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Abstract

In this paper we explore the problem of creating vulner-

ability signatures. A vulnerability signature matches all ex-

ploits of a given vulnerability, even polymorphic or meta-

morphic variants. Our work departs from previous ap-

proaches by focusing on the semantics of the program and

vulnerability exercised by a sample exploit instead of the

semantics or syntax of the exploit itself. We show the se-

mantics of a vulnerability define a language which contains

all and only those inputs that exploit the vulnerability. A

vulnerability signature is a representation (e.g., a regular

expression) of the vulnerability language. Unlike exploit-

based signatures whose error rate can only be empirically

measured for known test cases, the quality of a vulnerability

signature can be formally quantified for all possible inputs.

We provide a formal definition of a vulnerability signa-

ture and investigate the computational complexity of creat-

ing and matching vulnerability signatures. We also system-

atically explore the design space of vulnerability signatures.

We identify three central issues in vulnerability-signature

creation: how a vulnerability signature represents the set

of inputs that may exercise a vulnerability, the vulnerability

coverage (i.e., number of vulnerable program paths) that is

subject to our analysis during signature creation, and how

a vulnerability signature is then created for a given repre-

sentation and coverage.

We propose new data-flow analysis and novel adoption

of existing techniques such as constraint solving for au-

tomatically generating vulnerability signatures. We have

built a prototype system to test our techniques. Our experi-

ments show that we can automatically generate a vulner-

ability signature using a single exploit which is of much

higher quality than previous exploit-based signatures. In

addition, our techniques have several other security appli-

cations, and thus may be of independent interest.

1 Introduction

A vulnerability is a type of bug that can be used by an

attacker to alter the intended operation of the software in a

malicious way. An exploit is an actual input that triggers a

software vulnerability, typically with malicious intent and

devastating consequences. One of the most popular and ef-

fective exploit defense mechanisms is signature-based input

filtering (also called content-based filtering) [7, 40] . Thus,

any improvements in signature generation will likely have

widespread impact.

We need automatic signature generation techniques

because manual signature generation is slow and error

prone. Fast generation is important because previously

unknown (“zero-day”) or unpatched vulnerabilities can be

exploited orders of magnitude faster than a human can re-

spond, such as during a worm outbreak [7, 51]. Automatic

techniques have the potential to be more accurate than man-

ual efforts because vulnerabilities tend to be complex and

require intricate knowledge of details such as realizable pro-

gram paths and corner conditions. Understanding the com-

plexities of a vulnerability has consistently proven very dif-

ficult for humans at even the source code level [11], let alone

COTS software at the assembly level.

Challenges for automatically creating signatures. The

task of automatically constructing signatures is complicated

by the fact that there are usually several different polymor-

phic exploit variants that can trigger a software vulnerabil-

ity [21, 33, 43]. For example, a buffer-overrun vulnerability

in a network service may be triggered by many different

protocol messages. Another example, sometimes referred

to as metamorphism, is that exploit variants may differ syn-

tactically but be semantically equivalent [28, 52], e.g., an

exploit could use different assembly instructions that have

the same effect. Our approach does not need to distinguish

between polymorphism and metamorphism: both are re-

ferred to as polymorphism throughout this paper. Many

morphing tools are publicly available to automatically gen-

erate polymorphic exploit variants [2, 3, 21]. Thus, to be



effective, the signature should be constructed based on the

property of the vulnerability, instead of an exploit (this ob-

servation has been made by others as well [56]).

Limitations of previous approaches. The importance of

the signature generation problem has recently prompted

researchers to investigate automatic signature generation

techniques. Previous approaches fall into at least one of

the following categories: (a) require manual steps, (b) em-

ploy heuristics which may fail in many settings, (c) tech-

niques rely on specific properties of an exploit, e.g., return

addresses, and are thus not vulnerability signatures, (d) are

limited by the underlying signature representation they can

generate, or (e) only work for specific vulnerabilities in spe-

cific circumstances.

For example, one approach is pattern-extraction based

methods which syntactically identify bit patterns that ap-

pear in attack samples but not in innocuous samples [30,

32, 43, 50]. However, these techniques are either incapable

of handling polymorphic worms [30, 32, 50], or vulnera-

ble in an adversarial environment in which an attacker can

inject false or superfluous tokens, such as an over-learning

or “red-herring” attack [43]. Another approach is based on

application and exploit semantic information [35, 44, 58].

However, these techniques are heuristics-based and rely on

specific properties of the exploits such as the value used

to overwrite the return address to be invariant. It has been

shown previously these heuristics may not work in many

real-world vulnerabilities [19, 43]. In addition, previous

work along either line has not systematically explored the

design space of signature creation, instead focusing on a

single design point such as creating regular expressions

for control-hijacking attacks. Regular-expressions can only

recognize simple syntactic properties, thus may not be pre-

cise enough in many settings, e.g., regular expressions can-

not recognize a vulnerability where valid and invalid check-

sums need to be distinguished.

Our approach, roadmap, and the central issues. Our

approach departs from previous work by analyzing the vul-

nerability uncovered by a new exploit attack instead of an-

alyzing the exploit. At a high level, our main contribution

is a new class of signature, which we call a vulnerability

signature, that is not specific to details such as whether an

exploit successfully hijacks control of the program, but in-

stead whether executing an input will (potentially) result in

an unsafe execution state.

In this paper we present a formal approach for reasoning

about vulnerability signatures. Intuitively, a vulnerability

signature matches a set of inputs (strings) which satisfy a

vulnerability condition in the program. A vulnerability con-

dition is a specification of a particular type of program bug,

e.g., memory writes should be within the allocated buffer

space. We then systematically explore the design space of

vulnerability signatures, and identify two important dimen-

sions: how the signature is represented, in which there is

an expressiveness trade-off between matching accuracy and

efficiency, and how much of the vulnerability is covered

by the signature, in which there is a trade-off between the

amount of analysis performed and the signature false neg-

ative rate. We then develop new techniques for creating

vulnerability signatures for different representations. We

focus on three representations which highlight the inherent

accuracy, efficiency, and creation time trade-offs in the de-

sign space: Turing machine signatures, symbolic constraint

signatures, and regular expression signatures.

Contributions. This paper presents a systematic ap-

proach using a formal model and methods to create vul-

nerability signatures using static program analysis. We re-

quire only a single sample exploit which is used to initially

identify the vulnerability. Our automatic signature gener-

ation approach is applicable to all vulnerabilities in which

the vulnerability condition can be formally specified. Our

approach uncovers a rich new domain for representing sig-

natures and new techniques for creating them. In particular:

• We provide a formal definition for vulnerability signa-

tures. Our approach leads to a new perspective where a

vulnerability signature can be represented by different

language classes with different expressive powers.

• We explore the design space of vulnerability signa-

ture and show that there is an inherent trade-off be-

tween signature matching and accuracy for different

representations. In particular, a perfect signature can

be created (Turing machine signatures in Section 2.3),

but matching may take an unbounded amount of time.

On the other hand, signatures that allow fast match-

ing are less accurate (regular-expression signatures in

Section 2.3).

• We introduce the notion of vulnerability signature cov-

erage. As we will see, one challenge is that a vulnera-

bility may be reachable by an infinite number of paths

in the program (in the presence of looping). We show

how to iteratively consider each path separately so that

signature generation can scale.

• Our methods allow us to identify where a created vul-

nerability signature approximates a perfect vulnerabil-

ity signature. Specifically, in our setting, one can iden-

tify and control when and how imprecision is intro-

duced. This property makes it easy to quantify the

quality of the generated vulnerability signature.

• We develop new static analysis techniques (such as

the regular expression data-flow framework in Sec-

tion 3.4.2), and make novel adoptions of existing tech-

niques such as program chopping and constraint satis-

faction to our problem domain.



• We provide a prototype implementation of our tech-

niques and automatically create signatures for several

real-world vulnerabilities. Our prototype addresses au-

tomatic signatures creation in one of the hardest sce-

narios: only the program binary is used. We do not

require source code or type information, and therefore

our prototype is applicable to COTS software.

• Our results show that our techniques automatically

generate signatures that are of a much higher quality

than previous techniques.

2 Vulnerability Signature

In this section we first give a formal definition of a vul-

nerability signature. Intuitively, a vulnerability signature is

a representation for the set of inputs that satisfy a specified

vulnerability condition (vulnerability conditions are for-

mally defined in Section 2.2). We then explore two dimen-

sions of the design space for vulnerability signatures: signa-

ture representation and coverage. Roughly speaking, design

points in the signature representation dimension trade-off

matching accuracy and matching efficiency. Design points

in the vulnerability signature creation dimension trade-off

creation time for signature coverage, i.e., how many pro-

gram paths are analyzed.

Problem setting. We motivate our work and approach to

vulnerability signatures in the following setting: a new ex-

ploit is just released for an unknown vulnerability. A site

has detected the exploit through some means such as dy-

namic taint analysis or stack protection, and wishes to cre-

ate a signature that recognizes any further exploits. The site

can furnish our analysis with the tuple {P, T, x, c} where

P is the program, x is the exploit string, c is a vulnerability

condition, and T is the execution trace of P on x. Since

our experiments are at the assembly level, we assume P is

a binary program and T is an instruction trace, though our

techniques also work at the source-code level. Our goal is

to create a vulnerability signature which will match future

malicious inputs x′ by examining them without running P .

In addition, we want to create signatures quickly since

in many scenarios signatures must be deployed almost im-

mediately after detection to be of any value. Therefore, we

take an iterative approach that generates successively bet-

ter signatures. Each successive signature will match more

exploit variants without requiring further exploit samples.

Running example. Throughout this paper, we use

the running example given in Figure 1. Our example

is in a C-like language for clarity; our implementation

operates on program binaries. The example returns the

URL when the request begins with the ’G’ or ’g’ key-

word, else NULL is returned. In our example, we will

1 c h a r ∗ g e t u r l ( c h a r i n p [ 1 0 ] ) {
2 c h a r ∗ u r l = m a l l o c ( 4 ) ;

3 i n t c = 0 ;

4 i f ( i n p [ c ] != ’g ’ && i n p [ c ] != ’G’ )

5 r e t u r n NULL;

6 i n p [ c ] = ’G’ ;

7 c ++;

8 w h i l e ( i n p [ c ] == ’ ’ )

9 c ++;

10 w h i l e ( i n p [ c ] != ’ ’ ){
11 ∗ u r l = i n p [ c ] ; c ++; u r l ++;

12 }
13 p r i n t f ( ‘ ‘% s ’ ’ , u r l ) ;

14 r e t u r n u r l ;

15 }

Figure 1. Our running example, which re­
turns the URL of a request of the form [g|G]
<url>, else NULL.

assume x = g /AAAA. The corresponding trace is T =
{1, 2, 3, 4, 6, 7, 8, 9, 8, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11}
where each number is the corresponding line number in

Figure 1. The vulnerability condition is a heap over-

flow, which the input x satisfies (i.e., the program is

exploited) on the 5th iteration of line 11 since the URL is 5

characters long while only 4 characters were allocated.

2.1 Vulnerability Signature Definition

A vulnerability is 2-tuple (P, c), where P is a program

(which is a sequence of instructions 〈i1, · · · , ik〉), and c is

a vulnerability condition (defined formally below). The ex-

ecution trace obtained by executing a program P on input

x is denoted by T (P, x). An execution trace is simply a

sequence of actual instructions that are executed. A vul-

nerability condition c is evaluated on an execution trace T .

If T satisfies the vulnerability condition c, we denote it by

T |= c. The language of a vulnerability LP,c consists of

the set of all inputs x to a program P such that the resulting

execution trace satisfies c. Let Σ∗ be the domain of inputs

to P . Formally, LP,c is the language defined by:

LP,c = {x ∈ Σ∗ | T (P, x) |= c}

An exploit for a vulnerability (P, c) is simply an input

x ∈ LP,c, i.e., executing P on input x results in a trace

that satisfies the vulnerability condition c. A vulnerability

signature is a matching function MATCH which for an input

x returns either EXPLOIT or BENIGN without running

P . A perfect vulnerability signature satisfies the following



property:

MATCH(x) =

{

EXPLOIT when x ∈ LP,c

BENIGN when x /∈ LP,c

As we show in Section 2.3, the language LP,c can be

represented in many different ways ranging from Turing

machines which are precise, i.e., accept exactly LP,c, to

regular expressions which may not be precise, i.e., have an

error rate.

Soundness and completeness for signatures. We define

completeness for a vulnerability signature MATCH to be

∀x : x ∈ LP,c ⇒MATCH(x) = EXPLOIT, i.e., MATCH ac-

cepts everything LP,c does. Incomplete solutions will have

false negatives. We define soundness as ∀x : x /∈ LP,c ⇒
MATCH(x) = BENIGN, i.e., MATCH does not accept any-

thing extra not in LP,c. 1 Unsound solutions will have false

positives. A consequence of Rice’s theorem [26] is that no

signature representation other than a Turing machine can be

both sound and complete, and therefore for other represen-

tations we must pick one or the other. In our setting, we

focus on soundness, i.e., we tolerate false negatives but not

false positives. In Section 5 we show how to reformulate

our algorithm to generate complete but unsound signatures.

2.2 Vulnerability Conditions

The vulnerability condition c is a function which takes

an instruction I ∈ T and the current program state and re-

turns either EXPLOIT, indicating T |= c, or BENIGN and

a new program state reflecting the execution of I . The first

instruction I such that c(I) = EXPLOIT is called the vul-

nerability point. Intuitively, the vulnerability point is the

first instruction which may cause unsafe execution, e.g., the

first out-of-bounds write on line 11 of our running example.

Formally, a vulnerability condition c is a function

c : Γ × D × M × K × I → {BENIGN, EXPLOIT}

where Γ is memory (including the state variables) for the

vulnerability condition, D is the set of variables defined, M
is the program’s map from memory locations to values, K
is the continuation stack, and I is the next instruction to ex-

ecute. 2 Formally, we execute c on each instruction in order

of the trace T because each instruction could affect vulner-

ability condition state variables in Γ. In our scenario, Γ
is a local memory for the vulnerability detection algorithm

that may keep track of important variables such as bounds

on allocated memory, D binds values to registers, K is the

1Normally soundness is ∀x : x ∈ S ⇒ x ∈ LP,c. Here we are stating

the equivalent contra-positive.
2We note that Γ is strictly not necessary: it is only convenient to assume

the vulnerability condition has memory separate from M .

evaluation stack (e.g., CISC instructions may dereference a

calculated memory address all in the same instruction), and

M : ADDR → VALUE is a map from 32-bit memory loca-

tions to values (including both stack and heap addresses).

We can encode c as an algorithm, and as described in

Section 3 inline the encoding into the original program at

the vulnerability point during signature creation. Also note

that c need only be specified once for each type of vulner-

ability. Our contribution is not how to specify the vulner-

ability condition: we assume it is given. We note entire

programming languages are specified in a similar manner

to c (e.g., via formal operational semantics [45]), thus our

techniques should apply to any vulnerability condition that

can be stated with an algorithm.

In our running example the vulnerability condition is to

check each dereference to make sure it is within the allo-

cated bounds. One way to accomplish this is to shadow

each pointer ∈ T with a “safe” pointer value that records

the base address and size of the memory allocated. Then,

each dereference is checked to see if the corresponding safe

pointer would still be in bounds. A formal operational se-

mantics of this vulnerability condition may look like:

Γ,D,M,K ⊢ *exp D,M,K ⊲ *� ⊢ exp

Γ [n → SafePtr(m, s)] ,D,M : [n → vn] ,K⊲*� ⊢ n

 

{

BENIGN if m ≤ n < m + s
EXPLOIT

The first rule says in order to calculate a memory derefer-

ence of the form *exp, exp must first be evaluated. Once

exp is resolved to an address n, the second rule says to

lookup n in the context Γ and get a safe pointer SafePtr.

A safe pointer contains a base address m and a size s. If the

dereferenced value is within the range specified, BENIGN

is returned, else EXPLOIT.

2.3 Signature Representation Classes

We explore the space of different language classes that

can be used to represent LP,c as a vulnerability signature.

Which signature representation we pick determines the pre-

cision and matching efficiency. We investigate three con-

crete signature representations which reflect the intrinsic

trade-offs between accuracy and matching efficiency: Tur-

ing machine signatures, symbolic constraint signatures, and

regular expression signatures. A Turing machine signature

can be precise, i.e., no false positives or negatives. How-

ever, matching a Turing machine signature may take an un-

bounded amount of time because of loops and thus is not

applicable in all scenarios. Symbolic constraint signatures

guarantee that matching will terminate because they have

no loops, but must approximate certain constructs in the



1 c h a r ∗ u r l = m a l l o c ( 4 ) ;

2 i n t c = 0 ;

3 i f ( i n p [ c ] != ’g ’ && i n p [ c ] != ’G’ )

4 r e t u r n BENIGN ;

5 c ++;

6 w h i l e ( i n p [ c ] == ’ ’ ) c ++;

7 w h i l e ( i n p [ c ] != ’ ’ ){
8 i f ( c >= 4) r e t u r n EXPLOIT ;

9 ∗ u r l = i n p [ c ] ; c ++; u r l ++;

10 }
11 r e t u r n BENIGN ;

Figure 2. The TM signature for our running
example

program such as looping and memory aliasing, which may

lead to imprecision in the signature. Regular expression sig-

natures are the other extreme point in the design space be-

cause matching is efficient but many elementary construc-

tions such as counting must be approximated, and thus the

least accurate of the three representations.

Turing machine signatures. A Turing machine (TM)

signature is a program T consisting of those instructions

which lead to the vulnerability point with the vulnerability

condition algorithm inlined. Paths that do not lead to the

vulnerability point will return BENIGN, while paths that

lead to the vulnerability point and satisfy the vulnerability

condition return EXPLOIT. 3 TM signatures can be pre-

cise, e.g., a trivial TM signature with no error rate is em-

ulating the full program. A TM signature for our running

example is given in Figure 2:

Symbolic constraint signatures. A symbolic constraint

signature is a set of boolean formulas which approximate

a Turing machine signature. Unlike Turing machine signa-

tures which have loops, matching (evaluating) a symbolic

constraint signature on an input x will always terminate be-

cause there are no loops. Symbolic constraint signatures

only approximate constructs such as loops and memory up-

dates statically. As a result, symbolic constraint signatures

may not be as precise as the Turing machine signature.

Let x:y represent an inclusive range, e.g., inp[1:5]

means input bytes 1 through 5, inclusive. Then the sym-

bolic constraint signature (after considerable simplification

for readability) for our running example is given in Figure 3.

This signature states that the ten-byte input matches the

signature if the first input byte is ’G’ or ’g’, followed by

anywhere from 0 to 4 space characters, followed by at least

3A path in a program is a path in the program’s control flow graph.

( i n p [ 0 ] = ’g ’ ∨ i n p [ 0 ] = ’G’ ) ∧
[ ( i n p u t [ 1 : 5 ] != ’ ’ ) ∨
( i n p [ 1 ] = ’ ’∧ i n p [ 2 : 6 ] != ’ ’ ) ∨
( i n p [ 1 : 2 ] = ’ ’∧ i n p [ 3 : 7 ] != ’ ’ ) ∨
( i n p [ 1 : 3 ] = ’ ’∧ i n p [ 4 : 8 ] != ’ ’ ) ∨
( i n p [ 1 : 4 ] = ’ ’∧ i n p [ 5 : 9 ] != ’ ’ ) ]

Figure 3. The symbolic constraint signature
for our running example.

5 non-space characters. At least 5 non-space characters are

needed in order to overflow the 4-byte allocated url buffer.

Note this signature is created by unrolling the loops on lines

8-9 and 10-12 of the TM signature. Although in our ex-

ample we can statically infer how many times to unroll the

loop, in general such inferences are not possible and an up-

per bound to unroll loops must be provided (this is the same

approach taken by bounded model checkers [15]).

Regular expression signatures. Regular expressions are

the least powerful signature representation of the three, and

may have a considerable error rate in some circumstances.

For example, a well-known limitation is regular expressions

cannot count [26], and therefore cannot succinctly express

conditions such as checking a message has a proper check-

sum or even simple inequalities such as x[i] < x[j]. How-

ever, regular expression signatures are widely used in prac-

tice. The regular expression signature we would produce

for our running example (using the data-flow techniques de-

scribed in Section 3.4) is

[g|G][ ]*[ˆ ]{5,}, which matches any input that be-

gins with ’g’ or ’G’, followed by zero or more spaces, fol-

lowed by at least 5 or more (represented as {5,}) non-space

characters .

Other signature types. One of the main contributions

from our construction is any language class may be used to

represent a signature. The signature user is free to pick the

appropriate representation for their situation. We leave as

future work systematic and formal investigation into other

signature representations, e.g., context free languages.

2.4 Signature Operations and Efficiency

We summarize upper bounds for various signature op-

erations in Table 1. Due to space constraints, we prove

these bounds in the extended version of this paper [8]. The

vulnerability language LP,c is recognized by a vulnera-

bility signature representation via the MATCH operation.

Matching efficiency is likely a primary concern when pick-

ing a signature representation. Turing machine signature



Representation Creation Signature Size Matching Minimization Equivalence

Turing machine Sig. poly(N) poly(N ) Undecidable Undecidable Undecidable

Symbolic Constraint Sig. poly(N ) poly(N ) poly(S) exp(S) exp(S)

Regular Expression Sig. poly(N ) - exp(N ) exp(N ) O(S) O(S2) O(S2)

Table 1. Summary of approximate bounds for the three vulnerability signature representations we
consider for a program of length N and signature size S. poly(X) denotes a function polynomial in

X, and exp(X) denotes a function exponential in X.

matching is undecidable (since matching can be reduced

to the halting problem), and symbolic constraint signatures

matching can be done in polynomial time. Regular expres-

sion matching can be performed in linear time.

TM signatures are created by encoding and inlin-

ing the vulnerability condition, which takes polynomial

time. Symbolic constraint signature generation requires

first creating a TM signature, then several additional

polynomial-time transformation such as unrolling loops a

fixed number of times. Regular expression signature cre-

ation entails either solving the symbolic constraint signa-

ture, which may take exponential time (in fact, is PSPACE-

complete [8]), or performing data-flow analysis on the orig-

inal program, which takes polynomial time. The former ac-

curately represents all solutions to the symbolic constraints,

while the latter approximates the original program via data-

flow analysis and is less accurate (see Section 3.4).

Signature merging is another important operation. In our

model, merging signatures A and B is equivalent to per-

forming a single analysis of Lab = La ∪ Lb, that is, the

union of the languages for both vulnerabilities. The union

operation for TM signatures is done by creating a new con-

dition cab = ca ∨ cb that evaluates true if T (P, x) |= ca

or T (P, x) |= cb . The union operation for symbolic con-

straints is the disjunction of the individual constraints, i.e.,

either constraint system could be satisfied. The union oper-

ation for regular expression is the “or” (|) operator.

2.5 Monomorphic Execution Path (MEP) and
Polymorphic Execution Path (PEP) Signature
Coverage

We introduce the notion of vulnerability signature cover-

age in which we create a vulnerability signature with respect

to only a subset of program paths an exploit may follow.

The ability to consider subset of paths to a vulnerability (as

opposed to all program paths an exploit may follow) is im-

portant since creating a signature for all program paths that

lead to the vulnerability may be too expensive. Our signa-

ture creation techniques take an iterative approach in order

to be scalable where we successively improve signatures by

first considering a small coverage, and then incrementally

increasing our coverage to include more program paths to

the vulnerability.

First, consider a single path in the program an input may

take that satisfies the vulnerability condition, which we call

Monomorphic Execution Path (MEP) coverage. Our initial

MEP path is usually the path taken by the sample exploit.

An MEP covers only those program instructions executed

by an exploit on a single path to the vulnerability point, ex-

cluding statements with no effect on the computation, e.g.,

line 6 in the sample exploit is semantically a no-op with re-

spect to the vulnerability. Within an MEP, for each condi-

tional branch encountered, one target is an instruction lead-

ing towards the vulnerability point, while the other target

is a state BENIGN. An MEP is therefore a straight-line

program. At the vulnerability point the vulnerability con-

dition is evaluated, which returns either BENIGN or EX-

PLOIT. The vulnerability signature consists of all inputs

that reach the EXPLOIT state. Note that straight-line pro-

grams do not imply that only a single input leads to the

vulnerability point: there usually exists many other inputs

x′ 6= x that both reach the vulnerability point and the vul-

nerability condition evaluates to EXPLOIT. For example,

exploits usually have a payload which executes arbitrary at-

tacker code. A straight line program will return EXPLOIT

for exploits with different payloads because the execution

of different variants only differ after the vulnerability con-

dition has been satisfied.

A Polymorphic Execution Path (PEP) coverage includes

many different paths (i.e., MEPs) to the vulnerability point.

A complete PEP coverage includes all paths to the vulner-

ability point. Therefore, a complete PEP coverage signa-

ture accepts all inputs ∈ LP,c, i.e., the signature is com-

plete. More formally, complete coverage is obtained by

generating a signature for a chop [27, 48] of the program,

which includes all instructions that may be executed be-

tween a read statement where an exploit may be read in

and the vulnerability point. A chop has two distinguished

nodes: vinit and vfinal . vinit corresponds to the input read

statement (if multiple input read statements exist, then

vinit is an abstract node that is connected to each read

statement in the control flow graph). vfinal corresponds

to the inlined vulnerability condition branch returning EX-

PLOIT. We outline our algorithm for computing the chop

in Section 3.2.



In our signature-creation algorithm, we initially begin

with the MEP path consisting of those instructions execut-

ing in the exploit trace T . We then compute a program chop

of the vulnerability, where vinit is the initial read of the sam-

ple exploit, and vfinal is the vulnerability point. The chop

contains all possible execution paths from where an exploit

was read (in the trace) to the vulnerability point. We then

initially create a signature S for the MEP path given by the

execution trace, and then iteratively improve S by consider-

ing other paths.

For our running example, the MEP coverage consists of

the instructions executed in the trace. The complete PEP

coverage consists of lines 1-12, excluding line 6.

3 Automatic Vulnerability Signature Cre-

ation

At a high level, our algorithm for computing a vulnera-

bility signature for program P , vulnerability condition c, a

sample exploit x, and the corresponding instruction trace T
is depicted in Figure 4. In this section we detail how we

perform each of the steps:

1. Pre-process the program before any exploit is received

by:

(a) Disassembling the program P (Section 3.1).

(b) Converting the assembly into an intermediate

representation (IR) (Section 3.1).

2. Compute a chop with respect to the trace T . The chop

includes all paths to the vulnerability point including

that taken by the sample exploit (Section 3.2).

3. Compute the signature:

(a) Compute the Turing machine signature (Sec-

tion 3.3.1). Stop if this is the final representation.

(b) Compute the symbolic constraint signature from

the TM signature (Section 3.3.2). Stop if this is

the final representation.

(c) Compute the regular expression signature from

the symbolic constraint signature (Section 3.4).

3.1 Disassembling the Binary Program and Con­
verting to the IR

We first disassemble the binary and identify function

boundaries. We do not require the symbol table as functions

can be identified via their prologue and epilogue. Next, we

convert the disassembled instructions into an intermediate

representation (IR). The IR disambiguates instructions by

making implicit hardware side-effects explicit. Although

this step is seemingly straight-forward, it is actually fairly

involved. The main complication we address is modern ar-

chitectures such as x86 implicitly set and test hardware reg-

isters, which can affect program execution, i.e., these tests

and sets do not appear explicitly in the assembly. For ex-

ample, the overflow flag may be automatically set when ex-

ecuting arithmetic operation, then later tested by a condi-

tional jump. Another complication is the same register may

be indexed in different modes, e.g., al is the lower 8 bits

of the eax register, so any instruction affecting al must

simultaneously affect eax in the IR.

More concretely, the x86 instruction set contains over

60 instructions that perform via hardware test or set oper-

ations on the EFLAGS register. Extra IR statements must

be added to almost all operations to reflect the updates done

in hardware. Worse, which statements to add is specific to

the particular mode of the operands. The x86 architecture

has 8-bit mode, 16-bit mode, etc., which is set depending

upon the format of the instruction operands. For exam-

ple, add %ax, %bx is an addition in 16-bit mode since

the registers specified are 16-bits long. Overflow, the carry

flag, and other implicit hardware-assisted effects must then

be set with respect to 16-bits. A very similar instruction

add %eax, %ebx is 32-bit mode, and implicit hardware

effects must be done with respect to 32-bits.

We perform the remaining steps — program chopping

and vulnerability signature creation — on the IR statements.

3.2 Computing the Chop on the IR

We first compute the chop [27, 48] of the vulnerability

with respect to the exploit x and trace T (as discussed in

Section 2.5). Note our chopping algorithm results in an im-

precise chop because we lack pointer analysis. The result of

the chop is a smaller program P ′ in which every path begins

at the read statement in the trace and ends at the vulnera-

bility point. We can then select in the signature generation

step any set of paths in P ′ and compute a signature.

We perform a chop on the program’s callgraph. The chop

contains all functions that may be executed between reading

in the exploit and the vulnerability point. The chop is per-

formed by essentially doing a reachability analysis so that

any function in a call sequence that may reach the vulnera-

bility point is included.

A callgraph is a directed graph where each function is

a vertex, and edges represent the caller-callee relationship

of functions. We perform the following algorithm on the

callgraph to create the chop given start IR statement vinit ,

which is the read statement for the exploit in the trace,

and the vulnerability point vfinal in the trace T . Let Finit

and Ffinal be the functions enclosing the vinit and vfinal

nodes respectively. Note that there is at least one path from

Finit to Ffinal : the one that appears in the trace. We then

add an extra edge from Ffinal to Finit , resulting in a loop

in the callgraph. We then calculate the strongly connected

component (SCC) containing Finit and Ffinal . This SCC is

the chop, since it contains all reachable functions from Finit

to Ffinal .
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Figure 4. A high level view of the steps to compute a vulnerability signature.

One problem we must deal with at the binary level is

the widespread use of indirect jumps, e.g., jmp %eax is

indirect while jmp 0x80bebefa is direct. Note some

indirect jumps correspond to source code constructs such

as function pointers, while some are compiler-generated as

optimizations. The central issue is a target of an indirect

jump could potentially be any other instruction. As a re-

sult, any control flow graph (including dependency graphs)

would have an edge from each indirect jump to all other

instructions.

In order to deal with the widespread indirect jumps in bi-

naries without pointer analysis, when creating the callgraph

we make the target of each indirect jump a special node

IJMP. Our algorithm for computing the chop then will es-

sentially ignore indirect jumps until a chop is computed.

After computing the chop, we constrain each indirect jump

so that the target is within the chop. One limitation of this

approach is that technically we could be incorrectly exclud-

ing a function that only appears as the target of an indirect

jump. The indirect jump problem may or may not disappear

once we have implemented function pointer analysis. It re-

mains unclear (and a point of future work) how precisely

such analysis will be able to pin down the targets of indirect

jumps.

3.3 Computing the Signature

We compute the signature with respect to the chop. We

compute a PEP signature by iteratively considering single

MEP paths (except in our data-flow analysis optimization).

Our iterative method works because we can pick any path

or set of paths within the chop, perform our analysis, and

output the corresponding vulnerability signature. The com-

plete PEP coverage signature (Section 2.5) is then the anal-

ysis of all paths in the chop. We begin by describing how we

compute the complete PEP TM signature, which in turn be-

comes input to symbolic constraint and regular expression

signature generation.

1 c h a r ∗ u r l = m a l l o c ( 4 ) ;

2 i n t c = 0 ;

3 i f ( i n p [ c ] != ’g ’ && i n p [ c ] != ’G’ )

4 r e t u r n BENIGN

5 c ++;

6 i f ( i n p [ c ] != ’ ’ ) r e t u r n BENIGN ;

7 c ++;

8 i f ( i n p [ c ] == ’ ’ ) r e t u r n BENIGN ;

9 ∗ u r l = i n p [ c ] ; c ++; u r l ++;

10 i f ( i n p [ c ] == ’ ’ ) r e t u r n BENIGN ;

11 ∗ u r l = i n p [ c ] ; c ++; u r l ++;

12 i f ( i n p [ c ] == ’ ’ ) r e t u r n BENIGN ;

13 ∗ u r l = i n p [ c ] ; c ++; u r l ++;

14 i f ( i n p [ c ] == ’ ’ ) r e t u r n BENIGN ;

15 r e t u r n EXPLOIT ;

Figure 5. The MEP TM signature for our run­

ning example.

3.3.1 Turing Machine Signature Generation

MEP Turing machine signature generation. Our initial

MEP Turing machine signature is created with respect to the

path followed in the instruction trace. Therefore, the initial

signature will match the sample exploit, and certain exploit

variants such as changing the exploit payload. We create

the initial MEP TM signature by reading in the instruction

trace and including the corresponding IR statements.

Sequential instructions in the trace correspond to sequen-

tial statements in the MEP Turing machine signature. Con-

ditional branch statements have exactly two targets in the

IR, which during signature creation are either BENIGN or

EXPLOIT. Any branch that does not lead towards the vul-

nerability point returns BENIGN. EXPLOIT is only re-

turned if the vulnerability point is reached and the vulnera-

bility condition is satisfied.

We encode the vulnerability condition as a function. At

the vulnerability point we insert a jump to this function,

which does a final check to see if the program is in the vul-

nerable state, and returns EXPLOIT if satisfied else BE-



NIGN. Figure 5 shows the MEP vulnerability signature we

would return for our running example with the vulnerability

check inlined.

PEP Turing machine signature generation. A PEP Tur-

ing machine signature is created similar to an MEP Turing

machine signature. The PEP signature first computes the

chop, and then computes which jump targets cannot lead to

the vulnerability point via standard graph reachability anal-

ysis. Paths that terminate or cannot lead to the vulnera-

bility point return BENIGN. We also again insert a call

to the vulnerability condition function at the vulnerability

point, which returns either BENIGN or EXPLOIT. Fig-

ure 2 shows the complete PEP vulnerability signature with

the vulnerability condition inlined.

3.3.2 Symbolic Constraint Signature Generation

A symbolic constraint signature is a set of constraints an

exploit of the vulnerability must satisfy. We use the TM

signature as the input to symbolic constraint signature gen-

eration, and at a high level generate constraints that rep-

resent meeting the correct conditionals in the TM to reach

the vulnerability point and satisfy the vulnerability condi-

tion. The symbolic constraint signature is an approximation

of the TM signature because we may have to statically esti-

mate the effects of loops and memory updates as constraints

on the input. The symbolic constraint system is built up by

symbolically evaluating the TM signature program on sym-

bolic inputs instead of actual inputs (values).

More formally, we build up the constraints based upon

symbolically executing paths in the TM. Each function in

the TM signature is represented by a control flow graph

(CFG), which is a direct graph (V,E, ventry , vexit) where

each IR instruction is a node in V , each transfer of control

between instructions is an edge in E, and ventry , vexit are

distinguished entry and exit nodes. Conditionals in the con-

trol flow graph become constraints to take the appropriate

branch to reach the vulnerability point and satisfy the vul-

nerability condition.

Single Static Assignment (SSA) form. We must convert

the IR into a single static assignment (SSA) [41] form prior

to symbolic constraints (this step can be performed during

the pre-processing phase). Normally, memory locations and

registers are destructively updated many times in the lifes-

pan of a program, e.g., x = x + 1 destructively updates

the x on the right-hand side (RHS) when assigning to x
on the left-hand side (LHS). However, symbolic execution

requires each variable be treated as a single logical entity

that is assigned to only once. SSA form is a semantically

equivalent form of the program which satisfies this criteria.

The SSA form of sequential statements is just a unique re-

naming of each LHS. For example, x = x + 1 becomes

x2 = x1 + 1. For control statements, SSA introduces a

special assignment called φ-functions which merges several

possible definitions of a variable into one. For example, the

if-then-else statement

i f ( x< 2) z = 1 0 ; e l s e z = 20 ;}

becomes

i f (x0 < 2) z1 = 10 e l s e z2 = 2 0 ;

z3 = φ (z1 , z2 ) ;

where z3 is assigned z1 on the true branch and z2 on the

false branch.

MEP symbolic execution. We perform MEP symbolic

execution by evaluating the MEP TM signature. Recall that

the MEP TM signature is a straight-line program. Then

there is a single path π = ventry , v1, ..., vexit that goes

through the vulnerability point and the vulnerability con-

dition. All other paths will end up returning BENIGN and

need not be considered. The result of symbolic execution on

π is a set of constraints on input variables that when met re-

sults in an execution from ventry , through the vulnerability

point and the inlined vulnerability condition to vexit .

We begin by creating symbolic input variables i0, ..., in
where n is the length of the symbolic input to consider,

e.g, n is initially the length of the sample exploit x. Each

statement is then executed on these inputs, resulting in a

symbolic formula at each step. There are three fundamen-

tal operation types to evaluate symbolically: memory up-

dates, arithmetic operations, and branch predicate evalua-

tion. Symbolic execution of arithmetic operations is simply

a substitution procedure. For example, x = a+i0; y = x∗z
becomes y = (a + i0) ∗ z.

A memory store operation is an assignment of a value to

a symbolic memory location (stack and heap assignments

are handled in a uniform fashion). We adopt a model similar

to UCLID [9] for handling memory updates. The initial

state of M is given by m0. Reads and writes are modeled

as λ expressions, where a write to memory location A with

value D yields a new M ′:

M ′ = λaddr.ITE(addr = A,D,M [addr])

The result of a write is an if-then-else (ITE) λ expression.

A subsequent read behaves as follows: the address to read

is applied as the argument to the write λ expression. If the

supplied address matches A, then D is returned, else we

recurse to the next memory address given by M [addr].

Without loss of generality, we assume each branch predi-

cate (such as je (jump if equal) or jz (jump if zero)) vi ∈ π
evaluates to true in order to create the desired total path π. A

branch predicate forms an arithmetic constraint (with some



expressions perhaps involving memory reads and writes) re-

lating the symbolic execution to some constant, e.g., jz y

where y = (a + i0) ∗ z as before and jz is “jump if zero”

results in the constraint (a + i0) ∗ z = 0. Constraints eval-

uate to a constant because machine instructions only allow

comparison of an expression to a constant. The total sym-

bolic formula is then just the conjunction of each branch

predicate.

The constraint system consisting of the conditions on

each branch predicate in π is returned as the desired sig-

nature. Optionally, constraint systems can be simplified,

which consists of deducing how multiple constraints can be

collapsed into a single constraint.

PEP symbolic execution. PEP symbolic execution is

similar to the MEP case, except we must deal with loops.

Loops are handled by computing fixed points. However,

in data-flow analysis a widening operator is used to guar-

antee that the iteration to compute the fixed-point termi-

nates [6, 18]. Currently, we use the following algorithm

to handle loops:

• First, we identify induction variables [41, Chapter 14]

in each loop. For example, the induction variable for

the first while loop in Figure 1 is c. We also compute

the bounds on the induction variable, e.g., the bound

on the induction variable c is c ≥ 1.

• Assume that an induction variable is used to index the

input array in the condition used in the while loop.

The condition used in the while loop along with the

bounds on the induction variable gives us the desired

result. For the first while loop in Figure 1 the condition

that is generated is

( i n p u t [ c ] = ’ ’ ) where ( c >= 1)

3.4 Regular Expression Signature Generation

3.4.1 Computing MEP Regular Expression Signatures

One method for generating a regular expression is to solve

the constraint system S to a set x : x ∈ S and or-ing (|) to-

gether all members, e.g., if S = {00, 01, 21}, then the regu-

lar expression is 00|01|21 4. This method is explored heav-

ily in test-case generation literature [10, 22, 23, 24, 25]. We

adopt this approach to our problem setting.

Divide-and-conquer. The number of variables to con-

sider within a single path may be very large, e.g., mil-

lions of variables at the assembly level. We address this

4A reader may notice this expression is precise, and wonder when the

solution will not be precise. The answer is as precise as the symbolic

representation, e.g., if the symbolic representation only unrolls a loop once,

then the regular expression signature will not reflect inputs that may cause

the loop to be executed more than one time.

problem by decomposing an MEP single-path solution into

smaller sub-paths we can consider independently. Let π =
ventryv1...vexit be an MEP path. A sub-path is a sequence

of instructions πi = vivi+1...vℓ ∈ π in the CFG. A sub-

path πi can be independently evaluated with respect to an-

other sub-path πj if no computation in πi could ever affect

a computation in πj , and vice-versa. Formally, we partition

π = π1π2π3...πj , where each πi is a partition with no data

dependencies with another sub-path πj . A data dependency

exists between πi and πj if πi computes a value that πj uses.

Since no computation in one sub-path πi could affect a

computation in another sub-path πj , each sub-path can be

independently solved, then the final solution can be com-

bined. The solution to each sub-path πi is computed as

above by solving the corresponding constraint system for

the sub-path. The full path π is then the conjunction (∧) of

all sub-paths.

MEP solution. Our approach allows us to divide a sin-

gle MEP into possibly several smaller sub-problems. Let

the MEP path π = π1π2...πn correspond to evaluating the

symbolic input in order i1, ...in. Since sub-paths are inde-

pendent, we can always reorder the sub-paths so this is the

case. Then the signature for an MEP is the concatenation

of the solution for each sub-path. If πi has solution Si, then

the resulting signature is S = S1S2...Sn.

3.4.2 Computing PEP Regular Expression Signatures

We consider two approaches for computing a PEP solu-

tion. The first method considers each MEP path within

a PEP independently, and solves the symbolic constraints

exactly. The second method is an optimization based on

data-flow analysis which can be applied to portions of the

PEP control-flow graph when certain conditions stated be-

low are met. The data-flow analysis optimization works on

basic blocks instead of paths and does not require access to

a constraint solver.

Exact PEP solution. The PEP solution iteratively ex-

plores paths, and then solves them as an MEP solution. We

note that in practice one would likely create an initial MEP

signature for the sample exploit, then process other paths in

the background. This approach generates an initial narrow

signature quickly, then continues to refine it as we perform

more analysis.

PEP data-flow optimization. In many cases we may be

able to determine: (a) the data dependencies partition a vul-

nerability into two or more components (w.r.t. the CFG),

and (b) some of these components do direct comparisons



with input values. For example, many protocols have key-

words or have constant values for specific fields which the

input is simply compared against.

We use data-flow analysis to efficiently compute the lan-

guage accepted by such components. Since each compo-

nent has no data dependencies with other components, the

solution to each component can be inlined into the complete

PEP or MEP solution. At a high level, data-flow analysis it-

eratively processes a CFG until a fixed point of data-flow

facts is reached. Data-flow analysis is widely used in com-

pilers and is highly efficient.

The data-flow analysis combines regular expressions ac-

cepted for each basic block (i.e., a block of contiguous in-

structions with a single entry and exit point) into a regular

expression accepted by the entire component. Due to space

constraints, we give here a very rough overview of data-

flow analysis and leave further discussion to the extended

version of this paper [8]. At a high level, each CFG edge

is labeled with a set of data-flow facts, which in our case is

the regular expression accepted by the basic block for true

edges, and the negated regular expression for false edges.

One key component for a data-flow analysis is specifying

a ⊓ (meet) operator, which summarizes how multiple in-

coming edges to a node are combined, i.e., combining the

regular expression for a point of confluence of incoming

edges. Our ⊓ operator states how to combine regular ex-

pressions α and β at a confluence point, e.g., if β =!α, then

the confluence point corresponds to the regular expression

Σ. In our running example, the instructions on line 4 can be

analyzed independently using data-flow analysis, resulting

in the regular expression g|G for the first byte of the input.

Note realistic programs usually have much larger compo-

nents than in our example which are amenable to data-flow

analysis.

4 Evaluation and Implementation

We have implemented a prototype system to evaluate

our techniques for automatically generating signatures. In

this section we briefly discuss implementation details of our

prototype, and then present our evaluation results. Our eval-

uation results show that even an MEP vulnerability signa-

ture is of far higher quality than signatures generated with

previous approaches. We focus on creating regular expres-

sion signatures since they require generation of the Turing

machine and symbolic constraint signature.

4.1 Implementation

Our total prototype for implementing our techniques

is about 9000 lines of C++ code. We currently use

CBMC [16], a bounded model checker, to help build and

solve symbolic constraints to produce regular expression

signatures. 5

Disassembling the program, converting to IR, and ob-

taining instruction traces. Our binary program disas-

sembler is based upon Kruegel et. al. [34]. We then trans-

late each instruction into the appropriate IR statement via

our own translation language.

Instruction traces can be efficiently generated for most

modern architectures including x86 via hardware [5, 49] or

via software [1, 37, 42]. An instruction trace contains the

instruction address and optionally the value of the operands

for each instruction executed. Although the number of in-

structions executed may be large, the corresponding trace

can be efficiently represented [38, 53]. We currently use

Pin [37] to create our traces.

Solving the constraint system. We use model checking

to solve the system of constraints. We translate the con-

straints into constraints on C variables and use CBMC [16]).

We then assert to the model checker that the vulnerability

condition is unsatisfiable. The model checker will either

verify the vulnerability condition is unsatisfiable, or solve

the constraint system and present a counter-example which,

by construction, is a satisfying input. This process can be

iterated to exhaustively enumerate all possible satisfying in-

puts (i.e., exploits). The regular expression signature is the

“or” of all satisfying inputs. However, this process may be

slow when an input byte may be any of the 2256 values.

Therefore, we currently apply a widening operator such that

any byte that appears to be unconstrained after 3 iterations

becomes a wild-card byte. The widening step may intro-

duce false positives, and can be eliminated when desired.

We show that precise regular expression signature gener-

ation can be reduced to the model checking problem in the

extended version of this paper [8]. Exploring less precise

generation techniques, as well as techniques that work on

practical examples but may be theoretically limited, is an

area of future work.

Implementation limitations. Our current implementa-

tion is a prototype used for researching automatic signature

generation. Although our prototype works in our research

setting, there are a number of limitations. As mentioned

previously, alias analysis is currently not supported. Specif-

ically, we assume that no two memory locations are aliases.

In addition to the possible imprecision this may introduce

during symbolic execution, this limitation prevents us from

computing a true chop [27, 48]. Our current callgraph-

based chopping algorithm is less precise than a true chop,

5We do not use source code despite the fact this is primarily a C model

checker.



which primarily results in larger MEP and PEP coverages

than necessary. Second, we currently create sub-paths based

upon control-flow based analysis, which may not accurately

identify when two sub-paths are independent (Section 3.4).

Finally, our IR transformations do not handle floating point

operations, and we currently do not support the entire x86

instruction set (we add operations as needed for our experi-

ments). All these limitations are orthogonal to our problem

and can be resolved by implementing known techniques.

We currently manually verify none of these problems intro-

duce errors into our results.

4.2 MEP Evaluation

4.2.1 ATPhttpd

ATPhttpd is a webserver written in C [47]. ATPhttpd ver-

sion 0.4b is vulnerable to a common sprintf-style buffer-

overflow when an HTTP request is too long. Specifically,

an exploit of the ATPhttpd vulnerability must meet the fol-

lowing conditions: (a) the HTTP request method is case-

insensitive, and must be either “get” or “head”; (b) the first

byte of the requested file name must be ’/’, and cannot be

followed by ’/’; (c) the requested filename cannot contain

the substring “/../” or end with “/..”; and (d) the requested

filename must be over 677 characters long.

We use the exploit sample from [46], which consists of

the request GET /, followed by the shell code, followed

by the HTTP protocol string HTTP/1.1. In this experi-

ment, the vulnerability condition given for ATPhttpd is that

no pointer should be able to write to a return address.

Signature result and quality. We generated the symbolic

constraints, which were partitioned into 10 distinct sub-

paths that were analyzed independently. We solved the con-

straints and create a regular expression in a little over a sec-

ond, with the average time per partition taking 0.1216s.

We generated the regular expression signature

[g|G][e|E][t|T][ ]/.{423}//.{3}/.{386}. This

regular expression is almost perfect w.r.t. the necessary

conditions to reach the vulnerability as stated previously.

In particular, it recognizes that the get keyword is case

insensitive, and that most bytes can be anything. The

bytes that are constraints (“/” and “//” in the signature)

are both contained in the exploit and explicitly tested

along the MEP vulnerability path that the exploit took.

We contrast our signature with previous exploit-specific

signature generation approaches [44, 43, 36], which at best

only identify small parts of our signature and do not match

different exploit variants such as those that crashes the

server instead of injecting code. Our signatures will catch

all exploit variants given only a single exploit sample.

4.2.2 BIND

BIND is one of the most popular DNS servers. BIND

supports a secret key transaction authentication mechanism

where messages are signed with a transaction signature

(TSIG) [55]. BIND 8.2.x is susceptible to a stack overflow

vulnerability in the TSIG processing code.

The attacker must send a valid DNS transaction signature

request in order to exploit this vulnerability [12]. DNS is a

binary-based protocol in which all messages are struct-like.

DNS (and the exploit) can be TCP or UDP-based, though

here we only consider the UDP protocol messages. DNS

messages begin with a header, followed by a number of re-

source records (RR). An exploit of this vulnerability must

satisfy the following conditions: (a) the request must be a

query, which is represented by byte 2 of the message be-

ing 0; (b) there must be questions present, meaning that the

field specifying the number of questions (byte offsets 4 and

5) must be greater than zero, and that there must be properly

encoded questions starting at offset 12; (c) the field specify-

ing the number of additional resource records (byte offsets

10 and 11) must be greater than zero; (d) The DNS must

contain a resource record with the type field set to TSIG,

which is 0x00af. Since DNS may have many different re-

source records in a single request, the specific byte offset

for this field is a function of several other fields in the re-

quest. We use the TSIG vulnerability exploit from the LION

worm [54] as our sample exploit.

Signature result and quality. We generated the symbolic

constraints, which again could be partitioned into 10 dis-

tinct graphs, which we independently analyzed. The gener-

ated regular-expression signature specified that bytes 6-10

must be zero, that bytes 268 and 500, which indicate the end

of each query in the exploit, must be 0, that byte 12 must

not be 0, which is the first byte of the first query, and finally,

that bytes 505 through 507 must be 0x0000fa, which is the

0 byte at the beginning of the additional resource records

section, followed by the field type TSIG. We verify that the

constructed signature identified all constraints that must be

met to exploit the vulnerability. We also verified the false-

positive rate of our signature by matching it again 1,000,000

DNS requests (trace taken from a high-traffic DNS server

that serves several top level domains). There were no false

positives.

4.3 PEP Evaluation

The chop of ATPHttpd took 30µs and found 88% of all

functions were reachable between accepting a connection

and the vulnerability point (including all libraries). As men-

tioned previously, one technique for generating a PEP sig-

nature is to consider each MEP path independently. An-

other technique is to estimate the effects of multiple paths



simultaneously. Our current prototype implementation for

the latter technique is limited to moderate-sized functions.

Unfortunately, the ATPHttpd and BIND vulnerabilities use

extremely large library function which consists of several

thousand basic blocks. Addressing scalability issues is an

important part of our future work. We expect existing state

reduction techniques from model checking will help solve

this problem.

Here, we evaluate our PEP techniques on synthetic ex-

amples. We compile down our running example to a binary,

and then calculate the full PEP solution. The regular expres-

sion generated is [g|G][ ]*[ˆ ]{5,}. The total time to

compute the answer is about 1.5 seconds. Alternatively, our

tool can also produce the regular expression for each inde-

pendent component of the PEP, and then use data-flow facts

to produce the final signature. In this setting, our tool runs

slightly faster as it does not have to perform symbolic eval-

uation along all possible paths.

5 Discussion

We provide more extensive analysis, including proofs

of the hardness of signature creation and of our data-flow

framework in the extended version of this paper [8].

Other application scenarios. At a high level, our tech-

niques generate an input string that reaches a given instruc-

tion in the binary. Several other applications of our tech-

niques that we plan on investigating include:

• Improve existing pattern-extraction signature genera-

tion algorithms. The quality of a signature generated

by pattern-extraction techniques generally improves as

the number of exploit samples increase. Our tech-

niques can be used to iteratively generate a new exploit

sample x′ that is different than the sample exploit x.

In this scenario, we can give x′ to the pattern-extractor

as a labeled exploit, which it then uses to improve an

existing signature. Note that in previous scenarios pat-

tern extraction would be limited to only x. In addi-

tion, we may be able to label tokens within x which

may further help the analysis. Finally, we note that

our analysis could also be used to help defend against

“red-herring” and “coincidental token” attacks.

• Perform robust vulnerability identification. Often it is

not known whether a known bug is exploitable. Here,

the developer would set vinit to the appropriate read

statement and vfinal to the line for the bug. Our tech-

niques will generate a sample exploit when possible,

confirming whether a bug is exploitable or not.

• Vendor patches often miss all possible paths to a vul-

nerability. Missing alternate paths is not only a secu-

rity problem, but can also be an embarrassment to the

vendor because even “patched” systems may still be

compromised [11]. Our techniques can be adapted to

see if a given patch covers all possible ways a vulnera-

bility may be exploited.

Complete but unsound signatures. Every satisfying so-

lution to the generated symbolic equations is an exploit

string, thus the signature is sound but not complete. A com-

plete but potentially unsound signature, i.e., no false nega-

tives but false positives, can be created by setting the initial

signature to Σ∗ and removing any input that leads to BE-

NIGN state.

Identifying sources of signature imprecision. Our con-

struction allows a signature creator to tune accuracy and

generation time in several ways. First, the creator has a

choice of signature representations. Second, the creator

can choose how much information to retain for less ex-

pressive representations. For example, when creating a

symbolic representation the creator may choose how many

times loops are unrolled. Third, the creator can choose how

much analysis to perform. For example, when creating a

regular expression signature theorem proving can be em-

ployed to enumerate every input string that may exploit the

program, or faster but less accurate data-flow analysis. We

believe these choices allow a creator to gain a fundamental

understanding of the overall accuracy of the final generated

signature by comparing their generated signature to the per-

fect TM signature.

6 Related Work

Signature creation. In Section 1 we detailed most pre-

vious work in this area. Here we mention that Vigilante

has independently proposed signatures which are essen-

tially straight-line programs, not regular expressions [17],

much like our MEP symbolic constraint signatures. How-

ever, Vigilante only creates a signature for the execution

path taken by the sample exploit, and does not explore more

extensive coverages or other vulnerability signature repre-

sentations.

Estimating language classes. A significant part of cre-

ating a vulnerability signature boils down to conservatively

estimating the higher-powered language such as a Turing

machine with a lower-power language such as a regular ex-

pression. Our techniques provide one way of accomplish-

ing this. For example, Mohri and Nederhof present an al-

gorithm for converting certain context-free languages into

regular expressions [39]. We are unaware of other signifi-

cant work in this area.

Program analysis. We use many static analysis tech-

niques such as symbolic execution [31], abstract interpreta-

tion [18], model checking [15], theorem proving [20], data-

flow analysis [29], and program slicing [57]. Each of these



areas is an active research area in which we can benefit from

new or more advanced techniques. It would be impossible

to note all related work in static analysis; the reader is re-

ferred to [4, 41] for an overview of the subject.

Automatic test case generation research explores the

problem of automatically creating an input that reaches a

particular point in the program [10, 22, 23, 24, 25]. We are

interested in a very similar problem where we want to ap-

proximate all inputs that reach a certain location. Also, our

problem setting is relaxed since we may tolerate signatures

with false positives and/or negatives.

Another closely related area is static analysis of program

generated string expressions. This line of work aims at dis-

covering possible strings generated, as opposed to accepted

by a program. Christensen et. al. performed string analysis

on Java programs where type information is available [13].

Christodorescu et. al. extended Christensen’s work to x86

binaries [14]. These techniques are exciting, though more

research is needed to apply their techniques to our problem

setting. In particular, this approach only handles strings and

not other types such as integers.

7 Conclusion

We presented a general framework for obtaining a new

type of signature called vulnerability signatures. Given a

single sample exploit, we presented techniques for automat-

ically generating a signature of higher quality than previ-

ous approaches. In addition, our formulation opens up a

wide variety of signature representations. In particular, we

discuss three distinct types of vulnerability signature repre-

sentations: Turing machine, symbolic constraints, and reg-

ular expressions. We provide theoretical and practical in-

sights into these three signature representations. We con-

clude that our approach is promising alternative to exploit-

centric techniques.
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