Towards Robust
Distributed Systems

Dr. Eric A. Brewer
Professor, UC Berkeley
Co-Founder & Chief Scientist, Inktomi

PODC Keynote, July 19, 2000

Our Perspective

¢ Inktomi builds two
distributed systems:
— Global Search Engines
— Distributed Web Caches
% Based on scalable
cluster & parallel
computing technolegy.

& But very little use of
classic DS research...

PODC Keynote, July 19, 2000

Inktomi at a Glance

Company Overview.
“INKT” on NASDAQ

& Founded 1996 out of UC
Berkeley

& ~700 Employees

Applications

Search Technology
& Network Products
4 Online Shepping

& Wireless Systems

o Wl @=m
é?.....“._ @ Home Network.

PODC Keynote, July 19, 2000

O
“Distributed Systems” don’t work:ie "'

¥ T here exist working DS:
— Simple protocols: DNS, WWW.
— Inktomi search, Content Delivery Networks
— Napster, Verisign, AOL
But these are not classic DS:
— Not distributed objects
— No RPC
— No modularity:
— Complex ones are single owner (except phones)

PODC Keynote, July 19, 2000

Three Basic Issues

&\Where is the state?
Consistency: vs. Availability

4 Understanding Boundaries

PODC Keynote, July 19, 2000

* VVery uniform
* No monitors
* No people

* No cables

» Working power
» Working A/C
» Working BW

Where’s the state?

(not all locations are egual)

PODC Keynote, July 19, 2000

Delivering High Availability

We kept up the service through:

¥ Crashes & disk failures (weekly)

4 Database upgrades (daily)

& Software upgrades (weekly tormoenthly)

¥ OS upgrades (twice)

& Power outage (several)

& Network outages (now have 11 connections)
& Physical move of all equipment (twice)

PODC Keynote, July 19, 2000

(o] Berkeley Ninja Architecture
Persistent State is HARD
Base: Scalable, highly-

available platform for

persistent-state services
Classic DS focus on the computation, not theidata

— this is WRONG, computation: is the easy part

& Data centers exist for a reason
— can’t have consistency or availability without them

& Other locations are for caching only:
— proxies, basestations, set-top boxes, desktops

Workstations & PCs

— phones, PDAS, ... —2

Distributed systems can’t ignore location : Active Proxy: | v
ey = 4 Bootstraps thin devices

Istinctions into infrastructure, runs PDAs

Cellphones, Pégers, etc. mobile code (e.g. IBM Workpad)
PODC Keynote, July 19, 2000

(o (o
ACID vs. BASE

& DBMS research is about ACID (mastly)
1 I il ¥ But we forfeit “C” and “I” f ilaility;
Consistency vs. Availalnity: Ltwe forfert "G and “1* for ayeliiE]

graceful degradation, and performance

(ACID vs. BASE) This tradeoff is fundamental.

asically: “vailable
oft-state
ventual consistency,

PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

ACID vs. BASE O

Inktemi

ACID BASE

Strong consistency’ Weak consistency
— stale data OK

Availability: fiKst

Nested transactions Bt oifort
Availability? Approximate answers OK

Eoerative Aggressive (optimistic)
(pessimistic) Simpler!

Iselation
Focus on “commit™

Difficult evolution Faster

(e.g. schema) Easier evolution

«——— But I think it’s a spectrum —
PODC Keynote, July 19, 2000

Forfeit Partitions

Examples
Single-site databases

Cluster databases
vailability LDAP
xFS file system

Traits
2-phase commit

cache validation
protocols
PODC Keynote, July 19, 2000

Tolerance to network
artitions

The CAP Theorem

vailability

Tolerance to network Theorem: You can have at
artitions most two of these properties
for any shared-data system

PODC Keynote, July 19, 2000

Forfeit Availability

Examples
Distributed databases

Distributed locking
vailability Majority protocels

Traits
Pessimistic locking

Make minority;
partitions unavailable

PODC Keynote, July 19, 2000

Tolerance to network
artitions

Forfeit Consistency

Examples
Coda

Web cachinge
vailability DNS

Traits
expirations/leases

Tolerance to network - .
- conflict resolution
artitions SO
optimistic

PODC Keynote, July 19, 2000

CAP Take Homes

& Can have consistency & availability within a
cluster (foundation of Ninja), but it is still hardlin
practice

& OS/Networking/gooed at BASE/Availability, but
terrible at consistency,

& Databases better at C than Availability,
& \Wide-area databases can’t have both
& Disconnected clients can’t have both

& All systems are probabilistic. ..
PODC Keynote, July 19, 2000

These Tradeoffs are Real

¥ The whole space is useful

¢ Real internet systems are a careful mixtureof
ACID and BASE subsystems
— We use ACID for user profiles and logging| (for revenue)

& But there is almost noiwork in this area

& Symptom of a deeper problem: systems and
database communities are separate but
overlapping (with distinct vocabulary)

PODC Keynote, July 19, 2000

Understanding Boundames

(the RPC hangover)

PODC Keynote, July 19, 2000

The Boundary Different Address Spaces

& The interface between two modules & What if the two sides are NOT in the same
— client/server, peers, libaries, etc... address space?

: — IPCor LRPC
% Basic boundary = the procedure call -
4 Can’t do pass-by-reference (pointers)

— Most IPC screws this up: pass by value-result
— There are TWO copies of args not ene

& What if they share some memory?
— thread traverses the boundary — Can pass pointers, but...

— two sides are in the same address space — Need synchronization between client/server
— Not all pointers can be passed

PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

Trust the other side? Partial Failure

& Can the two sides fail independently?
~ RPC, IPC, LRPC

& Can’t be transparent (like RPC) !
& New exceptions (other side gone)

& What if we don’t trust the other side?
& Have to check args, no pointer passing

& Kernels get this right:
— copy/check args
— use opaque references (e.g. File Descriptors) % Reclaim local resources

Most systems do not: — e.g. kernels leak sockets over time => reboot

- TCP 4 Can use leases?
— Napster — Different new exceptions: lease expired

~ VTR # RPC tries to hide these issues (but fails)

PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

Multiplexing clients?

& Does the server have to:
deal with high concurrency?
Say “no” sometimes (graceful degradation)
Treat clients equally (fairness)
Bill for resources (and have audit trail)
Isolate clients perfermance, data,

& These all affect the boundary definition

PODC Keynote, July 19, 2000

Example: protocols vs. APIs

& Protocols have been more successful the APIs

& SOme reasons:
protocols are pass by value
protocols designed for partial failure
not trying to look like local procedure calls
explicit state machine, rather than call/return
(this exposes exceptions well)

& Protocols still not goed at trust, billing, evolution

PODC Keynote, July 19, 2000

Boundary evolution?

& Can the two sides be updated independently?
(NO)

& The DLL problem...

& Boundaries need versions

Negotiation protocol for upgrade?

Promises of backward compatibility?
& Affects naming|too (version number)

PODC Keynote, July 19, 2000

Example: XML

¥ XML doesn’t solve any of these ISSues
It is RPC with an extensible type system

It makes evolution better?
— two sides need to agree on schema
— can ignore stuffiyou don’t understand

& Can mislead us'to ignore the realfissues

PODC Keynote, July 19, 2000

Boundary Summary

& \We have been very sloppy about boundaries
& |eads to fragile systems

Root cause is false transparency: trying tolook
like local procedure calls

& Relatively little werk in evolution, federation,
client-based resource allocation, failure recovery.

PODC Keynote, July 19, 2000

The DQ Principle

Data/query * Queries/sec = constant = D@
— for a given node
— for a given app/OS release

& A fault can reduce the capacity (Q), completeness
(D) or both

& Faults reduce this iconstant linearly (at bbest)

PODC Keynote, July 19, 2000

Conclusions

Classic Distributed Systems are fragile

% Some of the causes:
— focus on computation, not data
— ignoring location distinctions
— poor definitions of consistency/availability goals
— poor understanding of boundaries (RPC in particular)

& These are all fixable, but need to e far more
common

PODC Keynote, July 19, 2000

Harvest & Yield

& Yield: Fraction of Answered Queries
— Related to uptime but measured by queries, not by time
— Drop 1 out of 10 connections => 90% yield
— At full utilization: yield ~ capacity ~ Q

& Harvest: Fraction of the Complete Result

— Reflects that some of the data may be missing due to faults
— Replication: maintain D under faults

4 DO corollary: harvest * yield ~ constant
— ACID => choose 100% harvest (reduce Q but 100%: D)
— Internet => choose 100% yield (available but reduced! D)

PODC Keynote, July 19, 2000

Harvest Options

1) Ignore lost nodes
— RPC gives up
— forfeit small part of the database
— reduce D, keep Q
2) Pair up nodes
— RPC tries alternate
— survives one fault per pair
— reduce Q, keep D

3) n-member replica groups

Decide when you care...

PODC Keynote, July 19, 2000

Graceful Degradation

& Goal: smooth decrease in harvest/yield
proportional to faults
— we know DQ drops linearly
& Saturation will occur
— high peak/average ratios...
— must reduce harvest or yield (or both)
— must do admission control!!!
4 One answer: reduce D dynamically,

— disaster => redirect load, then reduce D to
compensate for extra load

PODC Keynote, July 19, 2000

Replica Groups

With n members:
& Each fault reduces Q by 1/n
& D stable until nth fault

& Added load is 1/(n-1) per fault
— n=2 => double load or 50% capacity/
— n=4 =>133% load or 75% capacity.
— “load redirection problem”

& Disaster tolerance: better have >3 mirrors

PODC Keynote, July 19, 2000

Thinking Probabilistically

& Maximize symmetry.
— SPMD + simple replication schemes

& Make faults independent
requires thought
avoid cascading errors/faults
understand redirected load
KISS

& Use randomness
— makes worst-case and average case the same
— ex: Inktomi spreads data & queries randomly’
— Node lass implies a randem 1%, harvest reduction
PODC Keynote, July 19, 2000

Server Pollution Evolution

& Can’t fix all memory leaks Three Approaches:

Third-party software leaks memory and|sockets # Flash Upgrade

— 5o does the OS sometimes — Fast reboot into new: version
— Focus onMTTR (< 10 sec)
— Reduces yield (and uptime)

4 Rolling Upgrade

Solution: planned periodic “bounce” — Upgrade nodes one at time in a “wave”
— Not worth the stress to do any better — Temporary 1/n harvest reduction, 100%)yield

— Bounce time is less than 10 seconds — Requires co-existing versions
— Nice to remove load first... & “Big Flip”

& Some failures tie upilocal resources

PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

The Big Flip Key New Problems

& Steps: 4 Unknown but large growth
1) take down 1/2 the nodes — Incremental & Absolute scalability
2) upgrade that halfi — 1000’s of components
3) flip the “active half” (site upgraded) & Must be truly highly available

4) upgrade second half — Hot swap everything (no recovery: time allowed)
5) return to 100% — No “night”

& 50% Harvest, 100% Yield — Graceful degradation under faults & saturation
S OIINVESEY # Constant evolution (internet time)

& No mixed versions — Software will be buggy
— can replace schema, protocals, ... — Hardware will fail

: . " — These can’t be emergencies...
& Twice used to change physical location E
PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

Conclusions

& Parallell Programming|is very relevant, except...
— histerically avoids availability
— no notion of online evolution
— limited notions of graceful degradation (checkpointing)
— best for CPU-bound tasks

& Must think probabilistically about everything
no such thing as a 100% working system
no such thing as 100% fault tolerance
partial results are often OK (and better than none)
Capacity * Completeness == Constant
PODC Keynote, July 19, 2000

Backup slides

PODC Keynote, July 19, 2000

Conclusions

% Winning solution is message-passing clusters

— fine-grain communication =>
fine-grain exception handling

— don’t want every load/store to deal with partial failure

& Key open problems:
libraries & data structures for HA shared'state
support for replication and' partial failure
petter understanding|of probabilistic systems
cleaner support for exceptions (graceful degradation)
support for split-phase 1/0 and many concurrent threads
support for 10,000 threads/node (to avoid FSMs)

PODC Keynote, July 19, 2000

New Hard Problems...

& Really need to manage disks well
— problems are /O bound, not CPU bound

¥ L_ots of simultaneous connections

— 50Kb/s => at least 2000 connections/node
& HAS to be highly available

— no maintenance windew, even for upgrades
4 Continuous evolution

— constant site changes, always small'bugs:..
— large but unpredictable traffic growth

& Graceful degradation under saturation
PODC Keynote, July 19, 2000

11

Parallel Disk I/O

& \Want 50+ outstanding reads/disk
— Provides disk-head scheduler with many choices
— Trades response time for throughput
¥ Pushes towards a split-phase approach to disks

General trend: each query is a finite-state machine
— split-phase disk/network eperations are state transitions
— multiplex many FSMs ever small number ofi threads
— FESM handles state rather than thread stack

PODC Keynote, July 19, 2000

12

