Computation of the least significant set bit

Andrej Brodnik*
University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada
ABrodnik@UWaterloo.CA

Abstract

We investigate the problem of computing of the
least significant set bit in a word. We describe a con-
stant time algorithm for the problem assuming a cell
probe model of computation.

1 Introduction and Definitions

The problem of computing an index of the least
significant set bit in a word arises in different issues
of data organization such as bit representation of or-
dered sets etc. In this paper we describe a novel al-
gorithm to compute the index.

Our algorithm runs on a cell probe model of com-
putation (c.f. [2, 4, 5]), which is a generalization of a
random access machine model. We assume that the
memory registers are of bounded size. The bits in
the word (register) are enumerated from 0, which is
the least significant bit, to m — 1, which is the most
significant bit — the word is m bits wide. Using the
terminology of Fredman and Saks [2] we are dealing
with CPROB(m) model. Furthermore, we assume
that we can perform in one unit of time arithmetic
operations of multiplication, addition and subtrac-
tion; logical operations of bitwise and, bitwise or and
bitwise negation; and shifting to the right a specified
number of bits. In the last operation we assume that
shifting to the right is the same operation as division
by the power of 2, where the least significant bits are
lost while the most significant ones become 0.

In the next section we will give a brief background
on the algorithm and explain the general ideas behind
it. This is followed by a detail explanation and analy-
sis of the complete algorithm. The paper is concluded
with a short discussion.

*This research was supported by the Natural Sciences and
Engineering Council of Canada under grant A-8237 and by the
Information Technology Research Centre of Ontario.

2 Overview of the algorithm

The described algorithm is derived from the one
due to Fredman and Willard [3] to compute [log,(z)],
which is essentially the index of the most significant
set bit in a word. They developed the algorithm as a
partial result used for “Fusion trees”. As does theirs,
our algorithm also performs in one operation (on a
sequential machine) several “parallel” operations. At
the end the results of these operations are quickly
combined in the final result. To achieve this paral-
lelism, the size of operands must be small enough. In
general, the sum of sizes of operands of all operations
has to be O(m). In our case all operands are of equal
size, what brings the best performance when we have
sizes of about /m and about the same number of
parallel operations.

This parallelism is used first in a procedure Lsb
(Algorithm 1) which takes an argument y of size
about /m bits (the size will be precisely defined in
§ 3) and returns the index of the least significant
set bit in it. The procedure computes for each bit
i (0 <14 < +/m) if it is smaller than the index of the
least significant set bit in y in parallel, and at the
end counts affirmative answers. For the final result
the sum is subtracted from /m.

The second idea used in the algorithm is a bit com-
pression. Fredman and Willard [3] showed how to
compress d equally spaced bits into d least signifi-
cant bits of a word in constant time using only two
constants. They proved the following lemma:

Lemma 1 (Lemma 3 of [3]) We say that a num-
ber x is d-sparse provided that the positions of all its
1 bits belong to a set of the form, Y = {a + di |
0 < i < d}, which consists of d consecutive terms of
an arithmetic progression with common difference d.
(Not all of these positions have to be occupied by 1’s
however.) If x is d-sparse, then there exist constants
y1 and yo such that for z = (y12) A ys, the it® bit of
the significant part of z equals the bit in the position
a+di ofx,0<i<d.

From the lemma we immediately get a function
Compress.

The complete algorithm (see Algorithm 2) works
in two phases. In the first phase it splits the argu-
ment (m bits wide) into \/m blocks of about /m
bits each. Using sequential parallelism it computes
the representatives for individual blocks. The rep-
resentatives are y/m-sparse bits which are set if at
least one bit in their corresponding blocks is set. Af-
ter bit compression we apply to them function Lsb.
The result is an index of the least significant block in
the original parameter with set at least one bit. This
concludes the first phase of the algorithm.

In the second phase we shift the proper block of the
original parameter to right and apply to it function
Lsb. Combining this result and the result at the end
of the first phase, we get the final result.

For the sake of bravity we intentionally omitted in
the explanation all details such as exact size of pa-
rameters, the problem of masking out the unwanted
bits etc. They are explained in the next section.

3 A detail explanation of the algo-
rithm

During the explanation we will define some con-
stants and variables as they are needed and/or com-
puted. Initially we assume that we are computing the
least significant set bit in a word = and that z # 0.

The first step we will describe is a computation
of representatives z,. Let s = [{/m + 1] be the size
of blocks and their number is ¢ = {%] Note also
that ¢ < s. For each block we perform the following
computation in parallel (z,; is a representative of the
ith block z;)

Tri = (X A2°)V(((zs A (2° = 1)) + (2° = 1)) A2%) .
(1)
It consists of two terms which are ored together. The
first term represents possibly set the most significant
bit of the block and the second one any of less signifi-
cant set bits. The result of computation z, ; is stored
in the most significant bit of a block.
For parallel computation we define the constants

t—1
(Z 2i-sl> + gm—1
i=1

@2m-1) - C,

Ci

C, =

which replace values 2° and 2° — 1 from eq. (1) re-
spectively. The constant C; is also an s-sparse word
where the set bits are the most significant bits of in-
dividual blocks. The constant Cs is a complement of
C !

Because of the choice of constants and the com-
putation in eq. (1), which does not interfere for two

INote that if the last block of bits is smaller than s bits,
then we also set the most significant bit m — 1 in Cj.

different blocks, we can compute all representatives
in parallel

zr = (@ AC1)V (((z AC2) +Co) ACh)
or simplified to
zp=(xV((zANCy)+Car))ANCy . (2)

For a more detail description of the function
Compress is reader referred to the original Fredman
and Willard paper [3]. All what we assume is that
constants y; and yo from Lemma 1 are known.

The next procedure we develop is Lsb with an ar-
gument y (y # 0,lgy < ¢ < s). The result of the
function is k, the index of the least significant set bit
in y. The procedure computes for all i, 0 < i < s

yri = (Y ART =1)+ (22 -1)A2° (3

where y,; is set iff there is set any of ¢ less significant
bits in y. The parallel computation is performed in
non-overlapping blocks in a similar way as in eq. (2).
Before description of the parallel part we need to dis-
tribute y to all blocks, what is done by a multiplica-
tion with

t—1
P=20+28+...=22i
=0
Next we define a constant
t—1
B=(2"-1)-2°+(2°=1)-2°+... =) (2" —1)-2"
=0

which takes a role of the expression 2¢+1 —1in eq. (3).
Finally we compute

yr = (((y-P)AB) + Co) NCy (4)

for all indices i. Note that the last and masks out
unwanted bits. To sum the remaining bits we first
observe (y,.; is the 5! bit of y,)

t—1 t—1 t—1
P = (TP = (T w2 2)
i=0 i=0 7j=0

t—2
= (2%n0) + .+ QDD) +
i=0
t—1
(2(t—1)s Z ym) +
i=0

t—1
(2ts Z?Jm’) +. o+ (22(t71)sar,t71)
i=1

that the t'" block exactly represents sum of set bit in
yr. Therefore if we define S = 2° — 1 we can finally

compute

P
k=t-G; AS (5)

The flow of computation in the algorithm (Algo-
rithm 1) is slightly different then a computation pre-
sented in eq. (5). In the algorithm we invert the an-
swers of individual operations and count the negative
rather than the affirmative answers in y,.. Note as
well that some quantities (y, and y, * P) are bigger
than m bits and we have to use a double precision
arithmetic.

PROCEDURE Lsb (y)
yri= (((y = P) AND B) + C3) AND Ci;
yr:= Yy AND C;;
k:= ShiftRight (y, = P, (¢t—1) % s) AND S;
RETURN k
END Lsb;

Algorithm 1: Computation of the least significant
set bit in domain of s = [\/m + 1] bits

Finally we put pieces together and present the
complete algorithm (Algorithm 2) for words from a
domain of m bits. The number of instructions used in
the algorithm (if the call to function Lsb is unfolded)
is presented in Table 1. It does not include the as-

Instruction | number
multiplication 6
addition 4
bitwise AND 13
bitwise OR 1
negation 2
shifting 3
total | 29

Table 1: The number of instructions used in the al-
gorithm

signments and assumes that the constant (¢ — 1)s in
Algorithm 1 is precomputed. None of the instruc-
tions is a branching instruction and therefore they
can be efficiently pipelined on modern computer ar-
chitectures.

PROCEDURE LSB (z)
(¥ — PHASE 1 — %)
(* representatives *)
z,:= (z AND C;) OR
(((z AND C3) + C») AND Cy);

y:= (y1 * x,) AND yo; (* compress them *)
ky:= Lsb (3); (* Lsb of representatives *)
kri=k, * s; (* what is actually bit *)

(* — PHASE 2 — %)
(* get proper block of z *)

y:= ShiftRight (z, k.) AND S;
ky:= Lsb (y); (* Lsb of the block *)

RETURN (k, + kp); (* final result is sum *)

END LSB;

Algorithm 2: The constant time algorithm to com-
pute the least significant set bit in the word z

4 Discussion

Algorithm 2 assumes that arithmetic operations
have double precision. This can be avoided if we as-
sume that the parameter x is from the domain of %
bits. Note as well, that we assume = # 0 and this has
to be also checked at the beginning of the algorithm.

It is possible to have a restricted set of operations.
One restriction, the lack of double precision arith-
metic, was mentioned in a previous paragraph. It can
be shown that for the purpose of our algorithm the
shift operation, double precision arithmetic, swap-
ping of word halves, and addressability of half-words
are equivelent (c.f. [1]). Ben-Amram and Galil in the
same work also discuss other approaches which can
be used when there is available none of the mentioned
operations.

Comparing our algorithm with a classical binary
search algorithm, we first observe that our algorithm
runs in time O(1) and the binary search in time
O(logm). Furthermore, the constant hidden in or-
der notation of our algorithm is relatively small, ap-
proximately 30. This makes our algorithm even more
preferable for longer words.

On the other hand the algorithm we presented does
not use branching instructions, what makes it espe-
cially suitable for modern, pipeline architectures. In
comparison, the binary search uses a branching in-
struction at each recursive step.

In conclusion, we developed a practical constant
time algorithm to compute the index of the least sig-
nificant set bit. The algorithm is specially appropri-
ate for modern RISC architectures.

Acknowledgements

The author would like to thank Tan Munro for his
help in shaping up this work and pointing out on
errors in earlier versions of the paper.

References

[1] A.M. Ben-Amram and Z. Galil. When can we sort in
o(nlogn) time? In IEEE Symposium on Foundations
of Computer Science, Palo Alto, California, 1993.

[2] M.L. Fredman and M.E. Saks. The cell probe com-
plexity of dynamic data structures. In ACM Sympo-
sium on Theory of Computing, 1989.

(3]

[4]

M.L. Fredman and D.E. Willard. BLASTING
through the information theoretic barrier with FU-
SION TREES. In ACM Symposium on Theory of
Computing, pages 1-7, Baltimore, Maryland, 1990.

A.C. Yao. Should tables be sorted? In IEEE Sym-
posium on Foundations of Computer Science, pages
22-27, Ann Arbor, Michigan, 1978.

A.C.-C. Yao. Should tables be sorted? Journal of the
ACM, 28(3):614-628, July 1981.

