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ment the hypervisor of a virtual-machine manager and coordinate a primary virtual machine
with its backup. No modifications to the hardware, operating system, or application programs
are required. A prototype system was constructed for HP’s PA-RISC instruction-set architecture.
Even though the prototype was not carefully tuned, it ran programs about a factor of 2 slower
than a bare machine would. ’

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—network operating systems; D.4.5 [Operating Systems]: Reliability—check-
point/restart; fault tolerance

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Fault-tolerant computing system, primary/backup ap-
proach, virtual-machine manager

1. INTRODUCTION

One popular scheme for implementing fault tolerance involves replicating a
computation on processors that fail independently. Replicas are coordinated
so that they perform the same sequence of state transitions and, therefore,
produce the same results. This article describes a novel implementation of
that scheme. We interpose a software layer between the hardware and the
operating system. The result is a fault-tolerant computing system whose
implementation does not require modifications to the hardware, operating
system, or any application software.
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Our approach tolerates those processor failures that can be detected before
the faulty processor performs an erroneous, externally visible action—so-
called failstop behavior {Schlichting and Schneider 1983]. In response to a
processor failure, outstanding I/0 operations might be reissued, but this is
done in a way that should not affect I /0 devices like disks or networks. To
the software running above our new layer, processor failures are transformed
into transient I/0 device failures, which this software can be expected to
handle.

The benefits of our approach concern engineering costs versus time-to-
market costs. We are driven by two observations. First, for a given instruc-
tion-set architecture, a manufacturer typically will build a series of realiza-
tions, where cost/performance improves over the series. Second, implement-
ing replica coordination is subtle, whether done by hardware or software. The
consequences are:

(1) When replica coordination is implemented in hardware, a design cost is
incurred for each new realization of the architecture. Because designing
replica-coordination hardware takes time, this approach to fault tolerance
results in systems that necessarily lag behind the hardware cost /perfor-
mance curve.

(2) Adding replica coordination to an existing operating system involves
identifying state transitions implemented by the operating system, be-
cause these are what must be coordinated. Mature operating systems are
invariably complicated, so identifying the state transitions and making
modifications to coordinate them is difficult. In addition, the effort must
be repeated for every operating system supported by a given instruction-
set architecture.

(3) If replica coordination is left to application programmers, then these
programmers must be acquainted with the nuances of replica coordina-
tion. Or, the programmers must be constrained to use a given interface
(e.g., causal group broadcasts [Birman 1993)) or abstraction (e.g., transac-
tions [Bernstein et al. 1987]).

These problems drove us to explore alternatives to the hardware, the operat-
ing system, and the application programs as the place for implementing
replica coordination in a computing system.

A hyperuvisor is a software layer that implements virtual machines having
the same instruction-set architecture as the hardware on which the hyper-
visor executes. Because the virtual machine’s instruction-set architecture is
indistinguishable from the bare hardware, software run on a virtual machine
cannot determine whether a hypervisor is present. Perhaps the best-known
hypervisor is CP-67 [Meyer and Searight 1970], developed by IBM Corp. for
360/67 and later evolved into VM /370 [IBM 1972] for System 370 main-
frames. Hypervisors for other machines have also been constructed [Karger
1982; Popek and Kline 1975]. An excellent survey on virtual machines
appears in Goldberg [1974].

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.



82 . T. C. Bressoud and F. B. Schneider

Problems (1) through (3) above can be addressed by using a hypervisor to
implement replica coordination. Replica coordination implemented in a
hypervisor becomes available to all hardware realizations of the given in-
struction-set architecture, including realizations that do not exist when the
hypervisor was built. This handles problem (1) above. For problem (2), we
observe that implementing replica coordination in a hypervisor means that a
single implementation will suffice for every operating system that executes
on that instruction-set architecture. Finally, problem (3) is avoided because
implementing replica coordination in a hypervisor frees the application pro-
grammer from this task without imposing a set of primitives or abstractions
that would constrain how the application program is structured.

The question, then, is whether hypervisor-based replica coordination is
practical. What is the performance penalty? This article addresses these
issues by describing the protocols' and the performance of a prototype
implementation of hypervisor-based fault-tolerance. The prototype executes
programs about a factor of 2 slower than a bare machine would.

The rest of this article is organized as follows. In Section 2, we describe the
protocols. These protocols ensure that the sequence of instructions executed
by two virtual machines running on different physical processors are identi-
cal. The protocols also coordinate 1/0 operations from these virtual ma-
chines. Our prototype is discussed in Section 3. To construct this prototype,
we implemented a hypervisor for a subset of HP’s PA-RISC architecture
[Hewlett Packard 1987]; the subset was sufficient for executing HP-UX. We
then augmented the hypervisor with our replica-coordination protocols. We
report in Section 4 on our prototype’s performance. In addition to discussing
performance measurements, we consider variations that might improve per-
formance. Section 5 discusses related work; a summary and future research
directions are given in Section 6.

2. REPLICA-COORDINATION PROTOCOLS

The theory of managing replicated, deterministic state machines is well
understood. It is called the state machine approach in Lamport [1978] and
Schneider [1990]. A deterministic state machine M reads a sequence of
commands, where each command causes a state transition that is completely
determined by the command and the current state of M. State transitions
may produce outputs. In replicating M, we ensure that each replica M, is
started in the same state and reads identical sequences of commands. Be-
cause M is deterministic, each replica M, then performs the same sequence
of state transitions and produces the same sequence of outputs.

Whereas M produced a single sequence of outputs, each replica M, now
produces a sequence of outputs. Therefore, the ensemble of replicas produces
a set of output sequences. Replica failures are masked by employing a
mechanism to combine the multiple output sequences into a single sequence

The protocols are the subject of pending U.S. and foreign patents. Contact the second author for
information.

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.



Hypervisor-Based Fault-Tolerance . 83

that appears to have come from a nonfaulty state machine replica. For
example, if faulty replicas produce arbitrary outputs, then a voter can serve
as the mechanism for combining output sequences. An ensemble of 2¢ + 1
replicas feeding a voter would mask as many as t faulty replicas.

When using the state machine approach in practice, we must identify a
deterministic state machine to replicate and then implement mechanisms
that ensure (i) each replica reads the same sequence of commands and (ii) the
environment obtains a single output (rather than one output per replica). The
state machine we replicate for our fault-tolerant computing system is an
engine for processing machine-language instructions and interrupts—a vir-
tual machine. Commands to the state machine are virtual-machine instruc-
tions to execute and virtual-machine interrupts (accompanied by their DMA
data, if any) to deliver. The mechanism for ensuring that all replicas receive
the same sequence of commands is built into the hypervisor, as is the
mechanism to combine outputs from the ensemble.

The transitions for our state machine are virtual-processor state changes
that result from executing a virtual-machine instruction or delivering a
virtual-machine interrupt (with accompanying DMA data). Recall, though,
the state machine must be deterministic. This forces different commands to
be implemented in different ways.

Some commands are completely determined by the previous command
processed by the state machine. In particular, each virtual-machine instruc-
tion updates the value of the virtual processor’s program counter, thereby
requesting execution of its successor. Among these commands are the follow-
ing:

— A command requesting that a deterministic virtual-machine instruction be
executed is implemented in our state machine directly by the processor
hardware (simply by executing the specified instruction).

— A command requesting that a nondeterministic virtual-machine instruc-
tion be executed is implemented in our state machine by the hypervisor.
An instruction to read the time-of-day clock is an example of such a
command. For such commands, the hypervisor ensures that nondetermin-
istic choices are resolved identically in all replicas. This is accomplished by
executing the requested instruction at one replica and then having the
hypervisor at that replica disseminate the instruction’s outcome to all
other hypervisors, so they can simulate the instruction.

Other commands are not completely determined by processing the previous
command. Virtual-machine interrupts fall into this category. When such an
interrupt is delivered, the virtual-processor state is changed. In terms of state
machine commands, this means that the exact placement of a command
corresponding to a virtual-machine interrupt delivery is not uniquely deter-
mined by the commands that have already been processed.

— A command resulting from delivery of a virtual-machine interrupt is
implemented by exploiting the hypervisor. Hypervisors at replicas delay
and coordinate virtual-machine interrupt delivery to ensure that the
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interrupt and any accompanying DMA data are processed at the same
point relative to other commands (i.e., at the same point in the instruction
stream) at every replica.

Fundamental to our design is communication among the hypervisors. This
implies that the hypervisors must not be partitioned by communications
failures. Second, after a hypervisor resolves a nondeterministic choice, that
hypervisor must communicate the choice to the others. If messages can be
lost, then the sending hypervisor must wait for an acknowledgment before
proceeding—a round-trip communications delay that cannot be eliminated.

The actual implementation of our scheme resembles the primary/backup
approach to fault tolerance [Alsberg and Day 1976]. One replica is designated
the primary, and the others are designated as backups. All nondeterministic
choices are made by the hypervisor at the primary, and all interactions with
the environment are through the primary.? If the primary fails, then some
backup assumes its responsibilities.

A consequence of this primary/backup architecture is that all replicas
must have access to the system’s environment.

I / O Accessibility Assumption: I /O operations possible by the processor
executing the primary virtual machine are also possible by the processor
executing a backup virtual machine.

Were this assumption not satisfied, then the failure of a replica could cause
parts of the environment to become inaccessible. Such failures could not be
masked. Notice that when the environment is a network, the I /O Accessibil-
ity Assumption can be satisfied by having all processors connected to the
network and using suitable addressing protocols.

2.1 \denticat Command Sequences

We now turn to the protocols for ensuring that all state machine replicas read
identical sequences of commands. Since a state machine replica corresponds
to a virtual machine and since state machine commands are virtual-machine
instructions to execute and virtual-machine interrupts to deliver, the proto-
cols ensure that each virtual machine executes the same sequence of virtual-
machine instructions.

Define an ordinary instruction as one whose behavior is completely deter-
mined by the initial system state and sequence of instructions that precede
its execution on the processor. In contrast, an environment instruction is one
whose behavior is not so determined and, therefore, is nondeterministic.
Examples of ordinary instructions include those for arithmetic and data

2The primary /backup approach works only when processors exhibit failstop behavior so that, in
response to a failure, the primary halts and does so detectably. Arbitrary behavior in response to
a failure is not tolerated. By using timeouts, today’s hardware can appear to approximate the
failstop model with sufficient fidelity so that it is reasonable to make this assumption unless the
system must satisfy the most-stringent fault-tolerance requirements. Moreover, a single backup
usually suffices.
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movement as well as those for setting the time-of-day clock and loading the
interval timer; examples of environment instructions include those for read-
ing the time-of-day clock as well as for reading a disk block.

Some instructions cause subsequent delivery of an interrupt. Ignore the
nondeterminacy in interrupt delivery time when classifying whether or not
an instruction is an environment instruction. To be labeled an environment
instruction, the data returned with the interrupt must be nondeterministic.
This means that an instruction to load the interval timer is not considered an
environment instruction. An I/0 instruction that causes an interrupt when a
DMA transfer from disk completes is considered an environment instruction,
because the DMA data accompanying the interrupt is not necessarily deter-
mined by the initial system state or the preceding instructions (on this
processor).

By definition, ordinary instructions are deterministic. Consequently, they
can be executed directly by the hardware. Two ADD instructions on different
processors, for example, will calculate the same sums when given identical
arguments. And, two identical DIV (divide) instructions having a divisor of 0
are both expected to cause the same trap.?

Environment instructions, by definition, are not deterministic. Therefore,
the hypervisor becomes involved in executing these instructions. The follow-
ing assumption asserts that the hypervisor is given that opportunity.

Environment Instruction Assumption: The hypervisor is invoked
whenever an attempt is made to execute an environment instruction. The
environment instruction is then simulated by the hypervisor. The simula-
tion ensures that the environment instruction executed by distinct state
machine replicas has exactly the same effect.

For example, the Environment Instruction Assumption ensures that an
instruction executed by the backup for reading the virtual processor’s time-of-
day clock will return the same value as returned when the correspond-
ing instruction was executed—perhaps at a slightly different time—by
the primary.

We must ensure that commands for virtual-machine interrupt delivery
appear at the same point and accompanied by the same data in the sequences
of commands read by state machine replicas. This requirement involves two
tasks. One is to ensure that the same command (and accompanying DMA
data) appears someplace in the sequence of commands at each replica. The
second is to ensure that commands for interrupt delivery are ordered in the
same way relative to each other and to other commands.

We use the hypervisors to ensure that the same command (and its accom-
panying data) that corresponds to a virtual-machine interrupt delivery is

*Imprecise trap delivery is handled by the hypervisor in the manner described below for
delivering interrupts. When a trap delivery is guaranteed to occur at a fixed point in the
instruction stream relative to the offending instruction, then the trap can be delivered without
hypervisor intervention.
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read by every state machine replica. Only virtual-machine interrupts raised
at the primary become commands; interrupts at backups are ignored. This is
acceptable, because backups execute the same sequence of virtual-machine
instructions as the primary, so copies of the primary’s interrupts suffice. The
primary’s hypervisor buffers and forwards all virtual-machine interrupts it
receives to the backup hypervisors.

Ensuring identical ordering for commands corresponding to virtual-
machine interrupts is a bit subtle. One simple solution is to insert these
commands at predetermined points in the command sequence that is read by
each state machine replica-——and that is what we will do. However, even
careful use of an interval timer cannot ensure that the hypervisor at the
primary and backup receive control at exactly the same points in a virtual
machine’s instruction stream. This is because the instruction execution tim-
ing on most modern processors is unpredictable. We must employ some other
mechanism for transferring control to the hypervisor when a virtual machine
reaches a predetermined point in its instruction stream.

The recovery register on HP’s PA-RISC processors is a register that is
decremented each time an instruction completes; an interrupt is caused when
the recovery register becomes negative. With a recovery register, a hypervisor
can run a virtual machine for an epoch comprising a fixed number of
virtual-machine instructions and then receive control. Upon receiving control,
it can deliver any virtual-machine interrupts and accompanying data that it
received and buffered during the epoch. A hypervisor that uses the recovery
register can thus ensure that epochs at the primary and backup virtual
machines each begin and end at exactly the same point in the virtual-
machine instruction stream. Epoch boundaries then serve as the predeter-
mined points in the command sequence where virtual-machine interrupt
delivery commands are placed.

A recovery register or some similar mechanism is, therefore, assumed.

Instruction Stream Interrupt Assumption: A mechanism is available

to invoke the hypervisor when a specified point in the instruction stream is
reached.

In addition to the recovery register on HP’s PA-RISC, the DEC Alpha [Sites
1992] performance counters could be adapted, as could counters for any of a
variety of events [Gleason 1994]. Object-code editing [Graham et al. 1995;
Mellor-Crummey and LeBlanc 1989] gives yet another way to ensure that the
primary and backup hypervisors are invoked at identical points in a virtual
machine’s instruction stream. In this scheme, the object code for the operat-
ing system kernel and all user processes is edited so that the hypervisor is
invoked periodically. Or, one can simply modify the code generator of a
compiler to cause periodic incursions into the hypervisor whenever a program
produced by that compiler is executed.

So, by virtue of the Instruction Stream Interrupt Assumption, execution of
a virtual machine is partitioned into epochs. Corresponding epochs at the
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primary and backup virtual machines comprise the same sequences of in-
structions if:

(1) The backup hypervisors are kept one or more instructions behind the
primary so that a backup executing an environment instruction changes
state in the same way the primary did.

(2) The backup hypervisors deliver at the end of an epoch E copies of the
virtual machine’s interrupts and accompanying data that primary’s hy-
pervisor delivered at the end of its epoch E. (Recall, copies of the
primary’s interrupts are forwarded to the backup.)

If the recovery register is readable as well as writable, it becomes possible
to deliver virtual-machine interrupts at the primary as soon as they are
received, thereby ending epochs dynamically. The primary would simply read
the value of the recovery register when it delivers the virtual-machine
interrupt and send the value read to the backups. Provided backups lag one
or more epochs behind the primary, each backup hypervisor could set its
recovery register to receive control and deliver virtual-machine interrupts at
the same points in its instruction stream as the primary did.

We now summarize the protocol that ensures that the primary and backup
virtual machines each performs the same sequence of instructions and re-
ceives the same interrupts. To simplify the exposition, we assume that there
is a single backup; generalization to multiple backups is straightforward. We
also assume that the channel linking the primary and backup processors is
FIFO though not necessarily reliable. Finally, we assume that the processor
executing the backup detects the primary’s processor failure only after receiv-
ing the last message sent by the primary’s hypervisor (as would be the case
were sufficiently large timeouts used for failure detection).

Each hypervisor maintains an epoch counter: e, equals the number of the
epoch currently being executed by the primary; e, is analogous for the
backup. The protocol is presented as a set of routines that are implemented in
the hypervisor. These routines execute concurrently.

First, we treat the case where a processor running the primary virtual
machine has not failed.

PO: If primary’s hypervisor processes an environment instruction at location
pc:

— primary sends [e,, pc, Val] to backup, where Val is the value produced by
executing the environment instruction,;

— primary awaits acknowledgment for that message.

P1: If primary’s hypervisor receives a virtual-machine interrupt Int:
— primary buffers Int for delivery at epoch end.

P2: If epoch ends at the primary:

— primary sends to backup all virtual-machine interrupts buffered during
epoch e,;
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— primary awaits acknowledgment for that message;

— primary delivers all virtual-machine interrupts buffered during epoch e,;
—e, =e, +1;

— primary starts epoch e,.

P3: If backup’s hypervisor processes an environment instruction at location
pc:

— backup awaits receipt of [e,, pc, Val] from primary;
— returned value is Val.

If backup’s hypervisor receives a message [ E, pc, Val] from primary:

— backup sends an acknowledgment to the primary;

— backup buffers Val for delivery when environment instruction at location
pc in epoch E is executed.

P4: If backup’s hypervisor receives a virtual-machine interrupt Int destined
for the backup virtual machine, then it ignores Int.

P5: If epoch ends at the backup:

— backup awaits message with virtual-machine interrupts for epoch e, from
primary;

— backup sends an acknowledgment to the primary;

— backup delivers all virtual-machine interrupts buffered for delivery at end
of epoch ¢,;

—e,=¢, +1;

— backup starts epoch e,.

Now consider the case where the processor executing the primary virtual
machine fails. Suppose the failure occurs after the primary starts epoch X
but before sending the message in P2 to the backup’s hypervisor. After the
backup virtual machine begins executing epoch X, it will not receive in P3
and/or P5 expected messages from the primary’s hypervisor. Failure detec-
tion notifications will take their place. Upon receipt of a failure detection
notification, the backup computes the outcome of environment instructions by
itself and no longer waits for the primary in order to start its next epoch.

P6: If backup’s hypervisor receives a failure notification in place of
[e,, pc, Val] then the backup’s hypervisor itself executes that environment
instruction.

If in P5, backup’s hypervisor receives a failure notification in place of a
message from the primary:

—e, =e, + 1;

— backup starts epoch e,;

— backup is promoted to primary for epoch ¢, + 1.
ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.
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The backup is promoted to the role of the primary at the start of the epoch
following the primary’s failure (e.g., X + 1), so there is exactly one primary at
the start of each epoch. If the primary fails, then an epoch may end with no
primary. During such an epoch, the backup executes environment instruc-
tions as if it were the primary, but (as we discuss below) with respect to I /0
instructions, the backup does not function as if it were the primary.

It is important to understand what PO through P6 do and do not accom-
plish. PO through P6 ensure that the backup virtual machine executes the
same sequence of instructions (each having the same effect) as the primary
virtual machine. PO through P6 also ensure that if the primary virtual
machine fails, then instructions executed by the backup extend the sequence
of instructions executed by the primary.

PO through P6 do not prevent an anomalous output sequence as a result of
a failure. PO through P6 also do not guarantee that virtual-machine inter-
rupts from I1/0 devices are not lost. For example, if the processor executing
the primary virtual machine fails before successfully relaying an 1/0 inter-
rupt that has been delivered to the primary’s hypervisor, then that interrupt
will be lost. We address these issues in Sections 2.2 and 2.3.

2.2 Interaction with the Environment: State Machine Outputs

In the state machine approach, replica failures are masked by the mechanism
that combines replica outputs. The output of this mechanism ideally is a
sequence that would be produced by a single fault-tolerant state machine.
This ideal is unattainable in our system, because all outputs during a given
epoch are produced by a single state machine replica. In particular, no
protocol can exist to inform one replica whether another replica produced an
output before failing, since distinct operations are required (i) for a replica to
perform an output and (ii) for one replica to communicate with another.*
Consequently, there is no way for a state machine replica to know if another
replica has produced a given output, and our fault-tolerant computing system
may repeat some outputs issued prior to a failure. (Section 2.3 details when
outputs will be repeated.) The environment must be able to tolerate this
behavior.

Our state machine outputs are I/0 operation requests. Possible repetition
of outputs is the price we pay for not changing the hardware interface
between processors and I1/0 devices. Any hardware mechanism (e.g., a voter)
for combining 1/0 operation requests from multiple replicas would change
the interface between the processor and 1/0 devices (as well as itself being a
single point of failure).

“The argument is as follows. In a protocol where the send to the backup replica occurs after the
output is performed, the primary replica’s failure after the output, but before the communication,
would cause the backup to conclude (erroneously) that the output was not performed; in a
protocol where the notification is sent before the output is performed, the primary’s failure after
the send, but before the output, would cause the backup to conclude (erroneously) that the
output occurred.
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The mechanism we use to “combine” outputs produced by state machine
replicas is quite simple: only outputs from the primary are passed to the
environment. This means that I/0 instructions executed by a backup are
absorbed by the backup’s hypervisor. That is, no I/0 instruction at the
backup actually results in an I1/0 operation being requested, although the
hypervisor at the backup simulates making the request. If the primary fails,
then the backup becomes the primary (see P6) and 1/0 instructions executed
by the backup virtual machine will cause I1/0 operations to be requested.

2.3 Interaction with the Environment: State Machine Inputs

Use of a single state machine replica to resolve all nondeterministic choices
has subtle ramifications, because future nondeterministic choices might be
constrained by past choices. For example, clocks are monotonic. So, reading a
clock—a nondeterministic choice—must return a value that is constrained to
be larger than every past value returned. As another example, having deliv-
ered an /0 interrupt for an I/0 instruction might preclude or constrain
subsequent delivery of other interrupts for that request.

When a single replica (i.e., the primary) makes all of the nondeterministic
choices, it is not difficult to preserve arbitrary constraints on these choices.
But if this replica fails, and another replica (i.e., the backup) takes over,
sufficient information must be available so that subsequent nondeterministic
choices remain consistent with those made in the past. We identified two sets
of constraints for the state machines of our system. One concerned clocks, and
the other concerned 1/0 interrupt delivery.

Clocks on different processors run at slightly different rates. This means
that the real-time clock on the backup is not necessarily synchronized with
the one at the primary. They must be. Otherwise, switching from the primary’s
clock to the backup’s may violate programmers’ expectations that (i) real time
increases and (i1) that the interval timer, which is driven off the real-time
clock, decreases at the same rate as the real-time clock.

We wanted to avoid using a standard clock synchronization protocol be-
cause of the complexity and expense. For our purposes, it suffices that the
value of the primary’s time-of-day clock be sent to the backup at the end of
each epoch. This information is included in the message sent in P2 by the
primary’s hypervisor to the backup’s hypervisor. The information allows a
newly promoted primary to ensure that any clock values returned or interval
timer interrupts scheduled are consistent with prior execution by the now-
failed primary. Two actions by the hypervisor are required. At the start of
each epoch, the backup’s hypervisor loads a corrected time-of-day value into
the time-of-day clock. Second, the backup’s hypervisor, if necessary, delays
the next interval timer interrupt so that it is delivered at a time consistent
with the corrected time-of-day clock.

I1/0 interrupt delivery is the other nondeterministic choice made by the
primary where past choices constrain future choices. The sequence of inter-
rupts delivered by a virtual machine must be one that could be delivered by a
fault-free processor. We saw at the end of Section 2.1 that a failure may
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prevent an interrupt that was delivered by the primary’s hypervisor from
reaching the backup’s hypervisor. This cannot be avoided.

Our solution was to define a set of constraints that could be satisfied by the
sequence of 1/0 interrupts a processor delivers, even when some interrupts
delivered at the primary are not forwarded to the backup. That is, we defined
what the operating system’s I1/0 device drivers must assume about the
behavior of I/0 devices.

I / O Model Assumptions:

I01: If an I1/0 instruction is executed, and the requested I /0 operation is
performed, then a corresponding completion interrupt is delivered by the
processor issuing that I/0 instruction unless that processor has since
failed. If the issuing processor fails before delivering the completion inter-
rupt, then the 1 /0 device continues as if the interrupt had been delivered.

102: In the course of processing an I/0 operation, an I /0 device may cause
an uncertain interrupt to be delivered by the processor issuing the corre-
sponding I/0 instruction. An uncertain interrupt signifies that the I1/0
operation has been terminated and is delivered in lieu of a completion
interrupt. The instruction may have been in progress, may have been
performed, or may not have been started.

For disks and networks, a device driver will reissue its last I /O instruction
upon receiving an uncertain interrupt. This works because the state of a disk
is insensitive to repetitions of the last I/0 operation, and network protocols
themselves send and ignore duplicate messages. A device driver for a tape
drive, upon receiving an uncertain interrupt, might rewind the tape, reread
it, and repeat the last instruction if necessary. So, although the device is not
insensitive to repetitions of the last I /0O operation, the driver can interact
with the device to determine whether the last I/0O operation executed suc-
cessfully. Not all I/O devices, however, are insensitive to repetitions and /or
testable in the sense we require. Such devices cannot be used with our
scheme. Fortunately, they are not very common.

With the 1/0 Model Assumptions, a backup hypervisor can tolerate not
receiving interrupts buffered by the primary hypervisor. A backup promoted
to primary simply delivers uncertain interrupts for outstanding 1/0 opera-
tions:

P7: The backup’s hypervisor generates an uncertain interrupt for every 1/0
operation that is outstanding when the backup virtual machine finishes a
failover epoch (i.e., just before the backup is promoted to primary).

The effect of P7 is to notify the state machine at the backup of the primary’s
failure, because the uncertain interrupt is a state machine command. Each
such command is processed by I/0 device drivers that are awaiting inter-
rupts. Implementing P7 requires the hypervisor to keep track of outstanding
1/0 operations. Thus, this provides a second reason for the hypervisor to
receive control whenever an I /0 instruction is executed: not only must some
1/0 operation requests be suppressed by the hypervisor (i.e., those at the
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backup) but all I/O operation requests must be noted so that uncertain
interrupts can be generated, if appropriate, at the end of a failover epoch.

An alternative design would be to delete P7 and 102, modify P6 so that the
backup is promoted one epoch earlier, and have the backup’s hypervisor
repeat any I1/0 operation requests that are outstanding when the backup
starts the epoch in which the primary failed. Not only does the hypervisor
repeat I /0 operation requests, but the backup virtual machine would repeat
I/0 instructions executed by the primary during the epoch in which the
primary fails. Clearly, I/0 devices must be insensitive to all this repetition.
Since some I/0O devices are testable but not insensitive to repetition, this
alternative design supports simpler I/0 Model Assumptions at a cost of
handling a slightly smaller class of I /O devices.

3. A PROTOTYPE SYSTEM

In order to evaluate the performance implications of hypervisor-based fault
tolerance, we constructed a prototype. This involved implementing a hyper-
visor that can execute a single HP-UX (HP’s UNIX system) virtual machine
and then augmenting that hypervisor with the protocols of Section 2. Our
prototype consists of two HP-9000/720 PA-RISC processors connected by
both a SCSI bus and an Ethernet. We chose these processors because they
have a recovery register. A disk connected to the SCSI bus serves as a
representative I /O device; a remote console is attached to the Ethernet and
is available for control and debugging of the system. See Figure 1.

3.1 The Hypervisor

A hypervisor must not only implement virtual machines whose instruction-set
architecture is indistinguishable from the bare hardware, but it must do so
efficiently. A virtual machine should execute instructions at close to the speed
of the hardware. Typically, efficiency is achieved by taking advantage of a
dual-mode processor architecture, whereby running in supervisor mode al-
lows both privileged and nonprivileged instructions to be executed, but
running in user mode allows only nonprivileged instructions to be executed.
The hypervisor executes in supervisor mode and receives control on any
incoming interrupt or trap. All other software, including the operating system
kernel of the virtual machine, executes in user mode. Whenever the virtual
machine is in a virtual supervisor mode and attempts to execute a privileged
instruction, a privilege trap occurs, and the hypervisor simulates that in-
struction.

Implementation of a hypervisor for all of HP’s PA-RISC architecture is not
completely straightforward, however. Two aspects of the instruction-set ar-
chitecture prevent efficient virtualization: the memory architecture and the
processor’s privilege levels. We avoided these difficulties because we con-
structed a hypervisor that supports only a single instance of a virtual
machine that executes HP-UX. It does not virtualize all of the PA-RISC
architecture and cannot support multiple virtual machines. Our hypervisor is
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Fig. 1. The prototype.

approximately 24K lines of code (of which 5K are assembly language, and the
rest are C).

Memory Architecture. On HP’s PA-RISC architecture, address translation
uses a set of space registers. Instructions that read the registers can be
nonprivileged, and a subset of the space registers may even be written to
using nonprivileged instructions. Because the hypervisor cannot intercept all
accesses to space registers, supporting multiple virtual machines is impos-
sible. This is what led us to implement a hypervisor that supports only a
single virtual machine.

We include the hypervisor in the address space of the virtual machine’s
kernel; the hypervisor appears to be a device driver to the kernel. Because
there is only a single virtual machine, the hypervisor need not be involved in
storage management and changes to the space registers. The only exception
is reads and writes to access rights for memory-mapped [ /0 pages, which the
hypervisor must still control. This control is obtained by the hypervisor
intercepting and changing the access rights for these pages as they are
inserted into the TLB.

Processor Privilege Levels. HP’s PA-RISC instruction-set architecture de-
fines four privilege levels. Privilege level O is equivalent to the supervisor
mode described above; levels 1 through 3 differentiate levels of access control
and do not permit execution of privileged instructions.

The probe, gate, and branch-and-link instructions reveal the current privi-
lege level of the processor. Execution of a branch-and-link instruction, for
example, causes the current privilege level to be stored in the low-order bits
of the return address. The presence of the hypervisor then becomes visible to
programs.

We addressed this problem by analyzing the use of privilege levels and the
probe, gate, and branch-and-link instructions by HP-UX. On a bare machine,
the HP-UX kernel executes at privilege level 0, and all other HP-UX software
executes at privilege level 3. Privilege levels 1 and 2 are not used by HP-UX.
In our prototype, the hypervisor executes at privilege level 0; virtual privilege

ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.



94 . T. C. Bressoud and F. B. Schneider

level 0 is executed at real privilege level 1; and virtual privilege level 3 is
executed at real privilege level 3. This mapping of virtual privilege levels to
real privilege levels works only because HP-UX does not use all of the
privilege levels.

To deal with the return addresses from branch-and-link instructions, we
checked all uses of this instruction by HP-UX to see if the low-order bits of a
return address were actually used. In the assembly language portion of the
HP-UX kernel, we found a single instance during the boot sequence where
the branch-and-link instruction was being used as a load-position-indepen-
dent way of determining the current physical address. This code assumes
that the low-order bits were 0 (supervisor mode), since this code always runs
in supervisor mode. A solution (hack) was to modify this code fragment and
mask out the privilege bits of the return address. For the rest of HP-UX,
which is written in C and other high-level languages, we observed that the
procedure-linkage routine generated by the high-level language compilers
was not sensitive to the execution-mode bits in the return address.

3.2 Replica Coordination in the Hypervisor

To augment our hypervisor with the replica-coordination protocols, we inves-
tigated whether the various assumptions given in Section 2 could be satisfied.

The 1/0 Accessibility Assumption is easy to satisfy because multiple hosts
may reside on the same SCSI bus. Once bus termination considerations are
resolved, the primary and backup machines can be chained together on a
single SCSI bus, allowing both to access the disk. This is what we do.

We (as well as a number of HP engineers) were surprised to find that
ordinary instructions are not necessarily deterministic on the HP 9000,/720
processor. In the HP PA-RISC architecture, TLB misses are handled by
software. When the translation for a referenced location is not present in the
TLB, a TLB miss trap occurs. If the reference is for a page already in
memory, then the required information is read from the page table, and the
entry is inserted into the TLB (by software). If, on the other hand, the
reference is for a page that is not in memory, then the page must be retrieved
from secondary storage; the TLB is updated (by software) once the transfer is
complete.

The TLB replacement policy on our HP 9000/720 processors was non-
deterministic. An identical series of location references and TLB insert
operations at the processors running the primary and backup virtual ma-
chines could lead to different TLB contents. Since TLB miss traps are
handled by software, differences in TLB contents become visible when a TLB
miss trap occurs at one of the virtual machines and not at the other. In
particular, the number of instructions executed by the primary and backup
virtual machines will differ.

Our solution to this problem was to have the hypervisor take over some of
the TLB management. The hypervisor intercepts TLB miss traps, performs
the page table search, and if the page is already in memory, does the TLB
insert operation. Only for pages that are not already in memory does the
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virtual-machine software receive a TLB miss trap. Thus, it appears to the
virtual machine as if the hardware were responsible for loading TLB entries
for pages that are in memory.

The Environment Instruction Assumption instantiated for the HP 9000 /720
concerns instructions that (i) read the time-of-day clock, (ii) read data from
1/0 devices, and (iii) read from the registers of the SCSI 1/0 controller. Case
(1) is dealt with because the instruction to read the time-of-day clock causes a
trap to the hypervisor. As discussed above, case (ii) is dealt with by delivering
to the backup copies of the interrupts delivered to the primary. For case (iii),
we employ the virtual memory of HP PA-RISC processors, because the
registers of the SCSI I/0 controller are memory mapped. SCSI 1/0 con-
troller registers are accessed through ordinary load and store instructions.
Our hypervisor alters the access protection for the memory pages associated
with these SCSI I/0 controller registers so that a load or store attempted by
the virtual machine causes an access trap to occur. The access trap transfers
control to the hypervisor.

The Instruction Stream Interrupt Assumption is handled by using the
recovery counter of the HP PA-RISC.

Our prototype implements two optimizations to the protocol of Section 2.
First, P1 is modified so that interrupts are forwarded to the backup immedi-
ately rather than waiting until each epoch ends at the primary. This modifi-
cation reduces the communications delay incurred at epoch boundary process-
ing, since some communication is now overlapped with execution of the
primary virtual machine. The impact of the modification depends on the
amount of information that must be forwarded, the communications channel
bandwidth, and the cost of sending a message. Interrupts from read 1/0
operations may be accompanied by the data read, so we believed the amount
of data sufficient to warrant the additional complication to the protocol.

Second, PO has been modified so that the primary does not immediately
await an acknowledgment after forwarding to the backup the value produced
by executing an environment instruction. We require only that the acknowl-
edgment be received before the primary virtual machine requests an 1/0
operation, since I /O operations are the only way the outcome of the environ-
ment instruction could be revealed to the environment. Even if the primary
fails after executing the environment instruction, and the message to the
backup conveying the outcome of that instruction is lost, provided no 1/0
operation request has been made by the primary, subsequent actions by the
backup virtual machine—whatever they may be—will be consistent with
what the environment could observe for a single nonfaulty processor.

3.3 Implementing the 1/ O Model

The interface provided by the SCSI I/0 controller differs from that implied
by 1/0 Model Assumptions 101 and 102. The SCSI controller executes I/0
programs, which reside in memory. Execution of an 1/0 program, usually
initiated by a device driver, is caused by loading the address of that program
into one of the 1 /0 controller registers. The I /O program instructions cause
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changes to the lines of SCSI bus, leading to data transfers to or from the I/0
devices connected to the bus. Each I/0 program—not each 1 /0 instruction—
terminates by causing an interrupt.

Because each I/0 program terminates with an interrupt, I/0 programs
correspond to the I/0 instructions of I01. The CHECK_CONDITION inter-
rupt status of the SCSI 1/0 controller has the same meaning as the uncer-
tain interrupt of I02. Thus, P7 can deliver a CHECK_CONDITION interrupt
status for each outstanding I/0 operation request, and the HP-UX SCSI disk
driver will correctly handle these “uncertain interrupts.”

However, the SCSI bus protocol allows a controller to disconnect itself from
the bus while an I/0 device is processing certain 1/0 instructions. A
controller in this state never produces a CHECK_CONDITION interrupt, so
there are times when the hypervisor had better not present such an interrupt
to the driver. This restriction on presenting CHECK_CONDITION interrupts
would seem to prevent P7 from being implemented. However, the problem is
easily solved by implementing in the hypervisor a coarse simulation of the
SCSI controller. Such a simulator is feasible because the hypervisor receives
control whenever a load or store to a SCSI I/0O controller register is at-
tempted. The simulator in the backup hypervisor accepts 1/0 program
execution requests and delays delivering the CHECK_CONDITION until the
SCSI 1/0 controller is in a state where delivery is feasible. During a failover,
the simulator also executes the necessary I/0 program to place the SCSI
controller in the state that it should be (given previous activity by the
primary).

4. PERFORMANCE OF THE PROTOTYPE

Performance measurements of our prototype give insight into the practicality
of the protocols. We also formulated (and validated) mathematical models for
hypervisor-based fault tolerance, to better understand the effects of various
system parameters.

Normalized performance was identified as the figure of merit. A workload
that requires N seconds on bare hardware has a normalized performance of
N'/N if that workload requires N' seconds when executed by a primary
virtual machine that communicates with a backup virtual machine, as imple-
mented by our hypervisor. Thus, a normalized performance of 1.25 for a given
workload indicates that, under the prototype, 25% is added to the completion
time. We desire a normalized performance that is as small as possible; a
normalized performance of 1 is the best we might expect. Note that normal-
ized performance does not reflect the use of two processors to accomplish the
work of one, albeit with a degree of fault tolerance.

Quantifying the effect of epoch length on normalized performance was our
paramount concern. A second concern was interrupt delay. With short epochs,
interrupts are not significantly delayed by hypervisor buffering, but the
number of epochs for a given task—and the associated overhead—is in-
creased. With long epochs, fewer epochs happen, but hypervisor delays for
interrupt delivery may become significant.
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4.1 CPU-Intensive Workload

Our first investigations concerned a CPU-intensive workload. A high-priority
process executed 1 million iterations of the Dhrystone 2.1 benchmark. Each
experiment was repeated 20 times.® Epoch boundary processing (i.e., rule P2)
was measured to consume an average of approximately 442 usec. on an HP
9000 /720 processor,® as follows.

25usec. hypervisor entry code
42 usec. Ethernet controller setup

141 usec. transmission time for end of epoch message and backup’s ac-
knowledgment

220pusec. await backup’s receipt of end of epoch message and sending
acknowledgment

14pusec. hypervisor exit code

Our Ethernet controller-setup and transmission measurements are consis-
tent with the experimental data reported in Thekkath and Levy [1993].

We also measured that an average of 15usec.—the time required to
execute approximately 750 instructions—is required for the hypervisor to
simulate each privileged instruction, broken down as follows.

8usec. for hypervisor entry /exit
7usec. for instruction-specific simulation

Thus, unless epochs are extremely long and unless there are many simulated
instructions, epoch boundary processing is the dominant cost. In particular,
for epoch length EL instructions, where s is the fraction of virtual-machine
instructions that must be simulated by the hypervisor, the worst-case delay
for an interrupt is given in usec. by the sum of the time for executing the EL
instructions, the time for the hypervisor to simulate the s EL instructions,
and the epoch boundary processing time:

0.02 EL + 15s EL + 442

Typically s will be less than 1%, and therefore with epochs comprising 10K
instructions, an interrupt might be delayed as long as (approximately)
2msec. (Notice that this delay is being dominated by the time devoted to
simulation of instructions.) A 2msec. delay would be significant for a network
adapter but not significant for a disk.

By increasing the epoch length, the total time devoted to epoch boundary
processing for a given benchmark is reduced. The normalized performance

5The coefficient of variation for the parameters for this and the other experiments we report was
sufficiently low for us to have confidence in the validity of using their averages. See Bressoud
[1996] for details.

5The HP 9000 /720 is approximately a 50MIPS processor, so a typical instruction should execute
in 0.02 microseconds.
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NP.(EL) for the CPU-intensive workload as a function of epoch length EL
can be approximated by the following:

1 \%4
NPC(EL) 1+ ﬁ(nsimhsim + _E—Zhepoch + Cother(EL))

where

RT: real time required to execute workload on bare hardware (8.8 sec.)

n,;,: number of instructions simulated by hypervisor (1.08 X 10°% or 0.025%
of the total)

h,m: average time for hypervisor to simulate an instruction (15.12 usec.)

VI: number of virtual-machine instructions executed for workload
(4.2 x 10%)

hepoc: average epoch boundary processing time (442 usec.)

C,n.r: delays caused by flow control for interrupt-forwarding communication

between primary and backup hypervisors—needed because the backup
has a limited capacity for buffering DMA inputs that accompany an
interrupt (41msec. was measured)

A graph of NP.(EL) for epoch length EL between 1K and 32K instructions
appears as Figure 2. Also indicated on that graph are measurements we
made of our prototype for epoch lengths 1K, 2K, 4K, and 8K. (Qur prototype
does not support longer epochs due to limited buffer space in the backup for
information sent by the primary. In retrospect, we would have been better off
building a prototype that did permit longer epochs.) The measurements agree
with what the equation predicts, validating NP.(EL) for predicting perfor-
mance of this workload.

The graph of Figure 2 shows that normalized performance improves as
epoch length increases. When there are 32K instructions in an epoch, a
normalized performance of 1.84 is predicted. However, long epochs cause
delays in interrupt delivery. There are no I/0 operations in our CPU-inten-
sive benchmark, so delaying I /O interrupts is not a concern. But HP-UX does
require that epoch lengths not exceed 385,000 instructions (10msec.), because
of the way the clock is maintained by the kernel. With this CPU-intensive
benchmark and epoch lengths of 385,000 instructions, our model predicts a
normalized performance of 1.24.” This performance would be quite accept-
able, especially since the hypervisor's simulation of instructions accounts for
0.18 of the 0.24 overhead. For long epochs, then, we predict that our replica-
coordination scheme would be responsible for adding only 6% overhead
beyond that incurred to simulate instructions.

4.2 Input/Output Workloads

We would expect a workload in which I/0 operations occur to perform
differently than the above CPU-intensive workload. First, requesting an 1/0

"Anecdotal evidence (private communication, R. Coweles, 1995) for a mature VM /370 installa-
tion places normalized performance at around 1.40. The significantly higher cost for VM /370 is
undoubtedly due to supporting multiple virtual machines as well as differences in the workload.
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Fig. 2. CPU-intensive workload.

operation involves a significantly higher proportion of instructions that must
be simulated by the hypervisor. Second, there is the added cost for transfer-
ring the result of a disk read from the primary’s hypervisor to the backup’s
hypervisor. The primary virtual machine may not proceed until this data has
been received by the backup’s hypervisor (see rule P2 of the protocol).

When analyzing an I/0-intensive workload involving a disk, care was
taken to ensure that I/0 operation requests actually cause 1/0 activity
rather than being satisfied by a buffer pool maintained by the operating
system. For reads, we must also be careful that performance measurements
are unaffected by disk block prefetches; for writes, we must prevent overlap-
ping the data transfer with subsequent computation. Only then is the result a
benchmark that measures the worst-case impact of our protocols. Thus,
operating systems that make effective use of buffer pools or 1/0 opera-
tion pipelining should see better performance than indicated by our
measurements,

This leads to the following I/0 benchmarks. A large file is preallocated on
the disk. Then, for measuring the performance of reads, the benchmark
randomly selects a disk block, issues a read, and awaits the data. This is
iterated 2048 times. To set-up each read, approximately 4.25% of the exe-
cuted instructions were privileged and had to be simulated by the hypervisor.
The benchmark for writes is analagous—a disk block is randomly selected; a
write is issued; and then the write completion is awaited. Here, 5% of the
instructions for set-up were privileged and had to be simulated by the
hypervisor.

We ran experiments in which the write version of the I /O benchmark was
executed. The normalized performance with 4K epochs was found to be 1.67.
This normalized performance includes the impact of the hypervisor on the
block selection calculation and memory-mapped 1/0 loads and stores to
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execute the I/0 instruction to cause a write operation. With 5% hypervisor-
simulated instructions and each such simulation taking an average of 750
instructions, the hypervisor instruction simulation costs alone would suggest
a normalized performance of 37. That we measured only 1.67 suggests that
the workload was dominated by time spent waiting for the disk. Therefore,
we also measured the disk write times. When the benchmark is executed on
bare hardware, a disk write takes an average of 26msec. to complete; when
the hypervisor and replica-coordination protocols are present, a disk write
takes an average of 27.8msec. Thus, disk write performance does not really
suffer when epochs are length 4K. However, as we shall see, with signifi-
cantly larger epochs, interrupt delivery is delayed, and disk write perfor-
mance can suffer.

To measure the performance of disk reads, the read version of our 1/0
benchmark was used. The benchmark is not completely successful in select-
ing disk blocks not in the buffer pool—of the 2048 read requests issued, on
average only 1729 caused actual disk reads. We computed a normalized
performance for the experiments (with 4K epochs) of 2.03. Because processing
a read request requires the primary’s hypervisor to forward a copy of the data
read to the backup, disk reads are expected to take significantly longer with
our replica-coordination protocols in place. When the benchmark is executed
on bare hardware, an 8K disk block read takes an average of 24.2msec. to
complete; when the hypervisor and replica-coordination protocols are present,
a disk read takes an average of 33.4msec. A 10Mbps Ethernet is used in
transferring the disk block from the primary to the backup; this requires 9
messages for the data and 1 message for an acknowledgment or approxi-
mately 6.4msec. The remaining 2.8msec, then, is overhead.

Normalized performance NP,,(EL) for the I/0 benchmark can be approxi-
mated by:

n;o(cpu( EL) + xfer;o + delay;( EL))

P,,(EL):

NP,,(EL) RT

where

RT: real time required to execute workload on bare hardware

nio: number of 1/0 operations (2048 for the write benchmark and
1729 for the read benchmark)

cpu(EL): elapsed time required to select a disk block and initiate the

transfer of a disk block when the hypervisor is present, and
EL is the epoch length

xfer;o: elapsed time between initiation of disk I /O and receipt of the
corresponding interrupt (26msec. for the write benchmark
and 24.2msec. for the read benchmark)

delay;o(EL): elapsed time between the completion interrupt and its deliv-
ery to the virtual machine when the epoch length is EL
A graph of NP,,(EL) for the write and read benchmarks with epoch length
EL between 1K and 32K instructions appears as Figure 3. Measurements for
ACM Transactions on Computer Systems, Vol. 14, No. 1, February 1996.
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Fig. 3. Input/output options.

our prototype when executed with epoch lengths 1K, 2K, 4K, and 8K are also
marked on the graph. The measurements are each within 1.9% of what is
predicted.

As with the CPU-intensive workload, longer epochs lead to better normal-
ized performance. This is because the cpu( EL) term dominates in our models.
But another trend is also visible. Increases to epoch length EL cause
delay;,( EL) to increase, because interrupts from the disk are buffered for a
longer period by the hypervisor. This trend explains the slight upward drift of
normalized performance for larger epoch lengths. In a benchmark where
more computation is done before each 1/0 operation, the dominance of the
cpu( EL) term would ameliorate the normalized performance. In the limit, as
epoch length increases, normalized performance for the 1 /O workload experi-
ments would be worse than for the CPU-intensive workload, because of the
high percentage of hypervisor-simulated instructions for doing I/0.

4.3 Faster Replica Coordination

The predominant overhead for the replica-coordination protocols comes from
rule P2, where the primary’s hypervisor must await acknowledgments for all
messages previously sent to the backup’s hypervisor. This suggests that
speeding-up the communication between the primary and backup processors
might improve performance.

We simulated a faster network without changing the per-message execu-
tion overhead. For our CPU-intensive workload, there is not a big improve-
ment, since most of the time is in that overhead. See Figure 4, which was
obtained by scaling the 141usec. epoch boundary processing delay to reflect
the use of an ATM link instead of an Ethernet. We would expect a larger
improvement for our read benchmark and a still-larger improvement if we
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also improved the per-message overhead by optimizing the routines for 1/0
controller set-up time and the software driver execution.

A second improvement results from appreciating that it is not strictly
necessary for the primary’s hypervisor to await the acknowledgment we are
requiring in P2. The argument is the same as used above for awaiting
acknowledgments in PO. If the delivery of an interrupt Int is not revealed to
the environment and if the primary fails, then subsequent actions by the
backup virtual machine will be consistent with what could be observed by the
environment were there a single nonfaulty processor (even if that interrupt is
not forwarded to the backup). Thus, it suffices that the acknowledgments
formerly awaited in P2 be received prior to the next I/0 operation request by
the primary virtual machine, since such an operation is the only way in
which the receipt of that interrupt is revealed to the environment.

The modifications to the protocol of Section 2 are straightforward. First, in
P2, the primary’s hypervisor need no longer await acknowledgments for
interrupts it forwarded to the backup’s hypervisor. Second, in order to initiate
an I/0 operation, the primary’s hypervisor is required to have received
acknowledgments for all interrupts it has forwarded to the backup’s hyper-
visor prior to the start of the current epoch.

We performed these modifications to the prototype and reran our experi-
ments for the CPU-intensive workload of Section 4.1 and the two input/out-
put workloads of Section 4.2. The results are given in Table I. The column
labeled “Old” refers to the original protocol, and “New” refers to the modified
protocol. The maximum epoch length reported is 8K instructions, because
that is the longest epoch currently allowed by our prototype.

As expected, normalized performance improves significantly when acknowl-
edgments need not be awaited in P2. The effect is most pronounced in the
CPU-intensive workload, because its normalized performance is most affected
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Table I. Normalized Performance of Original and Revised Protocol

Workload
“CPU Intense Write Intense ~ Read Intense
Epoch Length Old New Old New Old New
1K 2224 11.67 1.87 1.70 2.32 1.92
2K 11.83 4.49 1.71 1.66 2.10 1.76
4K 6.50 3.21 1.67 1.66 2.03 1.72
8K 3.83 2.20 1.64 1.64 1.98 1.70

Table II. Predicted Normalized Performance and Variable-Length Epochs

Workload Normalized Performance
CPU Intense 1.24
Write Intense 1.57
Read Intense 1.92

by the delay at epoch boundaries. In the I /O-intensive workloads, some of the
delay at an epoch boundary is simply displaced to the I/0 operation in each
iteration of the benchmark.

A final design alternative is to use variable-length epochs. Instead of
terminating each epoch after a fixed number of instructions execute at the
primary, an epoch is terminated only when an interrupt becomes available
for delivery at the primary. Using this scheme with the CPU-intensive
workload would cause epochs to be terminated according to the clock inter-
rupt rate; with the I/0O-intensive workloads, all CPU set-up for a transfer
would occur in a single epoch; and when the completion interrupt for a
transfer arrived, the epoch would immediately terminate, and epoch bound-
ary processing would begin. Table II shows predicted normalized performance
for the three workloads. Details can be found in Bressoud [1996].

5. RELATED WORK

The availability of off-the-shelf microprocessors has allowed fault-tolerant
computing systems to be constructed simply by adding support for replica
coordination to a bus or to systems software. Despite the engineering and
time-to-market costs, manufacturers continue to design and sell processors
that implement replica coordination in hardware. A design from Tandem
[Cutts et al. 1988] and DEC’s VAXft 3000 are examples. See Siewiorek and
Swarz [1992] for a survey of such hardware-implemented fault-tolerant com-
puting systems.

In some systems, like one offered by Stratus, the same inputs are presented
by the bus to the replicas, and the bus is driven by only a single replica (even
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though all replicas generate the same outputs) [Siewiorek and Swarz 1992].
In the pioneering work of Tandem [Bartlett 1981], the applications them-
selves are responsible for ensuring coordination between the processes com-
prising a process-pair, the unit of replication there.

Other systems exploit a bus or broadcast network to implement fault-
tolerant processes on top of an operating system. The work described in Borg
et al. [1983; 1985] and in Powell and Presotto [1983] exemplify this approach.
(See Schneider [1990] for a survey on various incarnations of the state
machine approach in hardware and software for implementing fault-tolerant
systems.) Novell's NetWare [Major et al. 1992; 1994] is the most similar to
our system. Both are structured as state machines, and both employ a
primary backup scheme with failovers. However, in NetWare, a rigid internal
structure is forced on the operating system, including the proscription of
preemption. In our system, we do not impose a structure or decomposition on
operating system internals, but instead introduce a hypervisor. Also, our
system permits preemption. Finally, failovers are not masked from the
environment in NetWare. NetWare expects I/0 that is lost during a failover
to be rerequested.

6. SUMMARY AND OPEN QUESTIONS

The prototype described in this article implements replica coordination above
the hardware but below the operating system by augmenting a hypervisor.
The hypervisor does have a significant performance impact, but, as we have
shown, the additional cost of our replica-coordination protocols is not signifi-
cant provided epochs are long enough. For epochs that are not too long (i.e.,
under 8K instructions) workloads involving 1/0 experienced a factor of
approximately 2 slowdown. Our CPU-intensive workload requires much longer
epochs (e.g., 32K instructions) before a factor of 2 slowdown is achieved. But
longer epochs are not problemmatic for a CPU-intensive workload because
such a workload, by definition, is unaffected by the delayed delivery of I/0
interrupts entailed by having longer epochs. ‘

Without a doubt, much work remains to be done in understanding how
epoch lengths and attendant interrupt delays impact system performance. By
building a prototype and experimenting with it, we hoped to show:

(1) The approach has sufficient potential to justify further implementation
and experimentation.

(2) A recovery register can be quite useful for implementing fault tolerance
and should be contemplated when defining an instruction-set architec-
ture.

We believe that we have succeeded. Work of Elnozahy [1995] (recently
brought to our attention) is now exploring a variety of ways that a recovery
register can be employed in operating system and applications software,
including support for fault tolerance without introducing a hypervisor.
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It is difficult to compare the additional performance costs entailed by our
approach with the savings it brings to hardware and software design costs.
With our approach, a new (faster) processor realization can be exploited
rapidly, since a hypervisor for a given instruction-set architecture should not
require modifications for each realization. And, all operating systems for a
given instruction-set architecture are made to be fault tolerant in a trans-
parent manner without the need to modify each one individually.

Augmenting a hypervisor is not the only way to use our approach and
support replica coordination above the hardware but below system software.
One might modify a microkernel, for example, and realize many of the same
benefits as enjoyed when a hypervisor is augmented. This alternative re-
mains to be investigated. Or, one might employ object-code editing. Note,
however, that our approach only tolerates uncorrelated failstop failures of the
system at or below the replica-coordination level. Programming errors and
hardware design errors usually cause correlated failures, so they are not
addressed. Failures of I /O devices or other hardware external to a CPU are
also not handled by the approach.

Another question we have not dealt with concerns shared memory. One
might imagine virtual processors that communicate using shared memory.
For some memory models, this is not difficult to support, and it too is the
subject of ongoing work.

Some questions remain that could be addressed by modifying our proto-
type. Performance measurements with longer epochs should be attempted,
but this will require changing how information is buffered at the backup. The
protocols for varying-length epochs should also be implemented and mea-
sured. We have not measured the delay that is observed between a primary’s
failure and the takeover by the backup. For our prototype, this failover time
is quite high, but we believe that this is due to the way in which the backup’s
hypervisor resets the SCSI bus when being promoted to the primary.

Finally, we have not considered any of the issues associated with restarting
a failed backup. The problem is to communicate the state of the primary
without significantly delaying its execution. Alse, in some cases it should be
possible to delay or reorder certain outputs, if the environment is insensitive
to this aspect of the state machine’s behavior. While the general problem
seems quite difficult, the problem might be tractable for specific systems.
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