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Abstract. We address the problem of writing compilers targeting complex ex-
ecution environments, such as computer clusters composed of machines with
multi-core CPUs. To that end we introduce partial compilers. These compilers
can pass sub-programs to several child (partial) compilers, combining the code
generated by their children to generate the final target code. We define a set of
high-level polymorphic operations manipulating both compilers and partial com-
pilers as first-class values. These mechanisms provide a software architecture for
modular compiler construction. This allows the building of a forest of compilers,
providing a structured treatment of multistage compilers.

1 Introduction

Today’s computers are routinely composed of multiple computational units: multi-core
processors, hyperthreaded processors, graphics processors, and multi-processors; we
use the term “execution engine” for these computational resources. The work pre-
sented in this paper was motivated by the DryadLINQ compiler [27]. DryadLINQ
translates programs written in the LINQ programming language (Language INtegrated
Query) [17] into distributed computations that run on shared-nothing computer clusters,
using multiple cores on each machine. The core DryadLINQ compilation is structured
as a three-stage process: (1) translating a cluster-level computation into a set of interact-
ing machine-level computations, (2) translating each machine-level computation into a
set of CPU core-level computations, and (3) implementing each core-level computation.

Modifying a compiler stage requires deep understanding of both the compiler archi-
tecture and its implementation. We would prefer to be able to experiment easily, replac-
ing some stages without knowing the implementation of others. Our goal is therefore to
develop a general modular software architecture enabling compilers for distributed exe-
cution environments to be factored into a hierarchy of completely independent compil-
ers, or “pieces” of compilers that cooperate via well-defined interfaces; the architecture
should allow different pieces to be mixed and matched, with no access to source code
or knowledge of internals.

To this end we propose a novel architecture employing a standard type-theoretical
interface. In Section 2 we present partial compilers, a formalization of a “piece” of a
compiler: partial compilers need “help” from one or more child compilers to produce
a complete result. The resulting composite compilers form compiler forests. Formally,
one uses polymorphic composition operations on compilers and partial compilers. The
interface between component compilers is surprisingly simple and succinct. Traditional
compiler stages can be recast as partial compilers.
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Fig. 1. L: A compiler translates sources to targets.
R: A partial compiler invokes the service of a child
compiler.

We present other natural poly-
morphic composition operations on
compilers and partial compilers in
Sections 2 and 3. Taken together,
these operations can be seen as a
form of “structured programming”
manipulating compilers and partial
compilers as first-class values. We
thereby support dynamic compiler
construction and extension, enabling
sophisticated users to construct, cus-
tomize, and extend compilers by
mixing predefined and custom-built
compiler components.

The theoretical foundations we
establish have immediate practical applications. To demonstrate this, we revisit the
original problem of compiling LINQ for computer clusters. In order to expose the
fundamental ideas without undue detail, we use a stylized version of LINQ, called
μLINQ. This language is rich enough to express many interesting computations, in-
cluding the popular MapReduce [6] large-scale computation model. In Section 4 we
build a fully functional compiler for μLINQ that executes programs on a computer
cluster with multi-core machines.

Remarkably, partial compliers have their origins in work on categorical logic and
on computer-assisted theorem proving, specifically de Paiva and Hyland’s Dialectica
categories [5,12] and Milner’s tactics [10,19], the building blocks of his approach to
computer-aided theorem proving. Section 5 treats the mathematical foundations of par-
tial compilers in terms of a slight variant of the Dialectica category incorporating
compile-time effects via a suitable monad. The morphisms of this category can be viewed
as providing (the semantics of) a typed version of Milner’s tactics. The polymorphic op-
erations on partial compilers and compilers that we use to manipulate them as first-class
objects were inspired by categorical considerations. For example, the composition and
tensor operations of Section 2 correspond to compositions and tensors of morphisms.

We have also validated the partial compiler architecture with two proof-of-concept
compiler implementations: a (simplified) reimplementation of DryadLINQ, and a com-
piler for large-scale matrix expressions. They are described briefly in Section 6. Finally,
Sections 7 and 8 discuss related work and conclude.

2 Compilers and Partial Compilers

We call the program fed as input to a compiler a “source” (usually denoted by S), and
the output generated by the compiler a “target” (usually denoted by T ). The intuition
behind partial compilers is shown on the right of Figure 1. There a partial compiler
reduces the source program to a source′ program, to be handled by a child compiler.
Given a target′ result obtained from the source′ program by the child compiler, the
partial compiler then generates the target for the original source program.
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More generally, a partial compiler may use several child compilers. For example,
given a source, a cluster-level partial compiler may generate a target to distribute input
data among many machines, of various types, instructing each machine to perform a
computation on its local data. In order to generate the target code running on each ma-
chine, the cluster-level compiler creates machine-level source programs source′, which
are handed to machine-level child compilers, one for each type of machine; these, in
turn, generate the needed machine-level target′s. The global, cluster-level target con-
tains code to (1) move data between machines and (2) invoke machine-level target′s of
appropriate types on cluster machines and their local data.

2.1 Definitions

With these intuitions in mind, we can now give a theory of partial compilers. We take a
call-by-value typed lambda calculus as our compiler language, and use it to define par-
tial compilers and operations on them. We do not detail the calculus, but we make use of
product and function types, labeled sum types (see [22]), list types, and base types. Our
theory permits the lambda calculus to be effectful, i.e., we permit compile-time effects;
it also permits recursion. However neither our examples nor our implementations make
use of either of these two possibilities.

Formally, we take the calculus to be a suitable extension of Moggi’s computational
lambda calculus [20,21,1] to allow for compile-time effects. For its semantics we as-
sume available a Cartesian closed category equipped with a strong “compile-time”
monad Tcomp and suitable extra structure to accommodate the sum types, etc. As
our examples and implementations use neither compile-time effects nor recursion, the
reader can assume there that the category is that of sets and functions, so that types
denote sets and terms denote elements of them.

Compilers transform sources into targets so they are terms C typed as:

C : source −→ target

as pictured on the left of Figure 1. We do not specify the relationship between source
and target; in particular, the target type of some compiler may be the source type of
some other compiler.

Rather than making specific choices of target languages, we use a lambda calculus
to define the semantics [[T ]] of targets T output by compilers. We assume that the target
computations output by compilers act on a type “data” so that this semantics has the
form:

[[T ]] : data → data

As in the case of the compiler language, we do not detail such a run-time lambda cal-
culus, but, in particular, it may have run-time effects. In general, target languages may
differ in both the data their targets handle and the run-time effects they create; however,
for simplicity, we keep both fixed in the examples.

Formally, we (again) use the computational lambda calculus, but for the semantics
we now use “run-time” monads Trun to account for run-time effects. As it suffices for
the examples at hand, we work in the category of sets, but nothing depends on that.

We define (unary) partial compilers to be terms of type:

PC : source→ (source′ × (target′→target))
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As discussed above, the idea is that, given a source program, a partial compiler “re-
duces” it to a source′ program, to be handled by a child compiler, and also produces a
“generation” function that, given a target′ obtained from the child, returns the required
target. With this type, compile-time effects can occur at two points: when reducing the
original source, and when computing the target.

To make formulas more readable we employ syntactic sugar for both types and terms.
We write

(source, target) � (source′, target′)

for the above partial compiler type, reading the type as “going from source to source′

and then back from target′ to target”; and we write

Compiler S : source.
Reduction R,
Generation T ′ : target′. G

for the partial compiler

λS : source. letS′ : source′ beR in (S′, λT ′ : target′. G)

Note that S is bound in both the reduction and generation clauses.
Figure 1 (right) shows a simple compiler tree, consisting of a parent partial compiler

invoking the services of a child compiler. We model this by a polymorphic composition
operation, which returns a compiler, given a (parent) partial compiler and a (child)
compiler. Let PC be a partial compiler, as above, and C : source′ → target′ be a
compiler. We write their composition using angle brackets:

PC 〈〈C〉〉 : source → target

and define it to be:

λS : source. let (S′, G) bePC (S) inG(C(S′))

If there are no compile-time effects, we can view the operation of the compiler PC 〈〈C〉〉
on a source S′ as going through a sequence of compiler stages or passes:

S
fst◦PC−−−−−−−→ S′ C−−−−−→ T ′ snd(PC (S))−−−−−−−−→ T

where the last pass snd(PC (S)) is a function of the initial source. In contrast, the
operation of the partial compiler PC is a “partial” sequence of passes:

S
fst◦PC−−−−−−−→ S′ ?−−−−−→ T ′ snd(PC (S))−−−−−−−−→ T

The core function of our methodology is to generate useful patterns of such passes in a
structured way, including combining partial passes. We define the composition

PC 〈〈PC
′ 〉〉 : (source, target) � (source′′, target′′)

of a partial compiler PC with a partial compiler

PC
′
: (source′, target′) � (source′′, target′′)

to be:

λS : source. let (S′, G) bePC (S) in let (S′′, G′) bePC
′
(S′) in (S′′, G ◦G′

)
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In terms of a partial sequence of passes this is:

S
fst◦PC−−−−→ S′ fst◦PC

′

−−−−−→ S′′ ?−→ T ′′ snd(PC
′
(S′))−−−−−−−−−→ T ′ snd(PC (S))−−−−−−−−→ T

Certain equations hold in the computational lambda calculus, for all compiler-time ef-
fects. Partial compiler composition is associative:

PC 〈〈PC
′〈〈PC

′′ 〉〉〉〉 = PC 〈〈PC
′ 〉〉〈〈PC

′′ 〉〉
and the two compositions are compatible, as shown by the action equation:

PC 〈〈PC
′ 〈〈C〉〉〉〉 = PC 〈〈PC

′ 〉〉〈〈C〉〉
The partial compiler Id =def (λS.S, λ(S, T ).T ) passes a given source to its child and
then passes back the target generated by its child unchanged. It is the identity element
for composition, i.e., the following identity equations hold:

Id〈〈PC 〉〉 = PC = PC 〈〈Id〉〉 Id〈〈C〉〉 = C

Unary partial compilers can be generalized to n-ary terms PCn of type

source−→ ((source′1 × . . .× source′n)× (target′1 × . . .× target′n) → target)

One can reduce such n-ary partial compilers to unary partial compilers by taking source′

to be source′1× . . .× source′n and target′ to be target′1× . . .× target′n. Compilers can
be thought of as 0-ary partial compilers. The ability to write n-ary partial compilers that
can communicate with several children, which may be addressing different execution
engines, is crucial to our approach.

To define composition on n-ary partial compilers we iterate two pairing operations,
which are both called tensor, on compilers and partial compilers. For the first, given
compilers Ci : sourcei → targeti (for i = 1, 2), we define their tensor

C1 ⊗ C2 : (source1 × source2) → (target1 × target2)

to be:

C1 ⊗ C2 = λ(S1, S2). (C1(S1), C2(S2))

Given an n-ary partial compiler PCn and n compilers Ci : source′i → target′i (for
i = 1, . . . , n) the n-ary composition PCn〈〈C1, . . . , Cn〉〉 is an abbreviation for the
unary composition PCn〈〈C1 ⊗ . . .⊗Cn〉〉. The n-fold tensor is the iterated binary one,
associated to the left; it is the trivial compiler for n = 0.

Next, we define the binary tensor

PC1 ⊗ PC2 : (source1 × source2, target1 × target2) �
(source′1 × source′2, target

′
1 × target′2)

of two partial compilers

PC i : (sourcei, targeti) � (source′i, target
′
i)

to be:

λS1, S2. let (S
′
1, G1) bePC 1(S1) in

let (S′
2, G2) bePC 2(S2) in

((S′
1, S

′
2), λT1, T2. letT

′
2, T

′
1 beG2(T2), G1(T1) in (T

′
1, T

′
2))
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The reason for the “twist” in the order of the G’s is explained in Section 5. Intuitively,
G2’s effects are “well-bracketed” by G1’s.

Using this tensor, one defines the composition of an n-ary partial compiler with n
partial compilers via iterated tensors, analogously to the case of compilers. One then
obtains suitable n-ary generalizations of the above unary associativity, action, and unit
equations for the two n-ary compositions. These hold when there are no compile-time
effects; Section 5 discusses the general case.

2.2 An Example: The Sequential Partial Compiler

We give an example of a binary partial compiler and its composition with two com-
pilers; Section 3.4 makes use of the composition of partial compilers. We consider
compiling source programs S obtained from the composition of two simpler sources
prefix(S) and suffix(S), where:

prefix, suffix : source −→ source

The binary partial compiler

PC2
SEQ : (source, target) � (source× source, target× target)

generates (partial) sources from the source prefix and suffix, and the targets obtained
for these two sources are composed:

Compiler S : source.
Reduction (prefix(S), suffix(S)),
Generation Tprefix : target, Tsuffix : target.Comp(Tsuffix, Tprefix)

where Comp is an assumed available composition operation with semantics:

[[Comp(Tsuffix, Tprefix)]] = λd : data. [[Tsuffix]]([[Tprefix]](d))

Suppose we wish to run our computation on a computer with a CPU and a graphics
card (GPU). Assume we have compilers CGPU, generating a GPU target′, and CCPU,
generating a CPU target, and a term runGPU : target′ → target that, given T ′, pro-
duces a T with the same semantics that loads T ′ on the GPU and then runs it on the data
supplied to T , returning the result to the CPU. The composition of CGPU with runGPU

then defines a compiler CG : source → target such that, for all source’s S and data d:

[[CG(S)]](d) = [[runGPU(CGPU(S))]](d) = [[CGPU(S)]](d)

Given a source program, we can then run its prefix on the GPU and its suffix on the
CPU, using the binary composition PC2

SEQ〈〈CG, CCPU〉〉 of the binary partial compiler
PC2

SEQ with the two compilers CG and CCPU.

3 Compilers and Partial Compilers as First-Class Objects

While composition and tensor are the main operations on compilers and partial compil-
ers, we now discuss five more, shown in Table 1.
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Table 1. Generic compiler operations described in this paper

Operation Symbol Compilers
Partial

Section
Compilers

Composition 〈〈〉〉 Yes Yes 2.1
Tensor ⊗ Yes Yes 2.1
Star ∗ Yes No 3.1
Conditional COND Yes Yes 3.2
Cases CASES Yes Yes 3.3
Functor PCFunc No Yes 3.4
Iteration DO No Yes 3.5

3.1 Star

So far we have considered partial compilers whose arity is constant. We generalize,
defining partial compilers that operate with lists of sources and targets. For any compiler
C : source → target, we define C∗ : source∗ → target∗, the star of C, to be the
pointwise application of C to all elements of a given list l of sources:

C∗(l) = map(C, l)

Consider the partial compiler PCSEQ : (source, target) � (source∗, target∗) that
generalizes the sequential compiler PC2

SEQ from Section 2.2 by decomposing a source
S that is function composition into a list [S1, . . . , Sn] of its components. Given a com-
piler C : source → target for simple sources, the composition PCSEQ 〈〈C∗〉〉 is a
compiler for queries that are an arbitrary composition of simple sources. A practical
example involving the star operation is given in Section 4.2.

3.2 Conditionals

The partial compiler operations we have constructed so far are all independent of the
sources involved; by allowing dependence we obtain a richer class of compiler compo-
sition operations. For example, it may be that one compiler is better suited to handle a
given source than another, according to some criterion:

Pred : source → bool

We define a natural conditional operation to choose between two compilers

COND : (source→bool)× (source→target)2 → (source→target)

by:
COND = λ(p, (C1, C2)). λS. if p(S) then C1(S) else C2(S)

We may write IF PredTHEN C1 ELSE C2 instead ofCOND(Pred, (C1, C2)). There
is an evident analogous conditional operation on partial compilers.

We can use the conditional to “patch” bugs in a compiler without access to its imple-
mentation. Assume we have a predicate bug : source → bool that describes (a superset
of) the sources for which a specific complex optimizing compiler COPT generates an
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incorrect target. Let us also assume that we have a simple (non-optimizing) compiler
CSIMPLE that always generates correct targets. Then the compiler

IF bugTHEN CSIMPLE ELSE COPT

“hides” the bugs in COPT.

3.3 Cases

Similar to the * operation, but replacing list types by labeled sum types, we can define
a “cases” operation, a useful generalization of conditional composition. Given n indi-
vidual compilers Ci : sourcei → target (for i = 1, . . . , n) together with a function
W : source → l1 : source1 + . . .+ ln : sourcen, we define

CASES W OF l1 : C1, . . . , ln : Cn

to be the compiler C : source → target where:

C(S) = cases W (S) of l1 : C1(S), . . . , ln : Cn(S)

We give a practical example using CASES in Section 4.2.
There is an evident analogous cases operation on partial compilers. Given two partial

compilers PCi : (sourcei, target) � (source′, target′), we define

CASES W OF l1 : PC1, . . . , ln : PCn

to be the partial compiler PC : (source, target) � (source′, target′) given by:

λS. cases W (S) of l1 : PC1(S), . . . , ln : PCn(S)

3.4 Functor

Given functions f : source → source′ and g : target′ → target, we define the partial
compiler

PCFunc(f, g) : (source, target) � (source′, target′)

to be:
Compiler S : source.
Reduction f(S),
Generation T ′ : target′. g(T ′)

This operation is functorial, meaning that this equation holds:

PCFunc(f, g)〈〈PCFunc(f
′, g′)〉〉 = PCFunc(f

′of, gog′)

We describe two useful applications in which g is the identity idtarget on target.
Traditional compilers usually include a sequence of optimizing passes, given by op-

timizing transformation functions Opt : source → source. Such passes correspond to
partial compilers of the form PCFunc(Opt, Idtarget).
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Staged compilers (e.g., [13,24]) are frequently built from a sequence of transforma-
tions between (progressively lower-level) intermediate representations, followed by a
final compilation step:

source1
Trans1−−−−→ . . .

Transn−1−−−−−−→ sourcen
C−→ target

One can model this structure by composing partial compilersPCFunc(Transi, Idtarget),
obtaining a partial compiler PCStage : (source1, target) � (sourcen, target), where

PCStage =def PCFunc(Trans1, Id)〈〈. . . 〈〈PCFunc(Transn−1, Id)〉〉 . . .〉〉
The final compiler is then PCStage〈〈C〉〉. This integrates staged compilation into our
framework in a straightforward way.

3.5 Iteration

The iteration operation iterates a partial compiler

PC : (source, target) � (source, target)

up to n times, stopping if a given predicate Pred : source → bool becomes true. We
define

HPC : nat → ((source, target) � (source, target))

to be:
HPC(0) = Id
HPC(n+ 1) = IF PredTHEN IdELSE PC 〈〈HPC(n)〉〉

(We assume the λ-calculus has a facility for primitive recursion.) Applying HPC to
Num : nat, one obtains the partial compiler

DO PC UNTIL Pred FOR Num TIMES

This could be used to repeatedly apply an optimizing compiler PC until a fixed-point
is reached, as detected by Pred.

4 Application to Query Processing

In this section we return to our motivating problem: compiling LINQ. We introduce
essential aspects of LINQ and give a much simplified version, called μLINQ, that is
small enough to be tractable in a paper, but rich enough to express interesting compu-
tations. We develop a hierarchy of partial compilers that, composed together, provide
increasingly more powerfulμLINQ compilers. In the LINQ terminology, inherited from
databases, source programs are called “queries” and target programs are called “plans”.

4.1 LINQ and µLINQ

LINQ was introduced in 2008 as a set of extensions to traditional .Net languages such
as C# and F#. It is essentially a functional, strongly-typed language, inspired by the
database language SQL (or relational algebra) and comprehension calculi [3]. Much as
in LISP, the main datatype manipulated by LINQ computations is that of lists of values;
these are thought of as (data) collections.
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LINQ operators transform collections to other collections. Queries (source programs)
are (syntactic) compositions of LINQ operators. For example, the query
C.Select(e => f(e)), where e => f(e) is the LINQ syntax for the lambda expres-
sion λe.f(e), uses the Select operator (called map in other programming languages)
to apply f to every element e of a collection C. The result is a collection of the same
size as the input collection. The elements e can have any .Net type, and f(e) can be
any .Net computation returning a value. The core LINQ operators are named after SQL.
All LINQ operators are second-order, as their arguments include functions.

µLINQ Syntax. The basic datatypes are ranged over by I, O, and K (which stand for
“input”, “output” and “key”); they are given by the grammar:

I ::= B | I∗

where B ranges over a given set of primitive datatypes, such as int, the type of integers.
The type I∗ stands for the type of collections (taken to be finite lists) of elements of type
I. The corresponding .NET type is IEnumerable〈I〉.

μLINQ queries (source programs) consist of sequences of operator applications; they
are not complete programs as the syntax does not specify the input data collection (in
contrast to LINQ). They are specified by the grammar

Query ::= OpAp1; . . . ; OpApn (n ≥ 0)
OpAp ::= SelectMany<I,O>(FExp) |

Aggregate<I>(FExp,Exp) |
GroupBy<I,K>(FExp)

Here Exp and FExp range over given sets of expressions and function expressions, of
respective given types I or I1 × . . .× In → O. The details of the given primitive types,
expressions, and function expressions are left unspecified.

Only well-formed operator applications and queries are of interest. The following
rules specify these and their associated types:

SelectMany<I,O>(FExp):I∗→O∗ (if FExp has type I→O∗)
Aggregate<I>(FExp,Exp):I∗→I∗

(if FExp has type I× I → I, and Exp has type I)
GroupBy<I,K>(FExp):I∗→I∗∗ (if FExp has type I → K)

OpApi : Ii → Ii+1 (i = 1, . . . , n)

OpAp1; . . . ; OpApn : I1 → In+1

µLINQ Semantics. We begin with an informal explanation of the semantics. A query
of type I∗ → O∗ denotes a function from I collections to O collections. We begin with
operator applications and then consider composite queries.

SelectMany<I,O>(FExp) applied to a collection returns the result of applying
FExp to all its elements and concatenating the results. So, for example, the query
SelectMany<int,int>(n => [n,n+1]) applied to C =def [1, 2, 3, 4, 5] results in
the list [1, 2, 2, 3, 3, 4, 4, 5, 5, 6].

Aggregate<I>(FExp,Exp) applied to a collection produces a singleton list con-
taining the result of a fold operation [11] performed using FExp and Exp. So, for
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example, Aggregate<int,int>((m,n) => m+n,6) applied to C results in the list
[1 + (2 + (3 + (4 + (5 + 6))))] = [21]. Some of the compilers we construct require
that such aggregations are (commutatively) monoidal, i.e., that FExp is associative (and
commutative) with unit Exp.

GroupBy<I,K>(FExp) groups all the elements of a collection into a collection of
sub-collections, where each sub-collection consists of all the elements in the original
collection sharing a common key; the key of a value is computed using FExp. The sub-
collections in the result occur in the order of the occurrences of their keys, via FExp, in
the original collection, and the elements in the sub-collections occur in their order in the
original collection. So, for example, GroupBy(n => n mod 2) applied to C results in
the list [[1,3,5],[2,4]].

Composite queries are constructed with semicolons and represent the composition,
from left to right, of the functions denoted by their constituent operator applications.

The formal definition of μLINQ is completed by giving it a denotational semantics.
We only show the semantics for a language fragment; it is easy, if somewhat tedious,
to spell it out for the full language. First we assign a set [[I]] to every μLINQ type I,
assuming every primitive type already has such a set assigned:

[[I1 × . . .× In]] =def [[I1]]× . . .× [[In]]

Next, to any well-typed operator application OpApp : I → O we assign a function
[[OpApp]] : [[I]] → [[O]], given a denotation [[Exp]] ∈ [[I]] for each expression Exp : I. For
example:

[[Aggregate<T>(FExp,Exp)]](d) =def [fold([[FExp]], [[Exp]], d)]

Finally, to any well-typed query S : I → O we assign a function [[S]] : [[I]] → [[O]]

[[OpAp1; . . . ; OpApn]] =def [[OpApn]] o . . . o [[OpAp1]] (n ≥ 0)

µLINQ and MapReduce. The popular MapReduce [6] distributed computation pro-
gramming model can be succinctly expressed in μLINQ:

MapReduce(map, reduceKey, reduce) : I∗ → O∗

is the same as

SelectMany(map);GroupBy(reduceKey);SelectMany(l => [reduce(l)])

where map : I → O is the map function, reduceKey : O → K computes the key for
reduction, and reduce : O∗ → O is the reduction function. (Since we use SelectMany
for applying the reduction function, the result of reduce is embedded into a list with a
single element.)

4.2 Compiling µLINQ

A Single-Core Compiler. We start by defining the types for sources (queries) and
targets (plans). Let us assume we are given a type FExp corresponding to the set of
function expressions, and a type Exp for constants. Then we define types OpAp and
MLSource, corresponding to the sets of μLINQ operator applications and queries by
setting:
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OpAp = SelectMany : FExp +
Aggregate : FExp×Exp +
GroupBy : FExp

MLSource = OpAp∗

We assume we have a type MLTarget of μLINQ targets (plans) T with semantics [[T ]] :
MLData −→ MLData, where MLData consists of lists of items, where items are
either elements of (the semantics of) a basic μLINQ type B, or lists of such items.

As a basic building block for constructing μLINQ compilers, we start from three
very simple compilers, each of which can only generate a plan for a query consisting of
just one of the operators:

CSelectMany : FExp −→ MLTarget

CAggregate : FExp×Exp −→ MLTarget

CGroupBy : FExp −→ MLTarget

The denotational semantics of μLINQ operators (Section 4.1) gives a blueprint for a
possible implementation of these compilers.

We use the CASES operation from Section 3.3 to combine these three elementary
compilers into a compiler that can handle simple one-operator queries:

COO = CASES (λS : OpAp. S) OF
SelectMany : CSelectMany,
Aggregate : CAggregate,
GroupBy : CGroupBy

Finally, we use the generalized sequential partial compiler PCSEQ and the star opera-
tion, both introduced in Section 3.1, to construct a compiler

CμLINQ : MLSource → MLTarget

for arbitrary μLINQ queries, where

CμLINQ = PCSEQ〈〈C∗
OO〉〉

A Multi-core Compiler. In this example we construct a partial compiler PCMC to
allow our single-core compiler to target a multi-core machine whose cores can exe-
cute plans independently. The most obvious way to take advantage of the available
parallelism is to decompose the work by splitting the input data into disjoint parts, per-
forming the work in parallel on each part using a separate core, and then merging the
results.

Table 2. Compiling a query S for a dual-core computer

S collate(S, l, r) part(S, d)

SelectMany(FExp) l · r prefix(d)

Aggregate(FExp,Exp) [[[FExp]](headExp(l),headExp(r))] prefix(d)

GroupBy(FExp) l · r [x ∈ d | [[FExp]](x) ∈
prefix(setr(map([[FExp]], d)))]
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A partial compiler PCMC : (OpAp,MLTarget) � (OpAp,MLTarget) for opera-
tor applications for multi-core machines with cores c1 and c2 can be given by:

Compiler S : OpAp.
Reduction S,
Generation T : MLTarget.GMC(S, T )

where, for any OpAp S, MLTarget T :

[[GMC(S, T )]](d) = λd : MLData. let d′ be part(S, d) in
collate(S, [[runc1(T )]](d

′), [[runc2(T )]](d\d′))
The definition of the semantics of GMC, which we now explain, provides a blueprint
for its intended parallel implementation. First, the functions runc1 , runc2 ensure that
their argument MLTarget is run on the specified core; they act as the identity on the
semantics. Next, for any list d, part(S, d) and d\part(S, d) constitute a division of d
into two parts in a query-dependent manner; here d\d′ is chosen so that d = d′ · (d\d′),
if possible (we use · for list concatenation). The function “collate” assembles the results
of the computations together, also in a query-dependent manner.

There are many possible ways to define part and collate and one reasonable speci-
fication is shown in Table 2. There, prefix(d) gives a prefix of d, headExp(d) is the first
element of d, assuming d is non-empty, and [[Exp]] otherwise, and setr(d), which is used
to ensure that a given key is in only one partition, consists of d with all repetitions of an
element on its right deleted.

The SelectMany operator is homomorphic w.r.t. concatenation. It can be computed
by partitioning the collection d into an arbitrary prefix and suffix, applying SelectMany
recursively on the parts, and concatenating the results.

Similarly, if monoidal, Aggregate(FExp,Exp) is homomorphic w.r.t. the aggrega-
tion function FExp, so it can be applied to an arbitrary partition of d, combining the two
results using FExp.

Finally, GroupBy partitions the input collection d so that values with the same key
end up in the same partition. (It does so by splitting the codomain of the key function
FExp into two arbitrary disjoint sets.) The results of recursively applying GroupBy on
these partitions can be concatenated as the groups from both parts will also be disjoint.

The complete multi-core μLINQ compiler is given by

PCSEQ〈〈PCMC〈〈COO〉〉∗〉〉
It is straightforward to generalize this to machines with n cores by suitably modifying
part and collate.

Note that we have achieved a non-trivial result: we have built a real μLINQ compiler
targeting multi-cores by writing just a few lines of code, combining several simple
compilers. This implementation is certainly not optimal as it repartitions the data around
each operation, but we can transform it into a smarter compiler by using the same
techniques. The functionality it provides is essentially that of PLINQ [7], the parallel
LINQ implementation.

Compilation for Distributed Execution. The strategy employed for the multi-core
compiler for parallelizing μLINQ query evaluations across cores can be used to paral-
lelize further, across multiple machines, in a manner similar to the DryadLINQ
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compiler. We add one additional twist by including resource allocation and schedul-
ing in the plan language. Consider an example of a cluster of machines, and suppose
we are dealing with a large input collection, stored on a distributed filesystem (e.g., [9])
by splitting the collection into many partitions resident on different cluster machines
(each machine may have multiple partitions). The goal of the generated plan is to pro-
cess the partitioned collections in an efficient way, ideally having each piece of data be
processed by the machine where it is stored. In the following simple example we just
use two machines.

We define the operator application unary partial compiler PCCluster to be:

Compiler S : OpAp.
Reduction S,
Generation T : MLTarget.GCL(S, T )

where, for any OpAp S and MLTarget T ,

[[GCL(S, T )]](d) = λd : MLData.
let m1,m2 :Machine be getm, getm in
let d′ be mpart(S, d,m1,m2) in
collate(S, [[run(m1, T )]](d

′), [[run(m2, T )]](d\d′))
Here, Machine is the type of cluster machines and the constant getm:Machine nonde-
terministically schedules a new machine. When applied to S, d,m1,m2, the function
mpart returns the first part of a partition of d into two, using a policy not detailed here;
as in the case of part, when S is a GroupBy the two parts should contain no common
keys. Note that the run functions are now parametrized on machines. The relative loca-
tion of data and machines on the cluster is important. In particular, the partition policy
for mpart may depend on that; we also assume that the code run(m,T ) first loads re-
mote data onto m. As before, the semantics of GCL provides a blueprint for a parallel
implementation.

Formally we assume given a set Sch of scheduler states, and as run-time monad Trun

take F+(Sch × X)Sch, the standard combination of side-effect and nondeterminism
monads (F+(X) is the collection of non-empty finite subsets of X); for [[getm]] we
assume an allocation function Sch → F+(Sch× [[Machine]]).

The cluster-level operator application compiler is then obtained by composing the
cluster partial compiler with the multi-core compiler described previously

PCCluster〈〈PCMC〈〈COO〉〉 〉〉
and then the complete compiler is:

PCSEQ〈〈PCCluster〈〈PCMC〈〈COO〉〉 〉〉∗〉〉
The cluster-level compiler is structurally similar to the multi-core compiler, but the col-
lections themselves are already partitioned and the compiler uses the collection struc-
ture to allocate the computation’s run-time resources.

This compiler is in some respects more powerful than MapReduce, because (1) it
can handle more complex queries, including chains of MapReduce computations and
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(2) it parallelizes the computation across both cores and machines. With a tiny change
we obtain a compiler that only parallelizes across machines:

PCSEQ〈〈PCCluster〈〈COO〉〉∗〉〉.
With a little more work one can also add the only important missing MapReduce opti-
mization, namely early aggregation in the map stage.

5 Mathematical Foundations

We now turn to a semantical account of partial compilers in terms of a category of
tactics. We then discuss the categorical correlates of our polymorphic operations on
compilers and partial compilers, and the relationships with the Dialectica category and
Milner’s tactics. We work with a cartesian closed category K with a strong monad T.
This supports Moggi’s computational lambda calculus [20]: each type σ denotes an
object [[σ]] of K, and every term

x1 : σ1, . . . , xn : σn 	 M : τ

denotes a morphism of K

[[M ]] : [[σ1]]× . . .× [[σn]] → [[τ ]]

As is common practice, we may confuse terms and their denotations, writing M instead
of [[M ]]; in particular we make free use of the definitions and notation of Section 2. In
doing so, we can use types and terms as notations for objects and morphisms, and treat
objects x as type constants denoting themselves and morphisms f :x → y as constants
denoting elements of the corresponding function type x→y. We can also use the proof
rules of the computational lambda calculus to establish relations between morphisms.

The objects of our category of tactics are pairs (P, S) of objects of K; we call P
and S (objects of) problems and solutions, respectively. The morphisms from (P, S) to
(P ′, S′) are morphisms of K of the form

f : P −→ T(P ′ × (S′ ⇒ T(S)))

and it is these that are called tactics.
The identity on (P, S) is Id(P,S) = λx : P. (x, λy : S. y) and the composition

(P, S)
gf−→ (P ′′, S′′) of (P, S)

f−→ (P ′, S′) and (P ′, S′)
g−→ (P ′′, S′′) is gf = f〈〈g〉〉

(note the order reversal), making use of the definition in Section 2. Using Moggi’s laws
for the computational lambda calculus, one can show that composition is associative
with the identity as unit, and so this does indeed define a category.

Rather than speaking of sources, targets and partial compilers, we have chosen here
to speak more neutrally of problems, solutions and tactics. We follow Blass [2] for
problems and solutions, and Milner for tactics: one can think of tactics as tactics for re-
ducing problems to subproblems. Compilers are simply modelled as Kleisli morphisms
P → T(S).

We now consider the categorical operations corresponding to some of the operations
on partial compilers and compilers that we defined above. We define the action of a
given tactic f : (P, S) −→ (P ′, S′) on a Kleisli morphism h : P

′ −→ T(S
′
) by:
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h · f = f〈〈h〉〉 : P −→ S

using the composition operation of partial compilers with compilers of Section 2. In
terms of this “right action” notation the action equations of Section 2 become:

(h · g) · f = h · gf h · Id = Id

We define tensors of Kleisli morphisms and tactics similarly, again making use of the
definitions in Section 2. The expected functorial laws

Id ⊗ Id = Id (f ′ ⊗ g′)(f ⊗ g) = (f ′f ⊗ g′g)

for the tensors of tactics hold if the monad is commutative [14], for example when
there are no compile-time effects, or for nondeterminism, probabilistic choice, or non-
termination (so having recursion is fine); typical cases where they fail are exceptions or
side-effects. When they hold, so too do the expected associativity, action, and unit laws
for the n-ary compositions defined in Section 2.

In general one obtains only a premonoidal structure [23] with weaker laws:

Id ⊗ Id = Id (f ⊗ g) = (g ⊗ Id)(Id ⊗ f)

(f ′ ⊗ Id)(f ⊗ Id) = (f ′f ⊗ Id) (Id ⊗ g′)(Id ⊗ g) = (Id ⊗ g′g)

The “twist” in the definition of the tensor in Section 2 of two tactics is needed to obtain
these laws. The weaker laws yield correspondingly weaker laws for the n-ary composi-
tions.

Turning to Section 3, the cases operation arises from the fact that categorical sums
exist when the solution objects are the same, i.e., (P1, S)+(P2, S) = (P1+P2, S), and
the functorial operation arises from the evident functor from Kop

T ×KT to the category
of tactics (KT is the Kleisli category of T). The literature on Dialectica categories
contains further functorial constructions that may also prove useful—for example, the
sequential construction of Blass [2] is intriguing.

The Dialectica category has the same objects as the tactics category. A morphism
(f, g) : (P, S) −→ (P ′, S′) consists of a reduction function f : P −→ P ′ and a
solution function g : P × S′ −→ S. This is essentially the same as a tactic, in the case
of the identity monad, and the Dialectica category is then equivalent to the category
of tactics. To incorporate compile-time effects in the Dialectica category, one might
alternatively try f : P −→ T(P ′) and g : P × S′ −→ T(S). However this does not
give a category: the evident composition is not associative.

As we have said, partial compilers also arose by analogy with Milner’s tactics. Milner
cared about sequents and theorems, whereas we care about sources and targets. His
tactics produce lists and have the form:

sequent → (sequent∗ × (theorem∗ → theorem))

But these are nothing but partial compilers of type:

(sequent, theorem) � (sequent∗, theorem∗)

Our methods of combining partial compilers correspond, more or less, to his tacti-
cals, e.g., we both use a composition operation, though his is adapted to lists, and the
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composition of two tactics may fail. He also makes use of an OR tactical, which tries
a tactic and, if that fails (by raising a failure exception), tries an alternate; we have
replaced that by our conditional partial compiler.

6 Implementations

Section 4 describes a compiler for a stylized language. We used the compiler forest
architecture to implement two proof-of-concept compilers for (essentially) functional
languages targeting a computer cluster: one for LINQ and one for matrix computations.
The implementations reuse multiple partial compilers.

Our compiler forest implementations closely parallel the examples in this paper. The
lowest layer implements “tactics” (see Section 5): computations on abstract problems
and solutions that provide the basic composition operation. On top of this we build a
partial compiler abstraction, where problems are source programs and solutions are tar-
gets. We then implement a combinator library for the operations described in Sections 2
and 3. A set of abstract base classes for partial compilers, programs, data, optimization
passes, and execution engines provide generic useful operations. A set of libraries pro-
vides support for manipulating .Net System.Linq.Expressions objects, which are
the core of the intermediate representation used by all our compilers. To implement
partial compilers one writes source reduction functions R and target generation func-
tions G, exactly as described in Section 2.

Compiling LINQ. The LINQ compiler structure closely parallels the description from
Section 4, but handles practically the entire LINQ language, with a cluster-level com-
piler (PCCluster), a machine multi-core compiler (PCMC), and a core-level compiler
based on native LINQ-to-objects. We also implemented a simple GPU compiler CGPU

based on Accelerator [26]. A conditional partial compiler steers queries to either CGPU

or PCMC, since CGPU handles only a subset of LINQ, and operates on a restricted set
of data types.

While our implementation is only preliminary, it performs well and has served to
validate the architectural design. For example, when running MapReduce queries, our
multi-core compiler produces a speed-up of 3.5 using 4 cores. We tested our compiler on
a cluster with 200 machines; at this size the performance of MapReduce computations
is essentially the same as with DryadLINQ, since I/O is the dominant cost in such
applications.

Compiling Matrix Algebra. We have defined a simple functional language for com-
puting on matrices, with operations such as addition, multiplication, transposition, solv-
ing linear systems, Cholesky factorization, and LU decomposition. All these operations
are naturally parallelizable. The matrices are modeled as two-dimensional collections
of tiles, where the tiles are smaller matrices. Large-scale matrices are distributed col-
lections of tiles, each of which is a matrix composed of smaller tiles. This design is
useful for dense matrices; by making tiles very small it can also accommodate sparse
matrices.

The top-level partial compiler translates matrix operations into operations on collec-
tions of tiles. The collection operations are translated by a second-level partial compiler



38 M. Budiu, J. Galenson, and G.D. Plotkin

into LINQ computations on collections of tiles, where the functions FExp applied to the
elements are also tile/matrix operations. The collection computations are then passed to
the distributed LINQ compiler of Section 6 to generate code running on a cluster. The
basic distributed matrix compiler is:

PCSEQ〈〈PCMatrix〈〈CTile, CCluster〉〉∗ 〉〉
where PCMatrix is a binary partial compiler that rewrites an operation on matrices in
terms of a LINQ computation (compiled by its second child) applying functions to a
set of tiles (compiled by its first child), and CCluster is the distributed LINQ compiler
described previously.

Figure 2 illustrates how the work of compiling the expression M1 × M2 + M3 is
partitioned between the compilers involved. In this example we do not use a multi-core
LINQ compiler as part of CCluster.

m1t = M1.Tiles.HashPartition(t => t.X) 
m2t = M2.Tiles.HashPartition(t => t.Y) 
m1m2 = m1t.    Apply(m2t,  
    (tt1, tt2) =>tt1.Join(tt2, t => t.X, t => t.Y, (t1, t2) => new Tile( t1 * t2 , t1.X, t2.Y) ) 
                .GroupBy(t => t.Pos ) 
               .Select(g => g.Aggregate( (t1, t2) => new Tile( t1 + t2 , t1.Pos) ))      ) 
   .HashPartition(t => t.Pos) 
   .Apply( 
               s => s.GroupBy(t => t.Pos) 
          .Select(g => g.Aggregate( (t1, t2) => new Tile( t1 + t2 , t.Pos) )) ) 
 
m3t = M3.Tiles.Concat(m1m2) 
   .HashPartition(t => t.Pos) 
   .Apply( 
                 s => s.GroupBy(t => t.Pos) 
           .Select(g => g.Aggregate( (t1, t2) => new Tile( t1 + t2 , t.Pos) )) ) 
   

PCMatrix CLINQ CTile PCSEQ CCLUSTER 

Fig. 2. Intermediate result produced when compiling the expression M1 * M2 + M3 using the
distributed matrix compiler. The colored dotted lines indicate how various parts of the program
are generated or assigned to various compilers; PCSEQ is responsible for the complete program.
We show the logical program state just before the leaf compilers CTile and CLINQ (which is
a part of CCluster) are invoked. HashPartition implements the “part” partitioning construct,
while Apply corresponds to the “runm” construct that executes a program on one partition, and
Concat is concatenation.

7 Related Work

Federated and heterogeneous distributed databases also decompose computations be-
tween multiple computation engines. In the former, queries are converted into queries
against component databases using wrappers [25,15], and most work concentrates on
optimizations. Partial compilers serve a similar, but more general, role as they can have
multiple children while wrappers operate on a single database. Regarding the latter,
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systems such as Dremel [18] that use a tree of databases to execute queries could be
implemented in a principled way using a hierarchy of partial compilers.

The authors of [16] use graph transformations to allow multiple analyses to commu-
nicate. In [4] cooperating decompilers are proposed, where individual abstract interpre-
tations share information. Our approach supports these applications using the iteration
operation.

As we have seen, multistage compilers, e.g., [13,24], fit within our framework. How-
ever our formalism is more general than standard practice, as non-unary partial compil-
ers enable branching partial multistage compilation, dividing sources between different
engines, or parallelizing data computations.

8 Discussion and Conclusions

We made several simplifications so as to concentrate on the main points: partial com-
pilers and their compositions. For example, μLINQ does not have a join operator, and
function expressions were left unspecified; in particular they did not contain nested
queries. Adding join leads to tree-shaped queries rather than lists, and nested queries
lead to DAG’s: indeed DryadLINQ plans are DAG’s. (There seems to be no natu-
ral treatment of operator-labeled DAG’s for functional programming in the literature,
though there is related work on graphs [8].) There is a version of the star operator of
Section 3.1 for trees, which enables the compiler of Section 4.2 to be extended to joins;
there should also be a version for DAG’s.

A well-known shortcoming of modularity is that it hides information that could po-
tentially be useful across abstraction boundaries thereby impacting performance (see for
example the micro-kernel/monolithic operating system debate); in our context, it may
prevent cooperating partial compilers from sharing analysis results. A way to “cheat”
to solve this problem is to use a partial compiler whose source language is the same as
the intermediate language of its parent — a much richer language than the source alone.
Whether this approach is practical remains to be validated by more complex compiler
implementations.

The benefits of structuring compilers as we do may extend beyond modularity: since
partial compilers are now first-class values, operations for compiler creation, compo-
sition and extensibility can be exposed to users, allowing compilers to be customized,
created and invoked at run-time.

Partial compilers were motivated by the desire to discover the “right” interface be-
tween a set of cooperating compilers (the components of DryadLINQ described in the
introduction). We were surprised when we stumbled on the partial compiler method-
ology, because it is extremely general and very simple. A partial compiler provides a
compilation service to the upper layers (as do traditional compilers), but also invokes
the same, identical service from the lower layers. While this structure looks overly sim-
ple, it is surprisingly powerful; one reason is that the objects that cross the interface
between compilers are quite rich (source and target programs).
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