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Our Perspective

¢ Inktomi builds two
distributed systems:
— Global Search Engines
— Distributed Web Caches
% Based on scalable
cluster & parallel
computing technolegy.

& But very little use of
classic DS research...
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Inktomi at a Glance

Company Overview.
# “INKT” on NASDAQ

& Founded 1996 out of UC
Berkeley

& ~700 Employees

Applications

# Search Technology
& Network Products
4 Online Shepping

& Wireless Systems

o Wl @=m
é?.....“._ @ Home Network.
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O
“Distributed Systems” don’t work:ie "'

¥ T here exist working DS:
— Simple protocols: DNS, WWW.
— Inktomi search, Content Delivery Networks
— Napster, Verisign, AOL
# But these are not classic DS:
— Not distributed objects
— No RPC
— No modularity:
— Complex ones are single owner (except phones)
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Three Basic Issues

&\Where is the state?
# Consistency: vs. Availability

4 Understanding Boundaries
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* VVery uniform
* No monitors
* No people

* No cables

» Working power
» Working A/C
» Working BW

Where’s the state?

(not all locations are egual)
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Delivering High Availability

We kept up the service through:

¥ Crashes & disk failures (weekly)

4 Database upgrades (daily)

& Software upgrades (weekly tormoenthly)

¥ OS upgrades (twice)

& Power outage (several)

& Network outages (now have 11 connections)
& Physical move of all equipment (twice)
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(o] Berkeley Ninja Architecture
Persistent State is HARD
Base: Scalable, highly-

available platform for

persistent-state services
# Classic DS focus on the computation, not theidata

— this is WRONG, computation: is the easy part

& Data centers exist for a reason
— can’t have consistency or availability without them

& Other locations are for caching only:
— proxies, basestations, set-top boxes, desktops

Workstations & PCs

— phones, PDAS, ... —2

# Distributed systems can’t ignore location : Active Proxy: | v
ey = 4 Bootstraps thin devices

Istinctions into infrastructure, runs PDAs

Cellphones, Pégers, etc. mobile code (e.g. IBM Workpad)
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(o (o
ACID vs. BASE

& DBMS research is about ACID (mastly)
1 I il ¥ But we forfeit “C” and “I” f ilaility;
Consistency vs. Availalnity: Ltwe forfert "G and “1* for ayeliiE]

graceful degradation, and performance

(ACID vs. BASE) This tradeoff is fundamental.

asically: “vailable
oft-state
ventual consistency,
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ACID vs. BASE O

Inktemi

ACID BASE

Strong consistency’ Weak consistency
— stale data OK

Availability: fiKst

Nested transactions Bt oifort
Availability? Approximate answers OK

Eoerative Aggressive (optimistic)
(pessimistic) Simpler!

Iselation
Focus on “commit™

Difficult evolution Faster

(e.g. schema) Easier evolution

«——— But I think it’s a spectrum —
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Forfeit Partitions

Examples
Single-site databases

Cluster databases
vailability LDAP
xFS file system

Traits
2-phase commit

cache validation
protocols
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Tolerance to network
artitions

The CAP Theorem

vailability

Tolerance to network Theorem: You can have at
artitions most two of these properties
for any shared-data system
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Forfeit Availability

Examples
Distributed databases

Distributed locking
vailability Majority protocels

Traits
Pessimistic locking

Make minority;
partitions unavailable
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Tolerance to network
artitions




Forfeit Consistency

Examples
Coda

Web cachinge
vailability DNS

Traits
expirations/leases

Tolerance to network - .
- conflict resolution
artitions SO
optimistic
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CAP Take Homes

& Can have consistency & availability within a
cluster (foundation of Ninja), but it is still hardlin
practice

& OS/Networking/gooed at BASE/Availability, but
terrible at consistency,

& Databases better at C than Availability,
& \Wide-area databases can’t have both
& Disconnected clients can’t have both

& All systems are probabilistic. ..
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These Tradeoffs are Real

¥ The whole space is useful

¢ Real internet systems are a careful mixtureof
ACID and BASE subsystems
— We use ACID for user profiles and logging| (for revenue)

& But there is almost noiwork in this area

& Symptom of a deeper problem: systems and
database communities are separate but
overlapping (with distinct vocabulary)
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Understanding Boundames

(the RPC hangover)
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The Boundary Different Address Spaces

& The interface between two modules & What if the two sides are NOT in the same
— client/server, peers, libaries, etc... address space?

: — IPCor LRPC
% Basic boundary = the procedure call -
4 Can’t do pass-by-reference (pointers)

— Most IPC screws this up: pass by value-result
— There are TWO copies of args not ene

& What if they share some memory?
— thread traverses the boundary — Can pass pointers, but...

— two sides are in the same address space — Need synchronization between client/server
— Not all pointers can be passed
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Trust the other side? Partial Failure

& Can the two sides fail independently?
~ RPC, IPC, LRPC

& Can’t be transparent (like RPC) !
& New exceptions (other side gone)

& What if we don’t trust the other side?
& Have to check args, no pointer passing

& Kernels get this right:
— copy/check args
— use opaque references (e.g. File Descriptors) % Reclaim local resources

# Most systems do not: — e.g. kernels leak sockets over time => reboot

- TCP 4 Can use leases?
— Napster — Different new exceptions: lease expired

~ VTR # RPC tries to hide these issues (but fails)
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Multiplexing clients?

& Does the server have to:
deal with high concurrency?
Say “no” sometimes (graceful degradation)
Treat clients equally (fairness)
Bill for resources (and have audit trail)
Isolate clients perfermance, data, ....

& These all affect the boundary definition
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Example: protocols vs. APIs

& Protocols have been more successful the APIs

& SOme reasons:
protocols are pass by value
protocols designed for partial failure
not trying to look like local procedure calls
explicit state machine, rather than call/return
(this exposes exceptions well)

& Protocols still not goed at trust, billing, evolution
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Boundary evolution?

& Can the two sides be updated independently?
(NO)

& The DLL problem...

& Boundaries need versions

# Negotiation protocol for upgrade?

# Promises of backward compatibility?
& Affects naming|too (version number)
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Example: XML

¥ XML doesn’t solve any of these ISSues
# It is RPC with an extensible type system

# It makes evolution better?
— two sides need to agree on schema
— can ignore stuffiyou don’t understand

& Can mislead us'to ignore the realfissues
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Boundary Summary

& \We have been very sloppy about boundaries
& |eads to fragile systems

# Root cause is false transparency: trying tolook
like local procedure calls

& Relatively little werk in evolution, federation,
client-based resource allocation, failure recovery.
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The DQ Principle

Data/query * Queries/sec = constant = D@
— for a given node
— for a given app/OS release

& A fault can reduce the capacity (Q), completeness
(D) or both

& Faults reduce this iconstant linearly (at bbest)
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Conclusions

# Classic Distributed Systems are fragile

% Some of the causes:
— focus on computation, not data
— ignoring location distinctions
— poor definitions of consistency/availability goals
— poor understanding of boundaries (RPC in particular)

& These are all fixable, but need to e far more
common
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Harvest & Yield

& Yield: Fraction of Answered Queries
— Related to uptime but measured by queries, not by time
— Drop 1 out of 10 connections => 90% yield
— At full utilization: yield ~ capacity ~ Q

& Harvest: Fraction of the Complete Result

— Reflects that some of the data may be missing due to faults
— Replication: maintain D under faults

4 DO corollary: harvest * yield ~ constant
— ACID => choose 100% harvest (reduce Q but 100%: D)
— Internet => choose 100% yield (available but reduced! D)
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Harvest Options

1) Ignore lost nodes
— RPC gives up
— forfeit small part of the database
— reduce D, keep Q
2) Pair up nodes
— RPC tries alternate
— survives one fault per pair
— reduce Q, keep D

3) n-member replica groups

Decide when you care...
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Graceful Degradation

& Goal: smooth decrease in harvest/yield
proportional to faults
— we know DQ drops linearly
& Saturation will occur
— high peak/average ratios...
— must reduce harvest or yield (or both)
— must do admission control!!!
4 One answer: reduce D dynamically,

— disaster => redirect load, then reduce D to
compensate for extra load
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Replica Groups

With n members:
& Each fault reduces Q by 1/n
& D stable until nth fault

& Added load is 1/(n-1) per fault
— n=2 => double load or 50% capacity/
— n=4 =>133% load or 75% capacity.
— “load redirection problem”

& Disaster tolerance: better have >3 mirrors

PODC Keynote, July 19, 2000

Thinking Probabilistically

& Maximize symmetry.
— SPMD + simple replication schemes

& Make faults independent
requires thought
avoid cascading errors/faults
understand redirected load
KISS

& Use randomness
— makes worst-case and average case the same
— ex: Inktomi spreads data & queries randomly’
— Node lass implies a randem 1%, harvest reduction
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Server Pollution Evolution

& Can’t fix all memory leaks Three Approaches:

# Third-party software leaks memory and|sockets # Flash Upgrade

— 5o does the OS sometimes — Fast reboot into new: version
— Focus onMTTR (< 10 sec)
— Reduces yield (and uptime)

4 Rolling Upgrade

Solution: planned periodic “bounce” — Upgrade nodes one at time in a “wave”
— Not worth the stress to do any better — Temporary 1/n harvest reduction, 100%)yield

— Bounce time is less than 10 seconds — Requires co-existing versions
— Nice to remove load first... & “Big Flip”

& Some failures tie upilocal resources
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The Big Flip Key New Problems

& Steps: 4 Unknown but large growth
1) take down 1/2 the nodes — Incremental & Absolute scalability
2) upgrade that halfi — 1000’s of components
3) flip the “active half” (site upgraded) & Must be truly highly available

4) upgrade second half — Hot swap everything (no recovery: time allowed)
5) return to 100% — No “night”

& 50% Harvest, 100% Yield — Graceful degradation under faults & saturation
S OIINVESEY # Constant evolution (internet time)

& No mixed versions — Software will be buggy
— can replace schema, protocals, ... — Hardware will fail

: . " — These can’t be emergencies...
& Twice used to change physical location E
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Conclusions

& Parallell Programming|is very relevant, except...
— histerically avoids availability
— no notion of online evolution
— limited notions of graceful degradation (checkpointing)
— best for CPU-bound tasks

& Must think probabilistically about everything
no such thing as a 100% working system
no such thing as 100% fault tolerance
partial results are often OK (and better than none)
Capacity * Completeness == Constant
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Backup slides
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Conclusions

% Winning solution is message-passing clusters

— fine-grain communication =>
fine-grain exception handling

— don’t want every load/store to deal with partial failure

& Key open problems:
libraries & data structures for HA shared'state
support for replication and' partial failure
petter understanding|of probabilistic systems
cleaner support for exceptions (graceful degradation)
support for split-phase 1/0 and many concurrent threads
support for 10,000 threads/node (to avoid FSMs)
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New Hard Problems...

& Really need to manage disks well
— problems are /O bound, not CPU bound

¥ L_ots of simultaneous connections

— 50Kb/s => at least 2000 connections/node
& HAS to be highly available

— no maintenance windew, even for upgrades
4 Continuous evolution

— constant site changes, always small'bugs:..
— large but unpredictable traffic growth

& Graceful degradation under saturation
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Parallel Disk I/O

& \Want 50+ outstanding reads/disk
— Provides disk-head scheduler with many choices
— Trades response time for throughput
¥ Pushes towards a split-phase approach to disks

# General trend: each query is a finite-state machine
— split-phase disk/network eperations are state transitions
— multiplex many FSMs ever small number ofi threads
— FESM handles state rather than thread stack
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