Towards Automatic Discovery of Deviations in Binary Implementations with
Applications to Error Detection and Fingerprint Generation

David Brumley, Juan Caballero, Zhenkai Liang, James Newesamd Dawn Song
Carnegie Mellon University
{dbrumley,jcaballero,zliang,jnewsome,dawnsp@gmu.edu

Abstract semantically different protocol states. For example, an
Different implementations of the same protocol Speciﬁ_!mplemer_\tapon may n_ot perform sufficient m_p_ut qheck—
ing to verify if an input is well-formed as specified in the

cation usually contaideviationsi.e., differences in how P : o
- L rotocol specification. Thus, for some inputs, it might

they check and process some of their inputs. Deviations_ | ., . e . ; -
exhibit a deviation from another implementation, which

are commonly introduced as implementation errors or a e
. . . Y ollows the protocol specification and performs the cor-
different interpretations of the same specification. Auto- . .
rect input checking.

matic discovery of these deviations is important for sev- Finding th deviati inimol tati .
eral applications. In this paper, we focus on automatic Inding these devialions in Implementations 1S impor-

discovery of deviations for two particular applications: tant Lor seivehral apphcatlon;s. Intpar|t||czll_ar, N tht'rs] pap;zr
error detection and fingerprint generation. we show 1) how we can automatically discover these de-

We propose a novel approach for automatically de_viations, and 2) how we can apply the discovered devia-

. - . . : . tions to two particular application®rror detectionand
tecting deviations in the way different |mplementat|0nsﬁn erprint generation
of the same specification check and process their input. g- P) g. o) i
Our approach has several advantages: (1) by automati- First. finding a deviation between two differentimple-
cally building symbolic formulas from the implementa- mentations of the same specification may indicate that at

tion, our approach is precisely faithful to the implemen- least one of the two implementations has an error, which

tation: (2) by solving formulas created from two different we callerror detection Finding such errors is important

implementations of the same specification, our approacﬁ0 guarantee that the protocol is correctly implemented,

significantly reduces the number of inputs needed to find® eNsure proper interoperability with other implementa-

deviations; (3) our approach works on binaries directly,10nS: @nd to enhance system security since errors often
without access to the source code. represent vulnerabilities that can be exploited. Enabling

We have built a prototype implementation of our ap- error detection by automatically finding deviations be-

proach and have evaluated it using multiple implemen_tween two different implementations is particularly at-

tations of two different protocols: HTTP and NTP. Our trac(;wle l?erc]:ause I dcl)es no:c_reqwre i?anuallﬁvxfntten
results show that our approach successfully finds devimodel of the protoco_ specification. €se models are
sually complex, tedious, and error-prone to generate.

ations between different implementations, including er—l’iI e that h deviati q : iy f
rors in input checking, and differences in the interpre- ote that such deviations do not necessarily tiag an er-

tation of the specification, which can be used as finger—mr in one of the two |mplem.en'gat|pns, since (.j.ev'a.t'ons
prints. can also be caused by ambiguity in the specification or

when some parts are not fully specified. However, au-
tomatic discovery of such deviations is a good way to
1 Introduction provide candidate implementation errors.

Second, such deviations naturally give risditaer-
Many different implementations usually exist for the prints, which are inputs that, when given to two differ-
same protocol. Due to the abundance of coding errorent implementations, will result in semantically differ-
and protocol specification ambiguities, these implemenent output states. Fingerprints can be used to distinguish
tations usually contaideviationsi.e., differencesin how between the different implementations and we call the
they check and process some of their inputs. As a resuliliscovery of such inputngerprint generation Finger-
same inputs can cause different implementations to reacprinting has been in use for more than a decade [25]

and is an important tool in network security for remotely Contributions.

In summary, in this paper, we make the

identifying which implementation of an application or following contributions:

operating system a remote host is running. Fingerprint-
ing tools [7, 10, 14] need fingerprints to operate and con-
stantly require new fingerprints as new implementations,
or new versions of existing implementations, become
available. Thus, the process of automatically finding
these fingerprints, i.e., the fingerprint generation, is cru

cial for these tools.

Automatic deviation discovery is a challenging task—
deviations usually happen in corner cases, and discover-
ing deviations is often like finding needles in a haystack.
Previous work in related areas is largely insufficient. For
example, the most commonly used technique is random
or semi-random generation of inputs [20,43] (also called
fuzz testing). In this line of approach, random inputs are
generated and sent to different implementations to ob-
serve if they trigger a difference in outputs. The obvious
drawback of this approach is that it may take many such
random inputs before finding a deviation.

In this paper, we propose a novel approach to auto-
matically discover deviations in input checking and pro-
cessing between different implementations of the same
protocol specification. We are given two prograis
and P, implementing the same protocol. At a high level,
we build two formulas,f; and f>, which capture how
each program processes a single input. Then, we check
whether the formuld f; A —f2) V (=f1 A f2) is satisfi-
able, using a solver such as a decision procedure. If the
formula is satisfiable, it means that we can find an input,
which will satisfy f; but not f5 or vice versa, in which
case it may lead the two program executions to seman-
tically different output states. Such inputs are good can-
didates to trigger a deviation. We then send such candi-
date inputs to the two programs and monitor their output
states. If the two programs end up in two semantically
different output states, then we have successfully found
a deviation between the two implementations, and the
corresponding input that triggers the deviation.

We have built a prototype implementation of our ap-
proach. It handles both Windows and Linux binaries
running on an x86 platform. We have evaluated our ap-
proach using multiple implementations of two different

protocols: HTTP and NTP. Our approach has succesdews.

e Automatic discovery of deviations: We propose

a novel approach to automatically discover devia-
tions in the way different implementations of the
same protocol specification check and process their
input. Our approach has several advantages: (1)
by automatically building symbolic formulas from
an implementation, our approach is precisely faith-
ful to the implementation; (2) by solving formulas
created from two different implementations of the
same specification, our approach significantly re-
duces the number of inputs needed to find devia-
tions; (3) our approach works on binaries directly,
without access to the source code. This is important
for wide applicability, since implementations may
be proprietary and thus not have the source code
available. In addition, the binary is what gets ex-
ecuted, and thus it represents the true behavior of
the program.

Error detection using deviation discovery: We
show how to apply our approach for automati-
cally discovering deviations to the problem of error
detection—the discovered deviations provide can-
didate implementation errors. One fundamental ad-
vantage of our approach is that it does not require
a user to manually generate a model of the protocol
specification, which is often complex, tedious, and
error-prone to generate.

Fingerprint generation using deviation discov-
ery: We show how to apply our approach for
automatically discovering deviations to the prob-
lem of fingerprint generation—the discovered devi-
ations naturally give rise to fingerprints. Compared
to previous approaches, our solution significantly
reduces the number of candidate inputs that need
to be tested to discover a fingerprint [20].

Implementing the approach: We have built a pro-
totype that implements our approach. Our evalua-
tion shows that our approach is accurate and effi-
cient. It can identify deviations with few example
inputs at bit-level accuracy.

The remainder of the paper is organized as fol-

Section 2 introduces the problem and presents

fully identified deviations between servers and automatan overview of our approach. In Section 3 we present
ically generated inputs that triggered different server be the different phases and elements that comprise our ap-
haviors. These deviations include errors and differenceproach and in Section 4 we describe the details of our
in the interpretation of the protocol specification. The implementation. Then, in Section 5 we present the eval-
evaluation shows that our approach is accurate: in oneation results of our approach over different protocols.
case, the relevant part of the generated input is only thre®/e discuss future enhancements to our approach in Sec-
bits. Our approach is also efficient: we found deviationstion 6. Finally, we present the related work in Section 7
using a single request in about one minute. and conclude in Section 8.

2 Problem Statement and Approach However, in general it is easy to find an inputc 1
Overview such thatP, (z) = Pa(z) = s € S, i.e., most inputs

will result in the same protocol output statdor differ-

In this section, we first describe the problem statementent implementations of the same specification. fet)
then we present the intuition behind our approach, ande the formula representing the set of inputsuch that

finally we give an overview of our approach. f(z) = true < P(x) = s. WhenP; and P, imple-

_ ment the same protocol differently, there may be some
Problem statement. In this paper we focus on the input wheref, will not be the same ag:

problem of automatically detecting deviations in proto-
col implementations. In particular, we aim to find inputs 3 (£, (2) A —f2(2)) V (= f1(2) A fo(z)) = true.
that cause two different implementations of the same
protocol specification to reach semantically differentout The intuition behind the above expression is that when
put states. When we find such an input, we say we have, (z) A —=fo(x) = true, then Pi(z) = s (because
found a candidate deviation. fi(x) = true) while Py(z) # s (becausefs(z) =
The output states need to be externally observable. Wey|sg), thus the two implementations reach different out-
use two methods to observe such states: (a) monitoringut states for the same input Similarly, - f (z) A fo()
the network output of the program, and (b) supervisingindicates wherP; () # s, but P,(z) = s. We take the
its environment, which allows us to detect unexpectediisjunction since we only care whether the implementa-
states such as program halt, reboot, crash, or resourgfns differ from each other.
starvation. However, we cannot simply compare the Gijven the above intuition, the central idea is to create
complete output from both implementations, since thethe formulaf using the technique of weakest precondi-
output may be different but semantically equivalent. Fortion [19, 26]. Let be a predicate over the state space
example, many protocols contain sequence numbers, angt a program. The weakest precondition(P, Q) for
we would expect the output from two different imple- 3 programP and post-conditior) is a boolean formula
mentations to contain two different sequence numbersy gyer the input space of the program. In our setting, if
However, the output messages may still be semantically ;) — true, thenP(z) will terminate in a state satisfy-
equivalent. ing Q, and if f(2) = false thenP(x) will not terminate
Therefore, we may use some domain knowledge abouh a state satisfying) (it either “goes wrong” or does not
the specific protocol being analyzed to determine whenerminate). For example, if the post-conditignis that
two output states are semantically different. For exam-p outputs a successful HTTP reply, thén= wp(P, Q)
ple, many protocols such as HTTP, include a status codgharacterizes all inputs which lead to output a suc-
in the response to provide feedback about the status cfessful HTTP reply. The boolean formula output by the
the request. We use this information to determine if twoweakest precondition is our formufa
output states are semantically equivalent or not. In other Fyrthermore, we observe that the above method can
cases, we observe the effect of a particular query in thegij|| be used even if we do not consider the entire pro-
program, such as program crash or reboot. Clearly thesgram and only consider singleexecution path (we dis-
cases are semantically different from a response beingyss multiple execution paths in Section 6). In that case,
emitted by the program. the formulaf represents the subset of protocol inputs
that follow one of the execution paths considered and still
reach the protocol output state Thus, f (x) = true =
(z) = s, since if an input satisfieg then for sure it
will make programP go to states, but the converse is
not necessarily true—an input which makiggo to state
s may not satisfyf. In our problem, this means that the
difference betweerf; and f> may not necessarily result
in a true deviation, as shown in Figure 2. Instead, the
ifference betweerf; and f5 is a good candidate, which
we can then test to validate whether it is a true deviation.

Intuition of our approach. We are given two imple-
mentations?; and P, of the same protocol specification.
Each implementation at a high level can be viewed a
a mapping function from the protocol input spat¢o
the protocol output state spade Let P, P, : I — S
represent the mapping function of the two implementa
tions. Each implementation accepts inputg I (e.g.,
an HTTP request), and then processes the input resultin
in a particular protocol output statec S (e.g., an HTTP
reply). At a high level, we wish to find inputs such that
the same input, when sent to the two implementations,
will cause each implementation to result in a differentOverview of our approach. Our approach is an itera-
protocol output state. tive process, and each iteration consists of three phases,
Our goal is to find an input € I such thatP; (z) # as shown in Figure 1. First, in thlermula extraction
P, (x). Finding such an input through random testing is phase, we are given two binarié&s and P, implement-
usually hard. ing the same protocol specification, such as HTTP, and

Symbolic Symbolic
Program
binary P = formula [formula f \

generator | |~ .
| Combining o Yes Qarjdld_ate
eut foandf ["] Solver Satisfiable? deviation inputs

/=

Symbolic Symbolic

;L(?r;ag] —» formula | formula f
2 generator Y
< > < >
1 - Formula Extraction Phase 2 - Deviation Detection Phase
Output
;L?Srag] state 1
Candidate YA Yes | paviation
deviation inputs|
Program
binary B Output
state 2

A

3 - Validation Phase

Figure 1: Overview of our approach.

an inputz, such as an HTTP GET request. For eachmay represent an implementation error in at least one of
implementation, we log an execution trace of the binarythe implementations, which can then be checked against
as it processes the input, and record what output state the protocol specification to verify whether it is truly an
reaches, such as halting or sending a reply. We assumegror; (2) it can be used asfangerprintto distinguish
that the execution from both binaries reaches semantibetween the two implementations.

cally equivalent output states; otherwise we have already

found a deviation! For each implementatidh and |teration. We can iterate this entire process to examine
P,, we then use this information to produce a booleanotherinput types. Continuing with the HTTP example,
formula over the inputf, and f> respectively, each of e can compare how the two implementations process
which is satisfied for inputs that cause the binary to reactpther types of HTTP requests, such as HEAD and POST,
the same output state as the original input did. by repeating the process on those types of requests.
Next, in thedeviation detectiophase, we use a solver
(such as a decision procedure) to find differences in th
two formulasf; and f,. In particular, we ask the solver

if (fiA=f2)V (f2A—f1) is satisfiable. When satisfiable |, this section, we describe the details of the three phases
the solver will return an example satisfying input. We i our approach, the formula extraction phase, the devia-
call these inputs theandidate deviation inputs tion detection phase, and the validation phase.
Finally, in thevalidation phase we evaluate the can-
didate deviation inputs obtained in the formula extrac—3 1 Formula Extraction Phase
tion phase on both implementations and check whether
the implementations do in fact reach semantically differ-3.1.1 Intuition and Overview
ent output states. This phase is necessary because . . .
symbolﬁ: formula might r?ot include all poss)i/ble execu-t_tilﬁe goal of the formula extraction phase is tha_t givenan
tion paths, then an input that satisfifsis guaranteed to input - such thhatP1 () = _PQ(_:C) - _S’hW:ereS IS _the
make P, reach the same semantically equivalent outpuf) utput state when exeputmg Inputwith the two given
state as the original input but an input that does not programs, we would like to compute two formulas,
satisfy f1 may also make; reach a semantically equiv- and fz, such that,
alent output state. Hence, the generated candidate devia- fi(z) =true = Pi(z) = s
tion inputs may actually still cause both implementations
to reach semantically equivalent output states. and
If the implementationdoreach semantically different

output states, then we have found a deviation triggered by his matches well with the techniquewéakest precon-
that input. This deviation is useful for two things: (1) it dition (WP) [19, 26]. The weakest precondition, denoted

Design

fa(x) = true = Py(x) = s,

wp(P, @), is a boolean formulg over the input spacé Step 1: Recording the execution trace. We generate
of P such that iff(z) = true, thenP(z) will terminate formulas based upon the program path for a single ex-
in a state satisfying). In our setting, the post-condition ecution. We have implemented a path recorder which
is the protocol output state, and the weakest preconditionecords the execution trace of the program. The exe-
is a formula characterizing protocol inputs, which will cution trace is the sequence of machine instructions ex-
cause the implementation to reach the specified protocacuted, and for each executed instruction, the value of
output state. each operand, whether each operand is derived from the
Unfortunately, calculating the weakest preconditioninput, and if it is derived from the input, an identifier for
over an entire real-world binary program can easily re-the original input stream it comes from. The trace also
sult in a formula that is too big to solve. First, there may has information about the first use of each input byte,
be many program paths which can lead to a particulaidentified by its offset in the input stream. For example,
output state. We show that we can generate interestintpr data derived from network inputs, the identifier spec-
deviations even when considering a single program pathfies which session the input came from, and the offset
Second, we observe that in many cases only a small sulspecifies the original position in the session data.
set of instructions operate on data derived from the origi-

nal input. There is no need to model the instructions thastep 2: Processing the execution trace.We process

do not operate on data derived from the original input,the execution trace to include only relevant instructions.
since the result they compute will be the same as in thezn instruction is relevant if it operates on data derived
original execution. Therefore we eliminate these instrucrom the inputZ. For each relevant instruction, we:

tions from the WP calculation, and replace them with

only a series of assignments of concrete values to the rel- ® Translate the x86 instruction to an easier-to-analyze
evant program state just before an instruction operateson intermediate representation (IR). The generated IR

data derived from the input. is semantically equivalent to the original instruc-
Hence, in our design, we build the symbolic formula tion.

in two distinct steps. We first execute the programonthe The advantage of our IR is that it allows us to per-

original input, while recording a trace of the execution. form subsequent steps over the simpler IR state-

We then use this execution trace to build the symbolic ments, instead of the hundreds of x86 instructions.

formula. The translation from an x86 instruction to our IR

is designed to correctly model the semantics of the
original x86 instruction, including making other-
wise implicit side effects explicit. For example, we
In order to generate the symbolic formula, we perform insert code to correctly model instructions that set
the following steps: theeflags register, single instruction loops (e.g.,

1. Record the execution trace of the executed program ~ €P instructions), and instructions that behave dif-
ferently depending on the operands (e.g., shifts).

3.1.2 Calculating the Symbolic Formula

path.

2. Process the execution trace. This step translates the Our IR is shown in Table 1. We translate x86 in-
execution trace into a prograBwritten in our sim- struction into this IR. Our IR has assignments£
plified intermediate representation (IR). v), binary and unary operations (= r;0,v and

3. Generate the appropriate post-conditipn r := O,v whered, andO, are binary and unary

4. Calculate the weakest precondition Brby: operators), loading a value from memory into a reg-

ister (-1 := *(r2)), storing a value{(r1) := rq),

(a) TranslatingB into a single assignment form. _ ; X
direct jumps (jmp¢) to a known target label (label

(b) Translating the (single assignment) IR pro- /.y indirect jumps to a computed value stored in a
gram into the guarded command language register (ijmpr), and conditional jumps (if- then
(GCL). The GCL program, denotef,, is imp ¢1 else jmpts).

semantically equivalent to the input IR state-
ments, but appropriate for the weakest precon- e Translate the informationlogged about the operands
dition calculation. into a sequence of initialization statements. For

(c) Computing the weakest preconditigh = each operand.

wp(By, Q) in a syntax-directed fashion on the — Ifit _is not derived from input, the opgrand is
GCL. assigned the concrete value logged in the ex-
ecution trace. These assignments effectively
The output of this phase is the symbolic formyla model the sequences of instructions that we do

Below we describe these steps in more detail. not explicitly include.

Instructions ¢ 2= xk(rp) i=ralry = x(re)|r = vlr = r1Opw
|r:=0yv |label ;| jmp ¢]ijmp r
|if r jmp ¢ else jmp {5

Operations 0O, 1= +,—,%,/,<,>,&,|,®,==,!=,<, < (Binary operations)
O, == ~—,!(unary operations)

Operands v := n (aninteger literal) r (a register) ¢ (a label)

Reg. Types 7 = reg64t | reg32t | regl6t | reg8t | reglt (number of bits)

Table 1: Our RISC-like assembly IR. We convert x86 assemidirictions into this IR.

— For operands derived from input, tfiest time In some programs, there may be multiple paths that
we encounter a byte derived from a particu- reach the same output state. Our techniques can be gen-
lar input identifier and offset, we initialize the eralized to handle this case, as discussed in Section 6. In
corresponding byte of the operand witeyan- practice, we have found this post-condition to be suffi-
bolic value that uniquely identifies that input cient for finding interesting deviations. Typically, ingut
identifier and offset. On subsequent instruc-that cause the same execution path to be followed are
tions that operate on data derived from thattreated equivalently by the program, and result in equiv-
particular input identifier and offset, we do alent output states. Conversely, inputs that follow a dif-
notinitialize the corresponding operand, since ferent execution path often result in a semantically dif-
we want to accurately model the sequence offerent output state of the program. Although more com-
computations on the input. plicated and general post-conditions are possible, one in-

teresting result from our experiments is that the simple

The output of this step is an IR prografhconsisting gnnroach was all that was needed to generate interesting
of a sequence of IR statements. deviations.

Step 3: Setting the post-condition. Once we have Step 4: Calculating the weakest precondition. The
generated the IR program from the execution trace, theveakest precondition (WP) calculation step takes as in-
next step is to select a post-condition, and compute theut the IR progranB from Step 2, and the desired post-
weakest precondition of this post-condition over the pro-condition from Step 3. The weakest precondition, de-
gram, yielding our symbolic formula. notedwp(B, Q), is a boolean formulg over the input
The post-condition specifies the desired protocol outspace such that if (z) = true, thenB(z) will terminate
put state, such as what kind of response to a request a state satisfying). For example, if the program is
message is desired. In our current setting, anideal postB : y = z + 1 and@ : 2 < y < 5, thenwp(B, Q) is
condition would specify that “The input resultsinanex- 1 < x < 4.
ecution that results in an output state that is semantically We describe the steps for computing the weakest pre-
equivalent to the output state reached when processingondition below.
the original input.” That is, we want our formula to be Step 4a: Translating into single assignment foive
true for exactly the inputs that are considered “semaniranslate the IR progran® from the previous step into
tically equivalent” to the original input by the modeled a form in which every variable is assigned at most once.
program binary. (The transformed program is semantically equivalent to
In our approach, the post-condition specified the outthe input IR.) We perform this step to enable additional
put state should be the same as in the trace. In order toptimizations described in [19, 29, 36], which further re-
make the overall formula size reasonable, we add addiduce the formula size. For example, this transformation
tional constraints to the post-condition which constraintwill rewrite the programx := x+1; x = x+1; as
the formula to the same program path taken as in thexl := x0+1; x2 := x1+1; . We carry out this
trace. We do this by iterating over all conditional jumps transformation by maintaining a mapping from the vari-
and indirect jumps in the IR, and for each jump, add aable name to its current incarnation, e.g., the original
clause to the post-condition that ensures that the final forvariablex may have incarnations0, x1, andx2. We
mula only considers inputs that also result in the samaterate through the program and replace each variable use
destination for the given jump. For example, if in the with its current incarnation. This step is similar to com-
traceif e then /(; else /5 was evaluated and the puting the SSA form of a program [39], and is a widely
next instruction executed wds, thene must have eval- used technique.
uated tofalse and we add a clause restricting= false Step 4b: Translating to GCLThe translation to GCL
to the post-condition. takes as input the single assignment form from step 4a,

and outputs a semantically equivalent GCL progiyn late the weakest preconditianp(A4; B, Q), we calculate

We perform this step since the weakest precondition isvp(A, wp(B, @Q)). Similarly wp(assumee, Q) = e =

calculated over the GCL language [26]. The result-Q). For assignmentshs := e, we generate a let expres-

ing programB,, is semantically equivalent to the input sion which binds the variable nanes to the expression

single-assignment IR statements. The weakest precondi- We also take advantage of a technical transformation,

tion is calculated in a syntax-directed manner aBgr which can further reduce the size of the formula by using
The GCL language constructs we use are shown irthe single assignment form from Step 4a [19, 29, 36].

Table 2. Although GCL may look unimpressive, it is

sufficiently expressive for reasoning about complex pro-

grams [24, 26, 28, 29]. Statements in our GCL pro- 3.1.3 Memory Reads and Writes to Symbolic Ad-

grams will mirror statements in assembly, e.g., store, dresses

load, assign, etc. GCL has assignments of the form

lhs := e wherelhs is a register or memory location, and If the instruction accesses memory using an address that

e is a (side-effect) free expressiomssumee assumes is derived from the input, then in the formula the address

a particular (side-effect free) expression is true. @ will be symbolic, and we must choose what set of possi-

sumestatement is used to reason about conditional jumgple addresses to consider. In order to remain sound, we

predicates, i.e., we adé$sumee” for the true branch of ~ add a clause to our post-condition to only consider execu-

a conditional jump, anddssume-e” for the false branch tions that would calculate an address within the selected

of the conditional jump.asserte asserts that must be set. Considering more possible addresses increases the

true for execution to continue, else the program fails. Ingenerality of our approach, at the cost of more analysis.

other words,() cannot be satisfied iésserte is false.

skip is a semantic no-op.S;; Se denotes a sequence

where first statemerfi; is executed and then statement Memory reads. When reading from a memory loca-

So is executed 51055 is called a choice statement, and tion selected by an address derived from the input, we

indicates that eithef; or S, may be executed. Choice must process the memory locations in the set of ad-

statements are used for if-then-else constructs. dresses being considered as operands, generating any ap-
For example, the IR: propriate initialization statements, as above.

if (zo<0){ We achieve good results considering only the address
1 :=mx0 — 1; that was actually used in the logged execution trace

1 else { and adding the corresponding constraints to the post-
1 =zo + 1; condition to preserve soundness. In practice, if useful
} deviations are not found from the corresponding formula,

will be translated as: we could consider a larger range of addresses, achieving
a more descriptive formula at the cost of performance.

(assumery < 0;21 = o — 1;)0 We have implemented an analysis that bounds the range
(assume—(zo < 0); 21 1= 2o + 1) of symbolic memory addresses [16], but have found we

get good results without preforming this additional step.

The above allows calculating the WP over multiple
paths (we discuss multiple paths in Section 6). In our
setting, we only consider a single path. For each branciMemory writes. We need not transform writes to
conditione evaluated in the trace, we could add the GCL memory locations selected by an address derived from
statementsserte if e evaluated tdrue (elseassert—e the input. Instead we record the selected set of addresses
if e evaluated tdalse). In our implementation, usings- to consider, and add the corresponding clause to the post-
sert in this manner is equivalent to adding a clause forcondition to preserve soundness. These conditions force
each branch predicate to the post-condition (e.g., makinghe solver to reason about any potential alias relation-
the post-conditior A @@ whene evaluated tdruein the ships. As part of the weakest precondition calculation,
trace). subsequent memory reads that could use one of the ad-

Step 4c: Computing the weakest preconditioVe dresses being considered are transformed to a conditional
compute the weakest precondition 8y, from the pre- statement handling these potential aliasing relatiorsship
vious step in a syntax-directed manner. The rul_es for As with memory reads, we achieve good results only
computing the weakest precondition are shown in Taonsidering the address that was actually used in the
ble 2. Most rules are straightforward, e.g., to calcu-ggged execution trace. Again, we could generalize the

1The GCL defines a few additional commands such ds-while ~ formula to consider more values, by selecting a range of
loop, which we do not need. addresses to consider.

AB e GCLstmt :=lhs:=e GCL stmt wp(stmt, Q)

| A;B assumes e= (@

| assumee (e is an expression) asserte en@

| asserte (e is an expression) lhs:=e letlhs =¢

|AOB A; B wp(A, wp(B,Q))

| skip AOB wp(A, Q) A wp(B,Q)

Table 2: The guarded command language (left), along witlctimeesponding weakest precondition predicate trans-
former (right).

3.3 Validation Phase

Finally, we validate the generated candidate deviation in-
puts to determine whether they actually result in seman-
tically different output states in the two implementations
As illustrated in Figure 2, it is possible that while an in-
put does not satisfy the symbolic formula generated for
a server, it actually does result in an identical or seman-
tically equivalent output state.

We send each candidate deviation input to the imple-
mentations being examined, and compare their outputs to
determine whether they result in semantically equivalent
or semantically different output states.

Figure 2: Different execution paths could end up in the In theory, this testing requires some domain knowl-
same output states. The validation phase checks whethedge about the protocol implemented by the binaries, to
the new execution path explored by the candidate deviadetermine whether their outputs are semantically equiva-
tion input obtained in the deviation detection phase trulylent. In practice, we have found deviations that are quite
ends up in a different state. obvious. Typically, the server whose symbolic formula
is satisfied by the input produces a response similar to
its response to the original input, and the server whose
symbolic formula is not satisfied by the input produces
an error message, drops the connection, etc.

3.2 Deviation Detection Phase

In this phase, we use a solver to find candidate inputs4 Implementation

which may cause deviations. This phase takes as inp
the formulasf; and f, generated for the prograniy
and P, in the formula extraction phase. We rewrite the
variables in each formula so that they refer to the sam
input, but each to their own internal states.

l{Sur implementation consists of several components: a
path recorder, the symbolic formula generator, the solver,
eand a validator. We describe each below.

Collecting the trace. The symbolic formula generator
component is based on QEMU, a complete system em-
ulator [9]. We use a modified version of QEMU, that
as been enhanced with the ability to track how speci-
t1‘ied external inputs, such as keyboard or received net-

found an input that satisfies one program’s formula, bu K dat d The f | A .
not the other. If we had perfectly and fully modeled each!VO'K data are procesed. € formula generator moni-
tors the execution of a binary and records the execution

rogram, and perfectly specified the post-condition to be L : .
brog b y sp b trace, containing all instructions executed by the program

that “the input results in a semantically equivalent output dthe inf i f thei d h as their val
state”, then this input would be guaranteed to produce gnathenformation ottheir operands, such as heir value
nd whether they are derived from specified external in-

semantically equivalent output state in one program, buf o . .
v ed P brog uts. We start monitoring the execution before sending

not the other. Since we only consider one program patrp
and do not perfectly specify the post-condition in this requests to the server and stop the trace when we observe

way, this input is only aandidate deviation input a response from the server. We use a no-response timer

We then query the solver whether the combined for-
mula (f1 A —f2) V (=f1 A f2) is satisfiable, and if so,
to provide an example that satisfies the combined for
mula. If the solver returns an example, then we hav

to stop the trace if no answer is observed from the server Server Version Type Binary Size
after a configurable amount of time. Apache 2.2.4 HTTP server| 4,344kB
Miniweb 0.8.1 HTTP server 528kB
))) Savant 3.1 HTTP server 280kB
Symbolic formula generation. We implemented our NetTime | 2.0 beta 7| NTP server 3.702kB
symbolic formula generator as part of our BitBlaze bi- Ntpd 4.1.72 NTP server 192kB

nary analysis platform [1]. The BitBlaze platform can
parse executables and instruction traces, disassembible 3: Different server implementations used in our
each instruction, and translate the instructions intokhe | evaluation.

shown in Table 1. The entire platform consists of about

16,000 lines of C/C++ code and 28,000 lines of OCaml,
with about 1,600 lines of OCaml specifically written for

our approach. the expected HTTP Status-Line such as “HTTP/1.1 400

Bad Request”.

Solver. We use STP [30, 31] as our solver. Itis a deci- 5 Evaluation
sion procedure specialized in modeling bit-vectors. After

taking our symbolic formula as input, it either outputs an\ya have evaluated our approach on two different proto-
input that can satisfy the formula, or decides that the for-.q 5. HTTP and NTP. We selected these two protocols
mula is not satisfiable. as representatives of two large families of protocols: text

protocols (e.g. HTTP) and binary protocols (e.g. NTP).

Candidate deviation input validation. Once a candi- Text and binary protocols present significant differences

date deviation input has been returned by the solver, wd! €nceding, field ordering, and methods used to separate

need to validate it against both server implementationd!€!ds- Thus, itis valuable to study both families. In par-
and monitor the output states. For this we have puilticular, we use three HTTP server implementations and

small HTTP and NTP clients that read the inputs, sendW0 NTP server implementations, as shown in Table 3.

them over the network to the servers, and capture the ree‘" the !mp_lementatlons are Wlndows bmaru_es and the
sponses, if any. evaluation is performed on a Linux host running Fedora

After sending candidate inputs to both implementa-CO_FE S iqinal input hich dt d to th
tions, we determine the output state by looking at the € oczlg|_na tll?pl%l S, WI Ic twe t_nee ho Sin 0 et
response sent from the server. For those protocols th EIVers during the formula extraction phase 1o generate

contain some type of status code in the response, such 5 e execution traces, were obtained by capturing a net-

HTTP in the Status-Line, each different value of the Sta_Work trace from one of our Workstatiolns and.selecting
! us-H ! va Il the HTTP and NTP requests that it contained. For

tus code represents a different output state for the servef . .

For those protocols that do not contain a status code ir‘?aCh HTTP requestin th_e tr:_;lce, we sgnd itto each ofthe
the response, such as NTP, we define a genalid state HTTP servers and monitor its executlon_, g_eneratmg an
and consider the server to have reached that state, as® ecution trace as output. We proceed similarly for each

consequence of an input, if it sends any well-formed re- P request, obtaining an execution trace for each re-

sponse to the input, independently of the values of thequest/server pair. In Section 5.1, we show the deviations
fields in the respons’e we discovered in the web servers, and in Section 5.2, the

In addition, we define three special output statefsi-a deviations we discovered in the NTP servers.
tal statethat includes any behavior that is likely to cause
the server to stop processing future queries such as 5.1 Deviations in Web Servers
crash, reboot, halt or resource starvatiomacaresponse
statethat indicates that the server is not in the fatal stat
but still did not respond before a configurable timer ex-

pired, and analformed statéhat includes any response Vant. For brevity and clarity, we only show results for a
from the server that is missing mandatory fields. ThisSpeclflc HTTP query, which we find to be specially im-

last state is needed because servers might send messagggtam becau_se It _dlscovered dewa_tlons betwegn Q|ffer-
back to the client that do not follow the guidelines in the €Nt SErver pairs. Figure 3 shows this query, which is an
corresponding specification. For example several HTTE11 1P GET request for the filéndex.html

servers, such as Apache or Savant, might respond to an

incorrect request with a raw message written into theDeviations detected. For each server we first calculate
socket, such as the string “IOError” without including a symbolic formula that represents how the server han-

eThis section shows the deviations we found among three
web server implementations: Apache, Miniweb, and Sa-

Original request:

0000: 47 4554 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
0010: 48545450 2F 31 2E 31 0D OA 48 6F 73 74 3A 20 HTTP/1.1..Host:
0020: 31 30 2E 30 2E 30 2E 32 31 0D 0A OD OA 10.0.0.21....

Figure 3: One of the original HTTP requests we used to geaevatcution traces from all HTTP servers, during the
formula extraction phase.

~fa ~fm —fs
fa N/A Case 1: unsatisfiable Case 2: 5/0
Iy Case 3: 5/5 N/A Case 4: 5/5
fs | Case 5: unsatisfiable Case 6: unsatisfiable ~ N/A

Table 4: Summary of deviations found for the HTTP serveiduiding the number of candidate input queries requested
to the solver and the number of deviations found. Each cpiegents the results from one query to the solver and each
guery to the solver handles half of the combined formula smteserver pair. For example Case 3 shows the results
when querying the solver fdify; A —f4) and the combined formula for the Apache-Miniweb pair is tiguhction

of Cases 1 and 3.

dled the original HTTP request shown in Figure 3. We different output states when sent to the servers, that is, no
call these formulasf,, fs, fas for Apache, Savant and deviations were found. For Cases 3 and 4, all candidate
Miniweb respectively. Then, for each of the three pos-deviation inputs triggered a deviation when sent to the

sible server pairs: Apache-Miniweb, Apache-Savant andservers during the validation phase. In both cases, the
Savant-Miniweb, we calculate the combined formula asMiniweb server accepted some input that was rejected by
explained in Section 3. For example, for the Apache-the other server. We analyze these cases in more detail
Miniweb pair, the combined formula i§fa A —fas) V next.

(fm A —fa). To obtain more detailed information, we

break the combined formula into two separates queries tg\pplications to error detection and fingerprint gener-

the solver, one representing each side of the disjunctionation' Figure 4 shows one of the deviations found for
For example, for the Apache-Miniweb pair, we query thethe Apache-Miniweb pair. It presents one of the candi-
solver twice: one fo(f4 A =far) and another time for .0 goviation inputs obtained from the solver in Case 3,
(far A=f4). The combined formula is the disjunction of and the responses received from both Apache and Mini-
the two responses from the solver. . web when that candidate input was sent to them dur-
Table 4 summarizes our results when sending thgng the validation phase. The key difference is on the
HTTP GET requestin Figure 3 to the three servers. Eaclfih pyte of the candidate deviation input, whose original
cell of the table represents a different query to the solverascy| value represented a slash, indicating an absolute
that is, half of the combined formula for each serveryaih |n the generated candidate deviation input, the byte
pair. Thus, the table has six possible cells. For exampas value OXES. We have confirmed that Miniweb does
ple, the combined formula for the Apache-Miniweb pair, jngeed accept any value on this byte. So, this deviation
is shown as the disjunction of Cases 1 and 3. reflects an error by Miniweb: it ignores the first character
Out of the six possible cases, the solver returned unof the requested URI and assumes it to be a slash, which
satisfiable for three of them (Cases 1, 5, and 6). For thés a deviation from the URI specification [15].
remaining cases, where the solver was able to generate at Figure 5 shows one of the deviations found for the
least one candidate deviation input, we show two num-Savant-Miniweb pair. It presents one of the candidate de-
bers in the format X/Y. The X value represents the num-yiation inputs obtained from the solver in Case 4, includ-
ber of different candidate deviation inputs we obtaineding the responses received from both Savant and Mini-
from the solver, and the Y value represents the numbeyveb when the candidate deviation input was sent to them
of these candidate deviation inputs that actually generduring the validation phase. Again, the candidate devi-
ated semantically different output states when sent to th@tion input has a different value on the fifth byte, but in
servers in the validation phase. Thus, the Y value reprethis case the response from Savant is only a raw “File not
sents the number of inputs that triggered a deviation. found” string. Note that this string does not include the
In Case 2, none of the five candidate deviation inputdHTTP Status-Line, the first line in the response that in-
returned by the solver were able to generate semanticallgludes the response code, as required by the HTTP spec-

Candidate deviation input:

0000: 47455420 E8 69 6E 64 65 78 2E 68 74 6D 6C 20 GET .index.html
0010: B4 120212 9004 0204 0D OA 48 6F A64C 08 20 Ho.L.
0020: 28D08291 12E0840C 350D 0A 0D 0A (ceenene 5....

Miniweb response: Apache response:
HTTP/1.1 200 OK HTTP/1.1 400 Bad Request

Server: Miniweb Date: Sat, 03 Feb 2007 05:33:55 GMT
Cache-control: no—cache Server: Apache/2.2.4 (Win32)

.1 I...1

Figure 4: Example deviation found for Case 3, where Miniwdbrmula is satisfied while Apache’s isn’t. The figure
includes the candidate deviation input being sent and $poreses obtained from the servers, which show two different
output states.

Candidate deviation input:

0000: 47 455420 08 69 6E 64 65 78 2E 68 74 6D 6C 20 GET .index.html
0010: 09090909 0909 09 09 OD OA 48 6F FF FF FF 20 Ho...
0020: 09090909 09090909 090D OAOD 0A ...

Miniweb response: Savant response:
HTTP/1.1 200 OK File not found

Server: Miniweb

Cache-control: no—cache

[.1

Figure 5: Example deviation found for Case 4, where Minivgdbrmula is satisfied while Savant’s isn’'t. The output
states show that Miniweb accepts the input but Savant eejeeith a malformed response.

ification and can be considered malformed [27]. Thus,confirmed the deviations they trigger as errors. Out of
this deviation identifies an error though in this case boththe three inputs analyzed in detail, two of them can be
servers (i.e. Miniweb and Savant) are deviating from theattributed to be Miniweb’s implementation errors, while

HTTP specification. the other one was an implementation error by both Mini-

Figure 6 shows another deviation found in Case 4 forVeb and Savant. The discovered inputs that trigger devi-
the Savant-Miniweb pair. The HTTP specification man_a}tlons can potenuqlly be used as fingerprints to differen-
dates that the first line of an HTTP request must include 412t€ among these implementations.
protocol version string. There are 3 possible valid values
for this version string: “HTTP/1.1", "HTTP/1.0”, and 5 2 Deviations in Time Servers
“HTTP/0.9”, corresponding to different versions of the
HTTP protocol. However, we see that the candidate deln this section we show our results for the NTP protocol
viation input produced by the solver uses instead a difusing two different servers: NetTime [6] and Ntpd [12].
ferent version string, "THTTRb.1”. Since Miniweb ac- Again, for simplicity, we focus on a single request that
cepts this answer, it indicates that Miniweb is not prop-we show in Figure 7. This request represents a simple
erly verifying the values received on this field. On the query for time synchronization from a client. The request
other hand, Savant is sending an error to the client indiuses the Simple Network Time Protocol (SNTP) Version
cating an invalid HTTP version, which indicates that it 4 protocol, which is a subset of NTP [38].
is properly checking the value it received in the version

field. This d_eviation shows another error in Miniweb’s Deviations detected. First, we generate the symbolic
implementation. formulas for both serversf; and fx for NetTime and

To summarize, in this section we have shown that oulNtpd respectively using the original request shown in
approach is able to discover multiple inputs that triggerFigure 7. Since we have one server pair, we need to
deviations between real protocol implementations. Wequery the solver twice. In Case 7, we query the solver for
have presented detailed analysis of three of them, anéify A —fr) and in Case 8 we query it f@ifz A —fn).

Candidate deviation input:

0000: 47 455420 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
0010: 48545450 2F 08 2E 31 OD 0A 48 6F FF FF FF 20 HTTP/..1..Ho...
0020: 09090909 09090909 090D OAOD 0A

Miniweb response: Savant response:
HTTP/1.1 200 OK HTTP/1.1 400 Only 0.9 and 1.X requests supported
Server: Miniweb Server: Savant/3.1

Cache-control: no—cache Content-Type: text/html
.1 I...1

Figure 6: Another example deviation for Case 4, between Wihi and Savant. The main different is on byte 21,
which is part of the Version string. In this case Miniweb gusethe request but Savant rejects it.

Original request:

0000: e3(00)04 fa 00 01 00 00 00 01 00 00 00 00 00 00 1 1 \1 0 o \o 11 ‘
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Tl

0040: 00 00 00 00 00 00 00 00 c9 6e 6b 7a ca e2 a8 00 LI VN MD
Candidate deviation input:

0000: 03(00)00 00 00 01 00 00 00 01 00 00 00 00 00 00 0 o ‘0 0 0 ‘0 11 ‘
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 o

0040: 00 00 00 00 00 00 00 00 c9 6e 6b 7a ca e2 a8 00 LI VN MD
NetTime response: Ntpd response:

0000: 04 0f 00 fa 00 00 00 00 00 00 00 00 00 00 00 00 No response

0020: c9 6e 72 6¢ a0 c4 9a ec c9 6e 6b 7a ca e2 a8 00
0040: c9 6e 72 95 2560 41 5e c9 6e 72 95 25 60 41 5e

Figure 7: Example deviation obtained for the NTP serveiiacltides the original request sent in the formula extractio
phase, the candidate deviation input output by the solwettlae responses received from the servers, when replaying
the candidate deviation input. Note that the output statedifferent since NetTime does send a response, while Ntpd
does not.

The solver returns unsatisfiable for Case 7. For Case 8) contains three fields: “Leap Indicator” (LI), “Version”
the solver returns several candidate deviation inputs. Fig(VN) and “Mode” (MD) fields. The difference with the
ure 7 presents one of the deviations found for Case 8original requestis in the Version field. The candidate de-
It presents the candidate deviation input returned by the&iation input has a decimal value of O for this field (note
solver, and the response obtained from both NTP serverthat the field length is 3 bits), instead of the original dec-
when that candidate deviation input was sent to them durimal value of 4. When this candidate deviation input was
ing the validation phase. sent to both servers, Ntpd ignored it, choosing not to re-
spond, while NetTime responded with a version number
with value 0. Thus, this candidate deviation input leads

Applications to error detection and fingerprint gener- the two servers into semantically different output states.
ation. The results in Figure 7 show that the candidate

deviation input returned by the solver in Case 8 has dif- We check the specification for this case to find out
ferent values at bytes 0, 2 and 3. First, bytes 2 and 3 havghat a zero value for the Version field is reserved, and
been zeroed out in the candidate deviation input. Thisaccording to the latest specification should no longer be
is not relevant since these bytes represent the “Poll” andupported by current and future NTP/SNTP servers [38].
“Precision” fields and are only significant in messagesHowever, the previous specification states that the server
sent by servers, not in the queries sent by the clients, anghould copy the version number received from the client
thus can be ignored. in the request, into the response, without dictating any
The important difference is on byte 0, which is pre- special handling for the zero value. Since both imple-
sented in detail on the right hand side of Figure 7. Bytementations seem to be following different versions of the

Program | Trace-to-IR time | % of Symbolic Instructions | IR-to-formulatime | Formula Size
Apache 7.6s 3.9% 31.87s 49786
Miniweb 5.6s 1.0% 14.9s 25628
Savant 6.3s 2.2% 15.2s 24789
Ntpd 0.073s 0.1% 5.3s 1695
NetTime 0.75s 0.1% 4.3s 5059

Table 5: Execution time and formula size obtained duringdneula extraction phase.

Input Calculation Time covering deviations. In many cases, we can discover de-
Apache - Miniweb 21.3s viation inputs between two implementations in approxi-
Apache - Savant 11.8s mately one minute. Fuzz testing approaches are likely to
Savant - Miniweb 9.0s take much longer, since they usually need to test many
NetTime - Ntpd 0.56s more examples.

Table 6: Execution time needed to calculate a candidat

deviation input for each server pair. % Discussion and Future Work

Our current implementation is only a first step. In this
section we discuss some natural extensions that we plan
specification, we cannot definitely assign this error to ongo pursue in the future.
of the specifications. Instead, this example shows that
we can identify inconsistencies or ambiguity in protocol Addressing other protocol interactions. Currently,
specifications. In addition, we can use this query as ave have evaluated our approach over protocols that use
fingerprint to differentiate between the two implementa-request/response interactions (e.g. HTTP, NTP), where
tions. we examine the request being received by a server pro-
gram. Note that our approach could be used in other
5.3 Performance scenarios as well. For example, with clients programs,

In this section, we measure the execution time and th/€ could analyze the response being received by the

output size at different steps in our approach. The re_Client. In protocol interactions involving multiple steps

sults from the formula extraction phase and the deviatio'® could consider the protocol ou_tpu_t §tate to be the state
detection phase are shown in Table 5 and Table 6, respe8—f the program after the last step is finished.

tively. In Table 5, the column “Trace-to-IR time” shows

the time spent in converting an execution trace into oufCovering rarely used paths. Some errors are hidden
IR program. The values show that the time spent to conin rarely used program paths and finding them can take
vert the execution trace is significantly larger for the webmultiple iterations in our approach. For each iteration,
servers, when compared to the time spent on the NTMe need a protocol input that drives both implementa-
servers. This is likely due to a larger complexity of the tions to semantically equivalent output states. These pro-
HTTP protocol, specifically a larger number of condi- tocol inputs are usually obtained from a network trace.
tions affecting the input. This is shown in the secondThus, the more different inputs contained in the trace
column as the percentage of all instructions that operatéhe€ more paths we can potentially cover. In addition,
on symbolic data, i.e., on data derived from the input.We can query the solver for multiple candidate deviation
The “IR-to-formula time” column shows the time spent iNputs, each time requiring the new candidate input to
in generating a Symbo"c formula from the IR program. be different than the preViOUS ones. The obtained candi-
Finally, the “Formula Size” column shows the size of date inputs often result in different paths. We have done
the generated symbolic formulas, measured by the numork on symbolic execution techniques to explore mul-
ber of nodes that they contain. The formula size showdiple program paths and plan to apply those techniques
again the larger complexity in the HTTP implementa- here [16, 17].

tions, when compared to the NTP implementations.

In Table 6, we show the time used by the solver in theCreating formulas including multiple paths. In this
deviation detection phase to produce a candidate devpaper, we apply the weakest precondition on IR pro-
ation input from the combined symbolic formula. The grams that contain a single program path, i.e., the pro-
results show that our approach is very efficient in dis-cessing of the original input by one implementation.

However, our weakest precondition algorithm is capable Compared to fuzz testing, our approach is more effi-
of handling IR programs containing multiple paths [19]. cient for discovering deviations since it requires testing
In the future, we plan to explore how to create formulasfar fewer inputs. It can detect deviations by comparing
that include multiple paths. how two implementations process the same input, even
if this input leads both implementation to semantically
equivalent states. In contrast, fuzz testing techniques

On-line formula generation. Our current implemen- . . ,
. ? : . need observable differences between implementations to
tation for generating the symbolic formula works offline. e
detect a deviation.

We first record an execution trace for each implementa-))))
tion while it processes an input. Then, we process the 1here is a line of research using model checking

execution trace by converting it into the IR representa-to find errors in protocol implementations. Musuvathi

tion, and computing the symbolic formula. Another al- et.al. [40,41] use a model chec_ker that operates direc_tly
ternative would be to generate the symbolic formulas in®" € and C++ code and use it to check for errors in

an on-line manner as the program performs operationd CP/IP and AODV implementations. Chaki et al. [22]
on the received input, as in BitScope [16,17]. build models from implementations and checks it against

a specification model. Compared to our approach, these
approaches need reference models to detect errors.

7 Related Work

Symbolic execution & weakest precondition. Sym- protocol fingerprinting. There has also been previous
bolic execution was first proposed by King [34], and research on protocol fingerprinting [25, 44] but available
has been used for a wide variety of problems includ-fingerprinting tools [7,10,14] use manually extracted fin-
ing generating vulnerability signatures [18], automaticgerprints. More recently, automatic fingerprint genera-
test case generation [32], proving the viability of evasiontion techniques, working only on network input and out-
techniques [35], and finding bugs in programs [21, 47].put, have been proposed [20]. Our approach is different

Weakest precondition was originally proposed for devel-in that we use binary analysis to generate the candidate
oping correct programs from the ground up [24, 26]. Itinputs.

has been used for different applications including finding
bugs in programs [28] and for sound replay of application

dialog [42]. .
9[42] 8 Conclusion

Statk: source code ana_Iysis. Chen etal. [23] manually_ In this paper, we have presented a novel approach to au-
identify rules representmg ordered sequences of See_u”tytomatically detect deviations in the way different imple-
relevant operations, and use model checking teChr"qu%entations of the same specification check and process

to detect violations of those rules in software. Udrea ettheir input. Our approach has several advantages: (1) by
al. [45] use static source code analysis to checkifa C im- utomatically building the symbolic formulas from the

plementation of a protocol matches a manually specifie mplementation, our approach is precisely truthful to the

rule-based specification of its behavior. implementation; (2) automatically identifying the devia-

Although these techniques are useful, our approach i§on py solving formulas generated from the two imple-
quite different. Instead of comparing an implementationmenations enables us to find the needle in the haystack

to a manually defined model, we compare implementasithout having to try each straw (input) individually, thus

tions against each other. Another significant difference, tamendous performance gain; (3) our approach works

is that our approach works directly on binaries, and doeg,, pinaries directly, i.e., without access to source code.

not require access o the source code. We then show how to apply our automatic deviation tech-
niques for automatic error detection and automatic fin-

Protocol error detection. There has been considerable gerprint generation.

research on testing network protocol implementations, We have presented our prototype system to evaluate
with heavy emphasis on automatically detecting errorsour techniques, and have used it to automatically dis-
in network protocols using fuzz testing [2-5, 8, 11, 13, cover deviations in multiple implementations of two dif-
33,37,43,46]. Fuzz testing is a technique in which ran-ferent protocols: HTTP and NTP. Our results show that
dom or semi-random inputs are generated and fed to theur approach successfully finds deviations between dif-
program under study, while monitoring for unexpectedferent implementations, including errors in input check-
program output, usually an unexpected final state sucing, and differences in the interpretation of the specifica-
as program crash or reboot. tion, which can be used as fingerprints.

Acknowledgments

We would like to thank Heng Yin for his support on
QEMU and Ivan Jager for his help in developing Bit-

[12] Windows NTP servettt p: // ww. ee. udel .

edu/ ~m Il s/ntp/htm/build/hints/
w nnt.htm .

Blaze, our binary analysis platform. We would also like [13] Wireshark: fuzz testing toolsht t p: //wi ki .

to thank Vijay Ganesh and David Dill for their support

with STP, and the anonymous reviewers for their insight-[14]

ful comments.

wi reshar k. org/ FuzzTest i ng.

Xprobe.htt p: / / www. sys-security.com

This material is based upon work partially supported[15] T. Berners-Lee, R. Fielding, and L. Masinter. Uni-
by the National Science Foundation under Grants No.
0311808, No. 0433540, No. 0448452, No. 0627511, and
CCF-0424422. Partial support was also provided by the

International Technology Alliance, and by the U.S. Army [

16]

Research Office under the Cyber-TA Research Grant No.

W911NF-06-1-0316, and under grant DAAD19-02-1-

0389 through CyLab at Carnegie Mellon.

The views and conclusions contained here are those of
the authors and should not be interpreted as necessarily

representing the official policies or endorsements, eithef, 7

expressed or implied, of ARO, NSF, or the U.S. Govern-

ment or any of its agencies.

References

[1] The BitBlaze binary analysis platformhttp://
bitblaze.cs.berkeley.edu

[2] IrcFuzz. http://lwww.digitaldwarf.be/
products/ircfuzz.c

[3] ISIC: IP stack integrity checkerhttp://www.
packetfactory.net/Projects/ISIC

[4] JBroFuzz. http://www.owasp.org/
index.php/Category:OWASP

[5] MangleMe.
CX.

http://lcamtuf.coredump.

[6] NetTime. http://nettime.sourceforge.
net .

[71 Nmap. http://www.insecure.org

[8] Peach.http://peachfuzz.sourceforge.
net .

[9] QEMU: an open source processor emulator.

http://www.qgemu.org

[10] Queso. http://ftp.cerias.purdue.
edu/pub/tools/unix/scanners/queso

[11] Spike. http://www.immunitysec.com/
resources-freesoftware. shtnl.

\.JBroFuzz .

(18]

(19]

[20]

(21]

[22]

(23]

form Resource ldentifier (URI): Generic Syntax.
RFC 3986 (Standard), 2005.

D. Brumley, C. Hartwig, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, D. Song, and H. Yin.
Bitscope: Automatically dissecting malicious bina-
ries. Technical Report CMU-CS-07-133, Carnegie
Mellon University School of Computer Science,
2007.

] D. Brumley, C. Hartwig, Z. Liang, J. Newsome,

D. Song, and H. Yin. Towards automatically identi-

fying trigger-based behavior in malware using sym-
bolic execution and binary analysis. Technical Re-
port CMU-CS-07-105, Carnegie Mellon University

School of Computer Science, 2007.

D. Brumley, J. Newsome, D. Song, H. W.,
and S. Jha. Towards automatic generation of
vulnerability-based signatures. Proceedings of
the 2006 IEEE Symposium on Security and Priyacy
2006.

D. Brumley, H. Wang, S. Jha, and D. Song. Cre-
ating vulnerability signatures using weakest pre-
conditions. InProceedings of the 2007 Sympo-
sium on Computer Security Foundations Sympo-
sium 2007.

J. Caballero, S. Venkataraman, P. Poosankam,
M. G. Kang, D. Song, and A. Blum. Fig: Auto-
matic fingerprint generation. Ih4th Annual Net-
work and Distributed System Security Conference
(NDSS) 2007.

C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and
D. Engler. EXE: A system for automatically gener-
ating inputs of death using symbolic execution. In
Proceedings of the 13th ACM Conference on Com-
puter and Communications Security (CCE)06.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C.
In Proceedings of the 25th International Confer-
ence on Software Engineering (ICSEDO3.

H. Chen and D. Wagner. MOPS: an infrastructure
for examining security properties of software. In

Proceedings of the 9th ACM conference on Com{37] S. Marquis, T. R. Dean, and S. Knight. SCL: a lan-

puter and Communications Security (CCH)02. guage for security testing of network applications.
o ,) In Proceedings of the 2005 conference of the Cen-
[24] E. Cohen. Programming in the 1990’sSpringer- tre for Advanced Studies on Collaborative research
Verlag, 1990. 2005.

[25] D. Comer and J. C. Lin. Probing TCP implementa- [3g] D. Mills. Simple Network Time Protocol (SNTP)
tions. INUSENIX Summer 1994994. Version 4 for IPv4, IPv6 and OSI. RFC 4330 (In-

[26] E. Dijkstra.A Discipline of ProgrammingPrentice formational), 2006.

Hall, Englewood Cliffs, NJ, 1976. [39] S. Muchnick.Advanced Compiler Design and Im-

S | tation Academic P , 1997.
[27] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, plementatiohAcademic Fress
L. Masinter, P. Leach, and T. Berners-Lee. Hy-[40] M. Musuvathi and D. R. Engler. Model checking

pertext Transfer Protocol — HTTP/1.1. RFC 2616 large network protocol implementations. Rvo-
(Draft Standard), June 1999. Updated by RFC ceedings of the First Symposium on Networked Sys-
2817. tems Design and Implementation (NSI2004.

[28] C. Flanagan, K. R. M. Leino, M. Lillibridge, [41] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler,
G. Nelson, J. B. Saxe, and R. Stata. Estended static , and D. L. Dill. CMC: A pragmatic approach to

checking for Java. IMCM Conference on the Pro- model checking real code. IRroceedings of the
gramming Language Design and Implementation 5th Symposium on Operating Systems Design and
(PLDI), 2002. Implementation (OSDJR002.

[29] C. Flanagan and J. Saxe. Avoiding exponential[42] J. Newsome, D. Brumley, J. Franklin, and D. Song.
explosion: Generating compact verification condi- Replayer: Automatic protocol replay by binary
tions. In Proceedings of the 28th ACM Sympo- analysis. InProceedings of theé3* ACM Confer-
sium on the Principles of Programming Languages ence on Computer and and Communications Secu-
(POPL), 2001. rity (CCS) 2006.

[30] V. Ganesh and D. Dill. STP: A deci- [43] P. Oehlert. Violating assumptions with fuzzing.
sion procedure for bitvectors and arrays. IEEE Security and Privacy Magaziy#(2):58 — 62,
http://theory.stanford.eduyganesh/stp.html. 2005.

[31] V. Ganesh and D. Dill. A decision procedure for [44] V. Paxson. Automated packet trace analysis of TCP
bit-vectors and arrays. IRroceedings of the Com- implementations. IMCM SIGCOMM 19971997.

ter Aided Verification Conf 07.
puter Aided Verification Conferenc20 [45] O. Udrea, C. Lumezanu, and J. S. Foster. Rule-

[32] P. Godefroid, N. Klarlund, and K. Sen. DART: Di- based static analysis of network protocol imple-
rected automated random testing Piroceedings of mentations. InProceedings of the 15th USENIX
the 2005 Programming Language Design and Im- Security Symposiurg006.

plementation Conference (PLDBOOS. [46] S. Xiao, L. Deng, S. Li, and X. Wang. Integrated

[33] R. Kaksonen. A Functional Method for Assess- tep/ip protocol software testing for vulnerability de-
ing Protocol Implementation SecuritPhD thesis, tection. InProceedgins of Internatlonz_sll Confer-
Technical Research Centre of Finland, 2001. ence on Computer Networks and Mobile Comput-

ing, 2003.

[34] J. King. Symbolic execution and program testing.

Communications of the ACM9:386-394,1976. [47] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. En-
gler. Automatically generating malicious disks us-

[35] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and ing symbolic execution. IRroceedings of the 2006
G. Vigna. Automating mimicry attacks using static IEEE Symposium on Security and Priva2906.
binary analysis. IfProceedings of the 14th USENIX
Security Symposiy005.

[36] K. R. M. Leino. Efficient weakest precondi-
tions. Information Processing Letter93(6):281—
288, 2005.

