
Computation of the least signi�cant set bitAndrej Brodnik�University of WaterlooDepartment of Computer ScienceWaterloo, Ontario, CanadaABrodnik@UWaterloo.CAAbstractWe investigate the problem of computing of theleast signi�cant set bit in a word. We describe a con-stant time algorithm for the problem assuming a cellprobe model of computation.1 Introduction and De�nitionsThe problem of computing an index of the leastsigni�cant set bit in a word arises in di�erent issuesof data organization such as bit representation of or-dered sets etc. In this paper we describe a novel al-gorithm to compute the index.Our algorithm runs on a cell probe model of com-putation (c.f. [2, 4, 5]), which is a generalization of arandom access machine model. We assume that thememory registers are of bounded size. The bits inthe word (register) are enumerated from 0, which isthe least signi�cant bit, to m� 1, which is the mostsigni�cant bit { the word is m bits wide. Using theterminology of Fredman and Saks [2] we are dealingwith CPROB(m) model. Furthermore, we assumethat we can perform in one unit of time arithmeticoperations of multiplication, addition and subtrac-tion; logical operations of bitwise and, bitwise or andbitwise negation; and shifting to the right a speci�ednumber of bits. In the last operation we assume thatshifting to the right is the same operation as divisionby the power of 2, where the least signi�cant bits arelost while the most signi�cant ones become 0.In the next section we will give a brief backgroundon the algorithm and explain the general ideas behindit. This is followed by a detail explanation and analy-sis of the complete algorithm. The paper is concludedwith a short discussion.�This research was supported by the Natural Sciences andEngineering Council of Canada under grant A-8237 and by theInformation Technology Research Centre of Ontario.

2 Overview of the algorithmThe described algorithm is derived from the onedue to Fredman andWillard [3] to compute blog2(x)c,which is essentially the index of the most signi�cantset bit in a word. They developed the algorithm as apartial result used for \Fusion trees". As does theirs,our algorithm also performs in one operation (on asequential machine) several \parallel" operations. Atthe end the results of these operations are quicklycombined in the �nal result. To achieve this paral-lelism, the size of operands must be small enough. Ingeneral, the sum of sizes of operands of all operationshas to be O(m). In our case all operands are of equalsize, what brings the best performance when we havesizes of about pm and about the same number ofparallel operations.This parallelism is used �rst in a procedure Lsb(Algorithm 1) which takes an argument y of sizeabout pm bits (the size will be precisely de�ned inx 3) and returns the index of the least signi�cantset bit in it. The procedure computes for each biti (0 � i � pm) if it is smaller than the index of theleast signi�cant set bit in y in parallel, and at theend counts a�rmative answers. For the �nal resultthe sum is subtracted from pm.The second idea used in the algorithm is a bit com-pression. Fredman and Willard [3] showed how tocompress d equally spaced bits into d least signi�-cant bits of a word in constant time using only twoconstants. They proved the following lemma:Lemma 1 (Lemma 3 of [3]) We say that a num-ber x is d-sparse provided that the positions of all its1 bits belong to a set of the form, Y = fa + di j0 � i < dg, which consists of d consecutive terms ofan arithmetic progression with common di�erence d.(Not all of these positions have to be occupied by 1'showever.) If x is d-sparse, then there exist constantsy1 and y2 such that for z = (y1x) ^ y2, the ith bit ofthe signi�cant part of z equals the bit in the positiona+ di of x, 0 � i < d.From the lemma we immediately get a functionCompress.

The complete algorithm (see Algorithm 2) worksin two phases. In the �rst phase it splits the argu-ment (m bits wide) into pm blocks of about pmbits each. Using sequential parallelism it computesthe representatives for individual blocks. The rep-resentatives are pm-sparse bits which are set if atleast one bit in their corresponding blocks is set. Af-ter bit compression we apply to them function Lsb.The result is an index of the least signi�cant block inthe original parameter with set at least one bit. Thisconcludes the �rst phase of the algorithm.In the second phase we shift the proper block of theoriginal parameter to right and apply to it functionLsb. Combining this result and the result at the endof the �rst phase, we get the �nal result.For the sake of bravity we intentionally omitted inthe explanation all details such as exact size of pa-rameters, the problem of masking out the unwantedbits etc. They are explained in the next section.3 A detail explanation of the algo-rithmDuring the explanation we will de�ne some con-stants and variables as they are needed and/or com-puted. Initially we assume that we are computing theleast signi�cant set bit in a word x and that x 6= 0.The �rst step we will describe is a computationof representatives xr. Let s = dpm+ 1e be the sizeof blocks and their number is t = �ms �. Note alsothat t < s. For each block we perform the followingcomputation in parallel (xr;i is a representative of theith block xi)xr;i = (xi ^ 2s)_(((xi ^ (2s � 1)) + (2s � 1)) ^ 2s) :(1)It consists of two terms which are ored together. The�rst term represents possibly set the most signi�cantbit of the block and the second one any of less signi�-cant set bits. The result of computation xr;i is storedin the most signi�cant bit of a block.For parallel computation we de�ne the constantsC1 = t�1Xi=1 2i�s�1!+ 2m�1C2 = (2m � 1)� C1which replace values 2s and 2s � 1 from eq. (1) re-spectively. The constant C1 is also an s-sparse wordwhere the set bits are the most signi�cant bits of in-dividual blocks. The constant C2 is a complement ofC1.1Because of the choice of constants and the com-putation in eq. (1), which does not interfere for two1Note that if the last block of bits is smaller than s bits,then we also set the most signi�cant bit m� 1 in C1.

di�erent blocks, we can compute all representativesin parallelxr = (x ^ C1) _ (((x ^ C2) + C2) ^ C1)or simpli�ed toxr = (x _ ((x ^ C2) + C2)) ^ C1 : (2)For a more detail description of the functionCompress is reader referred to the original Fredmanand Willard paper [3]. All what we assume is thatconstants y1 and y2 from Lemma 1 are known.The next procedure we develop is Lsb with an ar-gument y (y 6= 0; lg y � t < s). The result of thefunction is k, the index of the least signi�cant set bitin y. The procedure computes for all i, 0 � i < syr;i = �(y ^ (2i+1 � 1)) + (2s � 1)� ^ 2s (3)where yr;i is set i� there is set any of i less signi�cantbits in y. The parallel computation is performed innon-overlapping blocks in a similar way as in eq. (2).Before description of the parallel part we need to dis-tribute y to all blocks, what is done by a multiplica-tion with P = 20 + 2s + : : : = t�1Xi=0 2i :Next we de�ne a constantB = (21�1) �20+(22�1) �2s+ : : : = t�1Xi=0(2i+1�1) �2iswhich takes a role of the expression 2i+1�1 in eq. (3).Finally we computeyr = (((y � P) ^B) + C2) ^ C1 (4)for all indices i. Note that the last and masks outunwanted bits. To sum the remaining bits we �rstobserve (yr;j is the jth bit of yr)yr � P = (t�1Xi=0 yr;i2si)P = (t�1Xi=0 yr;i2si)(t�1Xj=0 2sj)= (20yr;0) + : : :+ (2(t�2)s t�2Xi=0 yr;i) +(2(t�1)s t�1Xi=0 yr;i) +(2ts t�1Xi=1 yr;i) + : : :+ (22(t�1)sar;t�1)that the tth block exactly represents sum of set bit inyr. Therefore if we de�ne S = 2s � 1 we can �nallycompute k = t� yr � P2(t�1)s ^ S (5)

The
ow of computation in the algorithm (Algo-rithm 1) is slightly di�erent then a computation pre-sented in eq. (5). In the algorithm we invert the an-swers of individual operations and count the negativerather than the a�rmative answers in yr. Note aswell that some quantities (yr and yr � P) are biggerthan m bits and we have to use a double precisionarithmetic.PROCEDURE Lsb (y)yr:= (((y � P) AND B) + C2) AND C1;yr:= yr AND C1;k:= ShiftRight (yr � P, (t� 1) � s) AND S;RETURN kEND Lsb;Algorithm 1: Computation of the least signi�cantset bit in domain of s = dpm+ 1e bitsFinally we put pieces together and present thecomplete algorithm (Algorithm 2) for words from adomain ofm bits. The number of instructions used inthe algorithm (if the call to function Lsb is unfolded)is presented in Table 1. It does not include the as-Instruction numbermultiplication 6addition 4bitwise AND 13bitwise OR 1negation 2shifting 3total 29Table 1: The number of instructions used in the al-gorithmsignments and assumes that the constant (t � 1)s inAlgorithm 1 is precomputed. None of the instruc-tions is a branching instruction and therefore theycan be e�ciently pipelined on modern computer ar-chitectures.PROCEDURE LSB (x)(* | phase 1 | *)(* representatives *)xr:= (x AND C1) OR(((x AND C2) + C2) AND C1);y:= (y1 * xr) AND y2; (* compress them *)kr:= Lsb (y); (* Lsb of representatives *)kr:= kr * s; (* what is actually bit *)(* | phase 2 | *)(* get proper block of x *)y:= ShiftRight (x, kr) AND S;kb:= Lsb (y); (* Lsb of the block *)

RETURN (kr + kb); (* final result is sum *)END LSB;Algorithm 2: The constant time algorithm to com-pute the least signi�cant set bit in the word x4 DiscussionAlgorithm 2 assumes that arithmetic operationshave double precision. This can be avoided if we as-sume that the parameter x is from the domain of m2bits. Note as well, that we assume x 6= 0 and this hasto be also checked at the beginning of the algorithm.It is possible to have a restricted set of operations.One restriction, the lack of double precision arith-metic, was mentioned in a previous paragraph. It canbe shown that for the purpose of our algorithm theshift operation, double precision arithmetic, swap-ping of word halves, and addressability of half-wordsare equivelent (c.f. [1]). Ben-Amram and Galil in thesame work also discuss other approaches which canbe used when there is available none of the mentionedoperations.Comparing our algorithm with a classical binarysearch algorithm, we �rst observe that our algorithmruns in time O(1) and the binary search in timeO(logm). Furthermore, the constant hidden in or-der notation of our algorithm is relatively small, ap-proximately 30. This makes our algorithm even morepreferable for longer words.On the other hand the algorithmwe presented doesnot use branching instructions, what makes it espe-cially suitable for modern, pipeline architectures. Incomparison, the binary search uses a branching in-struction at each recursive step.In conclusion, we developed a practical constanttime algorithm to compute the index of the least sig-ni�cant set bit. The algorithm is specially appropri-ate for modern RISC architectures.AcknowledgementsThe author would like to thank Ian Munro for hishelp in shaping up this work and pointing out onerrors in earlier versions of the paper.References[1] A.M. Ben-Amram and Z. Galil. When can we sort ino(n log n) time? In IEEE Symposium on Foundationsof Computer Science, Palo Alto, California, 1993.[2] M.L. Fredman and M.E. Saks. The cell probe com-plexity of dynamic data structures. In ACM Sympo-sium on Theory of Computing, 1989.

[3] M.L. Fredman and D.E. Willard. BLASTINGthrough the information theoretic barrier with FU-SION TREES. In ACM Symposium on Theory ofComputing, pages 1{7, Baltimore, Maryland, 1990.[4] A.C. Yao. Should tables be sorted? In IEEE Sym-posium on Foundations of Computer Science, pages22{27, Ann Arbor, Michigan, 1978.[5] A.C.-C. Yao. Should tables be sorted? Journal of theACM, 28(3):614{628, July 1981.

