
Compiling Application-Specific Hardware

Mihai Budiu and Seth Copen Goldstein

Carnegie Mellon University�
mihaib,seth � @cs.cmu.edu

Abstract. In this paper we describe ASH, an architectural framework for imple-
menting Application-Specific Hardware. ASH is based on automatic hardware
synthesis from high-level languages. The generated circuits use only localized
computation structures; in consequence, we expect these circuits to be fast, to use
little power and to scale well with program complexity.

We present in detail CASH, a scalable compiler framework for ASH, which
generates hardware from programs written in C. Our compiler exploits instruction
level parallelism by using aggressive speculation and dynamic scheduling. Based
on this compilation scheme, we evaluate the computational resources necessary
for implementing complex integer-based programs, and we suggest architectural
features that would support the ASH framework.

1 Introduction

For five decades the relentless pace of technology, expressed as Moore’s law, has sup-
plied computer architects with ample materials in their quest for high performance. The
abundance of resources has translated into increased complexity. This complexity has
already become unmanageable in several respects:

� Verification and testing costs escalate dramatically.� Manufacturing costs grow dramatically with each new hardware generation.� Defect density control gets more expensive as the feature size shrinks; in the near
future we will be unable to manufacture large defect-free integrated circuits.� The clock frequency has increased to a point where only a small fraction of the chip
is reachable in a single cycle.� The number of exceptions generated by the CAD tools requiring manual interven-
tions grows quickly with design complexity.� The dissipated power density (watts/mm �) of state-of-the-art microprocessors reaches
values that make air-cooling infeasible.� Today’s processors use extremely complicated hardware structures to enable the ex-
ploitation of the instruction-level parallelism (ILP) in large windows; however, the
sustained performance is rather low.
Under the assumption that hardware density continues to improve at an exponential

pace for the next decade, we propose in Section 2 an alternative approach to implement
general-purpose computation, which consists of synthesizing — at compile time —
application-specific hardware, on a reconfigurable-hardware substrate. We argue that
such hardware can solve or alleviate all of the above problems. We call this model
ASH, for Application-Specific Hardware. We propose a method for directly synthesiz-
ing custom, application-specific dataflow machines in hardware. ASH implementations

Configuration

Compile−time

Link−time

Run−time

CASH

C Program

(B)

Program

Global Placer−Router

Virtualization layer

Reconfigurable hardware + RAM

map
defect

Object files

Local Placer−Router

Split−phase Abstract Machines

CASH

(A)

local
memory

Circuit

Global memory

Interconnection
Network

Reconfigurable fabric

Fig. 1. (A) The ASH tool-flow (B) Translation of programs into hardware.

have low overhead, as they are precisely tailored to the program parallelism. ASH cir-
cuits can be used stand-alone to implement the whole application, or in tandem with
a general-purpose processor. The main component of the ASH framework is CASH,
a Compiler for ASH, presented in Section 3. CASH spans the realms of traditional
compilation and hardware synthesis.

In Section 4 we evaluate the hardware resources needed to implement realistic pro-
grams within the ASH model of computation. Section 5 describes some implications of
the ASH architecture on computer system design.

2 Application-Specific Hardware

In this section we give an overview of the ASH model of computation. The core of ASH
is a reconfigurable fabric; compilation subsumes the role of traditional software compi-
lation and hardware synthesis, translating high-level language programs into hardware
configurations.

The left of Figure 1 summarizes our framework. Programs written in general-purpose
high-level languages are the input to the CASH compiler.

From each procedure in the program, CASH constructs three different types of ob-
jects: computation structures, interconnection links and local memories (see Figure 1,
right). In this paper we address only the construction of the hardware circuits.

Each procedure is independently optimized, synthesized, placed, and routed. The
pre-placed and routed circuits for each procedure are then connected together in a global
place and route phase. The resulting “executable” is a configuration for a reconfigurable
hardware platform.

The procedures communicate asynchronously with each other. Each contains com-
putation and possibly a small local memory. All the internal signals of the procedure
have predictable latency, including the access to local memory. Procedures can however
invoke remote operations, which have unpredictable latencies.

Whenever a procedure needs to execute an operation that has unpredictable latency
it uses the interconnection network: remote memory accesses, and control-flow trans-

fers are conceptually transformed into messages which can be routed dynamically on a
network.

During program execution a procedure can be in one of three states: (1) Inactive: if
is not being executed, does not have live state, and need not consume power; (2) Active:
if is actively switching, being at the “top” of the stack; (3) Passive: if stores live values,
but is blocked waiting for the completion of a callee (occasionally there may be some
concurrent execution between a caller and a callee).

An example. Here we illustrate, using an example, the atomic operations and how
they are assembled together to implement a simple C program. The program is an itera-
tive implementation of the Fibonacci function, displayed in the left side of Figure 2; its
ASH implementation is given in the right side.

CASH partitions each C procedure into a collection of hyperblocks, transforms each
hyperblock into straight-line code using speculation and next translates each hyperblock
into a dataflow circuit. The compilation process is discussed further in Section 3. Once
a hyperblock starts execution, every one of its operations is executed exactly once.

In order to understand how ASH circuits operate, one should think of the data as
produced by a source operator and consumed by a destination operator. Once the data is
consumed, it is no longer available. In general, an operator is strict, i.e. cannot compute
unless all its input data items are present. An operation may fanout the data value it
produces to multiple consumers.

Dataflow circuits can be easily used to express straight-line code. In order to al-
low the implementation of control-flow constructs (branches, procedure calls), ASH
augments the set of dataflow operations with two special constructs: merge and eta
nodes1. These nodes are used between hyperblocks. Merge and eta nodes are sufficient
for synthesizing circuits corresponding to arbitrary flow of control, including that of
irreducible graphs. Merge is denoted by a triangle pointing upwards, while eta (�) is a
triangle pointing downwards.

The eta operation has one data input, one predicate input and one data output. If
the predicate is true, the input data is copied to the output, otherwise the input data is
just consumed and no output is generated. Thus, an eta node is a gateway, which lets
data flow to a different part of the circuit depending on the predicate. For instance, the
eta nodes in hyperblock 1 will steer data to either hyperblock 2 or 3, depending on the
test k != 0. Note that the etas going to hyperblock 2 are controlled by this predicate,
while the eta going to hyperblock 3 is controlled by its complement.

Merge is the only non-strict operator. It has � inputs and one output; it copies one
available data input to the output. A merge node accepts information from multiple
sources, but only one of the sources should be active at some point. There are merge
nodes in hyperblocks 2 and 3. The merge nodes in hyperblock 2 accept data either from
hyperblock 1 or from the back-edges in hyperblock 2 itself. The back-edges denote the
flow of data along the while loop. The merge node in hyperblock 3 can accept control
either from hyperblock 1 or from hyperblock 2. The constant “1” feeding the “return”
instruction is a predicate, showing that the return is (from a control-flow point of view)
unconditionally executed, i.e., it fires as soon as its input data is available.

A formal definition of the semantics of all the basic ASH constructs can be found
in [4]. This type of operational semantics, where data is explicitly produced and con-

1 This terminology is historical, borrowed from the dataflow machine literature [18].

 a

ret

 k

n k

!=

n bn a

n a

1

!0

0

0

u b u ku a

n a

n a

+ −

n b n k!

0

!=

1

1

int fib(int k)
{
 int a = 0;
 int b = 1;
 while (k) {
 int tmp = a;
 a = b;
 b = b + tmp;
 k−−;
 }
 return a;
}

Fibonacci program

merge node

parameters

ASH implementation

merge nodes

loop again
eta nodes

eta nodes

1

to hyperblock 2

to hyperblock 3
1

2

3

3

2

to hyperblock 3
loop done:

Fig. 2. C program for Fibonacci and its ASH implementation. The program is decom-
posed by CASH into 3 hyperblocks, depicted by dotted lines. Hyperblocks are described
in Section 3.

sumed, is also used in some types of asynchronous circuit descriptions and in dataflow
machine architectures.

3 CASH

In this section we describe CASH, our current implementation of the ASH Compiler.
Our compiler infrastructure is built around the SUIF 1.3 research compiler [20]. Cur-
rently, we do not use any of the parallelizing components of SUIF. Due to space restric-
tions this presentation is very abstract; for more details please refer to [4].

Hyperblocks. The main abstraction we use at the program level is the hyperblock. A
hyperblock is part of a program control-flow graph (CFG) with a single entry point but
possibly multiple exits. Hyperblocks have been introduced in the context of predicated
execution [12] to uncover instruction-level parallelism (ILP) by removing the control
dependences through the predication of the instructions within the hyperblock.

Using hyperblocks as a unit of compilation for reconfigurable hardware was earlier
proposed by Callahan and Wawrzynek [6]. Their proposal was heavily influenced by
resource constraints and selected only high-profile loop body fragments to map to hard-
ware. Our method of hyperblock selection is unconstrained by resource limitations. We
cover each procedure with disjoint hyperblocks, using a linear-time algorithm.

Work in predicated architectures developed a set of heuristics for hyperblock se-
lection [12] (considering hyperblock fragmentation, code duplication, loop peeling and
other optimizations). Currently we are using a simple heuristic, building hyperblocks
of maximal size.

Some hyperblocks will be loop bodies; we follow the same approach as Callahan
and consider the back-edges as part of the hyperblock. If a loop has multiple back-
edges, all of them are considered part of the same hyperblock. We next synthesize each

P(c)

B(a,b) B(c,d)
++−

&

!!

&

 a2p += 0xFF; a2p += fa1 >> 5;

(fa1 > 8191) a2p −= 100;

(fa1 < −8191)

 a2p −= 100;

 a2p += 0xFF;

 a2p += fa1 >> 5;

else if (fa1 > 8191)

if (fa1 < −8191)

else

a2p

< >

100

0xff
>>

5

−8191 8191

fa1

P(b)
P(d)

P(e)

a2p

a

c

e

f

(B) (C)

b

d

(A)

Fig. 3. (A) Code fragment (B) Control-flow graph (C) Speculative implementation.

hyperblock separately; later merge and eta nodes are used to connect hyperblocks to
each other.

Hyperblock synthesis. Through the use of predication, each hyperblock is trans-
formed into straight-line code. Next the code is brought into static-single assignment
form (SSA) [9] through variable renaming. The computation of the combinatorial por-
tion of each hyperblock (i.e. excluding the back-edges) is next implemented specula-
tively in the style of predicated static-single assignment [8] and predicated speculative
execution [1], as described in [6].

To illustrate the implementation, we use the example in Figure 3, a code snippet
from the g721 Mediabench [10] program.

Path Predicates. Each basic block in a hyperblock has an associated path predicate,
as described in [8]; the path predicate associated to block B is true if and only if block
B is executed during the current loop iteration. The predicates corresponding to blocks
are recursively defined:

�����
�����
	���
����
� � and

����� ��
����������! #"%$'&�(�)���+* ��,.- �+*�/0� �1� ,
where - �+*�/0� � is true if block

*
branches to

�
. This is read as: “Block

�
is executed if

and only if one of its predecessors
*

is executed and
*

jumps to
�
.”

We next use instruction promotion [12] which removes predicates from some in-
structions or replaces them with weaker predicates, enabling their speculative execu-
tion. If the hyperblock code is in static-single assignment form, any instruction with no
side-effects can be safely and completely promoted to be executed unconditionally.

Since predicate computations do not need to be guarded, they can be implemented
like any regular computation. The predicates are then used for three tasks: (1) to guard
the execution of instructions with side-effects (memory writes, memory reads that can
trigger exceptions, function calls and returns), (2) to control looping, and (3) on exit
from the current hyperblock to indicate which successor hyperblock is executed.

Each edge in the CFG contributes one term to the predicate computation, so the
implementation of all predicates is linear in the hyperblock size.

The speculative program implementation just described is essentially a gated static
single assignment representation (GSA) [14] of the predicated program. The 2 operators
used by the SSA form become in our representation multiplexors, selecting among the
many definitions of a value that reach a join point in the CFG. The multiplexor selectors
are path predicates. Unlike other proposed SSA representations for predicated code [8],
we explicitly build the circuitry to compute the 2 functions, which become multiplexors
in hardware (see Figure 3C).

Multiplexor placement and optimization. As already noted, the placement of multi-
plexors corresponds to the placement of 2 functions in SSA form. However, multiplexor

placement is simpler than 2 placement, because all the back edges in a hyperblock go
to the entry point and the rest of the hyperblock is a directed acyclic graph.

We next run a multiplexor simplification pass, which repeatedly applies one of the
following rules: (1) constant selector predicates values can be removed; (2) multiple
identical data inputs of a mux are merged into a single input and the predicate is set
to the logical “or” of the corresponding predicates (3) a mux with a single data in-
put is removed and the input is connected directly to the output (4) two chained mux
are transformed into a single mux (whose predicates are the logical “and” of the two
muxes).

Merge and eta insertion. The circuits generated for the hyperblocks are “stitched”
together using merge and eta operations as follows: (1) for each live variable at the
entry of a hyperblock we create a merge node; (2) for each live variable at an exit of a
hyperblock (i.e., on a hyperblock exit edge) we create an eta node; the eta is controlled
by the edge predicate. The eta’s output is connected to the input of the corresponding
merge node of the successor hyperblock.

Scheduling and synchronization. Crucial for performance is the efficient schedul-
ing of the dataflow operations. Here we depart from Callahan’s proposal, by implement-
ing dynamic scheduling using a completely distributed synchronization scheme. The
difference between these two methods is analogous to the difference between VLIW
and superscalar processors. Static scheduling requires little hardware support (in the
form of a very simple sequencer, which is implemented as a circular shift register in
Garp), while dynamic scheduling requires a more complicated handshaking protocol.

The producer of data must signal that data is valid, while the consumer(s) must
signal that they have extracted the data, i.e., that the channel can be reused. This protocol
is essentially the Two-Phase Bundled Data convention used in asynchronous hardware
implementations. ASH is perfectly suitable for an asynchronous implementation.

We expect that mixed implementations that combine static and dynamic scheduling
are feasible: portions of the computation between unpredictable latency operations can
use simple sequencers that are started by a “data valid” signal. “Data valid” signals
are also used to preserve the original program order between instructions which have
side effects. Notice that these signals ensure that operations are issued in the original
program order; they do not specify the order in which they will complete.

Lenient evaluation. One problem of predicated-execution architectures is that ex-
ecution time on speculated control-flow paths may be unbalanced [2]. For instance,
assume that subtraction takes much longer than addition; then the leftmost path in Fig-
ure 3C is the critical path. We propose to solve this problem by using lenient, fully
decoded multiplexors.

Fully-decoded multiplexors have as many selector bits as there are inputs. Each se-
lector bit selects one of the inputs, as shown by the dotted lines in Figure 3C. These
multiplexors do not need complicated decoding logic. A lenient multiplexor can gener-
ate its output as soon as one selector predicate is true and the corresponding selected
data item is valid. We use lenient evaluation both for boolean operations and multiplex-
ors.

Units Bit-operations
Program LOC Circuits tokens memory call/ret fp predicates mux flow arithmetic
adpcm e 183 6 12 10 8 0 53 1,408 1,749 4,450
adpcm d 183 6 7 9 8 0 36 832 1,653 2,114
g721 e 924 39 115 148 86 0 421 2,816 8,673 25,488
g721 d 922 46 113 153 108 0 493 3,200 8,464 30,741
gsm e 4156 247 761 1,080 463 0 1,951 15,104 52,707 291,065
gsm d 4155 243 751 1,069 459 0 1,966 14,976 51,865 290,552
epic e 1632 254 323 379 231 53 1,389 8,928 252,613 124,164
epic d 1538 127 310 474 112 6 139 864 175,386 69,670
mpeg2 e 5123 553 2,490 2,482 876 197 6,714 37,152 205,309 430,367
mpeg2 d 6854 457 1,297 1,714 837 11 3,820 18,816 102,395 254,513
jpeg e 15623 1,705 3,605 7,429 1,676 153 11,624 42,016 702,402 701,323
jpeg d 15039 1,651 3,386 6,993 1,605 153 11,099 38,848 695,943 713,640
pegwit e 5013 320 1,008 1,711 604 0 2,412 8,832 69,231 194,744
pegwit d 5013 320 1,008 1,711 604 0 2,412 8,832 69,231 194,744
mesa 47063 3,299 10,491 19,742 4,104 4,900 125,938 175,008 2,024,765 2,032,393
129.compress 1431 84 216 241 82 3 214 1,760 19,007 24,794
124.m88ksim 12910 750 4,225 4,951 2,080 47 25,650 50,208 178,035 373,232
099.go 25665 2,229 11,324 9,516 2,966 0 35,889 139,360 961,999 817,972
130.li 4888 653 2,000 2,251 1,672 13 4,480 30,560 87,436 101,028
132.ijpeg 17563 1,658 3,609 7,632 1,854 157 10,182 29,216 649,388 741,338
134.perl 23365 1,960 26,835 14,143 4,924 47 140,598 191,040 1,045,737 858,553
147.vortex 49224 1,165 17,389 20,054 7,665 4 53,324 147,744 693,659 966,205

Table 1. Static resource consumption for each benchmark. Some resources are expressed in units, while
other are expressed in bit-operations. LOC: lines of source code, hypers: number of hyperblocks generated;
tokens: token-merging operators; memory: loads and stores; call/ret: calls and returns; fp: floating-point
operations; predicates: boolean operations computing predicates; mux: multiplexors; flow: control-flow op-
erators; arithmetic: integer arithmetic. We do not include the cost of handshaking control circuitry.

4 Resources Required for ASH Implementations

In this section we present a preliminary evaluation of the required resources for the
complete implementation of programs in hardware. We analyze a set of programs from
the Mediabench [10] and SpecInt95 [17] benchmark suites.

Resources. Table 1 displays the resources required for the complete implementation
of these programs in hardware. We do not include in these numbers the standard library
or the operating system kernel. All the values are static counts. The lines of code were
counted with the sloccount program [19], which skips whitespace and comments. We
have used a conservative approximation of the program call-graph to eliminate some of
the procedures which are never called.

For some of the operations it is fairly easy to estimate the required hardware re-
sources; we listed these under the heading “bits”, and the values indicate the approx-
imate number of bit-operations required to implement them. For remote operations
(memory access, call/return), the implementation size can vary substantially, depend-
ing for instance on the nature of the interconnection network. For these we report just
operation counts.

Comments: The raw computation resources required (the total of the “bits” columns)
is below 2.2 million for all benchmarks except mesa, which is below 5 million (with-
out any floating-point resources). Even by today’s standards, these are reasonably small

and many of them can be implemented completely in hardware now—the rest will soon
fit within a single chip.

This data doesn’t include the savings that can be achieved by implementing compu-
tations of custom sizes. Research has shown [5] that simple static methods can eliminate
20% of the bit computations in these benchmarks.

Notice that the resources taken by the predicate computations are minor compared
to the actual computation; this suggests that coarse-grained reconfigurable fabrics are
more suitable for ASH systems than today’s fine-grained FPGAs.

5 Benefits of the ASH Model

The ASH model has better scalability properties than traditional CPU architectures. For
instance:

� The verification and testing of a homogeneous reconfigurable fabric is much simpler
than general purpose microprocessors. ASH translates the applications directly into
hardware, so there is no interpretation layer (i.e., the CPU) which can contain bugs.
By using the translation validation [15], (used by a certifying compiler to emit a
formal proof that the executable is equivalent with the input program) we completely
eliminate one complex layer needing verification and testing.� Only one hyperblock is actively switching at any time, requiring little power.� ASH implementations use only local signals, which scale well with clock frequency.
All inter-procedural communication can be made using a switched, pipelined inter-
connection network, so there is no need for global electrical signals.� Dynamic methods of extracting ILP from programs (as implemented in today’s out-
of-order processors) are hindered by limited issue windows. Our compiler analyzes
large program fragments and can uncover substantially more parallelism than pro-
cessor issue windows.

The main disadvantage of the ASH paradigm is the requirement for substantial hard-
ware resources. However, this can be alleviated through use of virtualization, or by
hardware-software partitioning between a CPU and an ASH fabric. According to data
presented in Section 4, the evolution of component density according to Moore’s law
will soon provide sufficient resources for all but the most complex programs.

6 Related Work

This work has two different lineages: research on intermediate program representation
and compilation for reconfigurable hardware architectures.

Many researchers have addressed the problem of compiling high-level languages
for reconfigurable architectures: e.g., [16, 6, 3, 13, 11]. Our compilation scheme is most
closely related to the scheme proposed by Callahan in the Garp compiler [6, 7]. While
we exploit many of the ideas in his proposal, we differ in the following respects:

� Our approach reflects our different assumptions about the amount of available com-
putational resources. In his proposal each hyperblock becomes a separate configura-
tion. In our implementation we translate entire procedures into hardware: each pro-
cedure is decomposed into a collection of disjoint hyperblocks, and inter-hyperblock

communication is synthesized. We also handle procedure calls and returns in hard-
ware, albeit with some restrictions (currently we do not handle recursion).� In Callahan’s work, the synthesized hyperblock implementation is statically sched-
uled, using a fixed sequencer. We propose the use of a dynamically scheduled execu-
tion, which, despite requiring potentially more hardware resources to implement, has
the capability to gracefully absorb unpredictable latency operations. Our dynamic
scheduling scheme naturally generalizes his software-pipelining scheme.
The output of our compiler is a series of circuits. These bear a striking resemblance

to some forms of intermediate representations of the program in other optimizing com-
pilers. Our circuits are most closely related to predicated static-single assignment [8].
Our circuits are also closely related to dataflow machines [18], but are meant to be im-
plemented directly in hardware and not interpreted on dataflow machines using token-
passing.

7 Conclusions

In this paper we have presented a proposal for a new model of computation, called
Application-Specific Hardware (ASH), which implements programs completely in hard-
ware, on top of a reconfigurable hardware platform. Our preliminary evaluations sug-
gest that soon there will be enough hardware resources to accommodate complete real-
istic programs, and that the sustained performance of this model will be comparable to
processor-based computations.

We have discussed the compilation technology which can scalably translate large
programs written in high-level languages into hardware implementations. Our com-
pilation strategy transforms hyperblocks into circuits which execute many operations
speculatively, and thus expose a substantial amount of instruction-level parallelism. The
execution of the hardware is dynamically scheduled by using only local synchronization
structures, tolerating unpredictable latency events.

We have also outlined those features of the ASH model of computation that promise
to make this model scalable. ASH implementations can easily and naturally take advan-
tage of the exponentially increasing amount of hardware resources, avoiding many of
the problems that the increased complexity brings to standard CMOS-based micropro-
cessor design and manufacturing.

8 Acknowledgements

This research is funded in part by the National Science Foundation under Grant No.
CCR-9876248 and by Darpa under contract #2156-CMU-ONR-0659. We are grateful
to Tim Callahan for his comments on a preliminary version of this paper.

References

1. David I. August, Daniel A. Connors, Scott A. Mahlke, John W. Sias, Kevin M. Crozier,
Ben-Chung Cheng, Patrick R. Eaton, Qudus B. Olaniran, and Wen mei W. Hwu. Integrated
predicated and speculative execution in the IMPACT EPIC architecture. In Proceedings of
the 25th Annual International Symposium on Computer Architecture, pages 227–237, June
1998.

2. David I. August, Wen mei W. Hwu, and Scott A. Mahlke. A framework for balancing control
flow and predication. In Proceedings of the 30th International Symposium on Microarchi-
tecture, December 1997.

3. Jonathan Babb, Martin Rinard, Csaba Andras Moritz, Walter Lee, Matthew Frank Rajeev
Barua, and Saman Amarasinghe. Parallelizing applications into silicon. In Proceedings of
the Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
1999.

4. Mihai Budiu and Seth Copen Goldstein. Pegasus: An efficient intermediate representation.
Technical Report CMU-CS-02-107, Carnegie Mellon University, May 2002.

5. Mihai Budiu, Majd Sakr, Kip Walker, and Seth Copen Goldstein. BitValue inference: De-
tecting and exploiting narrow bitwidth computations. In Proceedings of the 2000 Europar
Conference, volume 1900 of Lecture Notes in Computer Science. Springer Verlag, 2000.

6. Timothy J. Callahan and John Wawrzynek. Instruction level parallelism for reconfigurable
computing. In Hartenstein and Keevallik, editors, FPL’98, Field-Programmable Logic and
Applications, 8th International Workshop, Tallinin, Estonia, volume 1482 of Lecture Notes
in Computer Science. Springer-Verlag, September 1998.

7. Timothy J. Callahan and John Wawrzynek. Adapting software pipelining for reconfigurable
computing. In Proceedings International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems (CASES) 2000, 2000.

8. Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne Ferrante. Path analysis and
renaming for predicated instruction scheduling. International Journal of Parallel Program-
ming, special issue, 28(6), 2000.

9. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently computing static
single assignment form and the control dependence graph. ACM Transactions on Program-
ming Languages and Systems, 13(4):451–490, 1991.

10. Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: a tool for
evaluating and synthesizing multimedia and communications systems. In Micro-30, 30th
annual ACM/IEEE international symposium on Microarchitecture, pages 330–335, 1997.

11. Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure, and Jon Stock-
wood. Hardware-software co-design of embedded reconfigurable architectures. In DAC
2000, 2000.

12. Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A. Bringmann.
Effective compiler support for predicated execution using the hyperblock. In Proceedings of
the 25th International Symposium on Microarchitecture, pages 45–54, Dec 1992.

13. Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark Horowitz.
Smart memories: A modular reconfigurable architecture. In Proceeding of the International
Conference on Computer Architecture 2000, June 2000.

14. Karl J. Ottenstein, Robert A. Ballance, and Arthur B. Maccabe. The program dependence
web: a representation supporting control-, data-, and demand-driven interpretation of imper-
ative languages. In Proceedings of the Conference on Programming Language Design and
Implementation PLDI 1990, pages 257–271, 1990.

15. Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Springer Verlag,
editor, Proceedings of TACAS’98, volume 1384 of LNCS, pages 151–166, 1998.

16. Rahul Razdan. PRISC: Programmable reduced instruction set computers. PhD thesis, Har-
vard University, May 1994.

17. Standard Performance Evaluation Corp. SPEC CPU95 Benchmark Suite, 1995.
18. Arthur H. Veen. Dataflow machine architecture. ACM Computing Surveys, 18 (4):365–396,

1986.
19. David A. Wheeler. More than a gigabuck: Estimating GNU/Linux’s size.

http://www.dwheeler.com/sloc, November 2001.
20. Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe, Jen-

nifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W. Hall,
Monica S. Lam, and John L. Hennessy. SUIF: An infrastructure for research on parallelizing
and optimizing compilers. In ACM SIGPLAN Notices, volume 29, pages 31–37, December
1994.

