and its optimization for an optimal number of
loads. The store to a[i+2] may be overwritten two iterations later by the store to a[i] .

4.6.5.1 CFG-Based Implementation

In general, for each constant reference toa[i+ j] (for a compile-time constantj) we maintain a scalart j
and a valid bitt jvalid . Then scalar replacement just makes the following changes:

• Replaces every load froma[i+ j] with a pair of statements:
t j = t jvalid ? t j : a[i+ j]; t jvalid = true

• Replace every storea[i+ j] = e with a pair of statements:
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a0_valid = true; /* a[i] */
a0 = a[0];
a1_valid = false;
a2_valid = false;
for (i) {

fi = f(i);

/* load a[i] */
if (!a0_valid)

a0 = a[i];

/* store a[i] */
a[i] = a0+1;

/* store a[i+2] */
if (fi) {

a2 = a0;
/* No update of a[i+2]: may be overwritten */
a2_valid = true;

}

/* Rotate scalars and valid flags */
a0 = a1;
a1 = a2;
a0_valid = a1_valid;
a1_valid = a2_valid;
a2_valid = false;

}

/* Postlude */

if (a0_valid)
a[i] = a0;

if (a1_valid)
a[i+1] = a1;

Figure 4.43:Optimal version of the example in Figure 4.42.

t j = e; t jvalid = true .

Furthermore, all stores except the generating store12 are removed. Instead compensation code is added
“after” the loop: for eacht j append a statementif (t jvalid) a[i+ j] = t j .

Complexity: the algorithm, aside from the dependence analysis, is linear in the size of the loop.

Correctness and optimality: are easy to argue. They both follow from the following loop invariant:

12According to the terminology in [CCK90], a generating store is the one writing toa[i+ j] for the smallestj promoted.
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Figure 4.44:Token network for the Pegasus representation of the loop in Figure 4.40.

Invariant: the t jvalid flag is true if and only ift j represents the contents of the memory
location it scalarizes.

4.6.5.2 Register Promotion in Pegasus

We sketch the most important analysis and transformation steps carried out by CASH for register promotion.
Although the actual promotion in Pegasus is slightly more complicated than in a CFG-based representation
(because of the need to maintainφ-nodes), the dependence tests used to decide whether promotion can be
applied are much simpler: the graph will have a very restricted structure if promotion can be applied.13 The
key element of the representation is the token edge network whose structure can be quickly analyzed to
determine important properties of the memory operations.

We illustrate register promotion on the example in Figure 4.40.

1. The token network for the Pegasus representation is shown in Figure 4.44. Memory accesses that
may interfere with each other will all belong to a same connected component of the token network.
Operations that belong to distinct components of the token network commute and can therefore be
analyzed separately. In this example there are two connected component, corresponding to accesses
made to the arraya and tononlocals . However, since there are no accesses in thenonlocals
network, it can be ignored.

2. The addresses of the three memory operations in this component are analyzed as described in Sec-
tion 4.3.4: they are all determined to be induction variables having the same step, 1. This implies that
the dependence distances between these accesses are constant (i.e., iteration-independent), making
these accesses candidates for register promotion.

The induction step of the addresses indicates the type of promotion: a 0 step indicates loop-invariant
accesses, while a non-zero step, as in this example, indicates strided accesses.

13The network encodes relatively simple dependence information. However, as pointed in [CMS96], elementary dependence
tests are sufficient for most cases of register promotion.
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Figure 4.45:Term-rewriting of loads for register promotion. “d” and “valid” are the register-promoted data
and its valid bit respectively.

3. The token network is further analyzed. Notice that prior to register promotion, memory disambigua-
tion has already proved (based on symbolic computation on address expressions) that the accesses to
a[i] anda[i+2] commute, and therefore there is no token edge between them. The token network
for a consists of twostrands: one for the accesses toa[i] , and one fora[i+2] ; the strands are
generated at the mu, on top, and joined before the etas, at the bottom, using a combine (V). If and
only if all memory accesses within the same strand are made to the same address can promotion be
carried.

CASH generates the initialization for the scalar temporaries and the “valid” bits in the loop pre-
header, as described in Section 4.6. We do not illustrate this step.

4. Each strand is scanned from top to bottom (from the mu to the eta), term-rewriting each memory
operation:

• Figure 4.45 shows how a load operation is transformed by register promotion. The resulting
construction can be interpreted as follows: “If the data is already valid do not do the load (i.e.,
the load predicate is ‘and’-ed with the negation of the valid bit) and use the data. Otherwise
do the load if its predicate indicates it needs to be executed.” The multiplexor will select either
the load output or the initial data, depending on the predicates. If neither predicate is true, the
output of the mux is not defined, and the resultingvalid bit is false.

• Figure 4.46 shows the term-rewriting process for a store. After this transformation, all stores
except the generating store are removed from the graph. The resulting construction is interpreted
as follows: “If the store occurs, the data-to-be-stored replaces the register-promoted data, and it
becomes valid. Otherwise, the register-promoted data remains unchanged.”

5. Code is synthesized to shift the scalar values and predicates around between strands (the assignments
t j−1 = t j), as illustrated in Figure 4.47.
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Figure 4.46:Term-rewriting of stores for register promotion.

Figure 4.47:Shifting scalar values between strands. A similar network is used to shift the “valid” bits.

6. The insertion of a loop postlude is somewhat more difficult in general than a loop prelude, since by
definition natural loops have a unique entry point, but may have multiple exits. In our implementation
each loop body is completely predicated and therefore all instructions get executed, albeit some are
nullified by the predicates. The compensating stores are added to the loop body and executed only
during the last iteration. This is achieved by making the predicate controlling these stores to be the
loop-termination predicate. This step is not illustrated.

4.6.6 Handling Loop-Invariant Predicates

The register promotion algorithm described above can be improved by handling specially loop-invariant
predicates. If the disjunction of the predicates guarding all the loads and stores of a same location contains
a loop-invariant subexpression, then the initialization load can be lifted out of the loop and guarded by that
subexpression. Consider Figure 4.48 on which we apply loop-invariant scalar-promotion.

By applying our register promotion algorithm one gets the result in Figure 4.49. However, using the
fact thatc1 andc2 are loop-invariant the code can be optimized as in Figure 4.50. Both Figure 4.49 and
Figure 4.50 execute the same number of loads and stores, and therefore, by our optimality criterion, are
equally good. However, the code in Figure 4.50 is obviously superior.

We can generalize this observation: the code can be improved whenever the disjunction of all condi-
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for (i) {
if (c1) *p += 1;
if (c2) *p += 2;
if (f(i)) *p += i;

}

Figure 4.48:Sample code with loop-invariant memory accesses. c1 and c2 stand for loop-invariant ex-
pressions.

tions guarding loads or stores from*p is weaker than some loop-invariant expression (even if none of the
conditions is itself loop-invariant), such as in Figure 4.51. In this case the disjunction of all predicates is
f(i)||!f(i) which is constant “true.” Therefore, the load from*p can be unconditionally lifted out of
the loop as shown in Figure 4.52.

In general, let us assume that each statements is controlled by predicate withP (s). Then for each
promoted memory locationa[i+ j] :

1. Define the predicatePj = ∨sjP (sj), wheresj ∈ {statements accessinga[i+ j] }.

2. Write Pj as the union of two predicates,P invj ∨ P varj , whereP invj is loop-invariant andP varj is
loop-dependent.

3. In prelude initializet jvalid = P invj .

4. In prelude initializet j = t jvalid ? a[i 0+j] : 0 .14

5. The predicate guarding each statementsj is strengthened:P (sj) := P (sj) ∧ ¬P invj .

Our current implementation of this optimization in CASH only lifts out of the loop the disjunction of
all predicates which are actually loop-invariant.

4.6.7 Discussion

The scalar promotion algorithm presented here is optimal with respect to the number of loads and stores
executed. But this does not necessarily correlate with improved performance for three reasons. First, it uses
more registers, to hold the scalar values and flags.

Second, it contains more computations than the original program in maintaining the flags. The opti-
mized program may end-up being slower than the original, depending, among other things, on the frequency
with which the memory access statements are executed and whether the predicate computations are on the
critical path. For example, if none of them is executed dynamically all the inserted code is overhead. In
practice profiling information and heuristics will be used to select the loops which will most benefit from
this transformation. As the processor width and the cost of memory operations both increase, this opti-
mization becomes more valuable since the predicate computations can often be scheduled in the available
instruction slots.

14i 0 is the initial value ofi in the loop.
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/* prelude */
tmp_valid = false;

for (i) {
/* first load from *p */
if (! tmp_valid && c1) {

tmp = *p;
tmp_valid = true;

}

/* first store to *p */
if (c1) {

/* tmp_valid is known to be true */
tmp += 1;
tmp_valid = true;

}

/* second load from *p */
if (! tmp_valid && c2) {

tmp = *p;
tmp_valid = true;

}

/* second store to *p */
if (c2) {

tmp += 2;
tmp_valid = true;

}

fi = f(i); /* evaluate f(i) only once */
/* third load from *p */
if (fi && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* third store to *p */
if (fi) {

tmp += i;
tmp_valid = true;

}
}

/* postlude */
if (tmp_valid)

*p = tmp;

Figure 4.49:Optimization of the code in Figure 4.48 without using the invariance of some predicates.
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/* prelude */
tmp_valid = c1 || c2;
if (tmp_valid)

tmp = *p;

for (i) {
/* first load from *p redundant */

/* first store to *p */
if (c1)

/* tmp_valid is known to be true */
tmp += 1;

/* second load from *p redundant */

/* second store to *p */
if (c2)

tmp += 2;

fi = f(i);

/* third load from *p */
if (fi && !tmp_valid) {

tmp = *p;
tmp_valid = true;

}

/* third store to *p */
if (fi) {

tmp += i;
tmp_valid = true;

}
}

/* postlude */
if (tmp_valid)

*p = tmp;

Figure 4.50:Optimization of the code in Figure 4.48 using the invariance of c1 and c2 .
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tmp = *p;
for (i) {

fi = f(i);
if (fi)

tmp += 1;
if (!fi)

tmp = 2;
}
*p = tmp;

Figure 4.51:Code with no loop-invariant predicates, but with loop-invariant memory accesses.

Third, scalar promotion removes memory accesses which hit in the cache,15 therefore its benefit appears
to be limited. However, in modern architectures L1 cache hits are not always cheap. For example, on the
Intel Itanium 2 some L1 cache hits may cost as much as 17 cycles [CL03]. Register promotion trades-off
bandwidth to the load-store queue for bandwidth to the register file, which is always bigger.

4.6.7.1 Dynamic Disambiguation

Our scalar promotion algorithm can be naturally extended to cope with a limited number of memory ac-
cesses which cannot be disambiguated at compile time. By combining dynamic memory disambiguation
[Nic89] with our scheme to handle conditional control flow, we can apply scalar promotion even when
pointer analysis determines that memory references interfere. Consider the example in Figure 4.53: even
though dependence analysis indicates thatp cannot be promoted since the access toq may interfere, the
bottom part of the figure shows how register promotion can be applied.

This scheme is an improvement over the one proposed by Sastry [SJ98], which stores to memory all the
values held in scalars when entering an un-analyzable code region (which in this case is the region guarded
by f(i) ).

4.6.8 Experimental Evaluation

In this section we present measurements of our register promotion algorithm as implemented in CASH. We
show static and dynamic data for C programs from three benchmark suites: Mediabench, SpecInt95 and
Spec CPU2000.

Table 4.5 shows how often scalar promotion can be applied. Column 3 shows that our algorithm found
many more opportunities for scalar promotion that would not have been found using previous scalar pro-
motion algorithms (however, we do not include here the opportunities discovered by PRE). CASH carries
a simple flow-sensitive intra-procedural pointer analysis. The lack of precise pointer information, which is
inherent in many C programs, is the greatest source of inhibition for register promotion [LC97].

Figure 4.54 and Figure 4.55 show the percentage decrease in the number of loads and stores respectively
that result from the application of our register promotion algorithms. The data labeledPRE reproduces the
data from Section 4.4.4, i.e., indicate the number of memory operations removed by our straight-line code

15Barring conflict misses within the loop.
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tmp = *p;
tmp_valid = true;
for (i) {

fi = f(i);

/* first load */
if (fi & !tmp_valid)

tmp = *p;

/* first store */
if (fi) {

tmp += 1;
tmp_valid = true;

}

/* second store */
if (! fi) {

tmp = 2;
tmp_valid = true;

}
}
if (tmp_valid)

*p = tmp;

-------------------------

tmp = *p;
for (i) {

fi = f(i);
if (fi)

tmp += 1;
if (!fi)

tmp = 2;
}
*p = tmp;

Figure 4.52:Optimization of the code in Figure 4.51 using the fact that the disjunction of all predicates
guarding *p is loop-invariant (i.e., constant) “true” and the same code after further constant propagation.
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for (i) {
s += *p;
if (f(i)) *q = 0;

}

-------------------------------------

tmp_valid = false;
for (i) {

if (!tmp_valid) {
tmp = *p;
tmp_valid = true;

}
s += tmp;
if (f(i)) {

*q = 0;
if (p == q)

/* dynamic disambiguation */
tmp_valid = 0;

}
}

Figure 4.53:Code with ambiguous dependences and its non-speculative register promotion relying on dy-
namic disambiguation.

optimizations only. The data labeledloop shows the additional benefit of applying inter-iteration register
promotion.

The most spectacular results occur for124.m88ksim , which has substatial reductions in both loads
and stores. Only two functions are responsible for most of the reduction in memory traffic:alignd and
loadmem . Both these functions benefit from a fairly straightforward application of loop-invariant mem-
ory access removal. Althoughloadmem contains control-flow, the promoted variable is always accessed
unconditionally. The substantial reduction in memory loads ingsm e is also due to register promotion of
invariant memory accesses, in the hottest function,Calculation of the LTP parameters . This
function contains a very long loop body created using many C macros, which expand to access several
constant locations in a local array. The loop body contains control-flow, but all accesses to the small array
are unconditional. Finally, the substantial reduction of the number of stores forrasta is due to theFR4TR
function, which also benefits from unconditional register promotion.

Our implementation does not usedirty bits and therefore is not optimal with respect to the number of
stores (it may, in fact, incur additional stores with respect to the original program). However, dirty bits can
only save a constant number of stores, independent of the number of iterations. We have considered their
overhead unjustified.
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Variables Variables
Program Invariant Strided Program Invariant Strided

old new old new old new old new
adpcme 0 0 0 0 099.go 40 53 2 2
adpcmd 0 0 0 0 124.m88ksim 23 10 1 4
gsme 1 1 1 0 129.compress 0 0 1 0
gsmd 1 1 1 0 130.li 1 0 1 1
epic e 0 0 0 0 132.ijpeg 5 1 9 5
epic d 0 0 0 0 134.perl 6 0 0 1
mpeg2e 1 0 1 0 147.vortex 22 20 1 0
mpeg2d 4 3 0 0 164.gzip 20 0 1 0
jpeg e 3 0 7 5 175.vpr 7 2 0 0
jpeg d 2 1 7 5 176.gcc 11 40 5 2
pegwit e 6 0 3 1 181.mcf 0 0 0 0
pegwit d 6 0 3 1 197.parser 20 3 3 5
g721e 0 0 2 0 254.gap 1 0 18 1
g721d 0 0 2 0 255.vortex 22 20 1 0
pgp e 24 1 5 0 256.bzip2 2 2 8 0
pgp d 24 1 5 0 300.twolf 1 2 0 0
rasta 3 0 2 1
mesa 44 4 2 0

Table 4.5:How often scalar promotion is applied. “New” indicates those cases which are enabled by our
algorithm. We count the number of different “variables” to which promotion is applied. If we can promote
arrays a and b in a same loop, we count two variables.

4.7 Dataflow Analyses on Pegasus

As we have discussed in Section 4.3, Pegasus summarizes many important dataflow facts through its wires:
def-use chains are represented by the data wires and may-dependences by the token edges. The multiplexors
and mu nodes make Pegasus an SSA form. This information enables the compiler to perform many powerful
simplifications without performing a dataflow analysis first.

However, some other optimizations do require the computation of dataflow information. The sparse
def-use nature of Pegasus makes computation of such information very fast and easy. As already noted in
[JP93], explicit dependence information makes dataflow computation almost trivial, since all that needs to
be implemented is an abstract transfer function for each operation in conjunction with an iterative analysis.
Since there is no control flow (or rather, the control-flow is explicitly encoded within the data-flow), there is
no need for complex interval or structural analyses (although equivalents of these could certainly be used).

The forward dataflow algorithm can be expressed very succinctly as follows: for an operation withn
inputsik and transfer functiont, the output dataflowo can be written as a function of the input dataflow facts
ik, k ∈ {0, . . . , n} as:o = t(i0, i1, . . . , in). The multiplexors and mu are the join points, whose output is
given byo = tkik (for k ranging over the data inputs, i.e., excluding predicate inputs for the mux).

A backward analysis is just slightly more complicated: if outputo fanouts to inputsok, k ∈ {0, . . . , n},
theno = tkok andik = t−1

k (o) (i.e., the reverse transfer function for thek-th input).
We will illustrate dataflow analysis by giving three example optimizations used in CASH. All these
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Figure 4.54:Percentage reduction in the number of dynamic load operations due to the application of the
memory PRE and register promotion optimizations.

analyses are global at the procedure level. We present constant propagation, a forward analysis, dead-code,
a backward analysis on the scalar subgraph only, and dead local variable removal, a backward analysis
which operates solely on the token-induced subgraph.

For all these problems the lattice depth is constant and the dataflow computation is linear-time. The
implementation is also extremely succinct. For example, thecompleteimplementation of the dead-local
variable removal from Section 4.7.3, encompassing both the dataflow analysis and the actual removal of the
dead operations, is less than 100 lines of source code with comments and spaces (Table 4.1).

We plan to add more dataflow analyses to Pegasus. For example, we want to re-write the BitValue anal-
ysis [BSWG00], which discovers useless bits. Implementing the analysis on Pegasus ought to be straight-
forward. The results produced by BitValue ought to benefit from the superior register promotion in Pegasus,
since BitValue acts very conservatively at memory operations.

4.7.1 Global Constant Propagation

Global constant propagation is a very simple forward dataflow analysis which replaces some “variables”
with constant values. (It should not be confused with constant folding, which computes the output of side-
effect operations having all inputs constant.) In Pegasus constant propagation is almost trivial, involving
exactly four operations: noops, hold, mu and eta. Since there are no variables in Pegasus, only wires,
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Figure 4.55:Percentage reduction in the number of dynamic store operations due to the application of the
memory PRE and register promotion optimizations.

Operation Initial value

Constantc c

Any other >

Operation Transfer function Comments

Noop o = i Only one input
Eta, hold o = i0 The data input
Mu o = tkik For all data inputsik

(A) (B)

Table 4.6:(A) Initializations and (B) dataflow transfer functions for the global constant-propagation prob-
lem.

copy propagation is automatically performed when connecting definers to users. What used to be “copy”
instructions become nothing, or perhaps, under some conditions, noops.

The lattice is the standard one, containing all constants, not comparable to each other, a⊥ element
which is “less than” any constant, and a> element, which indicates that a value is not reachable. The
initial values and transfer functions for all operations are given in Table 4.6, After performing the dataflow
analysis an operation having the associated dataflow output a constant can be replaced with that constant.
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Operation Initial value

Store, call >
Frame, pop >
Return, arg >
Any other ⊥

Operation Transfer function

Any ∀k.ik = ujoj

(A) (B)

Table 4.7:(A) Initializations and (B) dataflow transfer functions for the dead-code problem.

Operation Initial value

Delete ⊥
Any other >

Operation Transfer function Comments

Store i = o

Create, delete i = o

Combine, noop, eta, mu i = o

Load, call, frame, pop i = > Never dead
(A) (B)

Table 4.8:(A) Initializations and (B) dataflow transfer functions for the dead local variable problem. The
only inputs and outputs considered are the token i/o’s.

4.7.2 Dead Code Elimination

Global dead-code elimination is a very simple backwards dataflow analysis used to discover operations
whose output is unused. It operates solely on the scalar values in Pegasus, ignoring the token edges alto-
gether. The used lattice is trivial, containing just two values, “useful”> and “dead”⊥. Table 4.7 shows the
initialization and transfer function: side-effect operations which cause mutations are initialized to>, and
all other to⊥. The dataflow fact of all inputs is theu of all output (wires) of an operation, and each output
is theu of all its destinations.

After dead-code an operation having the associated dataflow output⊥ can be removed from the graph.
Operations having tokens need to connect the token input to the output on removal.

4.7.3 Dead Local Variable Removal

Finally we discuss a backward dataflow analysis used to discover dead local variables whose address is
taken and that can be removed from the program. Even if not removing the variables entirely, this analysis
can remove “dead stores”, which are performed to the variable just prior to exiting the scope in which
the variable is live. In conjunction with register promotion this optimization can sometimes produce quite
spectacular results. This optimization translates the circuit in Figure 3.17 to the one in Figure 3.18.

This dataflow analysis needs only to consider the token edges of the Pegasus graph, since it is an
analysis of side-effects. The analysis is therefore defined only operations with token inputs and outputs. Its
computation is described by Table 4.8. Basically, each store to a variable immediately followed (only) by a
deleteor another dead operation is dead. Acreatein the prologue followed only by dead operations is dead
itself, and therefore can be removed from the graph, together with the correspondingdeletein the epilogue.
Since this is a backward problem, an output needs to perform au on all its destinations before applying the
transfer function. In fact, this is the only way that a value can go “up” in the lattice.
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Figure 4.56:The program in Figure 3.17 after register promotion and just before the dead-local variable
removal.

Going back to Figure 3.17, let us see how this analysis operates. First, the store-load forwarding trans-
formation shown in Figure 4.18 removes the redundant load fromz , generating the result in Figure 4.56.
Then, the “deadness” propagates as follows along token back-edges:Dz← mu @z← eta@z← [ ]= ←
V@*← Cz. First, the[ ]= store is certainly dead and can be removed anyway. Next, since thecreateis
also dead, it can be removed together with the correspondingdelete, leading to the result in Figure 3.18.
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Chapter 5

Engineering a C Compiler

This chapter contains some of the software engineering principles we have quite painfully discovered while
belaboring at CASH and its related infrastructure. We felt compelled to include this advice here for three
reasons:

• We think it is useful. In fact, had we known and applied some of these principles early, we would
have saved some time and, much more importantly, frustration.

• In our course of study and research we have read too little on these sort of techniques. In fact, we think
that systems engineering education should contain at least some modicum of code-writing advice.

• There is no other place where we can write about this knowledge. It is too sparse and disorganized
for a real publication and too hard to quantify from a scientific point of view.

As any coding style guide, some of the preferences here will be found distasteful by some readers. Also,
some of the techniques described will be mostly suitable for the specific task of writing compilers. These,
unfortunately, are a particularly difficult subject of development, since bugs often manifest themselves as
second-order effects only: the compiler output is a legal program, but when run it produces incorrect results.
Finding the source of the problem, oftenwithout understandingthe compiled program itself, is an exercise
in patience and strong will. Therefore, here is a bag of tricks, in no particular order.

5.1 Software Engineering Rules

Determinism: Every run of the program with the same input should produce the same output and go
through the same execution path. Non-determinism should be confined to as small a piece of code
as possible. In CASH, whose central data structure is the hash table, pointers to various objects are
hashed according to their actual values. Hash table iterators used to scan the hash table always from
top to bottom. But the location of an object in the hash would vary according to its address, which
could depend, for example, on the environment of the process. The fix, implemented after many
frustrating months, was to add to each hash table a doubly-linked list holding the hash elements in the
insertion order. The list is used by all hash iterators, while the regular hash is used for searches. This
makes the hash somewhat slower (but still amortized constant time per operation), but deterministic.

Correctness first: This is a well known piece of advice, of particular value for research code:premature
optimization is the root of all evil. In other words, always prototype with the simplest algorithm you
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/* incorrect */

void optimize(Hyperblock* h)
{

...
transitive_reduction(h);
pre_for_memory(h); /* needs transitive reduction */

}

-----------------------------------------------------
/* correct */

void pre_for_memory(Hyperblock* h)
{

transitive_reduction(h); /* required invariant */
...

}

Figure 5.1:Each optimization pass establishes all the invariants required on its own.

can, even if its complexity is inferior. Proceed to replace it only if it proves to be the bottleneck. Use
profiling (e.g.,gcc -pg ) to find the actual bottlenecks.

Clean semantics: In Pegasus the semantics of each operation is precisely defined. The program is also at
all points strongly typed and consistent. Even a small ambiguity can make life much harder, since
program invariants are much harder to reason about.

Freshness:CASH does not rely on the results of an analysis or transformation carried in the past because
the program may have changed since. If CASH needs to establish an invariant on the data structure
(e.g., transitively reduced token graph), it explicitly invokes the computation before being sure that
the invariant is correct, see Figure 5.1. Too often not doing this led to painful bugs when compilation
passes were reordered.

Caching: If some information can be cached, in CASH the caching is always clearly explicit. For example,
since computing reachability is expensive, CASH uses a memoization table. This table is not a
permanent object. It is allocated by the caller of the reachability function and deallocated by the
caller, as illustrated in Figure 5.2.

Invariants: Related to caching: if the information you want to cache is expensive to compute and you
would rather update it incrementally, then make it anexplicit invariant of the data-structure and
maintain it carefully in all transformations. Or ensure that it is recomputed only after batches of other
transformations.

Modular transformations: It is very useful if optimizations can be reordered easily, to allow with experi-
mentation.
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/* incorrect */

static CACHE dependence_cache;

bool dependence(Node* n1, Node* n2)
{

if (dependence_cache.member(n1, n2))
return dependence_cache.lookUp(n1, n2);

...
dependence_cache.cache(n1, n2, retval);
return retval;

}

-------------------------------------------------------------
/* correct */

bool dependence(Node* n1, Node* n2, CACHE *dependence_cache)
{

if (dependence_cache && dependence_cache->member(n1, n2))
return dependence_cache.lookUp(n1, n2);

...
dependence_cache->cache(n1, n2, retval);
return retval;

}

void pre_for_memory(Hyperblock* h)
{

CACHE dependence_cache;
/* at this point the cache is empty */

ForAllTokenEdges (e) {
if (dependence(e->node1, e->node2, &dependence_cache))

...
}

}

Figure 5.2:The lifetime of caching of intermediate results is explicitly controlled.
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5.2 Design Mistakes

Here are some important design flaws in CASH. Planning for long-term evolution of a compiler should have
avoided them.

• Outer loops are not first-class objects. Optimizing them in the current framework is not easy.

• Hard-coded C memory model. The current compiler is not easy to extend to handle, for instance,
FORTRAN programs.

• Single procedure at a time. CASH relies on somestatic data structures to represent the current
procedure. This means there cannot be several procedures optimized simultaneously.

• Not portable. CASH relies in many places on the native arithmetic and has some hard-coded depen-
dences on 32-bit integers.

• Hard-coded limitations. The fact that an operation cannot have more than two outputs was deeply
embedded in the code. When we realized that the call operation needs three outputs, we had to resort
to ugly workarounds. Future extensions may be jeopardized by this decision.

5.3 Debugging Support

Debugging is never too easy. Whatever tools one can create to simplify this task usually pay off in the long
run. A robust debugger is a must, but coding for debugging is also necessary.

• Very valuable is the ability to turn each optimization on and off in the compiler, either globally or
even on a per-function basis. Inhibiting optimizations one by one is useful when trying to discover
the source of a bug.

• Very useful is the ability to selectively optimize only some of the functions in the input program. We
use a Perl script to do a binary search to narrow down the location of a bug.

• The liberal use ofassert() calls pays off handsomely in the long run.

• Functions to check major invariants of the data structures are invoked repeatedly at run-time. Command-
line debugging options can be used to turn on more of these.

• Each internal object has a unique associated ID; the ID is generated in a single function (even if the
class has several different constructors). The ID is invaluable for debugging. If you need to know
when an object is created, use a conditional breakpoint in the ID initialization function.

• A computer is fast, so let it do most of the work in finding or explaining a bug. For example, when
an invariant is broken, the compiler may try to summarize the portion of the data structure with the
problem. For example, if an optimization introduces an illegal cycle in Pegasus, topological sorting
will discover it and will print it as a list of unique IDs.

• Compilers use highly complex data structures. A visualization tool is invaluable. We have used
both dot [GN99] andvcg [LS93]. The latter produces less refined layouts, but is faster to run
and can display more information. It is very important that the compiler be able to dump the data
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structures for visualizationeven if the structure is incorrect(i.e., it breaks invariants). The graph
dumping routines should therefore be as robust as possible. They can be invoked from the debugger
command-line at various points during the compilation process to see a snapshot of the current state
of the representation. The visualization tool ought to display for each object the unique ID, as shown
for example in Figure 4.9, where IDs are between square braces. Various options should control the
amount of detail. Indot we use color to supplement information which is not controllable through
the layout, e.g., the input number of each wire.

• All optimizations can be made to print a trace of the applied transformations when command-line
debugging flags are turned on.

• Once a compiler bug is detected, a simple piece of input code triggering it is added to a regression
test suite. Frequently later changes may exhibit the same bug, now quickly caught by the test.

• When compiling large functions, or when using aggressive unrolling or inlining circuits can grow
very large. A collection of Perl scripts was used to trim down the size of the graph printouts. Most
often these tools are used in an interactive way: analyze graph, display more nodes, repeat.

• We found it very useful to institute run-time tests against the most egregious coding errors in the
compiler. For example, we noticed that repeatedly we were modifying a data structure somewhere
deep in a call chain, while a caller had an iterator over the same data structure. Unless the changes
are very restricted, the iterator will point to garbage on return. Therefore we have guarded all data
structures with a flag showing whether they are currently being iterated upon. All methods modifying
the data structure check this field first and immediately abort if an iterator is in use. This has uncovered
a surprising number of very shallow bugs.

• A solid regression testing suite is hugely useful since it allows debugging with small inputs.

• Having an automatic way to visualize the program evolutionat run-timeis a huge time-saver. More
details about the tools we have developed are in Section 6.3 and Section 6.6.

• Analyzing the code coverage of the compiler (e.g., by usinggcc -ftest-coverage ) can some-
times point to the need for additional regression tests, or even subtle bugs.

5.4 Coding in C++

Finally, this section presents some language-related considerations. CASH is built in C++ and we mention
here some of the ways we found the language useful or cumbersome.

• CASH does not use the exception mechanism in C++.

• CASH does not use inheritance at all. Instead of virtual dispatch functions, we prefer to use large
switch statements. The resulting code is easier to understand and maintain and is faster as well. (This
way of structuring code resembles somewhat Suif’s organization.)

• CASH makes heavy use of templates. 99% of CASH is type-safe (i.e., uses no wild pointer casts), and
this is due to the heavy use of templates. Unfortunately, at least withgcc , templates cause huge code
blow-ups and are difficult to debug (because there is no way to put a breakpoint just forHash<int,
int> ).
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• When CASH was started, the Standard Template Library (STL) was too immature to be trustworthy,
therefore CASH does not use it at all. Once we had developed a good library of data structures
(hashes, lists, arrays), we found the need for STL greatly diminished.

• We found it more useful most of the time to organize code in files according to functionality and not
to class. E.g., all term-rewriting optimization functions for all classes are in a single file.

• In retrospect, we have made too many optimization routines members of theCircuit class (i.e.,
the main Pegasus structure corresponding to a hyperblock). We should have paid more attention to
Suif, which has an excellent code organization. Only important accessors should be methods, and
optimizations should be global functions, receiving mutableCircuit* ’s as arguments.

• Finally, the main data structure in CASH is the (polymorphic) hash table. Hashes are resized auto-
matically to keep the expected access cost constant. Hashes are frequently used instead of creating
new object fields.1 For example, if we need to find allNodes with a certain property, we build a hash
mappingNodes to properties and populate it when computing the property. The alternative would
be to add a new field to theNode class for each property, making the class quickly very baroque.
Suif 1.x itself relies too much on linked lists and uses almost no hashes internally. Some of the speed
problems of Suif are clearly attributable to lists. The amortized constant-time access to a hash makes
it almost as fast to access as a true object field.

1Ironically, hashes are the hardest structures to implement effectively in Spatial Computation.
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Part II

ASH at Run-time
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Chapter 6

Pegasus at Run-Time

The first part of this thesis was about the static aspects of Spatial Computation. Now we turn our attention
to its run-time behavior. In this chapter we study the general behavior of a spatial implementation at a
local and global level. We discuss a series of optimizations which are uniquely applicable for spatial asyn-
chronous circuits and then analyze in detail one of the main vehicles of high performance, namely dataflow
software pipelining. The next two chapters are devoted to analyzing the performance of the synthesized
circuits: Chapter 7 applies CASH on embedded systems benchmarks, while Chapter 8 evaluates the effec-
tiveness of CASH on control-intensive pointer programs, contrasting the behavior of Spatial Computation
with superscalar processors.

6.1 Asynchronous Circuit Model

In this section we detail the protocol of the nodes at the ends of a “wire” connecting a producer operation
with multiple consumers. Figure 6.1 is an expansion of Figure 3.1 from Section 3.2 for the case of multiple
consumers.

Each operation has an associated output latch,1 used to preserve the output value as long as required
for all consumers to read it.2 An operation will not overwrite the output value if there is at least one
consumer that has not acknowledge the receipt of the prior output. Handling multiple outputs only requires
a supplemental “and” gate to combine the acknowledgements of all consumers.

There is a lot of research in asynchronous circuits on improving the signaling protocols between producer-
consumer operations (e.g., [Wil90, SN00, CNBE03]). However, this text uses for all simulations a relatively
simple communication model. The behavior of practically all operations is described by the same finite-state
machine.

6.1.1 The Finite-State Machine of an Operation

Figure 6.2 shows a representation of the Finite-State Machine (FSM) governing the behavior of each node
at run-time. The FSM is broken into three interdependent small FSMs governing the behavior of the inputs,
computation and outputs respectively. An operation having multiple outputs will have a single input FSM,
but a copy of the data and output FSM for each of its outputs. Transitions of these FSMs are not always

1Depending on the actual hardware implementation, a real latch may be unnecessary. For example, dynamic asynchronous
logic provides a latching effect without using a flip-flop [SN00].

2However, remember that some operations have multiple outputs; for example, loads generate both a data value and a token.
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Figure 6.1:Signaling protocol between data producers and consumers.
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Figure 6.2:Finite-State Machine describing the computation of an asynchronous node.

independent. The following description shows the events that trigger the transitions and also the events
triggered by each transition:

Output

free→ busy is a transition that occurs when an output is produced on the output wire

busy→ free occurs when all acknowledgments have been received for the output

Input

none→ some occurs when first input data is received

some→ some occurs when one more input has been received (but not for the last input)

some→ all occurs when the last input data is received

all → none occurs only when the output has been latched and an acknowledgment has been sent for
all inputs

Data
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none→ initiated taken when enough inputs have arrived to enable the computation of the output
value — the computation is started

initiated → completed taken when the computation of the output value is completed (but output is
not yet latched)

completed→ transmitted taken after all acknowledgments have been received from consumers

transmitted → none taken after operation has sent all acknowledgments

Although this FSM looks quite complicated, its hardware implementation is quite simple (and fast) by
using just two asynchronous C gates for each operation, in the style of micropipelines [Sut89].

The main point of this elaborate description is that, due to the presence of the output latch, an operation
can start computing even if the previous output it has produced has not been consumed yet. Because the
operation will not acknowledge its inputs before latching the output, this behavior is safe even if the latch is
“busy” with the previously computed value. Another important point is that an operation acknowledgesall
its inputs at once, even if it requires only some of them to compute the output (i.e., it is lenient as described
in Section 6.4). This last step is required for a correct implementation. As an illustration, if each input
would be acknowledged separately, an “and” operation could receive two consecutive “0” values of the left
input before having received the right input at all.

6.2 Timing Assumptions

While the implementation generated by CASH can be a truly asynchronous circuit without any notion
of global clock, for simulation purposes we take the simplifying assumption that all delays are integer
multiples of a basic time unit, which we will call from now on “clock cycle.” We assume that computation
time dominates propagation delays on the wires, which are approximated to zero in the forward direction.
However, propagation of the acknowledgment signal takes one clock cycle.

The actual delays will depend on a variety of factors, including technology mapping, synthesis back-end
and circuit layout. The Verilog models in Section 7.5 use precise measurements for evaluating performance.
However, for most of the evaluations in Chapter 7 and Chapter 8 we assume that for most operations the
latency (measured in clock cycles) in Spatial Computation is the same as in a superscalar processor. We
also tacitly assume the same clock cycle for both implementations. Since processors are highly tuned, it is
not clear how realistic this assumption may be. This timing model enables us to focus on the fundamental
performance of the computational model, ignoring the impact of technology.

6.3 State Snapshots

In order to better understand the properties of ASH we will take a look at some possible snapshots of a
Spatial Computation. We further elaborate the analysis with a discussion of dataflow software pipelining in
Section 6.7.

In order to better understand the behavior of the generated circuits we have developed a relatively crude
but effective visualization tool. The tool is based on three ingredients: (1) circuit drawings, generated
by CASH using thedot back-end; (2) a circuit simulator, which can be configured to dump traces of
important events and FSM transitions; and (3) a Perl script which combines the two, by repeatedly marking
operations with color codes corresponding to their state. A sample simplified trace (due to the limitation of
this document to black and white) is shown in Figure 6.6 below.
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As with superscalar processors, the state of the computation is quite complex, and even more so, since
Spatial Computation has neither a program counter nor a finite-size instruction window: at any one moment
in time there may be operations which have received some of the inputs, operations which are currently
computing the result, operations blocked waiting for an acknowledgment, and idle operations. An important
invariant is that once “execution” enters a hyperblock, all operations within that hyperblock are executed
exactly once. If the hyperblock is a loop body, execution enters the hyperblock repeatedly, and for each
entry all operations must go through a complete computation cycle: get all inputs, produce output, receive
acknowledgment.

Within loops or recursive functions some operations may receive a new round of inputs before having
computed the previous output. Such nodes will start immediately computing a new output value but will
be able to latch it and pass it to the successors, only when all outputs have acknowledged the prior value.
There is no way a “later” value can overtake an “early” one in the computation.

In order to better understand how execution proceeds, it is useful to define a “generalized iteration index”
(which we will call simply “index”), which generalizes the notion of iteration index vector [KKP+81] often
used to analyze loop traversal orders in parallelization transformations. Unlike iteration index vectors,
which are a per-nested-loop notion, the index is a per-program notion. The index is a positive integer,
incremented whenever execution crosses from a hyperblock to a successor hyperblock. The index can be
also seen as an abstract form of the tag used in the tagged token dataflow machine [AN90]. We should think
of each data item being tagged with its index. Whenever data goes along a cross-edge (i.e., a CFG edge
spanning two different hyperblocks, or a back-edge, cf. Section 3.3), its index is incremented.

A very important run-time invariant is then the following:

For any operation, all inputs that contribute to the computation of the output have the
same index.

A second important invariant governs the order of the computations:

The consecutive values flowing on every edge have strictly increasing indices.

If we freeze the computation at an arbitrary point in time and take a snapshot at the “live” values on
wires (i.e., the ones that have data-ready set, but are not yet acknowledged), they can have widely differ-
ing indices. Also, live values can be present simultaneously in multiple hyperblocks, and even in multiple
procedures, because a procedure invocation can proceed in parallel with the execution of independent oper-
ations in the caller. If lenient execution is employed (see Section 6.4 below), then there can be live values
within a procedure even after the procedure has executed its return operation. Due to the implementation of
recursion (see Figure 3.21), however, there can be no live values in two invocations of the same procedure
simultaneously: the recursive call instruction “drains” all live values from a procedure in order to make
the recursive call. We further revisit state snapshots in Section 6.7, where we take an in-depth look at the
behavior of loops and at the emerging property of dataflow software pipelining.

6.3.1 Switches

In Appendix B we argue formally about the correctness of the above two invariants using an induction argu-
ment over the length of the execution. However, the use ofmuoperations as merge points for control flow
cannot guarantee these properties. Figure 6.3 shows two circuits which may violate the above invariants.
In (A) one data item iterates around the loop and reaches a mu before the value that was meant to initialize
the mu before the start of the first iteration. In (B) while some data still circulates within the left side of
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slow
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Figure 6.3:Two circuits whose execution may violate correctness invariants.

the innermost loop, other data can terminate all iterations on the right side of this loop, exit, go around the
outermost loop and re-enter the innermost loop.

Intuitively this phenomenon happens because data can follow different paths to reach a mu. While on
an edge all indices are strictly increasing because the data can reach the mu from different edges, the data
with a larger index can reach the mu before the data with the smaller index.

To fix this problem we introduceswitchnodes. Switches are a hybrid between mu and multiplexors.
Like muxes, switches have a control input, which indicateswhichof the data inputs is expected next. Like
mu operators, a switch does not expect to receive all its inputs, but only the one indicated by the control.
When the indicated input arrives, it is forwarded to the output and both the control and data input are
acknowledged. If any other input shows up, it is simply ignored (i.e., not acknowledged).

Replacing all mu operators with switches restores the invariants, assuming there is a reliable way to
generate the control signal for selecting the correct input. For this purpose we use the mu operators for
the current execution point(crt). When such a mu receives data on one input, it indicates to all switch
operations to use the corresponding input as well. The crt mu operators are guaranteed to always receive the
correct input because at any one point there is exactly one active crt value in the whole program. Figure 6.4
shows how the loop hyperblock in Figure 6.3(a) is modified by using switch nodes to steer the “mus.”

The “mu” node will indicate to both “switches” to accept their initialization inputs first. Although the
“fast” value will travel quickly and reach the leftmost switch node first, it will remain blocked there, since
the switch is open only for the “slow” value.

Note that our usage of “switch” nodes is subtly different from the traditional usage of switches in the
dataflow literature [DM98], which requires the control predicate of a switch to be already present at the start
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Figure 6.4:Usage of “switch” operators inside controlled by the “mu” for the current execution point. The
“mu” indicates to the switch nodes which of the inputs should be forwarded next.

if (x > 0)
y = -x;

else
y = b*x;

*

xb 0

y

!

− >

(A) (B)

Figure 6.5:(A) Sample program fragment and (B) the corresponding Pegasus circuit with the static critical
path highlighted.

of the computation in order to allow data to enter the loop. Our scheme has two advantages: (1) it does not
require any state when the computation is initiated (i.e., the FSM of each node starts in the same state) and
(2) it works even for programs having irreducible CFGs.

6.4 Lenient Execution

As indicated in Section 3.3, Pegasus uses explicit multiplexors to represent the join of multiple definitions
of a variable. Recall that hyperblocks are the basic unit of (speculative) execution: all operations within a
hyperblock are executed to completion every time the execution reaches that hyperblock.

In the literature about EPIC processors, a well-known problem of speculation is that the execution time
on the multiple control-flow paths may be different [AmWHM97]. Figure 6.5 illustrates the problem of
balancing: the critical path of the entire construct is the longest (worst-case) of the critical paths of the
combined conditional paths. Traditional software solutions use either profiling, to ensure that the long path
is overwhelmingly often selected at run-time, or exclude certain hyperblock topologies from consideration,
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Figure 6.6:Evaluation of the program in Figure 6.5 for inputs x=10 and b=5 . The shaded operations are
currently executing. We have displayed in each node the output value. Each value is shown as long as it
has not been acknowledged. Notice that the lenient multiplexor generates an output of −10 before having
received the results from the negation and multiplication. Also, notice that the multiplexor receives the
acknowledgment for its output before having sent its own for the inputs.

rejecting the predication of paths which differ widely in length.

In Spatial Computation we can use a completely different method to solve this problem: we make
multiplexors and predicate computation operationslenient. Leniency is a property of the execution of an
operation, related to strictness and laziness. An operation is strict if it requires all its inputs to compute the
output. An operation is non-strict if it can produce a result with just some of the inputs. For example, in
most programming languages theif construct is non-strict, since it evaluates only one branch. A lenient
operation is somewhere between strict and non-strict: it can produce the output with just some of the inputs,
but nevertheless expects all the inputs to be present. Lenient operators generate a result as soon as possible,
while still expecting all inputs to eventually become available. For example, a “logical and” operation can
determine that the output is “false” as soon as one of its inputs is “false.” However, lenient operations have
defer the sending of acknowledgments until all of the inputs have been received. In order to understand this
restriction, consider an “and” operation whose left input is “false:” if the input is acknowledged, the next
value of the same input could arrive before the other inputs have been received. In the asynchronous circuits
literature leniency was proposed under the name “early evaluation” [RTT01]. A recent enhancement of the
protocol in [BG03a] relaxes the restriction of simultaneous acknowledgements.

Lenient evaluation should not be confused with short-circuit evaluation: a short-circuit evaluation of an
“and” always evaluates the left operand, and if this one is “true”, it also evaluates the right one. However, a
lenient evaluation of “and” generates a “false” result as soon aseither input is known to be “false.” Short-
circuit evaluation is a static property, while lenient execution is a dynamic property.

Multiplexors have lenient implementations as well: as soon as a selector is “true” and the corresponding
data is available, a mux generates the output. Considering the circuit in Figure 6.5 again, let us assume that
all inputs show up simultaneously:x=10,b=5 (i.e., the multiplication result is not used). Figure 6.6 shows
the evolution in time of the computation: the multiplexor emits the result of the subtraction as soon as it is
available. The multiplication output is simply ignored.

As a result of leniency, at least for this sample circuit,the dynamic critical path is the same as in a non-
speculative implementation. That is, if the multiplication output is not used, it does not affect the critical
path. As shown in Section 6.7, the multiplication delay can still impact the dynamic critical path if it is
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within a loop, but this can be managed by pipelining the implementation of the multiplier.
Besides Boolean operations and multiplexors, there are other operations which are only “partially”

lenient. For example, all predicated operations are lenient in their predicate input. For example, if a load
operation receives a “false” predicate input, it can immediately emit an arbitrary output (by raising the “data
ready” signal), since the actual output is irrelevant. Other operations could be made lenient in some weaker
sense still. For example, a multiplication receiving a 0 input could immediately output a 0 result.

The use of leniency gives rise to an interesting run-time behavior, well illustrated by Figure 6.6. Let
us assume that the mux is immediately followed by a “return” instruction. Then it is entirely possible for
the return to be executed before the multiplication. Therefore control can return to the caller of a function
even though there is still active computation carried on within the function. A second consequence is that
execution has returned, but the multiplier has not yet acknowledged its inputs. A new call to the function
containing this code may therefore be attempted before the values of the inputsx andb have been consumed.
This points out the need to employ flow-of-control mechanisms for function call operations: a function may
notbe ready to accept new inputs, even though an old invocation of it has completed.

The multiplexors and eta nodes are naturalspeculation drainnodes: incorrectly speculated execution is
automatically squashed at multiplexors or etas controlled by “false” predicates.

6.5 Memory Access

In Pegasus memory access is represented by load and store operations. As described in Section 3.2, both
loads and stores not only have data and address signals, but also a predicate input and a token input and
output. The predicate is required because memory operations have side-effects which cannot be un-done if
wrongly speculated, unlike scalar speculation which is simply drained at multiplexors. The input and output
tokens are used to enforce the execution order between potentially non-commutative memory operations
which do not depend on each other through scalar values.

One of the radical differences between our proposed model of Spatial Computation and an ordinary
microprocessor is the actual embodiment of the tokens in the “virtual ISA.” In a microprocessor, memory
access instructions are implicitly ordered according to the (total) program order. Run-time disambiguation
may re-order memory instructions by comparing the addresses they access. But in case of dependence the
ordering is enforced by the actual issue order. Since Spatial Computation has no notion of instruction order,
the token mechanism was required to supply the ordering information. Note that the static ordering implied
by the tokens does not preclude the use of dynamic disambiguation. In fact, our simulated implementations
use a load-store queue (LSQ) [SS95] very similar to the one used by a superscalar processor, described in
Section 6.5.3.

Currently all data resides in a monolithic memory. This choice, although detrimental for performance,
tremendously simplifies the program implementation. Since in C the address of any object can be stored and
passed almost anywhere, the compiler has to maintain roughly the same memory layout as on a conventional
machine for all objects whose “scope” cannot be restricted precisely statically.

Using the call-graph slightly optimizes memory layout by transforming bothstatic local variables
and local variables of non-recursive functions whose address is not taken into global variables. The latter
transformation is useful because, since the local is no longer stack-allocated, its address becomes a link-time
constant.

Breaking the global memory into (disjoint) pieces and co-locating some of these pieces closer to the
computation accessing them, and the implementation of a coherence mechanism, are important subjects of
future research.
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Figure 6.7:Memory access subsystem abstract architecture.

6.5.1 Architecture

Figure 6.7 shows the architecture of the memory-access subsystem employed in the circuits generated by
CASH. Currently all memory operations send their requests and receive their results from a single load-
store queue. For the future we are contemplating a distributed implementation for the LSQ (e.g., one
LSQ for each procedure). The LSQ has two bandwidth-limited connections: one to the circuits, used to
send/receive requests from load and store operations, and one connecting to the cache. When there is
insufficient bandwidth to accommodate a series of simultaneous requests, an arbitration mechanism is used
to grant some accesses while the rest are stalled.

6.5.2 Memory Access Protocol

As in superscalar processors, we have separated the memory access into two distinct actions: issuing the
memory operations in the dependence-mandated order, and actually performing the memory access. On
receipt of a token a memory operation immediately sends areservation requestto the LSQ. If the LSQ is
not full, it reserves a slot for the memory request. This slot is filled with whatever information is available
about the access itself: address, data, size of data, load/store operation identity (i.e., where to return the
result), predicate. Some of the fields may be unknown at reservation time. When the slot reservation
succeeds, the operation issues its token output, therefore enabling its successors to reserve slots themselves.
Given enough bandwidth to the LSQ and enough storage space in the LSQ itself, the token part of the
computation will propagate ahead of the scalar computation. The token’s progress is slowed down by the
token-propagating eta operations which require predicates in order to forward their data. Procedure calls
may also cause delays in the token propagation, due to their non-lenient nature (see also Section 8.2.2.4).

When a memory operation receives more inputs, it sends updates to the LSQ to fill the incomplete slots
in the reservation request. In general a memory operation requires multiple messages to the LSQ in order
to complete a single access. This protocol is correct even if messages are batched. At one extreme, a single
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int a[], b[];

{
...
x = b[a[i]];

}

=a[ ]

=b[ ]

(A) (B)

Figure 6.8:Code fragment which can lead to deadlock involving the LSQ.

message can be sent when all data is available. However, in general batching increases the critical path and
is detrimental to performance. Therefore there is a trade-off between LSQ bandwidth usage (by sending
update requests) and performance. Operations which already have an entry in the LSQ should be given
priority by the memory network arbitration logic when sending updates, — otherwise deadlock can occur.
An operation may reserve an LSQ slot only to discover later that its predicate is false. In this case, it sends
a message to the LSQ to release its reserved slot.

Unless care is taken, this memory access protocol may lead to deadlock due to the finite capacity of the
LSQ. Consider the example in Figure 6.8. Let us assume that the LSQ has only one slot. Let us also assume
that theb[] load operation gets a token before thea[] load. Theb[] load proceeds to reserve the only
LSQ slot and next waits to gets the actual address. Thea[] load operation cannot get a slot since the LSQ
is full, and therefore theb[] load request cannot update its slot with the address information.

In order to avoid deadlock as a post-processing phase, the compiler inserts an additional token edge
a[]->b[] . This edge does not constrain the parallelism since there is already a true dependence. However,
it enforces the correct ordering between the loads froma[] andb[] . This token closure step is computed
using a dataflow analysis: if there is a scalar dependence between two memory operations, but no token
path, a token edge is inserted.

6.5.3 Load-Store Queue Operation

The load-store queue is used both as a small cache with high associativity and for performing dynamic
memory disambiguation. It shares many similarities with the same structures used in superscalar processors.
In the case of Spatial Computation an operation is speculative if the predicate controlling it is unknown.
Such operations may be issued to the LSQ. Speculative loads may commit if they reach the head of the
LSQ. But exceptions generated by a speculative load waits for the resolution of the speculative state. Stores
cannot be committed unless their predicate is known to be true. (However, even a speculative store can be
overwritten by a subsequent non-speculative store.)

There is a third type of request for the LSQ besides loads and stores:flushes. A frame pop operation
inserts a “flush” request in the LSQ. A “flush” prevents reordering of requests inserted before and after it.
When a “flush” reaches the end of the LSQ it signals to the pop operation that it can safely complete. This
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protocol is necessary because the “pop” operation cannot be considered complete unless all loads and stores
operating from the popped frame have completed themselves.

In a hybrid system featuring a processor and a Spatial Computation fabric, control transfers from one
entity to the other also need to make use of “flush” requests to establish coherence. For example, when ASH
calls a procedure on the processor, it first needs to flush its own LSQ so that when the processor receives
control it has a coherent view of memory. This is also true of “return” instructions which transfer control
back to the processor.

Despite similarities in their functioning, there is a big difference between the way ASH and a super-
scalar processor access memory. In a superscalar processor the LSQ is monolithically integrated within
the processor core. Control signals can be easily shared between the two. There is also a fixed number of
load-store functional units, which are directly connected to the LSQ. The bandwidth of the LSQ is therefore
limited. But there is no need for arbitration because the number of instructions that can issue simultaneously
is fixed. When the LSQ is full, it stalls the load-store unit.

In contrast, our model of Spatial Computation “unrolls” the computational structure but keeps mem-
ory monolithic. There may now be an unbounded number of operations simultaneously trying to access
memory, which is also relatively far. The interconnection medium between ASH and memory must be a
relatively complex network, which requires arbitration between the concurrent accesses and dynamically
routes the replies from the LSQ. While in a processor a write request can complete in effectively zero
cycles, by forwarding the stored data to all subsequent pending loads of the same address, a distributed
implementation requires a non-trivial amount of overhead for communication alone.

A second more subtle problem introduced by the distributed nature of the LSQ and its access network
is the creation of races in memory access. For example, a read operation may send an update for its LSQ
entry with a “false” predicate, indicating that it does not need a result. But in the meantime the access has
completed speculatively and the result is already on its way back. The actual hardware implementation for
correctly handling all corner cases of the protocol is likely to be non-trivial.

The current memory access scheme can be improved in several respects:

• First, the LSQ could be made aware of the sparse dependences between accesses. Right now, the LSQ
we use still tries to enforce operation completion in insertion order: i.e., if the addresses are not yet
known, there is no reordering. The LSQ is usually a fully associative structure and is therefore limited
in size. By passing static dependence information to the LSQ, we envision a possible banked imple-
mentation in which conflicts are checked only within the same bank — leading to higher capacities
and bandwidths for the LSQ. We also plan to study the applicability of a banked LSQ in traditional
superscalar processors.

• Second, the compiler ought to partition the memory space and allocate some data to local memories,
connected through high-bandwidth, low latency links. For example, local variables whose address
is taken in a non-recursive procedure, but which do not escape the procedure can be allocated to a
separate fixed-size memory space instead of the traditional stack frame. More sophisticated pointer
and escape analysis, or even user annotations, may be used to find other candidate structures for local
storage.

6.6 Dynamic Critical Paths

In Chapter 7 and Chapter 8 we compare the performance of Spatial Computation with superscalar proces-
sors on embedded and control-intensive benchmarks respectively. Understanding performance problems in
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complex systems is a difficult endeavor. For instance, should they be ascribed to the compiler or on the ex-
ecution engine? In order to answer such a question, we need good analysis tools. The best characterization
of performance of a program’s execution is given by the dynamic critical path. The dynamic critical path
is simultaneously a function of program dependences, execution path (which is a function of the data) and
hardware resources. Despite its apparent simplicity, only recently has a clear methodology been proposed
to extract and analyze dynamic critical paths in superscalar processors [FRB01, FBD02].

The problem of tracking the critical path in Spatial Computation is somewhat simpler than for super-
scalar processors, since there are virtually no resource constraints (except the LSQ bandwidth). We have
developed two methods for discovering and visualizing the dynamic critical path, both based on [FRB01].

• The first method is based on capturing and post-processing a complete execution trace of a single
selected procedure. A simulator is instrumented to dump all relevant events affecting operations in
that procedure. These are sent through a pipe to a series of Perl scripts. The first Perl script filters the
trace, keeping for each operation only thelast arrival event. This is the last event which enabled the
computation to proceed. Most often, this is the last input to reach an operation. However, for lenient
operations the last arrival enabling computation may not coincide with the last input. For circuits
experiencing backlog the last arrival event may be the acknowledgment signal which enables the
computation to proceed. After computing the last arrival the trace is reversed and a continuous chain
of last arrival events is computed starting with thereturn operation. This chain is the dynamic
critical path. Since the chain may include looping, it is summarized as a list of static edges — each
with a execution count indicating how many times that edge was on the dynamic critical path. Finally,
another Perl script can combine this information with adot drawing, coloring each edge with a color
proportional to its frequency (the frequency is the number of critical executions of an edge divided
by the total number of critical edges). An optional post-processing step can be used to display only
the critical edges above a given threshold.

• A second method uses the on-line token propagation method from [FRB01]. Our current implementa-
tion is exact, i.e., does not use sampling. Compiler-selected operations are tagged to inject criticality
tokens into the computation. A token vanishes if it travels an edge which is not last arriving. Tokens
are propagated with all events originating from a critical operation. A token that survives to the “end”
of the computation must have originated at a critical operation.

Figure 6.16 and Figure 6.18 below show sample critical paths as highlighted using these tools.

6.7 Dataflow Software Pipelining

In this section we analyze one of the most interesting properties of Spatial Computation — its automatic
exploitation of pipeline parallelism. This phenomenon is a consequence of the dataflow nature of ASH
and has been studied extensively in the dataflow literature. In the case of static dataflow machines (i.e.,
having at most one data item on each edge), this phenomenon is called dataflow software pipelining in
[Ron82, Gao86], and in the case of dynamic dataflow loop unraveling [CA88]. The name suggests the close
relationship between this form of pipelining and the traditional software pipelining optimization [AJLA95],
customarily used in VLIW processors to speed-up scientific code.

We use the simple program in Figure 6.9 to illustrate this phenomenon. This program usesi as a basic
induction variable to iterate from 1 to 10, andsum to accumulate the sum of the squares ofi . Let us

136



int squares()
{

int i = 0,
sum = 0;

for (i=0; i<10; i++)
sum += i*i;

return sum;
}

i

isum

01

* +

+

sum

retsum

1

<=

i

10

!

(A) (B)

Figure 6.9:Program exhibiting dataflow software pipelining. We have omitted the token, crt and pc net-
works.

further assume that the multiplier implementation is pipelined with eight stages. In Figure 6.10 we show
the snapshots for a few consecutive “clock ticks” of this circuit.

Notice that the original CFG loop has been decomposed into two independent dataflow loops, shown in
Figure 6.11: one computing the value ofi and the other computing the value ofsum. The two loops are
connected by the multiplier, which gets its input from one loop and sends its output to the second loop. In
the last snapshot in Figure 6.10, thei loop is more than one iteration ahead of thesum loop.

A similar effect can be achieved in a statically scheduled computation by explicitly software pipelining
the loop, scheduling the computation ofi to occur one iteration ahead ofsum.

However, let us notice some important differences between the two types of software pipelining:

• Traditional software pipelining relies on precise scheduling of the operations for each clock cycle.
Unpredictable events and unknown latency operations (such as cache misses) do not fit well within
the framework. In contrast, Spatial Computation requires no scheduling and automatically adjusts
when the schedule is disrupted because the execution of all operations is completely decoupled.

• Effective software pipelining relies on accurate resource usage modeling by each instruction, some
of which are very hard to reason about, such as cache bank conflicts [RGLS96]. In Spatial Compu-
tation as many resources as necessary can be synthesized. Unpredictable contention for the shared
resources, such as LSQ ports or cache banks, has only local effects on the schedule.
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Figure 6.10:Snapshots of the execution of the circuit in Figure 6.9, assuming that the multiplier implemen-
tation is pipelined with eight stages and that the negation latency is zero. In the last snapshot, two different
values of i are simultaneously present in the multiplier pipeline.

• According to [RGLS96], sophisticated production-quality implementations of software pipelining
require a huge amount of code. The MIPS R8000 implementation described in that work has 33,000
lines of code, which is more than the complete CASH core.

6.7.1 Pipelining Opportunities

All studies of software pipelining that we are aware of have studied its applicability in the context of sci-
entific computation. We have focused our attention on analyzing the opportunities of pipelining loops in
C benchmarks. We have compiled C programs from our benchmark suites and analyzed the structure of
the innermost loops. It is easy to statically detect the occurrence of dataflow software pipelining, at least
for innermost loops. Whenever the Pegasus representation of an innermost loop contains more than one
strongly connected component (SCC),3 the resulting components are disjoint loops which can advance at
different rates. Computing SCCs is a linear-time operation using Tarjan’s algorithm [Tar72]. Figure 6.11
highlights the two SCCs for the loop of the program in Figure 6.9.

In Figures 6.12—6.14 we show for each benchmark a distribution of the number of non-trivial SCCs
per loop, found in the hot functions. We have only analyzed the functions where the program spends at
least 1% of its running time. Tarjan’s algorithm labels each node not part of a cycle as a “trivial” SCC.

3A strongly connected component of a directed graph is a set of nodes where a directed path between any two nodes in the set
exists.
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Figure 6.11:Strongly connected components of the circuit in Figure 6.9.

However, note that in all Pegasus graphs the loop-invariant values give rise to “empty” SCCs, which we
also catalog as “trivial.” For example, all loops contain an “empty” SCC for carrying around the program
counter operation. As expected, in almost all programs the number of non-pipelineable loops (i.e., with
only one SCC) dominates. It is impossible to translate these static numbers directly into performance. What
matters is, of course, how pipelineable the “hot” loops are, as well as theinitiation interval.

An interesting fact is that there are loops with a very large number of non-trivial SCCs. The maximum is
18, in 186.crafty. A large number of SCCs does not translate necessarily into increased performance since
(as described below) the average computation rate (i.e., the equivalent of the reciprocal of the initiation
interval) is given by the “slowest” of the SCCs. The most uniform distribution of SCCs is shown by Media-
bench. The number of SCCs is a rough measure of the data parallelism of a program. We indeed expect the
programs from Mediabench to exhibit a greater amount of data parallelism than the other benchmark suites.

By collapsing each SCC into a single node one obtains a directed acyclic graph. In a topological sort
of this graph, the “first” SCC is always the one computing the loop predicate. This predicate is used by all
other SCCs to decide completion. If the number of SCCs increases when ignoring the token edges, memory
dependences are the inhibiting factor for pipelining.

6.7.2 Pipeline Balancing

Dataflow software pipelining is desirable because it increases the throughput of the computation without
any additional hardware costs. However, the pipelining that occurs naturally is often inhibited by the graph
structure. Let us take another look at the computation in Figure 6.10. Figure 6.15 shows the state of that
computation for the next two clock ticks.
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Figure 6.12:Histogram of the number of strongly-connected components per innermost loop in the hot
functions of the Mediabench benchmarks.

While data continues to flow through the multiplier, the data in thei loop is blocked. The reason
for the lack of progress is the fact that both the comparison<= and the negation! have not received
acknowledgments from some of their outputs. Neither of thesum eta nodes has sent an ack because neither
has yet received the other input — which is expected from the multiplier output. Thei loop will be stuck
until cycle 11, when the output of the multiplier goes to both eta nodes and the acknowledgment is finally
received.

Another way to look at what happens in this circuit is to analyze the dynamic critical path. We have
shown it schematically in Figure 6.16. In the steady state, the critical path contains three acknowledgment
edges: (sum eta)←(! )←(<=)←(+). The last event to reach the negation is not its input, but the acknowl-
edgment. This state of affairs is rather unfortunate since our intuition tells us that this circuit ought to benefit
fully from pipelining. But in order to do so we need to perform a transformation dubbed “pipeline balanc-
ing” by Guang Gao [Gao86, GP89, Gao90]. A very related transformation in the realm of asynchronous
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Figure 6.13:Histogram of the number of strongly-connected components per innermost loop in the hot
functions of the SpecInt 95 benchmarks.

circuits is dubbed “slack matching” [Lin95].
Gao considers only the case of a static dataflow DAG with a single sources and sinkt, where the source

can produce data continuously and the sink can consume data immediately. In his model all nodes have the
same propagation delay. Lines’ work adopts a much lower-level model and describes how matching is to be
performed for certain circuit topologies, but does not treat the general case.

Consider two paths from the source joined at some internal noden, as in Figure 6.17. If there are a
different number oflatcheson these two paths,4 there is an imbalance: after data traveling the shorter path
reachesn, s is blocked becausen will emit an ack only after the data on the long path reaches it.s is
backlogged by the lack of acknowledgments. If the lengths of the two paths arel1 andl2, the source can
inject l1 new requests only everyl2 time units and the computation rate isl1/l2. By addingl2 − l1 delay
elements on the short path the delayed ack problem goes away: data generated by the source is stored within
the delay elements and these can send the acknowledgment immediately. Gao’s algorithm makes all paths
within the DAG of the same length achieving maximal throughput. He shows that optimizing for a minimal
number of delay elements can be achieved by solving a linear program.

The inserted latches are the direct counterpart of thereservation stations[Tom67] used in superscalar
processors to queue ready operations for a functional unit.

4Remember that each operation output is latched.
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Figure 6.14:Histogram of the number of strongly-connected components per innermost loop in the hot
functions of the SpecInt 2000 C benchmarks.

However, the problem we are facing is substantially more complicated:

• Operations have varying computation delays. As we show below, this is an important difference
which cannot be handled by the simple model.

• Our computation graphs contain cycles.

• Lenient nodes may generate outputs before all inputs have been received.

While we believe that a precise analytic solution for coping with the first two limitations can be found,
the last one is arguably much harder to handle because lenient operations have data-dependent latencies.

Note that we are optimizing here for throughput and not for latency. If the loop has a small number
of iterations, it may be that balancing worsens its performance. We are only considering the asymptotic
behavior of the loop when it executes a very large number of iterations and it reaches a steady state. Under
the assumption of fixed latency operations, the behavior of such a loop becomes periodic after awhile
[GWN91], although determining the actual period is difficult in the most general case. We can talk about
the “average period” of a computation, which is the period in which any node will produce a new output.
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Figure 6.15:Evolution of the circuit in Figure 6.10.
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Figure 6.16:Dynamic critical path in the loop steady state for the circuit in Figure 6.9.
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Figure 6.17:A scenario requiring pipeline balancing.

6.7.2.1 The Initiation Interval

First, let us analyze the impact of cycles in the computation graph. Each SCC contains at least one simple
cycle. Each simple cycle represents a true loop-carried dependency, which therefore gives a lower bound on
the computation rate. The period of an SCC is directly related to the length of the longest cycle. However,
it is not always the longest cycle because an SCC may contain multiple “mu” nodes and therefore generate
multiple data values in one complete loop iteration.

In a circuit containing multiple SCCs (such as the one in Figure 6.9) — while the different SCCs may
have different periods — asymptotically all SCCs will end up computing at the same rate, the smallest of
all the rates (i.e., longest period). This occurs because the SCCs “downstream” of the slowest one receive
data at this rate and the SCCs “upstream” receive acknowledgments at this rate. This computation rate
corresponds directly to the initiation interval notion of classical software pipelining. Unlike the classical
initiation interval, which is a compile-time constant, the computation rate is a dynamically varying value
depending on the multiplexor control signals.

6.7.2.2 Long Latency Operations

Let us analyze the impact of long-latency operations. Since an operation cannot acknowledge some inputs
before having computed and stored the corresponding output, it follows that the period of the whole compu-
tation isbounded below by the longest latencyoperation. This latency can be reduced by pipelining and/or
predicating long latency operations. For example, division is predicated by CASH. If a division should not
be executed at run-time, (and therefore should not be on the dynamic critical path), its predicate is “false”
and its run-time latency is effectively zero5 because the implementation is lenient in the predicate input.
However, pipelining a long-latency operation which is part of an SCC doesnot increase throughput since
it does not decrease the SCC latency. Pipelining an operation is also wasteful if the operation latency is
already smaller than the period of the slowest SCC.

6.7.2.3 Pipeline Balancing Revisited

The generalized pipeline balancing algorithm used by CASH is the following:

• The Pegasus graph is decomposed into SCCs.

• For each SCCs the average periodPs is computed (Ps =longest simple cycle/number of mu opera-
tions in cycle).P = maxs Ps is the longest average period.

• The latency of each operation isLo; L = maxo Lo is the longest latency (non-pipelined) operation.
5Counting at the moment the predicate input is received.
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Figure 6.18:Dynamic critical path in the loop steady state after pipeline balancing for the circuit in Fig-
ure 6.9. The square operations are FIFO buffers.

• The computation period of the whole hyperblock isT = max(L,P ).

• All SCCs are collapsed to single nodes, creating a DAG.

• The DAG is balanced by insertingelastic pipelines[Sut89]. These are cut-through registers, i.e.,
which immediately forward data if the output channel is free or otherwise latch it. Elastic pipelines
are modeled in Pegasus as simple “no-ops.”

• The pipelining algorithm estimates the arrival time of the inputs to an operation, sayt1 andt2. (SCCs
are considered operations with multiple inputs and outputs.)∆ = |t1− t2|. if ∆ > P , d∆/P e elastic
pipeline stages are inserted on the earlier input.

For the example in Figure 6.9, thei SCC has a period of four, while thesum SCC has a period of
three (assuming the mu and eta take one cycle each). If the multiplier is not pipelined the period is eight.
Pipelining the multiplier with stages one-cycle deep is somewhat wasteful, as seen in Figure 6.10. Since the
rate of thei loop is four, there are three bubbles between two data items in the multiplier.

In the collapsed graph there are two edges connecting thei andsum SCCs: one with latency eight (the
multiplier), and one with latency zero (the predicate). At a period of four, two FIFO stages are enough to
balance the predicate path. Figure 6.18 shows the circuit built by CASH after pipeline balancing, with the
dynamic critical path highlighted. The critical path in the steady state follows exactly the longest cycle.
This circuit cannot compute any faster.6 In this circuit thei loop is completely independent and can be
ahead of thesum loop with two iterations. The two predicates are computed ahead and stored in the FIFO
buffers. There are no more acknowledgment edges on the critical path.

In general, one cannot remove all ack edges from the critical path. If thesum loop would contain
a longer-latency computation, it would be the critical loop, forcing thei loop to slow down through the
release of infrequent acknowledgments.

We can now rephrase all the memory optimizations described in Section 4.5: their purpose is to divide
some of the SCCs into multiple SCCs, increasing the opportunities for parallelism. Loop decoupling is the

6Unless the dataflow limit is circumvented by prediction (see Chapter 8).
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equivalent of the traditional software pipelining operation of skewing the computation by an amount less
than the dependence distance.

6.7.2.4 Resource Sharing Revisited

Having observed the run-time behavior of ASH circuits, we can revisit some of the core implementation
decisions. Our model of Spatial Computation was designed to completely avoid hardware resource sharing
(on a per-procedure basis) for two reasons: (1) not to hinder parallelism by requiring dynamic resource
scheduling; and (2) to allow direct, non-arbitered communication between data producers and consumers.

Consider a strongly connected component with a single “mu” or “switch” node, i.e., a “slice” of a loop
representing a true loop-carried dependence. At any point in time there is exactly one live data item in
this SCC.7 Therefore, there is no parallel execution within the SCC and a hardware implementation sharing
resources may be advantageous. The downside is a more complex interconnection network, which must
support switching. Depending on the actual cost of the computational units, it may or may not be profitable
to share resources.

6.8 Unrolling Effects

Unless we otherwise specify, all results presented make use of very aggressive loop unrolling. We unroll
both for andwhile loops, having both known and unknown loop bounds. In most cases loop unrolling
increases performance of the ASH implementation because it increases the ILP within each iteration and
often it can amortize some of the control-flow computation. Notice that unrolling occurs in the front-end
(see Figure 2.4) before the Pegasus representation is even built, and therefore uses very little information
about the code structure. We have inhibited the unrolling of loops containing procedure calls and expen-
sive non-pipelined operations, such as division. Unrolling loops with unknown bounds and conditional
expensive operations can create large hyperblocks with many copies of a long-latency operation. Since all
operations in a hyperblock have to execute to completion, the latency of the unrolled loop body hyperblock
is very large. If the long-latency operation is only conditionally executed, the overhead of the execution of
the unrolled body may be very large.

7Except possibly during the last iteration, when a value corresponding to thenextouter iteration may enter before the last one
has left.
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Chapter 7

ASH in Embedded Systems

Chapters 7 and 8 are devoted to performance evaluations of Spatial Computation. This chapter uses CASH
in the domain of media processing for embedded systems. The goal is to evaluate the benefits of this
model of computation for important media kernels (“important” in the sense of requiring a majority of
the computation cycles). The next chapter will be devoted to the evaluation of ASH for more generic
computational tasks.

7.1 Introduction

First, let us clarify our premises about the domain of embedded computation. We assume that we are given
a standard algorithm for some form of data-intensive processing, e.g., movie decoding, image processing or
speech encoding. The goal is to implement the algorithm using minimal resources and highest performance.
The application is assumed to be fairly stable, warranting a custom hardware or reconfigurable hardware
implementation. The application is specified with a reference C implementation and has some compute-
intensive kernels.1 We also presume that the kernel selection is made manually and at the granularity of
whole functions (see Section 7.2). Since the application set is relatively narrow, we envision a development
loop where the system designer can tweak the compilation options in the attempt of extracting maximum
performance. Moreover, since the lack of precise pointer information is one of the main performance in-
hibitors, in Section 7.3 we allow the programmer to manually annotate the application code with#pragma
statements to convey inter-procedural pointer information to the compiler. We do not perform any other
code restructuring.

We target a system-on-a-chip type of architecture, consisting of a typical low-power embedded micro-
processor tightly coupled with specialized support hardware, as illustrated in Figure 7.1. Both access the
same memory hierarchy and have a coherent view of it. The support hardware structure is fairly small and is
used to accelerate the important kernels. We call the supporting hardware structure a Hardware Accelerator
(HA) structure, be it a co-processor, a reconfigurable hardware fabric or custom hardware circuitry. CASH
is used in this context as a quick prototyping tool for generating the HA.

The main arguments supporting the use of such a tool-chain are: (1) very fast time-to-market due to
very fast design exploration and circuit synthesis; (2) low power because of the asynchronous nature of
the support circuitry. (The power consumption is expected to be directly proportional with the amount of

1Note that the benchmarks we use have relatively small input sets. E.g., thempeg2 encoder we use only processes three frames.
For larger input sets we expect the hot spots of the program to become even more prominent.
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Figure 7.1:System-on-a-chip architecture for using Application-Specific Hardware.

useful computation. High parallelism and speculation may drive power consumption up.) and (3) high
performance due to the lean nature of the synthesized circuits.

Let us examine the circuits generated by CASH. The only global structure of the circuits is the memory
access interface and the network connecting it to the memory operations. There is no register file, monolithic
or clustered. All latches have a single write and a single read port. All data connections are point-to-point
and have a single writer. We expect the synthesized circuits to have good layouts, requiring mostly the use
of very short wires.2 This last aspect is particularly important, since in future technologies the delay and
power consumption on medium and long wires dominate the logic devices (see Figure 1.2).

Moreover, there isno global control circuitry: control is completely distributed within the computation,
in the ready/acknowledge signals, and through the predicates driving muxes and etas. There are no asso-
ciative memories, no complex bypass networks, no prediction, no instructions and none of the associated
structures: instruction cache, dispatch, decoding, commit logic. Therefore, it is fair to characterize the re-
sulting circuits as being quite “lean.” As a result, we expect that ASH can be synthesized to run at a fairly
high speed. In the evaluation that follows we assume that ASH and the processor have comparable absolute
latencies for all arithmetic and logic.

7.2 Hardware-Software Partitioning

An important question in coding applications for a hybrid system-on-a-chip is how the application is par-
titioned into hardware and software components. Our past work [BMBG02] has suggested an approach to
this difficult problem, which we think considerably simplifies it. We will review it here briefly, since it is
the basis of our evaluation.

We argue that HA should be integrated in a computing system not as a subordinate of the processor,
but as an equal peer. Moreover, we propose aprocedural interfacebetween software on the processor and
the HA in the style of Remote Procedure Calls [Nel81]. Under our proposal processor-resident programs
can invoke code on the HA in the same way they can invoke library functions. HA-based code should also
be able to call code on the processor. Our proposal is not a panacea for solving the problem of hardware-
software partitioning, since we are proposing amechanismand not apolicy for how the two sides of an
application should be interfaced. However, we believe that the choice of a good interface is extremely
important for unleashing the full potential of a new computing paradigm: witness the success of interfaces
such as libraries, system calls, remote procedure calls and sockets.

2However, the CAD tools may chose bad layouts, which will stretch some signals.
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Figure 7.2:A peer-to-peer hardware-software system enables procedure calls to proceed in either direction.

In [BMBG02] we propose to use a hardware-independent and language-independent hardware-software
interface similar to remote procedure calls, which can be used between the code executed on a processor
and the code executed on a HA. We also show that a compiler can automatically generate the stubs for
interfacing the CPU and the HA.

We call the resulting hardware-software interface apeer-to-peerinterface because the HA is an equal
peer in the process of computation, instead of being a slave to the processor. The HA must be able to invoke
processor services through procedure calls as well, as illustrated in Figure 7.2. This last requirement is a key
of our proposal because it gives tremendous freedom in the partitioning of the computation into hardware
and software components.

This approach is motivated by the observation that most well-engineered code may contain error han-
dling code even in the compute-intensive kernels. Such error code is practically never executed at run-time,
making these functions dynamically leaves of the call-graph, even if in the static call-graph they are not
leaves (since they call error-handling code, e.g.,printf statements). In a system where the HA cannot
execute the error-handling code (for example because it requires I/O), we have to either (1) remove the error
handling from the selected kernels; (2) give up on implementing the kernels altogether; or (3) enable the
HA to invoke the error-handling code without being able to execute it. This last option is enabled by our
proposed architecture.

Once we have agreed on a peer-to-peer architecture, the most natural way to partition a software program
is exactly atprocedure boundaries. In other words, procedures should be mapped entirely either on the CPU
or on the HA.

In the rest of this chapter we assume the use of such an architecture. We use profiling information to
manually select important kernels. For most applications at run-time these kernels do not make any proce-
dure calls. We use CASH to compile the kernels to application-specific hardware and then only analyze the
performance of the kernel itself. The cost and frequency of cross-service invocation will have an important
bearing on the performance of the final system. However, we ignore them in this work.

7.3 Pointer Independence

One of the major factors inhibiting optimizations when compiling C is the lack of precise information
about pointers and updates through side-effects. Our belief is that whole-program analysis is inherently not
scalable (although we are aware of an impressive literature devoted to pointer analysis [Hin01], including
fast coarse whole-program analyses [HT01]). Therefore CASH, relies only on procedure-level analyses; the
pointer analysis is also intra-procedural.
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We think that a language aspect which can have such an important role, not only for performance,
but also for correctness,3 ought to be made explicitly part of the language itself and given as a tool to
programmers. In fact, recent dialects of C made moves in such a direction through the introduction of
qualifiers such asconst in ANSI C andrestrict in C99. The compiler should not be responsible for
inferring such annotations but could help in verifying their correctness [FAT02, AFKT03], while automated
tools could be used to help the programmer find places where such annotations may be useful [AFKT03,
KBVG03]. In fact, commercial compilers frequently make use of such annotations — for which a special
extension mechanism has been introduced in the C language, the#pragma statements.

In order to allow the programmer to supply information about pointer aliasing we make use of a
#pragma independent statement.#pragma independent p q guarantees to the compiler that,
in the current scope, pointersp andq never point to the same object. This pragma is somewhat similar to
the proposed C99restrict keyword, but much more intuitive to use. A pragma is most often used to
indicate that the pointer arguments to a function do not alias to each other, or that arguments and global
variables do not interfere. ThePrg column of Table 7.2 shows, for each of the kernels we are evaluating,
the number of pragma statements manually inserted.

Pragma handling by the compiler is fairly straightforward. On the CFG, before building Pegasus, we
use a simple dataflow analysis to propagate the independence information to all pointer expressions based
on the indicated objects. All pointer expressions havingp andq as “base” (i.e., derived from those by
pointer arithmetic) are also deemed to be independent. This propagation is very similar to the analysis
called “connection analysis” in [GH96]. Independence information is incorporated in Pegasus in a two
step process: (1) the memory disambiguator (see Section 4.4.2.4) removes token edges between memory
accesses deemed independent by the connection analysis; and (2) abstract read-write sets are created for the
independent pointers and new “mu” and “eta” operators are created for handling their tokens.

Removal of token edges due to independence information can improve program performance due to
multiple effects: (1) better register promotion, (2) more parallelism in memory accesses and (3) better
dataflow software pipelining, if the removal of the token edges leads to the creation of new strongly-
connected components.

7.4 Evaluation

In this section we evaluate the effectiveness of CASH on selected kernels from embedded-type benchmarks.
We use programs from the Mediabench [LPMS97] benchmark suite. For selecting the kernels we first run
each benchmark on a superscalar processor simulator and collect profiling information. Next we compile
each kernel using CASH and the rest of the benchmark using gcc. We simulate the resulting “executable”
by measuring only the kernel execution. The baseline performance is measured using the SimpleScalar 3.0
simulator [BA97], configured as a four-way out-of-order superscalar.

On the ASH system the load-store queue has more input ports, due to the high bandwidth requirements
from the memory access protocol described in Section 6.5.2. The L1 and L2 data caches and the memory
latency are all identical on the compared systems.

Table 7.1 shows the assumed operation latencies for the computational primitives. Most of these values
are taken to match a prototypical processor, which will be the basis for our comparison. Some values are
smaller for ASH, due to its specialized hardware nature. For example, we assume that constant shifts or
negation operations can be made in zero cycles. The assumption for negation is justified because it is always

3For example, the standard C library functionmemcpyexplicitly requires that there is no overlap of the source and destination
argument arrays.

150



a one-bit operation and we assume that in a hardware implementation, the source of the negation operation
always computes the correct value and also the complement. We assume that the timing of most arithmetic
operations is the same on both systems, although this is probably unfair to the processor since its arithmetic
units are highly optimized, trading-off area for performance.

In CASH we use very aggressive loop unrolling and we disable inlining, unless otherwise specified. We
use the full complement of the optimizations of the compilers for both systems.

Note that since ASH has no instruction issue/decode/dispatch logic, it cannot be limited by instruction
processing. The I-cache of the processor has a one-cycle hit time.

7.4.1 Kernels

Table 7.2 shows for each program the functions we manually selected, their size and contribution to the pro-
gram run-time, and the number ofpragma independent statements added manually to help pointer
disambiguation. We have selected these kernels by profiling the programs on a real processor and se-
lecting the functions with the highest profile count. The only exception to this rule was the function
encode mcu AC refine which is the hottest function fromjpeg e, but which makes an inordinate
amount of function calls in the innermost loop,4 and therefore was excluded. For bothg721 benchmarks
we have manually inlined the functionquan within fmult . This is the only case of a kernel containing
inlined code, both in the baseline and in ASH. For bothpgp programs we had to force unrolling to be even
more aggressive and unroll the only loop in the kernel (which has unknown bounds) 16 times, instead of the
default four chosen by the heuristics.

7.4.2 Performance Results

We express performance in machine cycles for executing the kernel alone. We time the kernel on the
processor and on ASH. The comparison is not perfect since, due to our simulation methodology, ASH does
not have the data caches warmed-up in the same way as the processor. We implicitly assume the same
“clock” for both implementations. Given the low power requirements for embedded processors, this is a
defensible assumption.

Figure 7.3 shows how much faster ASH is compared to the superscalar core. All kernels exhibit sig-
nificant speed-ups, ranging from 50% up to 1200% forrasta , except one program,epic e which slows
down and one programadpcm e, which breaks-even (with a speed-up of only 2%).

Figure 7.4 shows the indisputable advantage of Spatial Computation: unlimited parallelism, exploited
post-hoc. It shows the sustained IPC5 for both the processor and ASH for the selected kernels. On all
kernels ASH sustains a higher IPC, and except foradpcm e, an IPC higher than the maximum theoretically
available from the processor. In fact, excepting three benchmarks (adpcm e and bothg721 ), the IPC of
ASH is more than twice that of the processor.

IPC does not immediately translate into speed-up because of the aggressive speculation performed by
ASH. In order to quantify how much of the IPC is “wasted” on the wrong path, we have plotted Figure 7.5,

4While most of these functions can be inlined, we could not easily control the inlining bygcc .
5Note that the traditional definition of IPC excludes the speculative instructions. The processor measure of IPC counts only non-

speculative instructions, while ASH counts speculative instructions as well. However, to decide which instruction is speculative
in ASH is more difficult than for a processor, since the speculative state of an instruction can be discovered a long time after the
instruction has been committed. A similar problem is encountered when defining IPC for architectures featuring a “conditional
move” instruction, or which employ predicate promotion or aggressive code scheduling. In these cases some “useless” instructions
may nevertheless be executed on the correct execution path. An estimation of the amount of speculation in ASH can be found in
Section 7.5.2.
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Operation ASH Baseline Observations
+,− 1 1
FP +,−, 2 2
* 3 3 pipelined at 1 cycle
muluh 3 N/A
FP * 4 4 pipelined at 1 cycle
/, % 24 24
FP /, % 12 12
integer cast 0 0
int↔ FP cast 1 1
FP↔ FP cast 2 2
compare 1 1
FP compare 2 2
long FP compare 3 3
bitwise 1 1
constant shift 0 1
shift 1 1
negation 0 1
Boolean log(in)/2 1 Always two inputs on CPU
mux log(in/4) N/A
mu, switch log(in) N/A
eta 0 N/A Folded into source
V log(in) N/A
call 1 n No stack frame in ASH
continuation 1 N/A
return 1 1
frame 1 N/A Part of call handling on CPU
LSQ access latency 2 0 1 cycle each way for ASH
LSQ size 64 64
LSQ in bandwidth 4 2 ASH needs more bandwidth
LSQ out bandwidth 2 2
L1 cache latency 2 2 same for I-cache for CPU
L1 cache capacity 32K 32K 4-ways, LRU
L2 cache latency 8 8 unified with I-cache for CPU
L2 cache capacity 256K 256K 2-ways, LRU
I1 cache latency N/A 1
I1 cache capacity N/A 32K 4-ways, LRU
I2 cache N/A unified
DTLB 64 64 30 cycles latency
Memory latency 72 72

Table 7.1:Operation latencies for Spatial Computation.
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Figure 7.3:Speed-up of ASH versus a four-way out-of-order superscalar processor. The only kernel ex-
hibiting a slowdown is epic e.

Figure 7.4: Average IPC (Instructions Per Cycle) for superscalar and ASH. The upper limit (4) for the
processor is indicated. The data for ASH includes speculatively executed instructions.
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Benchmark Functions LOC Run Prg Observations
adpcmd adpcmdecoder 80 100 5
adpcme adpcmcoder 103 100 6
epic d collapsepyr 265 48 1
epic e internal filter 223 84 10
g721d update 190 21 0

fmult+quan 22+14 30 0 quan inlined in fmult
g721e update 190 20 0

fmult+quan 22+14 30 0 quan inlined in fmult
gsmd Short term synthesisfiltering 24 71 7
gsme Calculationof the LTP parameters 137 43 6

Short term analysisfiltering 43 24 3
jpeg d jpeg idct islow 241 49 7

ycc rgb convert 40 19 8
jpeg e jpeg fdct islow 144 19 0
mesa de casteljausurf 287 33 6
mpeg2d idctcol 54 20 1

Saturate 27 15 0
mpeg2e dist1 92 72 1

fdct 29 13 0
pegwit d gfAddMul 19 31 3

squareDecrypt 28 30 1
gfMultiply 41 28 4

pegwit e gfAddMul 19 33 3
gfMultiply 41 31 4

pgp d mp smul 16 77 1
pgp e mp smul 16 63 1
rasta FR4TR 129 10 0

Table 7.2:Embedded benchmark kernels selected. LOC is the number of source lines, Run is the percent-
age of the running time spent in that function for some reference input, Prg is the number of #pragma
independent statements inserted.

which shows the obtained speed-up versus the ratio of the IPCs. Since IPC is directly correlated with power
consumption in ASH, this graph shows how much energy is spent for the extra performance.

For most programs the results are very good, the two bars being of comparable sizes. The worst outlier
is the functioninternal filter from epic e, which has a huge IPC and exhibits a slowdown. An
analysis of this function is presented in Section 8.2.2.3.

The most interesting result is for the functionFR4TR rasta , which computes a Fourier Transform.
This program has a huge speed-up obtained with a relatively low IPC increase. Interestingly enough, there
are no pragma annotations either. So this is not the source of the increased efficiency of CASH. By analyzing
the run-time statistics, we notice that the number of memory accesses of ASH in this function is an order
of magnitude smaller than for the processor. Indeed, by disabling the inter-iteration register promotion
algorithm described in Section 4.6, the performance of ASH drops by a factor of six! The rest of the
speed-up is easily attributable to the higher IPC sustainable by ASH.
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Figure 7.5:Comparison of speed-up and IPC ratio.

(A) (B)

Figure 7.6:Performance of the IDCT transform on five different run-time systems: (A) normalized execu-
tion cycles; (B) IPC.

7.4.3 Comparison to a VLIW

We have attempted to use SimpleScalar as an approximation to an eight-wide VLIW processor. But the
results are suspicious so we do not present them here (the sustained IPC was less than 1.1 for all programs,
much too low). In this section we present a comparison of one benchmark we have obtained from Davide
Rizzo and Osvaldo Colavin from ST Microelectronics, which was used to evaluate the performance of both
(1) a very wide run-time reconfigurable clustered VLIW processor [RC03] on which code is mapped by hand
and (2) the Hewlett-Packard Lx architecture [FBF+00] with a sophisticated compiler based on Multiflow
[LFK+93]. The program is a fixed-point C version of the inverse discrete cosine transform (IDCT) used in
MPEG movie encoding, taken from the OpenDIVX codec.

Figure 7.6 shows the results on this kernel as measured on five different platforms. The data for both
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Figure 7.7:Experimental set-up for performing the low-level measurements.

VLIW engines is from ST. From left to right, we have:

1. Four-way out-of-order SimpleScalar withgcc 2.7..

2. A four-way Lx processor with a Multiflow-based compiler.

3. An eight-way reconfigurable VLIW, hand-compiled.

4. ASH+CASH without using any loop unrolling.

5. ASH+CASH with aggressive (eight times) loop unrolling.

Figure 7.6(A) shows the normalized execution time in “clock cycles”, assuming the same clock for all
architectures. The operation latencies for the VLIW engines are different. The L1 access latency is the same
in all experiments. The memory latency is different, but since this benchmark has very few cache misses it
does not make much of a difference.

The ASH circuits generated with unrolling offer the best performance under these assumptions; ASH is
5.3 times faster than the superscalar and 50% faster than the eight-wide processor. Figure 7.6(B) shows the
sustained IPC for four of the five platforms. ASH is somewhat more wasteful, retiring more instructions for
obtaining a given level of performance.

7.5 All the Way to Verilog

In this section we present measurements from a detailed low-level simulation. Figure 7.7 shows the set-
up used for performing the low-level measurements. A detailed description of our methodology can be
found in [VBG03]. We use kernels from the Mediabench suite [LPMS97] to generate circuits. From each
program we select one hot function (see Table 7.3) to implement in hardware (note that we are not using the
exact same kernels as used in Section 7.4). The data we present is for the entire circuit synthesized by the
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asynchronous back-end, including the memory access network, but excluding the memory itself or I/O to
the circuit. We report data only for the execution of the kernels itself, ignoring the rest of the program. We
do not estimate the overhead of invoking and returning from the kernel. Since our current back-end does
not support the synthesis of floating-point computation we had to omit some kernels, such as the ones from
theepic , rasta andmesa benchmarks.

The CAB back-end is used to generate a Verilog representation of each kernel. A detailed description
of our methodology can be found in [omitted]. We use a [180nm/2V] standard cell library from STMicro-
electronics. The structural Verilog generated by our toolflow is partially technology-mapped by CAB and
partially synthesized with Synopsys Design Compiler 2002.05-SP2. Simulation is performed with Model-
tech Modelsim SE5.7. We assume a perfect L1 cache, and no LSQ for ASH; the baseline processor we use
in our comparisons also uses a perfect L1 cache.6 The power numbers are obtained from Synopsis from the
switching activity on each wire measured during simulation.

The data in this document is obtained prior to actual place-and-route, and relies on statistical estimates
about wire lengths. Bugs in the tool-chain have prevented us from successfully measuring all programs
post-layout. However, the data we have obtained shows that results improve by about 15% after layout,
both in terms of performance and power, with a minor penalty in area.

The most difficult aspect of synthesis is building the memory access network for the load and store
operations. The network is synthesized using some asynchronous pipelined arbiters to mediate access to a
single memory port.

This evaluation differs in some significant respects from the other measurements presented in this doc-
ument:

• The Verilog back-end does not yet handle procedure calls and returns. Therefore, all kernels consist
of a single function7.

• The back-end uses a separate “fanout” node to implement computations with fanout; all other opera-
tions have strictly one consumer. This will increase the critical path of most circuits.

• Since our current back-end does not support the synthesis of floating-point computation we had to
omit some kernels, such as the ones from theepic , rasta andmesa benchmarks.

• The memory access protocol currently implemented is very inefficient: in order to ensure in-order
execution of memory operations, an operation does not release its token until it has reached memory
and performed its side effect. A memory request has thus to traverse the memory network back and
forth completely before dependent operations may be initiated.

• Memory operations are initiated only when all inputs are available.

• We do not use pipeline balancing. This optimization depends on accurate operation latencies to
compute the period of each cycle, which are not known until actual hardware synthesis.

• We do not currently pipeline any operation.

6These assumptions are not completely unreasonable for some classes of embedded processors.
7Forg721 we have inlined the functionquan in fmult , manually unrolled the loop and inlined the constant values read from

a memory array. The last optimization could not be performed by our compiler, since it requires an inter-procedural side-effect
analysis. The baseline superscalar uses the same code as us.
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Benchmark Function

adpcmd adpcmdecoder
adpcme adpcmcoder
g721d fmult+quan
g721e fmult+quan
gsmd Short term synthesisfiltering
gsme Short term analysisfiltering
jpeg d jpeg idct islow
jpeg e jpeg idct fslow
mpeg2d idctcol
mpeg2e dist1
pegwit d squareDecrypt
pegwit e squareEncrypt

Table 7.3:Embedded benchmark kernels selected for the low-level measurements.

Figure 7.8:Silicon real-estate in mm2.

• This data does not reflect the effects of the BitValue data width analysis, which at the point of this
writing wasn’t yet completely integrated within the tool-flow. We expect reductions on the order
of 20%, and as high as 50%, of the area and power drawn by the datapath once this algorithm is
integrated.

• We do not use loop unrolling. We expect this will increase performance at the expense of area.
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Figure 7.9:Normalized area: source lines per mm2 and mm2 per kilobyte of MIPS text-file object file.

7.5.1 Area

Figure 7.8 shows the amount of silicon real-estate required for the complete implementation of these kernels.
The area is broken down into “computation” and “memory tree.” The memory tree is the area of the arbiter
circuits used to mediate access to the memory load-store queue.

For reference, in the same technology a minimal RISC core can be synthesized in 1.3mm2, a 16×
16 multiplier requires 0.1mm2, and a complete P4 processor die, including all caches, has 217mm2. This
shows that while the area of our kernels is sometimes substantial, it is certainly affordable, especially in
future technologies.

Figure 7.9 shows the area normalized using two different metrics: lines of source code and object file
size. The source-code metric is particularly sensitive to coding style, (e.g., macro usage); we measure source
lines before preprocessing, including whitespace and comments. Normalizing the area versus the object file
size indicates that we require on average 1mm2 for each kylobyte of a gcc-generated MIPS object file.

7.5.2 Execution performance

Figure 7.10 shows the normalized execution time of each kernel having as a baseline a 600MHz8 4-wide
superscalar processor9. On average 2.05 times slower. While the processor computational units are expected
to be faster than ASH’s, the large amount of parallelism exploitable by ASH makes these results somewhat
disappointing. Our analysis has uncovered two major sources of inefficiency, which we are targeting in our
future work: the C-elements in our designs and the memory access network.

1. C-elements [MB59] are frequently used in asynchronous design for implementing control. Unfortu-
8This is a high speed for our particular technology.
9We did not have access to an accurate VLIW simulator; we expect the trends to be similar, since the superscalar maintains a

high IPC for these kernels.
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Figure 7.10:Kernel slowdown compared to a 4-wide issue 600Mhz superscalar processor in 180nm.

natelly, the standard gate library used for our current experiments does not contain such a gate; using
this library the smallest implementation of a C-element consists of two gates, one of which is quite
complex. In 0.18µm technology we estimate that a custom C-element would be 66% faster and 75%
smaller. When simulating with a behavioral implementation of such a gate the end-to-end execution
latency of our kernels improves by 25%. We are currently augmenting the library with a custom
C-element.

2. In our current implementation a memory operation does not release a token until it has traversed the
network end-to-end in both directions. An improved construction would allow an operation to (1)
inject requests in the network and (2) release the token to the dependent operations immediately. The
network packet can carry enough information to enable the memory to execute the memory operations
in the original program order. This kind of protocol is actually used by superscalar processors, which
inject requests in order in the load-store queue, and can proceed to issue more memory operations
before the previous ones have completed.

To gauge the impact of the memory network on program performance we perform a limit study
using a behavioral implementation which reduces the cost of an arbitration stage to 10ps (a close
approximation to zero). The limit study indicates that with a very fast network most programs exceed
the processor in performance; in particular, the slowest kernels,pegwit , speed-up by a factor of 6.
This indicates that our programs are bound by the memory network round-trip latency. The current
communication protocol should be the first optimization target.

In Figure 7.11 we present the program performance for the actual technology-mapped implementation
using several MIPS metrics: the bottom bar we labeled MOPS, for millions of useful arithmetic opera-
tions per second. The incorrectly speculative arithmetic is accounted for as MOPSspec. Finally, MOPSall
includes “auxiliary” operations, including the merge, eta, mux, combine, and other overhead operations. Al-
though speculative execution sometimes dominates useful work (e.g.,g721 ), on average 1/3 of the executed
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Figure 7.11:Computational performance of the ASH Mediabench kernels, expressed in millions of opera-
tions per second (MOPS).

arithmetic operations are incorrectly speculated.10 Most programs sustain half an effective GigaOP/sec.
In order to accurately estimate the number of speculative instructions executed, the run-time system

logs the predicates controlling muxes, etas and predicated operations. The compiler is then invoked to parse
the log and to perform a backward dataflow analysis, discovering all operations whose output was “useful.”
Each hyperblock execution requires a separate dataflow analysis. Due to very long simulation times of
the Verilog circuits, this data reflects only the first execution of each kernel (each kernel may be invoked
repeatedly for a program).

Since the circuits are asynchronous, we cannot speak of a “clock cycle”, or estimate the performance
with variation of the clock. We did not attempt to vary the supply voltage, which in asynchronous logic is
one of the main factors that can be used to trade-off energy and performance.

7.5.3 Power and Energy

The power consumption of our circuits ranges between 7.4mW (gsm d) and 32.8mW (pegwit e), with an
average of 15.6mW. In contrast, a very low power DSP chip in the same technology draws about 110mW,
and a very low power superscalar about 4W.

In order to quantify power and energy efficiency we use the normalized metric proposed by Claasen
[Cla99], MOPS/mW. This metric is the same as the number of operations per nanoJoule. Figure 7.13 shows
how our kernels fare from this point of view. We count only the useful operations, i.e., the bottom bar from
Figure 7.11. Therefore, these results are the most pessimistic estimate.

For comparison Figure 7.15 shows the energy efficiency of a set of microprocessors, digital signal
processing chips and custom hardware circuits, extracted from [ZB02]. The chips are listed in Figure 7.14.

10The use of profiling information could be used to reduce the amount of incorrect speculation.
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Figure 7.12:Power consumption of kernels in mW.

Figure 7.13:Energy efficiency of the synthesized kernels, expressed in operations per nanoJoule, or millions
of operations per second per milliwatt.
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Figure 7.14:20 chips compared with ASH: eight processors, seven DSPs, and five custom hardware chips.
This figure is a reproduction of a slide by Bob Brodersen of Berkeley.
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Energy Efficiency (MOPS/mW or OP/nJ)
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Figure 7.15:Energy efficiency of the 20 chips from Figure 7.14, of an asynchronous microprocessor and of
ASH. ASH is competitive with the custom hardware in energy efficiency. This is an adaptation of a slide by
Bob Brodersen.
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We added to the comparison Lutonium [MNP+03], a modern asynchronous microprocessor. Its efficiency
varies with the supply voltage, trading-off performance for energy. At 1.8V and maximum performance of
about 200 MIPS, Lutonium fares at 1.8 MOPS/mW, and at a low voltage of 0.5V, the performance is four
MIPS at an efficiency of 23 MOPS/mW.

ASH fares three orders of magnitude better than a generic microprocessor and between one and two
orders of magnitude better than a DSP. Data in [MNP+03] suggests that more than 70% of the power of the
asynchronous Lutonium processor is spent in instruction fetch and decode, operations which do not exist in
ASH. This partially explains the higher efficiency of ASH.

7.5.4 Impact of Future Technologies

We expect that even our results using the 180nm technology can be substantially improved, by using both
circuit-level techniques and high-level compiler optimizations. We are confident we can bring the slowdown
very close to 1 or better, while not compromising power and area.

We expect that all of these results will scale very well with future technologies: speed-up should increase
while area and power consumption should continue to decrease at the same rate as in synchronous designs.
The impact of leakage power remains to be estimated, but we expect that high-level techniques, such as
power gating at the hyperblock/function level under compiler control can be used to diminish its impact.

7.6 Conclusions

Although we have not presented supporting data here, both loop unrolling and memory disambiguation
through insertion ofpragma statements are essential for good performance. Both these tasks can be
mostly automated: unrolling can be attempted by various factors under user control and the discovery
of the most useful independent pointer pairs can be made using compiler-based instrumentation, as shown
in [KBVG03].

The space of embedded computation is seemingly an ideal domain for Spatial Computation: the ap-
plications have small compute-intensive kernels exhibiting an important amount of data parallelism in the
form of IPC and pipeline parallelism, which CASH takes advantage of naturally. The modest size of these
kernels makes them suitable for hardware-based implementation. Low-level simulations suggest that both
the sustained performance and energy efficiency of ASH are excellent.
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Chapter 8

Spatial Computation and Superscalar
Processors

This chapter is devoted to a comparison of the properties of Spatial Computation and superscalar proces-
sors. The comparison is carried by executing whole programs on both computational fabrics and evaluating
the performance of the resulting implementation. The most important result of this study is a qualitative
comparison of the intrinsic computational capabilities of Spatial Computation and superscalar processors.

8.1 Introduction

The comparison we perform here is closer to a limit study of the capabilities of ASH than to an accurate
evaluation, due to the large number of parameters with uncertain values involved. This comparison contrasts
the performance potential of unlimited instruction-level parallelism against a more sophisticated approach
involving prediction and speculation. Another way to characterize this study is: a comparison of static
dataflow against a resource-limited dynamic dataflow with speculation.

Before proceeding with the comparison, let us enumerate the expected advantages of each model of
computation. We consider not only performance-related aspects but also economic, engineering, correct-
ness, etc. implications. Whether ASH is a feasible model of computation will hinge on a combination of all
these factors.

8.1.1 Spatial Computation Strengths

Application-specific: The biggest luxury of ASH designs is that they are createdafter the application is
known. This is why ASH has no notion of instruction and none of the baggage associated with
instruction handling: fetch, decode, dispatch.

Maximal parallelism: this is a direct consequence of the application-specific nature. Since the executed
program is known a priori, the compiler provisions exactly as many resources as necessary to carry
that computation. In Spatial Computation there are no resources hazards1 and all ILP limitations stem
from the compiler.

Lean hardware: As we have argued in Section 7.1, the computational structures in ASH are very simple,
requiring plain arithmetic units connected by unidirectional communication links and a very simple

1Strictly speaking, both memory and LSQ bandwidth are limited resources and may give rise to hazards.
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handshaking protocol. The interconnection network is very simple in contrast to the complex data
forwarding paths inside of a typical processor pipeline, or the very complex control circuitry for
handling speculation and resource arbitration. We expect the lean hardware to translate into the
ability of synthesizing large programs with high computational speeds and low power consumption.

Dynamic scheduling: Unlike VLIW engines, ASH does not rely on complete control over scheduling at
compilation time. Therefore, it can absorb unpredictable latency events, stemming either from remote
operations such as procedure calls and memory accesses, or simply from variability in the layout of
the final circuit as processed by the back-end tools.

No fixed ISA: The program computation does not have to be expressed as a composition of a set of fixed
primitives. While our compilation infrastructure does not yet take full advantage of this freedom,
CASH does generate constructs which do not correspond to instructions in a regular ISA, such as the
token edges.

No finite instruction window: In Spatial Computation there are virtually as many “program counters” as
there are “live” data values. New instructions are issued as soon as enough inputs are present. There
is also no resource limitation on the number of active instructions and no “in-order” commit require-
ments.

Simpler validation: Although it is somewhat premature to make any claims on the ease of certifying Spa-
tial Computation designs, it is clear that they eliminate an important piece of the trusted computing
base, the processor. We foresee, as an important piece of future research, an effort for the automatic
formal validation of the compilation process. This could be carried out either as translation validation
[PSS98, Nec00], which can prove the equivalence of the initial CFG and the optimized Pegasus form
(or perhaps just of the unoptimized and optimized Pegasus), or a certification of the correctness of the
compiler transformations. The asynchronous nature of the generated circuits should contribute to the
ease of verification through the modularity and composability intrinsic of this model of computation.

8.1.2 Superscalar Processor Strengths

We choose to compare ASH against a superscalar processor. While superscalars have some well-known
scalability problems, such as high power consumption and huge design complexity, they are the appropriate
opponent to compare against because their internal dataflow engine is closely related to ASH’s dynamic
scheduling. In this section we enumerate the strengths of the superscalar and contrast them to weaknesses
of ASH.

Mature technology: A substantial expertise exists in developing both synchronous circuits and micropro-
cessors of all kinds.

Universal: Unlike ASH, the processor is a universal device which, once built, can run any program. This
justifies an increased investment in designing and optimizing it. For example, each of the (constant
number) of arithmetic units is usually optimized for speed at the expense of area, a trade-off that in
general is not acceptable for ASH.

Economies of scale:Despite the huge cost of manufacturing plants, design and verification, the final cost
of processors is quite small (especially embedded or older generations), due to the enormous economies
of scale.
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Virtualizable: Once the ISA is sufficiently rich, the microprocessor can easily be used to virtualize re-
sources by providing multiprocessing and time-sharing, exception and interrupt handling, virtual
memory, etc.

Flexible: Microprocessors can be used for purposes not initially envisioned. For example, they allow
dynamic (run-time) optimizations.

Resource sharing: The same relatively small number of arithmetic units is reused for executing all pro-
gram instructions.

Full dataflow: Unlike ASH in a superscalar processor multiple instances of the same static instruction can
be in flight at the same time, due to register renaming.

Monolithic: While the monolithic structure of a processor is the most important stumbling block for scaling
the architecture and validating a design, it has some very important benefits — such as allowing
the use ofglobal dynamic optimizations. These are mechanisms that can collect information from
various points of the pipeline and use it to make global decisions. Two important examples, as shown
in Section 8.2.2, are (1) global branch prediction and (2) speculative execution — the monolithic
construction allows a coordinated flushing of the pipeline on detection of mis-speculation.

8.2 ASH versus SuperScalar

In this section we compile whole programs using CASH and evaluate their potential performance. We
compare to a superscalar processor baseline. We assume the same operation latencies as shown in Table 7.1
from Chapter 7.

Some of these assumptions are clearly optimistic for ASH when dealing with whole programs. In
particular, the complexity of the memory access network and of the interconnection medium for procedure
calls and returns cannot be assumed constant anymore. In the best case the latency of these networks should
grow as

√
n, wheren is the size of the compiled program, assuming a two-dimensional layout. Therefore,

one should interpret the data in this section more as a limit study than as absolute magnitudes.

8.2.1 Performance Measurements

Figure 8.1 shows the speed-up of complete applications from SpecInt95 executed under ASH when com-
pared to a superscalar processor. Unfortunately most of the numbers indicate a slowdown. Only099.go ,
which is very array-intensive, and132.ijpeg , which is very similar to the Mediabenchjpeg programs,
show some performance improvements. Results for SpecInt2K show similar trends and are not presented
due to excessive simulation time requirements.

8.2.2 Critical Code Segments

We would like to better understand the results presented above. Naive expectations are that the performance
of ASH cannot be surpassed since it benefits from (a) unlimited parallelism, (b) lack of computational
resource constraints, and (c) dynamic scheduling. However, we have already hinted at some unique capa-
bilities of a superscalar core in the introduction of this chapter. In this section we display a few functions
and code fragments which exhibit limitations of ASH. It is certainly possible that there are other handicaps
to ASH, other than the ones we enumerate here. However, the investigation process is mostly manual and
quite tedious, so it is an ongoing process.

167



Figure 8.1:Speed-up of SpecInt95 benchmarks executed on ASH. The baseline is a superscalar four-way
out-of-order processor. Negative values indicate a slow-down.

8.2.2.1 epic d:internal int transpose

The code for this function is shown verbatim in Figure 8.2. The performance on ASH is about two thirds
of the performance on the superscalar. There are three branches involved in two very shallow nested loops:
(1) thedo backwards branch, mostly not taken (this loop iterates either once or twice); (2) theif branch,
almost always taken; and (3) thefor backwards branch, almost always taken. There are very few machine
instructions in the outer loop body (eight to be precise) and the processor window is large enough to hold
several iterations worth. By using branch prediction the processor can effectively issue a second iteration of
theoutermostfor loop before having completed the previous one. The iterations of thefor are effectively
pipelined. The critical resource in this loop is the single division unit, which is not pipelined, and which
takes 24 cycles to complete a modulus. Indeed, the throughput of this function averages 27 cycles per outer
loop iteration. The cost of most operations (multiply, branches, memory accesses) is hidden by the division.

For the ASH implementation the most important part of the critical path of this function, highlighted
using the tools described in Section 6.6, is shown in bold lines in Figure 8.3. The performance is hampered
by the strict sequencing of control along the three hyperblocks. In particular, a new iteration of the outer
loop cannot be initiated as long as the inner loop has not terminated. This also puts the three-cycle multiplier
on the critical path. Counting the extra operations on this path (besides the modulo) we get 12 extra cycles,
which corresponds indeed with a 33% slowdown. The predicates controlling both the loops, [66] for the
do and [213] for thefor , are on the critical path. [66] is the “last” value computed within the innermost
loop and it is immediately used to decide whether to loop again. The case for [213] is slightly different:
although the value is available much earlier and is unchanged within thedo loop, it is notpropagatedout of
the [83][228] loop until this loop’s iterations are completed, as indicated by the loop termination predicate
[70].

A simple optimization could completely bypass the innermost loop for thecurrent pos value. How-
ever, such an optimization can lead to a violation of the program invariants if the innermost loop never
terminates — not all operations within the bottom hyperblock would execute. We are currently planning
to implement this optimization, either only for provably terminating loops or for all loops if directed by
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/*
=============================================
In-place (integer) matrix tranpose algorithm.
=============================================
*/
internal_int_transpose( mat, rows, cols )

register int *mat;
register int cols;
int rows;
{
register int modulus = rows*cols - 1;
register int swap_pos, current_pos, swap_val;

/* loop, ignoring first and last elements */
for (current_pos=1; current_pos<modulus; current_pos++)

{
/* Compute swap position */
swap_pos = current_pos;
do

{
swap_pos = (swap_pos * cols) % modulus;
}

while (swap_pos < current_pos);

if ( current_pos != swap_pos )
{
swap_val = mat[swap_pos];
mat[swap_pos] = mat[current_pos];
mat[current_pos] = swap_val;
}

}
}

Figure 8.2:The internal int transpose function from the epic d benchmark from Mediabench,
which exhibits poor performance on ASH.

compilation options.

8.2.2.2 124.m88ksim:init processor

Let us now analyze another piece of code which shows poor performance on ASH, shown in Figure 8.4.
ASH takes more than twice the number of cycles of the processor to execute this code. Figure 8.5 shows
the essential part of the code generated by ASH with the critical path highlighted. Despite the brevity of the
code, quite a few optimizations have been applied: the load fromSFU0bits has been register-promoted,
the address computation ofSFU0bits[j].regnum which involved a multiplication by 20 (the size of
the structureSFU0bits[0] ), has been strength-reduced (it is computed by the loop [316][277][275]). As
in the case of the previous function, the predicate deciding whether the loop should iterate once more is the
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[75]current_pos
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<[213]

[177]@crt

1

Figure 8.3: Dynamic critical path of the function internal int transpose in ASH. The critical
path alternates between the innermost cycle [231]→[62]→[64]→[66]→[87]→[58]→[231] and the outer
loop [38]→[224]→[49]→[231]→[63]→[64]→[66]→[70]→[75]→[145]→[213]→[177]→[38]. The edge
[87]→[58] on the critical path is the acknowledgment edge corresponding to [58]→[87].

last thing computed because it depends on the loaded value. The critical path contains not only the load but
the load predicate computation as well, since it indicates whether the load has to be executed or not.

The LSQ may be configured to initiate a load that reaches the head of the queue speculatively, i.e.,
without waiting for the actual predicate value. However, doing so changes only the trajectory of the critical
path, but not its length — now it goes through the address computation [50][316][331][76]. The problem
is that the address computation for the next iteration is not made speculatively — it waits for a signal from
the [50]crt node to initiate the computation.

The superscalar code has about the same shape and the same optimizations are applied. Strength reduc-
tion removes the multiplier and PRE the repeated load. It is shown in Figure 8.6. There is a loop-carried de-

pendence involving four of the five instructions (L1
control−→ L2

true−→L3
true−→L5

control−→ L1), so the latency through
this loop ought to be at least four cycles. However, if branch prediction correctly guesses the outcome of
the two branches, the control dependences vanish and the loop-carried dependence becomes much shorter.
The only remaining dependences are between L2 and L3. The processor can execute this loop in only two
cycles per iteration!

Now, let us assume that we implement branch prediction in Pegasus and therefore we can initiate a
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void init_processor(void)
{

int i, j;

for(i = 0; i < 64; i++)
{

for(j = 0; SFU0bits[j].regnum != 0xFFFFFFFF; j++)
if(SFU0bits[j].regnum == i)

break;

m88000.SFU0_regs[i] = SFU0bits[j].reset;
}

/* another almost identical loop removed */
}

Figure 8.4:Half of the code from the init processor function from the 124.m88ksim benchmark
from SpecInt95, which exhibits poor performance on ASH.

[50]@crt

[314]i [315]SFU0bits_v_1[316]

[107]@crt

==[65] +[331]+[277]

![83]

=[4][76]

&&[104]

!=[79]

[263]SFU0bits_v_1[275]

+[329]

4294967295

SFU0bits20

20

Figure 8.5:Dynamic critical path of the function init processor in ASH. The most frequent edges are
[50]→[314]→[65]→[83]→[76]→[79]→[104]→[107]→[50].
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LOOP:
L1: beq $v0,$a1,EXIT /* SFU0bits[j] == i */
L2: addiu $v1,$v1,20 /* &SFU0bits[j+1] */
L3: lw $v0,0($v1) /* SFU0bits[j+1] */
L4: addiu $a0,$a0,1 /* j++ */
L5: bne $v0,$a3,LOOP /* SFU0bits[j+1] == 0xffffffff */
EXIT:

Figure 8.6:Assembly code for the innermost loop of the function in Figure 8.4.

[50]@crt

[314]i [315]SFU0bits_v_1 [316]

[107]@crt
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+[329]

4294967295

SFU0bits 20
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Figure 8.7:Dynamic critical path of the function init processor in ASH when using perfect eta pred-
icate prediction. The most frequent edges are [315]→[65]→[83]→[76]→[263]→[315].

new iteration early, without waiting for the predicates to be known. Do we achieve the same throughput?
Section 8.3 describes how we carried out such a study. With perfect prediction the performance of the ASH
code for this procedure increases, but still does not match the processor.

Figure 8.7 shows the critical path when the value of [104] is available instantaneously. Under the
assumption that the load is not executed speculatively, the path no longer contains thecrt nodes but still
contains the load predicate, which prevents the load from being issued to memory.

The memory protocol we have described in Section 6.5.2 allows loads that reach the head of the LSQ
and still have an unknown predicate to be issued to memory (i.e., to execute speculatively). If we draw the
critical path under this last assumption, we obtain Figure 8.8.

This last critical path contains an acknowledgment edge, from the load to its address computation.
Technically the limiting dependence is an anti-dependence between the output register of the load in two
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Figure 8.8:Dynamic critical path of the function init processor in ASH when using perfect eta pred-
icate prediction and speculative loads. The most frequent edges are [331]→[76]→[331], including an ac-
knowledgment edge.

different iterations. This dependence in ASH stems from the fact that the load has a single output register,
and therefore cannot acknowledge its address input before it has successfully latched its result. However,
despite hitting in the cache, the latency of the load is more than two cycles — it takes one cycle just to get
to the LSQ, and then two more cycles to hit into L1. As we pointed out in Section 6.7.2.2, the rate of a
computation isbounded belowby the longest latency operation. If a load takes three cycles, there is no way
the computation can complete in only two.

We can imagine two solutions for this problem:

1. Loop unrolling, which transforms one load into multiple loads made in parallel. The latency of the
computation is still bounded below by the latency of a load. But the limit now applies to multiple
iterations of the original loop.

2. Pipelining the load operation itself to allow multiple simultaneous accesses initiated by the same
operation. This solution requires complicated hardware for implementing a load, which must be able
to buffer and handle requests out-of-order.

Let us notice that a superscalar processor removes the anti-dependence on the result of the load by
register renaming. It can therefore have multiple instances of the same load operation in flight, without
any problem whatsoever. This proves that a dynamic dataflow model, which is well approximated by a
Superscalar when enough computational resources are present, is strictly more powerful than a static model
— the one employed in Spatial Computation.

Finally, unrolling theinit processor loop and using perfect branch prediction gets closer to the
processor performance, but is still not a match. The reason is because the dynamic size of the inner loop
varies, having sometimes many and sometimes few iterations. Unrolling helps when the number of itera-
tions is large but leads to pure overhead when the number of iterations is smaller than the unrolling factor.
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double sum;
register float * RESTRICT image;

for (...) {
for (...) {

...
sum=0.0;
for (y_filt_lin=x_fdim,x_filt=y_im_lin=0;

y_filt_lin<=filt_size;
y_im_lin+=x_dim,y_filt_lin+=x_fdim)

for (im_pos=y_im_lin;
x_filt<y_filt_lin;
x_filt++,im_pos++)

sum+=image[im_pos]*temp[x_filt];
result[res_pos] = sum;

}
}

Figure 8.9:Code fragment from the internal filter function in the epic e benchmark from Medi-
abench which exhibits poor performance on ASH.

Especially for such a tight loop, any overhead operations translate immediately to a slow-down. By tracing
the behavior of the code, we discover that at run-time the number of iterations of the innermost loop grows
monotonically starting from one. Therefore, the loop has instances with both few and many iterations.

8.2.2.3 epic e:internal filter

This function is the only kernel from the Mediabench suite which displayed a slowdown in our analysis in
Chapter 7. This function is a collection of many nearly identical four-deep nestedfor loops. A fragment is
exhibited in Figure 8.9. Let us focus on the innermost twofor loops. There is very little that can be done
to optimize these loops except unrolling the innermost one, which is inefficient due to the non-constant loop
bounds. Since the addition involvesdouble values, it is not associative so the chain of additions in the
unrolled loop cannot be reassociated into a balanced tree.

The run-time behavior of both superscalar and ASH when executing this function is very similar to the
one described above forinit processor : when the innermost loop has a short trip count the superscalar
effectively pipelines the outer loop. When the inner loop has a long trip count, branch prediction is very
effective and the critical resource is the floating-point adder. On ASH, unrolling helps when the inner loop
has many iterations but harms performance when it has few iterations, both cases occurring quite frequently.
We express our gratitude to David Koes, who helped us understand the behavior of this function.

8.2.2.4 Call Strictness (Synthetic Example)

The program in Figure 8.10 exhibits yet another weakness of our current implementation of ASH. In this
example the functionunused arg ignores its first argument, which is computed using some expensive
expression (not shown). In the ASH implementation the call instruction isstrict, i.e., not lenient — it
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int
unused_arg(int unused, int used)
{

return used;
}

int million_calls()
{

int i, s=0;

for (i=0; i < 1000000; i++)
s+=unused_arg(EXPENSIVE(i), i);

return s;
}

Figure 8.10: Sample code exhibiting performance problems due to the strictness of the call and return
instructions.

waits for all arguments to be available before transferring control to the callee. Therefore, the critical path
contains the expensive computation.

The superscalar passes the call arguments in registers and the call instruction is just a branch. The
net effect is that the call instruction islenient, since control may be passed to a procedure before all its
arguments are computed. In this example the procedure may even return before the expensive computation
is terminated because its result is unused.

The return instruction behaves similarly. In ASH, it is strict in all of its three arguments — the
value returned, the token and thecurrent execution point. In contrast, the processor just writes the return
value to a register and branches back to the caller. The branch may complete much earlier than the actual
register writeback. If the caller ignores the returned value (a frequent occurrence in C), the returned value
computation may vanish from the critical path (assuming it does not stall the processor through the use of
resources or through the in-order commit stage.)

Unfortunately there are two obstacles towards implementing lenient calls in ASH: (1) the state-machine
of the call instruction has to be made more complicated; and (2) strictness is actually required for the
correctnessof the recursive calls because procedure arguments are not steered by “switch” nodes. Non-
strict calls could lead to the mixing of data with different generalized iteration indices.

The simplest solution to this problem, not always applicable, is to inline the callee. As explained, in
all our experiments we disable inlining, both in the superscalar and in ASH, since the different inlining
algorithms in gcc and CASH would produce widely different code — making a comparison of the results
very difficult. This policy turns out to be to the advantage of the superscalar.

8.2.2.5 Unoptimized Boolean Computations

Clearly, the use of predicates to steer control-flow at eta operations is an Achilles’ heel of ASH. A single
CFG cross-edge predicate controls all etas corresponding to that particular edge. If this predicate computa-
tion is on the critical path, it slows down the progress ofall scalar values forwarded by the etas, effectively
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creating a dynamic barrier.
To compound this problem, examination of the code has revealed that the Boolean computations are not

always optimal, despite the use of the sophisticated Espresso Boolean minimization tool (and the sometimes
substantial compilation time taken by it, as evidenced in Section 2.7). We have discussed in Section 4.3.5
three reasons for the lack of optimality of the current implementation.

An important related open research question concerns the relationship between leniency and optimality
of a Boolean expression. Espresso tries to minimize the depth of a Boolean tree. The underlying assumption
is that all inputs are present simultaneously and the signal propagation is minimized. However, if inputs
arrive at different times, a deeper tree which takes advantage of leniency and input order arrival might
provide the result faster. This subject is an interesting theoretical research question: given some probability
distributions on the values of the inputs and on their arrival times, what is the optimal Boolean computation
of a given function which minimizes the expected computation time?

8.2.2.6 Inefficient Handling of Recursion

Pegasus assigns all local variables to wires/registers. It never needs to spill them to memory due to lack of
available resources. This wastes hardware resources, since scalar values circulate through all hyperblocks
where they are live, even if they are not used. This scheme is completely biased against making memory
accesses. However, performance suffers when the procedure makes recursive calls, since thenall scalar
value have to be saved and restored. The overhead may be quite substantial. Moreover, some of the val-
ues restored may be saved again at another call site, before being ever used, because the stack frames are
not cached across several calls as a regular compiler would do. Recursive calls have yet another negative
performance effect due to the constraint that they must be placed at the start of a hyperblock. This pro-
duces hyperblock fragmentation which reduces the scope for other optimizations. In particular, recursive
calls within a loop will break a loop into multiple cycle-free hyperblocks, which are not as well optimized
by CASH as a single loop body. The high cost of the current implementation of recursion is one of the
main reasons programs such as130.li and134.perl , which are heavy users of recursion (the hottest
functions in these programs are recursive), suffer substantial performance degradations on ASH.

8.2.2.7 Control-Flow Overhead

Another feature of ASH having a detrimental impact on performance is the runtime cost of the machinery
used for steering the data flow. This machinery incurs additional costs over a processor for three reasons:

• At “switch”, “mu” and “mux” nodes: the latency of the signal propagation through these nodes
is assumed to be logarithmic in the number of inputs. In contrast to processors, in ASH not only
branches (i.e., etas) have a cost but also “joins” — either in the form of mu, switch or mux nodes.
Although some proposed processor architectures supporting predication may also inject dynamic
“multiplexor” micro-operations [WWK+01], in the baseline superscalar that we model, joins are
essentially free.

• At the mu-switch construct: as described in Section 6.3.1, the “switch” nodes are controlled by
the current execution pointmu nodes in order to allow an orderly flow of data. However, the net
result is that when the eta predicate computation is critical, its criticality is further increased by the
mu→switch propagation delay. Control-intensive programs pay a hefty penalty in ASH due to this
reason.
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• The propagation delay of an eta node is assumed to be one clock cycle (unless its predicate is con-
stant). Therefore in our model, conditional branches always incur the same cost while good prediction
can transform branches in a superscalar in operations with an effective latency of zero.

This cost is a more fundamental issue than would appear at first sight. As in any distributed system,
global data (or global signals) is replaced with communication and/or synchronization. The steering of data
by “eta”, “mux”, “mu” and “switch” nodes requires coordination between multiple nodes and a broadcast
of the branch condition. Even though the cost we model for these operations tends to be relatively low,
it still becomes an important overhead in very tight loops, such as the ones exemplified in this section.
The token “combine” nodes, as described below, are yet another form of inexpensive-but-nonzero-cost
synchronization. Other distributed architectures, such as MIT’s Raw, also have to pay for broadcasting the
branch conditions to the remote computations [LBF+98].

8.2.2.8 Token Propagation

The LSQ access algorithm described in Section 6.5.3 tends to be quite efficient and, in general, propagates
the tokens ahead of the data. However, tokens can be on the critical path due to three reasons:

• Procedure calls are strict and therefore slow-down the token propagation, synchronizing the tokens
with the other scalar data.

• Eta nodes controlled by costly predicates slow down the token propagation.

• Finally, even the lowly “combine” operator, which is used to collect tokens to ensure the preservation
of run-time dependences, contributes in some cases significantly to the critical path. The cost of a
“combine” is assumed to be logarithmic in the number of inputs. Combine operators with a large
fan-in, which can arise because of an ambiguous reference or because of a store following a large set
of loads, can incur quite a substantial run-time overhead.

The critical path of the hottest function in the129.compress benchmark consists mostly of token
edges, due to these reasons.

8.3 A Limit-Study with Perfect Branch Prediction

In order to ascertain the importance of branch prediction, we have carried out a limit-study to determine the
contribution of control-flow switching predicates (i.e., eta predicates) to the overall program performance.
This study consists in running the same measurements as in Section 8.2.1, but with perfect eta predicate
prediction.

We have carried out this experiment by modifying the simulator to log all eta-controlling predicate
values. Then we have re-run each program replacing the computation of the predicates with values replayed
from the log. An eta initiates a log read when it receives its data input. In this way, predicates are never
on the critical path.2 Figure 8.11 shows the performance of the SpecInt95 programs on ASH with perfect
predicate prediction. The performance improves somewhat, but still does not match the processor.

2This stratagem works as long as the program is fully deterministic and always takes the same execution path at run-time.
Certain functions, for example manipulating hashes based on object addresses or depending on random numbers or on time, cannot
be replayed in this way.
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Figure 8.11:Speed-up of SpecInt95 benchmarks executed on ASH with perfect eta predicate prediction,
compared with the original speed-up from Figure 8.1. Simulation of 099.go with predicate log replaying
has failed.

8.4 A Design for Integrating Branch Prediction in Spatial Computation

The comparison to the superscalar has highlighted the importance of branch prediction for high performance
in control-intensive programs. Some form of cross-hyperblock branch prediction is a necessary ingredient
for unleashing the ILP. In this section we sketch a proposal for integrating a limited form of “branch” predic-
tion and cross-hyperblock speculation into Spatial Computation. This proposal is still just a paper design,
but we are fairly confident that it can be implemented without too much effort. A complete implementation
and evaluation is an important piece of our planned future work. To our knowledge this design is the first
attempt of integrating control speculation into a dataflow model of computation.

Data speculation already exists in Spatial Computation across forward branches — the use of multiplex-
ors and predicate promotion effectively speculates execution along all paths of (most) forward branches.
Multiplexors and eta nodes are natural speculation squashing points. The only non-speculative execution
points are the eta operations themselves — data is allowed to flow only on the correct path past an eta.

The chief difficulty in extending speculation across hyperblocks (i.e., past etas) is the danger of runaway
speculation since there no longer exists a natural squashing point. Another more subtle aspect has to do
with the correctness of evaluation: side-effect operations cannot be speculated unless an undo mechanism
is put in place, for example by using a transactional cache as in thread-level data speculation [SCM97].
Moreover, speculation could lead to the violation of the execution invariants (described in Section 6.3 and
Appendix B) which guarantee program correctness. In particular, there is the danger of “mixing” at the
inputs of an operation, both speculative and non-speculative data.

The superscalar processor strongly benefits from its monolithic architecture in implementing specula-
tion and branch prediction. First, it uses global branch prediction tables, which are updated at all branch
instructions, and therefore can be used to aggregate path information. Second, the monolithic nature of
the processor pipeline, the full dynamic dataflow nature of the register renaming engine (allocating a new
register for each produced data), together with the in-order commit stage, allow the internal processor state
to be relatively easily flushed on misprediction. The crucial aspect of the architecture is that both the predic-
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tion and the flushing mechanism are independent on the actual executed program. In contrast, any Spatial
Computation-based scheme will necessarily be distributed and create custom hardware structures for each
speculation point.

8.4.1 Compiler-Controlled Dataflow Speculation

Control-flow speculation starts with the compile-time decision of which CFG cross-edges are to be specu-
latively executed. For each source hyperblock only one outgoing cross-edge can be selected.

The following changes have to be made to the Pegasus building algorithm described in Section 3.3:

1. To each hyperblockh a new predicate inputspec(h) is added, which will indicate whether speculation
has to be squashed or not. The invariant isspec(h) = “true” if the hyperblock is non-speculative,
spec(h) = “false” if it is speculative, andspec(h) is yet undefined if the hyperblock’s speculative
status is unknown. For an always non-speculative hyperblock,spec(h) is set by the compiler to the
constant value “true.”

2. Let us consider a cross edgeh1 → h2 chosen to become speculative. The predicate controlling the
etas forwarding data along this edge are changed fromp(h1, h2) to constant “true.” As a consequence,
these etas forward the data irrespective of the actual edge predicate.

3. A new output eta is added for each outgoing cross edge, for initializingspec(h2). The value for-
warded by this eta isp(h1, h2) ∧ spec(h1). This ensures thath2’s speculative status is “true” if
and only ifspec(h1) is true (i.e., the source was correctly executed), and execution flows along the
h1 → h2 cross-edge.

4. The predicate of each eta in each speculative hyperblockh2 (i.e., the destination of a speculative
cross-edge) is “and”-ed withspec(h2). Together rules 3 and 4 prevent runaway speculation because
data is not forwarded to the next hyperblock unless the non-speculative state of the current hyperblock
is confirmed.

5. The predicate of each side-effect operation inh2 is “and”-ed withspec(h2). This ensures that the
operation gets executed if and only if it is non-speculative.

6. The “return” instruction in a hyperblockh needs to be predicated byspec(h). I.e., “return” is never
speculative.

Figure 8.12 illustrates schematically the application of this algorithm on a small program fragment.
Hyperblocks 1 and 4 are selected to be non-speculative, therefore theirspec flag are constant “true.” In
hyperblock 3 the predicate of the load has been replaced from pld to p ld ∧ spec(h3). Note in hyperblock
2 the computation ofspec(3) by “and”-ingspec(2) with the originalp(2, 3), denoted byP (2) in the figure.

The net run-time effect is that scalar values reaching the head of a speculative cross-edgealwayscross
into the next hyperblock when the current hyperblock is certified to be non-speculative, or get squashed
otherwise. The use of the “switch” nodes (not shown in this figure) ensures that speculative and non-
speculative data cannot get mixed. The first signal reaching the “crt” mu ofh2 will open the gates for all
other data signals, coming from the same source. This scheme works for loops as well, by speculating the
back-edge.
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Figure 8.12:A program fragment comprising four hyperblocks (A) before speculation and (B) after specu-
lating the edges 1→ 2 and 2→ 3.

8.4.2 Comments

This scheme works by allowing values to flow forward along some path even if it is uncertain that it is the
right path, but by passing along thespec predicate certifying the correctness of the path. The advantage is
that all non-side effect operations can be executed early if their inputs are available. At run-time this is an
advantage if the computation ofspec takes a long time. Scalar computations can proceed ahead regardless
of the value ofspec. By “and”-ing a controlling predicate of a side-effect operation withspec(h) it is
ensured that the side-effect never occurs speculatively.

This speculation scheme suffers from some limitations, whose importance still has to be evaluated. First,
speculation is compiler-controlled and therefore cannot use run-time information. Second, speculation is
allowed only on certain paths. In particular, in order to avoid mixing speculative and non-speculative data,
the compiler enforces speculation onlyalong one execution path, selected at compilation time. Third,
speculative execution is allowed to proceed onlyone hyperblock aheadof the non-speculative wavefront.
This prevents run-away speculation. Fourth, side-effect operations are never speculative and they need to
wait for the “real” predicate to show up.

The positive side of our proposed scheme is still very much in the nature of ASH — it requires very
little extra hardware and features a completely distributed implementation, without using any global control
structures. An evaluation of its effectiveness is a subject of future work.
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8.5 Conclusions

One interpretation of the results in this section is that they constitute yet another limit study on the amount
of instruction-level parallelism available in C programs. Many studies exploring the interplay between
architectural features, compilers and ILP have been carried during the course of the years: [LW92, Wal93a,
TGH93, RDN93, SBV95, CSY90, SJH89, TF70, NF84, RF72, KMC72, KPG98, UMKK03, SMO03]. Our
results add yet another interesting point to the space of possibile architectures. Here are the characterizing
features of our study:

• We use realistic compilation technology and realistic memory dependence analysis.

• We use predication and speculation of some of the forward branches.

• We evaluated the impact of no branch prediction and perfect branch prediction.

• We have a virtually unlimited ILP architecture.

• We can model both a realistic and a perfect memory system.

• We model the memory access bandwidth.

• We compile standard benchmarks, large substantial C programs.

From the performance results and from our analysis of some critical code segments, we conclude that in
our model of Spatial Computation there are some fundamental limitations towards the exploitation of ILP:

1. Control dependences still limit the ILP, as they do for non-predicated code [LW92].

2. Implementing a generic prediction scheme (be it branch prediction or value prediction) is hindered
by the difficulty of building a mechanism for squashing the computation on the wrong paths.

3. The ability of register renaming to remove anti-dependences between the same operation in different
iterations is crucial for efficiently executing tight loops.

4. Instruction issue may well be the limiting factor to performance in superscalars [SJH89], since their
ability to exploit ILP is excellent.

5. The distributed nature of the computation in ASH requires more remote accesses (i.e., even LSQ
accesses become non-local), which are more expensive than in a monolithic system.

6. The presence of even one long-latency non-pipelined operation limits the maximum throughput of
the computation of a loop.

7. The cost of the explicit “join” operations in the representation (mu, switch, mux, combine), all of
which are essentially “free” in a processor,3 can sometimes be substantial. This is the cost ofsyn-
chronizationwhich replaces the global signals in monolithic architectures.

This study has increased our admiration for the wonderful capability of superscalar processors of ex-
ploiting ILP and pipeline parallelism, through the virtualization4 of a very limited set of resources: compu-
tational units, registers, bandwidth on the internal and external interconnection networks.

3The cost of these operations in a processor is essentially paid by the branches.
4By virtualization we mean “sharing effectively for the execution of different instructions.”
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Chapter 9

Extensions and Future Work

This thesis barely scratches the surface of such an important subject as Spatial Computation. In this section
we mention some of the more challenging long-term projects which would extend this research. (We avoid
the obvious chores, such as implementing support for the missing C constructs.)

9.1 Building a Complete System

Let us look again at Figure 1.4, which we reproduced here as Figure 9.1. This figure shows that the task
of translating C programs into hardware entails creating three different structures: computations, memories
and networks. This document only details the making of the computations. In order to make Spatial
Computation real, the other two tasks need to be tackled as well.

The network synthesis is currently under development as part of the Verilog back-end of CASH, writ-
ten by Girish Venkataramani. It is not yet clear how a low-overhead flexible network can be created to
accommodate all oddities of C. Function calls thorough pointers, and even return instructions, will require
some form of dynamic routing. Even the synthesis of an efficient interconnection network linking circuits
to memory poses some very difficult problems.

The aspect of memory partitioning has been tackled the least so far in our work. Some interesting
ideas have already been advanced by other research groups: [SSM01, BRM+99, BLAA99, BLAA98].
Unfortunately such algorithms seem to rely on very precise whole-program pointer and dependence analysis
and therefore are most likely not scalable to large programs. We expect that the constraint-based algorithms,
such as the ones used in CCured to analyze pointers for creating a type-safe version of C [NMW02], can be
used to aid pointer analysis and memory partitioning. Another promising avenue is the use of pragmas to
guide memory partitioning.

Another important aspect worth investigating is how well the CASH compilation model is amenable
to supporting concurrency. Concurrency could be introduced in several ways — either by extending the
language with a minimal number of constructs, as in Cilk [BJK+95] by using a library such aspthreads ,
by using a side-effect analysis in the compiler to discover procedures that can be executed concurrently, or
by using pragma annotations.

9.2 Hardware Support for ASH

A very important question to investigate is “what is the ideal reconfigurable fabric for supporting ASH.”
ASH currently assumes an asynchronous hardware substrate. Research in asynchronous logic is still in its
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Figure 9.1:Synthesizing a C program into hardware entails creating (1) circuits for performing the compu-
tation; (2) partitioning memory and assigning data; and (3) creating an interconnection network.

infancy, compared to the much more mature synchronous domain. There are no commercial asynchronous
FPGA devices, although devices supporting a form of event notification exist already [BMN+01] and some
research prototypes have been proposed, e.g., [TM03]. Most major FPGA circuits operate at a bit-level
granularity and incur very large configuration and routing overheads for synthesizing wide computations.
A word-oriented architecture will be much more suitable as an implementation target for ASH.

Another hardware support question is whether avirtualizablehardware fabric can be created as a support
for Spatial Computation, such as our prior work, PipeRench [GSM+99]. This would relieve the compiler
and synthesis tools from resource constraints, using run-time reconfiguration to provide the appearance of
unlimited hardware resources. We hope that CASH will be a catalyst for attacking the hardware architecture
problem, using a philosophy inspired by the RISC approach: build in hardware only the resources that the
compiler can use.

9.3 Cross-Breeding ASH and Processors

Finally, there is a lot of cross-fertilization to be attempted between the techniques used for regular processors
and ASH. Worthwhile ideas to bring to ASH from processors are:

• Adding support for control-speculation in Spatial Computation, using the scheme detailed in Sec-
tion 8.4.

• Devising schemes for sharing resources in Spatial Computation, as hinted in Section 6.7.2.4.

• Incorporating profiling information into the compilation process.

• Handling shutdown and exceptions, as suggested in Section 2.5.3.1.

In the other direction, we plan to investigate the addition of architectural/compiler features to regular
processors:
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• How to communicate dependence information from the compiler to the run-time system. Such infor-
mation could be used by a clustered load-store queue architecture.

• Architectural support for the new register promotion algorithm from Section 4.6, in the form of
hardware-maintained “valid” bits.

• Exploring methodologies for obtaining the benefits of dataflow software pipelining from Section 6.7
on processors without complex software pipelining implementations, by assigning strongly connected
components to separate threads in an SMT-like processor [TEE+96].

Finally, another very important research direction is applying formal verification to analyze CASH. This
approach may be facilitated by the precise semantics of Pegasus.
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Chapter 10

Conclusions

Traditional computer architectures are clearly segmented by the Instruction Set Architecture (ISA), the
hardware-software interface definition: compilers and interpreters sit “above”, while the processor hard-
ware is “below”, functioning as an interpreter of the instruction set. In this thesis we have investigated a
computational structure which foregoes the existence of an ISA altogether. In this setup the compileris the
architecture.

We have investigated one particular instance of an ISA-less architecture, which we dubbed “Spatial
Computation.” In Spatial Computation the program is translated directly into an executable hardware form,
without using an interpretation layer. The synthesized hardware closely reflects the program structure —
the definer-user relationships between program operations are translated directly into point-to-point com-
munication links connecting arithmetic units. The resulting computation engine is completely distributed,
featuring no global communication or broadcast, no global register files, no associative structures, and using
resource arbitration only for accessing the global monolithic memory. While the use of a monolithic mem-
ory does not take advantage of the freedom provided by such an architecture, it substantially simplifies the
completely automatic implementation of C language programs. We have chosen to synthesize dynamically
self-scheduled circuits, i.e., where computations are carried based on availability of data and not accord-
ing to a fixed schedule. A natural vehicle for implementing self-scheduled computations is provided by
asynchronous hardware.

This thesis has explored both the compile-time and run-time properties of such an architecture. The
main contribution of this work with respect to the compilation methodology has been the introduction of a
dataflow intermediate representationwhich seamlessly embeds several modern compilation technologies,
such as predication, speculation, static-single assignment, an explicit representation of memory depen-
dences, and a precise semantics. We have shown how many classical and several novel optimizations can
be efficiently implemented using this representation.

Our investigation in the run-time aspects of Spatial Computation has shown that it can indeed offer supe-
rior performance when used to implement programs with resource requirements substantially exceeding the
ones available in a traditional CPU. In particular, the execution of multimedia program kernels can achieve
very high performance in Spatial Computation, at the expense of very little power. A detailed investigation
of the run-time behavior of the spatial structures has also shown that their distributed nature forces them
to incur small, but non-negligible overheads when handling control-intensive programs. We have shown
that the use of global structures (such as branch prediction, control speculation and register renaming) in
traditional superscalar processors can therefore more efficiently execute control-intensive code. Since Spa-
tial Computation complements the capabilities of traditional monolithic processors, a promising avenue of
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research is the investigation of hybrid computation models, coupling a monolithic and distributed engine.
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Chapter 11

Epilogue

In this thesis we have explored the properties of Spatial Computation, a new computational model which
translates programs written in high-level languages into hardware static dataflow machines. We have ex-
plored both the compilation process for translating ANSI C programs into spatial structures and the run-time
properties of this new model of computation.

We will draw a parallel on the contrast between Spatial Computation and today’s microprocessors with
the approach to operating system architecture, and the controversy between microkernels and monolithic
kernels.

• Both Spatial Computation and microkernels break away a relatively monolithic architecture into in-
dividual lightweight pieces, well specialized for their particular functionality. Spatial Computation
removes global signals and control, in the same way microkernels remove the global address space.

• Communication in Spatial Computation requires handshakes and service invocation in microkernels
uses some form of messages or remote procedure call.

• Both Spatial Computation and microkernels build systems out of modular pieces which interact
through very precise interfaces, to such a degree that the pieces are interchangeable. For example, in
Spatial Computation, one can substitute a pipelined implementation or even a procedure call for an
elementary computation, and the correctness of the whole structure is not affected.

• Similar to some microkernels [EKO95], Spatial Computation is very well suited for some particular
restricted application domains, namely media processing.

• Spatial Computation is a globally-asynchronous architecture with no global clock. Correspondingly,
in a microkernel there is no longer a notion of a single non-preemptive kernel thread of control.

• In Spatial Computation the use of remote services, such as memory accesses or procedure invocations,
may require the exchange of complex long-latency messages where a processor uses “global” signals.
Similarly, in a microkernel servers must inquire other servers about their internal state instead of just
reading global variable values.

• Both monolithic kernels and microprocessors can use global information from different subsystems
to make good decisions (for example, a processor can easily implement two-level branch prediction).
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• Both monolithic kernels and microprocessors can implement transactional behavior more easily than
their modular counterparts. Transaction rollback corresponds in a processor to the squash of wrong-
path speculation.

• In both microkernels [Lie96] and Spatial Computation, the cost of remote services is sometimes too
high and impacts performance negatively.

• In recent years microkernels (such as Mach [RJO+89]) have been blended with monolithic system
architectures to give rise to successful commercial products, such as Mac OS X [App03] and Win-
dows NT [CC92]. Our hope is that, by cross-breeding ideas from Spatial Computation with the
monolithic architecture of microprocessors, a more powerful paradigm for computation may emerge.
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Appendix A

Benchmarking Methodology

We evaluate Spatial Computation by translating off-the-shelf C programs or program fragments (kernels)
into simulated hardware. We use three benchmark suites: Mediabench [LPMS97], integer benchmarks from
Spec 95 [Sta95] and benchmarks from Spec 2000 [Sta00]. We use the reference input sets for Spec and the
only available input sets for Mediabench. All simulations check the output against the reference to validate
correctness. We do not compile or simulate the standard library, for which we do not have the source. In our
results we assume that execution of the library is instantaneous. Whenever we compare performance to a
processor, we carefully subtract time spent in the standard library from the simulation time of the processor.
This is also true for the C constructs we do not support, i.e.,alloca() and varargs. Whenever a program
contains functions we cannot handle, we treat them in the same way as library functions. Unfortunately we
also do not simulate the cache for the library routines, and therefore the cache state during our simulations
may be incorrect. We hope that the first-order effects are still correct.

While we attempt to present data for all benchmark programs, we do not always succeed. We do not
do this in order to hide the negative results [Cit03], but because some of the programs had trouble with our
experimental compiler. In particular, here is a list of programs we have failed to compile or execute at all:

• ghostview from Mediabench has a lot of script-generated source files and a very complex set of
Makefiles which we do not handle.

• 126.gcc from SpecInt95 does not work with the Suif front-end — parsing and un-parsing generates
non-working code.

• 186.crafty from SpecInt2K uses the non-standardlong long type and fails to compile with
the version of SimpleScalar tools we have (it works very well with our compiler, though).

• 252.eon from SpecInt2K is a C++ program, which none of our tools handles.

• 253.perlbmk from SpecInt2K makes afork() system call, which is not supported by any of our
simulators.

For most experiments we do not use any of the floating-point programs, either from Spec95 or from
Spec2K. We do occasionally give data from SpecFP2K programs, but only for the C and FORTRAN 77
programs. The latter are translated to C usingf2c . The data for the FORTRAN programs should not be
considered very reliable, since the generated C program has completely different aliasing rules compared to
FORTRAN, and CASH’s memory disambiguator does not take advantage of this fact.
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Occasionally compiler or simulator bugs have prevented us from completing the compilation or simu-
lation of some benchmark. In this case we do not present results. We never omit results because they are
unfavorable. We present data for all the successful measurements.
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Appendix B

Correctness Arguments

In this chapter we argue correctness aspects of Pegasus. Ideally we should show that the representation of
a program has exactly the same meaning as the original program. To prove a compiler correct, we should
also show that each transformation of the program preserves its meaning. Both these are lofty goals, which
are still out of the reach of current research when considered in their full generality, and we will do them
very little justice in this thesis. However, we make a few small steps:

• We point towards literature on related subjects that suggests that our representation has very good
properties, such as soundness and adequacy.

• We list some important compile-time and run-time invariants of the Pegasus representation.

• Since our representation encompasses some new constructs, such as predication, speculation, and
lenient execution, we give informal arguments on the correctness of their use.

• In Section B.4 we actually give a complete, unambiguous precise semantics for each Pegasus operator.
This semantics can be used both as a concise reference of the intermediate language (for example,
to aid in the implementation of an interpreter), but also as a tool for more serious formal analysis of
Pegasus programs.

B.1 Invariants

Not every collection of interconnected Pegasus primitives forms a meaningful computational structure. In
this section we enumerate the invariants that are obeyed by any representation of a legal procedure. The
algorithm building Pegasus from Section 3.3 should establish these invariants and all optimizations should
preserve them. These properties arenecessaryfor having a well-formed representation. It is an interesting
research question whether they are alsosufficient.

Of course, these properties do not imply a preservation and a progress theorem because these do not
hold for the original C program. In particular, there is no type-safety for the memory accesses.

• All back-edges (i.e., loop-closing edges) originate at an eta and reach a mu (or switch) node.

• All the mu/switch inputs to a hyperblock have the exact same number of input wires. This invariant
is true because these wires represent the live variables at a particular program point. If these multiple
CFG edges join at that point, there are multiple inputs for each mu node, each corresponding to a
different flow of the same variable.
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• The eta operators of a hyperblock that go to different destination hyperblocks have disjoint predicates.
This implies that control always flows to a single successor hyperblock.

• The logical union of all eta predicates in a hyperblock is “true”, indicating that execution always
reaches a next hyperblock (aprogressproperty). This implies that any hyperblock must end in etas
or a “return.”

• All etas corresponding to a given cross-edge should always have the exact same controlling predicate.
This means that all live values at a program point “flow” in the same direction at run-time.

• All inputs of ann-ary operation originate at some other operation. An operation cannot have only
some of the inputs connected.

• The predicates controlling a mux are always disjoint. Their union does not necessarily amount to
“true.” This invariant is true because a value can flow to a mux along a single path and mux control
predicates correspond to the last edge on the path.

• The graph is “strongly typed”, i.e., the wire types always match the output type of the producer of
the value and the input types ofall consumers of the value carried by the wire. This ensures atype
preservationproperty of the computation.

• All side-effecting operations (except loads provable from immutable values) must have a token input
and a token output connected to other side-effecting operations.

• In any “cut” of the Pegasus graph the union of the token edges crossing the cut in one direction
must “guard” all mutable memory locations. This ensures that no two non-commuting side-effect
operations (i.e., on different sides of the cut) can be (incorrectly) reordered.

• There are no edges flowing “around” a recursive call (i.e., if there is a patha →∗ c →∗ b, where
c is a recursive call, all pathsa →∗ b must containc). This ensures that values from two different
recursive invocations of a same procedure cannot be mixed. This invariant is established by the rules
for synthesizing recursive calls in Section 3.3.11.

Some important run-time invariants have been described in Section 6.3, in relationship to the “general-
ized iteration index” introduced there:

• For any operation, all inputs that contribute to the computation of the output have the same index.

• The consecutive values flowing on every edge have strictly increasing indices.

These invariants are naturally maintained for acyclic code regions. For these invariants to also be main-
tained for programs with loops, the use of switches to steer control-flow is sufficient, as described in Sec-
tion 6.3.1.

B.2 Properties

Pegasus is a restricted form of synchronous dataflow computation. The dataflow model of computation has
been introduced by Karp and Miller in 1996 [KM66], and the synchronous dataflow by Lee and Messer-
schmitt [LM87]. By its very structure and semantics, a well-formed Pegasus graph has the following prop-
erties:
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Determinism: (Church-Rosser): A Pegasus graph will produce the same result regardless of the order and
duration of the computation of each node (assuming each node is deterministic). This property was
proved for a simple scalar graph in the Karp-Miller paper. The extension to memory-access opera-
tions can be argued observing that the use of token edges guarantees the preservation of Bernstein’s
conditions [Ber66] for deterministic execution of a parallel computation.

Deadlock: The fact that a Pegasus computation cannot deadlock follows from some of the invariants de-
scribed above. The Pegasus graph of a single hyperblock is a restricted form of synchronous dataflow,
in which every node consumes and produces exactly one token. The arguments of Lee and Messer-
schmitt can be used to prove deadlock impossibility for each hyperblock in isolation. The invariants
regarding eta nodes and the inter-hyperblock connections can be used to argue the lack of deadlock
for a complete procedure-level Pegasus graph.

Adequacy: The adequacy of a representation is the property that programs with isomorphic program de-
pendence graphs produce the same results. A proof of adequacy for a type of dependence graph can
be found in [HPR88]. Hopefully, these results can also be extended to apply to Pegasus.

B.3 Speculative Computation Gives Correct Results

As discussed in Section 3.3, Pegasus uses a method equivalent to thepredicate promotiontechnique de-
scribed in [MLC+92], which removes predicates from some instructions or replaces them with weaker
predicates, enabling their speculative execution. If the hyperblock code is in static-single assignment form,
we can prove that every instruction with no side-effects can be safely and completely promoted to be exe-
cuted unconditionally.

Here is a proof sketch. We can distinguish four types of instructions: (a) instructions with side-effects
(i.e., memory accesses and procedure calls); (b) predicate computations; (c) multiplexors; and (d) all other
instructions.

The instructions of type (a) cannot be executed speculatively. We will argue below that instructions
of type (b) (i.e., the predicates) can be speculatively computed. It follows that the multiplexors (c) always
make the correct choices because they select based on the predicates. As a conclusion, instructions of type
(d) can always be safely executed speculatively because they have no side-effects and their inputs are always
correct.

We now prove that all instructions of type (b), which compute predicate values, can be speculatively
executed. The key observation is that, although the predicates are themselves speculatively computed, their
value is always correct. We will illustrate the proof using a simple example.

Consider the CFG fragment in Figure B.1. According to the definition of predicate computations from
Section 3.3,P (c) = (P (a) ∧ B(a, c)) ∨ (P (b) ∧ B(b, c)). Let us assume that during an execution of the
program, basic blocka is executed and branches toc. This means that blockb is not executed. Therefore,
the branch conditionB(b, c) may have an incorrect value (for instance, because blockb changes some
values which influence the branch computation). However, by using induction on the depth of the block,
we can assume thatP (b) has the correct value, “false.” Therefore, the value ofB(b, c) is irrelevant for the
computation ofP (c).
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b

Figure B.1:Fragment of a control-flow graph.

B.4 Formal Semantics

In this section we describe precisely the meaning of the basic constructs of Pegasus. We use a Plotkin-style
operational semantics [Plo81].

We denote the set of program values byV . (These are the values manipulated by the actual program:
integers, floating point numbers, etc.) To this set we add some distinguished special values:

• the BooleansT andF

• an abstract token valueτ

• adon’t carevalue4

• a special “undefined” value, denoted by⊥

• node namesare also values in order to implement “call” and “return” operations — thecall must
name the parameter nodes of the called procedure, while thereturn indicates thecall contin-
uation node to which control is returned1

• a sent value, used for implementing lenient evaluation (Section 6.4)

A state associates to each edgee ∈ E a value inV . That is, a state is a mappingσ : E → V . We denote
the fact that edgee has valuev by σ(e) = v. A computation is defined by a state transition. We describe the
semantics of each operation by indicating: (a) when the computation can be carried and (b) how it changes
the state. We denote by

op
precond
change

the fact that operationop requires preconditionprecondto be executed and then incurs thechangemodi-
fication to the state. The transition relation is nondeterministic: at some point several operations may be
eligible for execution and the semantics does not specify the execution order. It is expected that well-formed
programs have a confluence property, i.e., the result is the same regardless of the execution order.

We writeσ′ = σ[e 7→ v] to indicate a stateσ′ which coincides withσ, except that it mapse to v. If
nodeN has inedgesi1 andi2 and outedgeo, we write this aso = N(i1, i2). We useaddr to denote values
which represent memory addresses. We writeupdate (addr, v) to indicate that valuev is stored in memory
addressaddr, andlookup (addr) for the contents of memory locationaddr.

1To simplify the presentation we do not use call continuation nodes.
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We use suggestive edge names:p denotes predicates,t tokens,i ando input and respectively output
edges,pc edges whose values denote node names (from Program Counter). For example,σ(pc) = main
indicates that the value on thepc edge is the identity of the node representing the “main” procedure. In this
case, we denote byσ(pc).arg1 the first argument of “main”,σ(pc).t the token argument of “main”, etc.

For simplicity we allow in this model only a fanout of one for all nodes, except a special “fanout” node,
which can have an unlimited number of outputs and which copies the input to all the outputs.

We model constants as having thecurrent execution pointcrt as an input.
In the initial state all values are undefined, i.e.,∀e.σ(e) = ⊥.
We abbreviateσ(e) 6= ⊥ with def(e), (i.e., the edgee has a “defined” value) and erase(a) as a shorthand

for [a 7→ ⊥] (i.e., a state in whicha becomes undefined). We abuse the notation and use def() and erase()
with multiple arguments.

o = unaryop(i)
def(i),¬def(o)

σ′ = σ[o 7→ unaryop(σ(i))] ◦ erase(i)

o = binary op(i1, i2)
def(i1, i2),¬def(o)

σ′ = σ[o 7→ binary op(σ(i1), σ(i2))] ◦ erase(i1, i2)

(o1, . . . , on) = fanout(i)
def(i),¬def(o1, . . . , on)

σ′ = σ[o1 7→ σ(i)][. . . ][on 7→ σ(i)] ◦ erase(i)

o = constant(crt)
¬def(o),def(crt)

σ′ = σ[o 7→ constant] ◦ erase(crt)
All constants havecrt as input

o = uninitialized(crt)
¬def(o),def(crt)

σ′ = σ[o 7→ uninitialized] ◦ erase(crt)

o = hold(i, p)
def(i)
σ′ = σ

Do not ack this input.

o = hold(i, p)
def(i), σ(p) = T

σ′ = σ[o 7→ σ(i)] ◦ erase(p)

o = hold(i, p)
def(p),def(i), σ(p) = F

σ′ = σ[o 7→ σ(i)] ◦ erase(p, i)
Ack both inputs only now.

(o, crtl) = mu(i1, . . . , in)
∃k.def(ik),¬def(o)

σ′ = σ[o 7→ σ(ik), ctrl 7→ k] ◦ erase(ik)
Exactly one of the inputs of a
mucan be present at a time.

o = switch(ctrl, i1, . . . , in)
def(ik), σ(crtl) = k,¬def(o)

σ′ = σ[o 7→ σ(ik)] ◦ erase(ik, ctrl)

o = eta(p, i)
σ(p) = T,def(i),¬def(o)

σ′ = σ[o 7→ σ(i)] ◦ erase(i, p)

o = eta(p, i)
σ(p) = F,def(i)
σ′ = σ ◦ erase(i, p)

t0 = V(t1, . . . , tn)
¬def(t0),def(t1, . . . , tn)

σ′ = σ[t0 7→ τ ] ◦ erase(t1, . . . , tn)

(t, a) = frame(n)(t0)
def(t0),¬def(t, a)

σ′ = σ[t 7→ τ, a 7→ allocate n bytes] ◦ erase(t0)

t = pop(n)(t0)
def(t0),¬def(t)

σ′ = σ[t 7→ τ ] ◦ erase(t0),deallocate last frame

a = sp(t)
def(t),¬def(a)

σ′ = σ[a 7→ last frame allocated] ◦ erase(t)
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t = G(n)(t0, p)
def(t0)

counter++, σ′ = σ ◦ erase(t0)

Token generator: increment
internal counter originally
initialized to n.

t = G(n)(t0, p)
σ(p) = T, counter> 0

counter−−, σ′ = σ[t 7→ τ ] ◦ erase(p)

t = G(n)(t0, p)
σ(p) = T, counter≤ 0

counter−−, σ′ = σ ◦ erase(p)

t = G(n)(t0, p)
σ(p) = F, counter6= n

σ′ = σ
Do not ackp.

t = G(n)(t0, p)
σ(p) = F, counter= n
σ′ = σ ◦ erase(p)

Restore G to original state.

o = mux(i1, p1, . . . , in, pn)
¬def(o),def(i1.p1, . . . in, pn),∃k.σ(pk) = T
σ′ = σ[o 7→ σ(ik)] ◦ erase(i1, p1, . . . , in, pn)

At most one predicate of a
mux can beT.

o = mux(i1, p1, . . . , in, pn)
¬def(o),def(i1.p1, . . . in, pn),∀k.σ(pk) = F
σ′ = σ[o 7→ 4] ◦ erase(i1, p1, . . . , in, pn)

t0 = store(addr, p, v, t)
¬def(to),def(addr, v, t), σ(p) = T

σ′ = σ[t0 7→ τ ] ◦ erase(addr, p, t, v),update (σ(addr), σ(v))

t0 = store(addr, p, v, t)
¬def(to),def(addr, v, t), σ(p) = F
σ′ = σ[t0 7→ τ ] ◦ erase(addr, p, t, v)

(o, t0) = load(addr, p, t)
¬def(o, t0), σ(p) = T,def(t, addr)

σ′ = σ[o 7→ lookup (addr)][t0 7→ τ ] ◦ erase(addr, p, t)

(o, t0) = load(addr, p, t)
¬def(o, t0), σ(p) = F,def(t, addr)

σ′ = σ[o 7→ 4][t0 7→ τ ] ◦ erase(addr, p, t)

o = arg
¬def(o),def(arg)

σ′ = σ[o 7→ σ(arg)] ◦ erase(arg)

return(i, t, pc, crt)
def(i, t, pc)

σ′ = σ[σ(pc).o 7→ σ(i)][σ(pc).t 7→ τ ][σ(pc).crt 7→ τ ] ◦ erase(i, t, p, crt)

(o, t0, crt) = callk(t, p, pc, crt0, i1, . . . , in)
def(pc, t, crt0, i1, . . . , in), σ(p) = T

σ′ = σ[σ(pc).arg1 7→ σ(i1)][. . . ][σ(pc).argn 7→ σ(in)]
◦[σ(pc).t 7→ τ ][σ(pc).pcin 7→ callk]

[σ(pc).crt 7→ τ ] ◦ erase(i1, . . . , in, crt0, t, p, pc)

(o, t0, crt) = callk(t, p, pc, crt0, i1, . . . , in)
def(pc, t, i1, . . . , in), σ(p) = F

σ′ = σ[o 7→ 4][t0 7→ τ ][crt 7→ τ ] ◦ erase(i1, . . . , in, t, p, pc, crt0)
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Semantics for lenient evaluation We present only formulas for some input arrival orders. The others
are completely symmetric. An internal valuesento is used to remember whether the output for the current
“generalized iteration” has been already emitted (the output may be emitted before all inputs are available,
so the an “output busy” may mean either that the output has been emitted already, or that the prior output
has not been acknowledged yet).

o = or(i1, i2)
σ(i1) = T,¬def(o),¬def(sento)
σ′ = σ[o 7→ T][sento 7→ T]

Emit output, do not ack input.

o = or(i1, i2)
def(i1, i2), σ(sento) = T
σ′ = σ ◦ erase(i1, i2, sento)

(o, t0) = load(addr, p, t)
¬def(o, t0), σ(p) = T,def(t, addr)

σ′ = σ[o 7→ lookup (addr)][t0 7→ τ ] ◦ erase(addr, p, t)

(o, t0) = load(addr, p, t)
¬def(o), σ(p) = F

σ′ = σ[o 7→ 4][sent0 7→ T]
Emit data early.

(o, t0) = load(addr, p, t)
¬def(t0), σ(p) = F,def(t)
σ′ = σ[t0 7→ τ ][sentt 7→ T]

Emit output token if token input
present.

(o, t0) = load(addr, p, t)
σ(p) = F,def(t, addr), sento = T, sentt = T

σ′ = σ ◦ erase(addr, p, t, sento, sentt)
Ack inputs.

Similar rules for stores, procedure calls and all other predicated operations.

o = mux(i1, p1, i2, p2)
¬def(o),def(i1), σ(p1) = T,¬def(sento)

σ′ = σ[o 7→ σ(i1)][sento 7→ T]

o = mux(i1, p1, i2, p2)
def(i1, p1, i2, p2), σ(sento) = T
σ′ = σ ◦ erase(i1, i2, p1, p2, sento)

o = mux(i1, p1, i2, p2)
∀k.σ(pk) = F

σ′ = σ[o 7→ 4][σ(sento) = T]

o = mux(i1, p1, i2, p2)
def(i1, p1, i2, p2), sento = T

σ′ = σ ◦ erase(i1, i2, p1, p2, sento)

o = mux(i1, p1, i2, p2)
def(i1, i2), σ(p1) = F

σ′ = σ[o 7→ σ(i2)][sento 7→ T]
Special optimization.
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