
1

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Towards RobustTowards Robust
Distributed SystemsDistributed Systems

Dr. Eric A. BrewerDr. Eric A. Brewer
Professor, UC BerkeleyProfessor, UC Berkeley

CoCo--Founder & Chief Scientist, InktomiFounder & Chief Scientist, Inktomi

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Inktomi at a GlanceInktomi at a Glance

Company OverviewCompany Overview
“INKT” on NASDAQ“INKT” on NASDAQ
Founded 1996 out of UC Founded 1996 out of UC
BerkeleyBerkeley
~700 Employees~700 Employees

ApplicationsApplications
Search TechnologySearch Technology
Network ProductsNetwork Products
Online ShoppingOnline Shopping
Wireless SystemsWireless Systems

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Our PerspectiveOur Perspective

Inktomi builds two Inktomi builds two
distributed systems:distributed systems:
–– Global Search EnginesGlobal Search Engines
–– Distributed Web CachesDistributed Web Caches

Based on scalable Based on scalable
cluster & parallel cluster & parallel
computing technologycomputing technology
But very little use of But very little use of
classic DS research...classic DS research...

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

““Distributed Systems” don’t work...Distributed Systems” don’t work...

There exist working DS:There exist working DS:
–– Simple protocols: DNS, WWWSimple protocols: DNS, WWW
–– Inktomi search, Content Delivery NetworksInktomi search, Content Delivery Networks
–– Napster, Verisign, AOLNapster, Verisign, AOL

But these are not classic DS:But these are not classic DS:
–– Not distributed objectsNot distributed objects
–– No RPCNo RPC
–– No modularityNo modularity
–– Complex ones are single owner (except phones)Complex ones are single owner (except phones)

2

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Three Basic IssuesThree Basic Issues

Where is the state?Where is the state?
Consistency vs. AvailabilityConsistency vs. Availability
Understanding BoundariesUnderstanding Boundaries

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Where’s the state?Where’s the state?

(not all locations are equal)(not all locations are equal)

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Santa Clara ClusterSanta Clara Cluster

• Very uniform
• No monitors
• No people
• No cables

• Working power
• Working A/C
• Working BW

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Delivering High AvailabilityDelivering High Availability

We kept up the service through:We kept up the service through:
Crashes & disk failures (weekly)Crashes & disk failures (weekly)
Database upgrades (daily)Database upgrades (daily)
Software upgrades (weekly to monthly)Software upgrades (weekly to monthly)
OS upgrades (twice)OS upgrades (twice)
Power outage (several)Power outage (several)
Network outages (now have 11 connections)Network outages (now have 11 connections)
Physical move of all equipmentPhysical move of all equipment (twice)(twice)

3

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Persistent State is HARDPersistent State is HARD

Classic DS focus on the computation, not the dataClassic DS focus on the computation, not the data
–– this is WRONG, computation is the easy partthis is WRONG, computation is the easy part

Data centers exist for a reasonData centers exist for a reason
–– can’t have consistency or availability without themcan’t have consistency or availability without them

Other locations are for caching only:Other locations are for caching only:
–– proxies, proxies, basestationsbasestations, set, set--top boxes, desktopstop boxes, desktops
–– phones, phones, PDAsPDAs, …, …

Distributed systems can’t ignore location Distributed systems can’t ignore location
distinctionsdistinctions

AP
Active Proxy:
Bootstraps thin devices
into infrastructure, runs
mobile code

AP

Workstations & PCs

Berkeley Ninja ArchitectureBerkeley Ninja Architecture

Base: Scalable, highly-
available platform for
persistent-state services

Internet

PDAs
(e.g. IBM Workpad)Cellphones, Pagers, etc.

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Consistency vs. AvailabilityConsistency vs. Availability

(ACID vs. BASE)(ACID vs. BASE)

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

ACID vs. BASEACID vs. BASE

DBMS research is about ACID (mostly)DBMS research is about ACID (mostly)
But we forfeit “C” and “I” for availability, But we forfeit “C” and “I” for availability,
graceful degradation, and performancegraceful degradation, and performance

This tradeoff is fundamental.This tradeoff is fundamental.

BASE:BASE:
–– BBasically asically AAvailablevailable
–– SSoftoft--statestate
–– EEventual consistencyventual consistency

4

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

ACID vs. BASEACID vs. BASE
ACIDACID

Strong consistencyStrong consistency
IsolationIsolation
Focus on “commit”Focus on “commit”
Nested transactionsNested transactions
Availability?Availability?
Conservative Conservative
(pessimistic)(pessimistic)
Difficult evolutionDifficult evolution
(e.g. schema)(e.g. schema)

BASEBASE
Weak consistencyWeak consistency
–– stale data OKstale data OK

Availability firstAvailability first
Best effortBest effort
Approximate answers OKApproximate answers OK
Aggressive (optimistic)Aggressive (optimistic)
Simpler!Simpler!
FasterFaster
Easier evolutionEasier evolution

But I think it’s a spectrum
PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

The CAP TheoremThe CAP Theorem

Consistency Availability

Tolerance to network
Partitions

Theorem: You can have at
most two of these properties
for any shared-data system

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Forfeit PartitionsForfeit Partitions

Consistency Availability

Tolerance to network
Partitions

ExamplesExamples
SingleSingle--site databasessite databases
Cluster databasesCluster databases
LDAPLDAP
xFSxFS file systemfile system

TraitsTraits
22--phase commitphase commit
cache validation cache validation
protocolsprotocols

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Forfeit AvailabilityForfeit Availability

Consistency Availability

Tolerance to network
Partitions

ExamplesExamples
Distributed databasesDistributed databases
Distributed lockingDistributed locking
Majority protocolsMajority protocols

TraitsTraits
Pessimistic lockingPessimistic locking
Make minority Make minority
partitions unavailablepartitions unavailable

5

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Forfeit ConsistencyForfeit Consistency

Consistency Availability

Tolerance to network
Partitions

ExamplesExamples
CodaCoda
Web Web cachingecachinge
DNSDNS

TraitsTraits
expirations/leasesexpirations/leases
conflict resolutionconflict resolution
optimisticoptimistic

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

These Tradeoffs are RealThese Tradeoffs are Real

The The wholewhole space is usefulspace is useful
Real internet systems are a careful Real internet systems are a careful mixturemixture of of
ACID and BASE subsystemsACID and BASE subsystems
–– We use ACID for user profiles and logging (for revenue)We use ACID for user profiles and logging (for revenue)

But there is almost no work in this areaBut there is almost no work in this area
Symptom of a deeper problem: systems and Symptom of a deeper problem: systems and
database communities are separate but database communities are separate but
overlapping (with distinct vocabulary)overlapping (with distinct vocabulary)

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

CAP Take Homes CAP Take Homes

Can have consistency & availability within a Can have consistency & availability within a
cluster (foundation of Ninja), but it is still hard in cluster (foundation of Ninja), but it is still hard in
practicepractice
OS/Networking good at BASE/Availability, but OS/Networking good at BASE/Availability, but
terrible at consistencyterrible at consistency
Databases better at C than AvailabilityDatabases better at C than Availability
WideWide--area databases can’t have botharea databases can’t have both
Disconnected clients can’t have bothDisconnected clients can’t have both
All systems are probabilistic…All systems are probabilistic…

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Understanding BoundariesUnderstanding Boundaries

(the RPC hangover)(the RPC hangover)

6

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

The BoundaryThe Boundary

The interface between two modulesThe interface between two modules
–– client/server, peers, client/server, peers, libarieslibaries, etc…, etc…

Basic boundary = the procedure callBasic boundary = the procedure call

–– thread traverses the boundarythread traverses the boundary
–– two sides are in the same address spacetwo sides are in the same address space

C S

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Different Address SpacesDifferent Address Spaces

What if the two sides are NOT in the same What if the two sides are NOT in the same
address space?address space?
–– IPC or LRPCIPC or LRPC

Can’t do passCan’t do pass--byby--reference (pointers)reference (pointers)
–– Most IPC screws this up: pass by valueMost IPC screws this up: pass by value--resultresult
–– There are TWO copies of There are TWO copies of argsargs not onenot one

What if they share some memory?What if they share some memory?
–– Can pass pointers, but…Can pass pointers, but…
–– Need synchronization between client/serverNeed synchronization between client/server
–– Not all pointers can be passedNot all pointers can be passed

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Trust the other side?Trust the other side?

What if we don’t trust the other side?What if we don’t trust the other side?
Have to check Have to check argsargs, no pointer passing, no pointer passing
Kernels get this right:Kernels get this right:
–– copy/check copy/check argsargs
–– use opaque references (e.g. File Descriptors)use opaque references (e.g. File Descriptors)

Most systems do not:Most systems do not:
–– TCPTCP
–– NapsterNapster
–– web browsersweb browsers

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Partial FailurePartial Failure

Can the two sides fail independently?Can the two sides fail independently?
–– RPC, IPC, LRPCRPC, IPC, LRPC

Can’t be transparent (like RPC) !!Can’t be transparent (like RPC) !!
New exceptions (other side gone)New exceptions (other side gone)
Reclaim local resourcesReclaim local resources
–– e.g. kernels leak sockets over time => reboote.g. kernels leak sockets over time => reboot

Can use leases?Can use leases?
–– Different new exceptions: lease expiredDifferent new exceptions: lease expired

RPC tries to hide these issues (but fails)RPC tries to hide these issues (but fails)

7

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Multiplexing clients?Multiplexing clients?

Does the server have to:Does the server have to:
–– deal with high concurrency?deal with high concurrency?
–– Say “no” sometimes (graceful degradation)Say “no” sometimes (graceful degradation)
–– Treat clients equally (fairness)Treat clients equally (fairness)
–– Bill for resources (and have audit trail)Bill for resources (and have audit trail)
–– Isolate clients performance, data, ….Isolate clients performance, data, ….

These all affect the boundary definitionThese all affect the boundary definition

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Boundary evolution?Boundary evolution?

Can the two sides be updated independently? Can the two sides be updated independently?
(NO)(NO)
The DLL problem...The DLL problem...
Boundaries need versionsBoundaries need versions
Negotiation protocol for upgrade?Negotiation protocol for upgrade?
Promises of backward compatibility?Promises of backward compatibility?
Affects naming too (version number)Affects naming too (version number)

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Example: protocols vs. APIsExample: protocols vs. APIs

Protocols have been more successful the APIsProtocols have been more successful the APIs
Some reasons:Some reasons:
–– protocols are pass by valueprotocols are pass by value
–– protocols designed for partial failureprotocols designed for partial failure
–– not trying to look like local procedure callsnot trying to look like local procedure calls
–– explicit state machine, rather than call/returnexplicit state machine, rather than call/return

(this exposes exceptions well)(this exposes exceptions well)

Protocols still not good at trust, billing, evolutionProtocols still not good at trust, billing, evolution

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Example: XMLExample: XML

XML doesn’t solve any of these issuesXML doesn’t solve any of these issues
It is RPC with an extensible type systemIt is RPC with an extensible type system
It makes evolution better?It makes evolution better?
–– two sides need to agree on schematwo sides need to agree on schema
–– can ignore stuff you don’t understandcan ignore stuff you don’t understand

Can mislead us to ignore the real issuesCan mislead us to ignore the real issues

8

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Boundary SummaryBoundary Summary

We have been very sloppy about boundariesWe have been very sloppy about boundaries
Leads to fragile systemsLeads to fragile systems
Root cause is false transparency: trying to look Root cause is false transparency: trying to look
like local procedure callslike local procedure calls
Relatively little work in evolution, federation, Relatively little work in evolution, federation,
clientclient--based resource allocation, failure recoverybased resource allocation, failure recovery

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

ConclusionsConclusions

Classic Distributed Systems are fragileClassic Distributed Systems are fragile
Some of the causes:Some of the causes:
–– focus on computation, not datafocus on computation, not data
–– ignoring location distinctionsignoring location distinctions
–– poor definitions of consistency/availability goalspoor definitions of consistency/availability goals
–– poor understanding of boundaries (RPC in particular)poor understanding of boundaries (RPC in particular)

These are all fixable, but need to be far more These are all fixable, but need to be far more
commoncommon

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

The DQ PrincipleThe DQ Principle

DData/query * ata/query * QQueries/sec = constant = ueries/sec = constant = DQDQ
–– for a given nodefor a given node
–– for a given app/OS releasefor a given app/OS release

A fault can reduce the capacity (Q), completeness A fault can reduce the capacity (Q), completeness
(D) or both(D) or both
Faults reduce this constant linearly (at best)Faults reduce this constant linearly (at best)

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Harvest & YieldHarvest & Yield

YieldYield: Fraction of Answered Queries: Fraction of Answered Queries
–– Related to uptime but measured by queries, not by timeRelated to uptime but measured by queries, not by time
–– Drop 1 out of 10 connections => 90% yieldDrop 1 out of 10 connections => 90% yield
–– At full utilization: At full utilization: yield ~ capacity ~ Qyield ~ capacity ~ Q

HarvestHarvest: Fraction of the Complete Result: Fraction of the Complete Result
–– Reflects that some of the data may be missing due to faultsReflects that some of the data may be missing due to faults
–– Replication: maintain D under faultsReplication: maintain D under faults

DQ corollary:DQ corollary: harvest * yield ~ constantharvest * yield ~ constant
–– ACID => choose 100% harvest (reduce Q but 100% D)ACID => choose 100% harvest (reduce Q but 100% D)
–– Internet => choose 100% yield (available but reduced D)Internet => choose 100% yield (available but reduced D)

9

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Harvest OptionsHarvest Options

1) 1) Ignore lost nodesIgnore lost nodes
–– RPC gives upRPC gives up
–– forfeit small part of the databaseforfeit small part of the database
–– reduce D, keep Qreduce D, keep Q

2) 2) Pair up nodesPair up nodes
–– RPC tries alternateRPC tries alternate
–– survives one fault per pair survives one fault per pair
–– reduce Q, keep Dreduce Q, keep D

3) 3) nn--member replica groupsmember replica groups

Decide Decide whenwhen you care...you care...

RAID RAID

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Replica GroupsReplica Groups

With With nn members:members:
Each fault reduces Q by 1/Each fault reduces Q by 1/nn
D stable until D stable until nthnth faultfault
Added load is 1/(Added load is 1/(nn--1) per fault1) per fault
–– nn=2 => double load or 50% capacity=2 => double load or 50% capacity
–– nn=4 => 133% load or 75% capacity=4 => 133% load or 75% capacity
–– “load redirection problem”“load redirection problem”

Disaster tolerance: better have >3 mirrorsDisaster tolerance: better have >3 mirrors

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Graceful DegradationGraceful Degradation

Goal: smooth decrease in harvest/yield Goal: smooth decrease in harvest/yield
proportional to faultsproportional to faults
–– we know DQ drops linearlywe know DQ drops linearly

Saturation will occurSaturation will occur
–– high peak/average ratios...high peak/average ratios...
–– must reduce harvest or yield (or both)must reduce harvest or yield (or both)
–– must do admission control!!!must do admission control!!!

One answer: reduce D dynamicallyOne answer: reduce D dynamically
–– disaster => redirect load, then reduce D to disaster => redirect load, then reduce D to

compensate for extra loadcompensate for extra load

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Thinking ProbabilisticallyThinking Probabilistically

Maximize symmetryMaximize symmetry
–– SPMD + simple replication schemesSPMD + simple replication schemes

Make faults independentMake faults independent
–– requires thoughtrequires thought
–– avoid cascading errors/faultsavoid cascading errors/faults
–– understand redirected loadunderstand redirected load
–– KISSKISS

Use randomnessUse randomness
–– makes worstmakes worst--case and average case the samecase and average case the same
–– ex: Inktomi spreads data & queries randomlyex: Inktomi spreads data & queries randomly
–– Node loss implies a random 1% harvest reductionNode loss implies a random 1% harvest reduction

10

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Server PollutionServer Pollution

Can’t fix all memory leaksCan’t fix all memory leaks
ThirdThird--party software leaks memory and socketsparty software leaks memory and sockets
–– so does the OS sometimesso does the OS sometimes

Some failures tie up local resourcesSome failures tie up local resources

Solution: planned periodic “bounce”Solution: planned periodic “bounce”
–– Not worth the stress to do any betterNot worth the stress to do any better
–– Bounce time is less than 10 secondsBounce time is less than 10 seconds
–– Nice to remove load first…Nice to remove load first…

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

EvolutionEvolution

Three Approaches:Three Approaches:
Flash UpgradeFlash Upgrade
–– Fast reboot into new versionFast reboot into new version
–– Focus on MTTR (< 10 sec)Focus on MTTR (< 10 sec)
–– Reduces yield (and uptime)Reduces yield (and uptime)

Rolling UpgradeRolling Upgrade
–– Upgrade nodes one at time in a “wave”Upgrade nodes one at time in a “wave”
–– Temporary 1/n harvest reduction, 100% yieldTemporary 1/n harvest reduction, 100% yield
–– Requires coRequires co--existing versionsexisting versions

“Big Flip”“Big Flip”

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

The Big FlipThe Big Flip

Steps:Steps:
1) take down 1/2 the nodes 1) take down 1/2 the nodes
2) upgrade that half2) upgrade that half
3) flip the “active half” (site upgraded)3) flip the “active half” (site upgraded)
4) upgrade second half4) upgrade second half
5) return to 100%5) return to 100%

50% Harvest, 100% Yield50% Harvest, 100% Yield
–– or inverse?or inverse?

No mixed versionsNo mixed versions
–– can replace schema, protocols, ...can replace schema, protocols, ...

Twice used to change physical locationTwice used to change physical location
PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Key New ProblemsKey New Problems

Unknown but large growthUnknown but large growth
–– Incremental & Absolute scalabilityIncremental & Absolute scalability
–– 1000’s of components1000’s of components

Must be truly highly availableMust be truly highly available
–– Hot swap everything (no recovery time allowed)Hot swap everything (no recovery time allowed)
–– No “night”No “night”
–– Graceful degradation under faults & saturationGraceful degradation under faults & saturation

Constant evolution (internet time)Constant evolution (internet time)
–– Software will be buggySoftware will be buggy
–– Hardware will failHardware will fail
–– These can’t be emergencies...These can’t be emergencies...

11

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

ConclusionsConclusions

Parallel Programming is very relevant, except…Parallel Programming is very relevant, except…
–– historically avoids availabilityhistorically avoids availability
–– no notion of online evolutionno notion of online evolution
–– limited notions of graceful degradation (checkpointing)limited notions of graceful degradation (checkpointing)
–– best for CPUbest for CPU--bound tasksbound tasks

Must think probabilistically about everythingMust think probabilistically about everything
–– no such thing as a 100% working systemno such thing as a 100% working system
–– no such thing as 100% fault toleranceno such thing as 100% fault tolerance
–– partial results are often OK (and better than none)partial results are often OK (and better than none)
–– Capacity * Completeness == ConstantCapacity * Completeness == Constant

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

ConclusionsConclusions

Winning solution is messageWinning solution is message--passing clusterspassing clusters
–– finefine--grain communication =>grain communication =>

finefine--grain exception handlinggrain exception handling
–– don’t want every load/store to deal with partial failuredon’t want every load/store to deal with partial failure

Key open problems:Key open problems:
–– libraries & data structures for HA shared statelibraries & data structures for HA shared state
–– support for replication and partial failuresupport for replication and partial failure
–– better understanding of probabilistic systemsbetter understanding of probabilistic systems
–– cleaner support for exceptions (graceful degradation)cleaner support for exceptions (graceful degradation)
–– support for splitsupport for split--phase I/O and many concurrent threadsphase I/O and many concurrent threads
–– support for 10,000 threads/node (to avoid FSMs)support for 10,000 threads/node (to avoid FSMs)

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Backup slidesBackup slides

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

New Hard Problems...New Hard Problems...

Really need to manage Really need to manage disksdisks wellwell
–– problems are I/O bound, not CPU boundproblems are I/O bound, not CPU bound

Lots of Lots of simultaneous connectionssimultaneous connections
–– 50Kb/s => at least 2000 connections/node50Kb/s => at least 2000 connections/node

HAS to be HAS to be highly availablehighly available
–– no maintenance window, even for upgradesno maintenance window, even for upgrades

Continuous Continuous evolutionevolution
–– constant site changes, always small bugs...constant site changes, always small bugs...
–– large but unpredictable traffic growthlarge but unpredictable traffic growth

Graceful degradationGraceful degradation under saturationunder saturation

12

PODC Keynote, July 19, 2000PODC Keynote, July 19, 2000

Parallel Disk I/OParallel Disk I/O

Want 50+ outstanding reads/diskWant 50+ outstanding reads/disk
–– Provides diskProvides disk--head scheduler with many choiceshead scheduler with many choices
–– Trades response time for Trades response time for throughputthroughput

Pushes towards a Pushes towards a splitsplit--phase approachphase approach to disksto disks
General trend: each query is a finiteGeneral trend: each query is a finite--state machinestate machine

–– splitsplit--phase disk/network operations are state transitionsphase disk/network operations are state transitions
–– multiplex many FSMs over small number of threadsmultiplex many FSMs over small number of threads
–– FSM handles state rather than thread stackFSM handles state rather than thread stack

