
Blunder Cost in Go and Hex

Henry Brausen, Ryan B. Hayward, Martin Müller, Abdul Qadir, David Spies

Computing Science, University of Alberta
{hbrausen,hayward,mmueller}@ualberta.ca

submitted to Computers and Games 2011

Abstract. In Go and Hex, we examine the effect of a blunder — here, a
random move — at various stages of a game. For each fixed move number,
we run a self-play tournament to determine the expected blunder cost at
that point.

1 Introduction

To blunder — literally, to stumble blindly [9] — is to move stupidly, with appar-
ent ignorance of one’s situation. In the context of games, a blunder is usually
defined as a serious mistake, for example a losing move when a winning move
is available. But a mindless move need not be catastrophic. In the endgame, a
blunder usually leads to a quick loss, but in opening play, a blunder might not
even be noticed. So, what is the average cost of a blunder — namely, a random
move — at various stages of a game?

Games that are interesting to play are typically hard to solve, so usually this
question can be answered only experimentally rather than exactly. In this paper
we present experimental blunder cost data for the Go player Fuego and the Hex
player MoHex.

For a particular move number, blunder cost is a function of both player
strength (the stronger the player, the higher the cost) and position difficulty
(the greater the number of losing moves, the higher the cost). Thus blunder

analysis, in which a player is compared with a blundering version of itself, can
be useful as a diagnostic tool both for players and for games.

2 A simple model of two-player no-draw games

To explain how blunder analysis can be useful, we first outline a simple model
of two-player no-draw games. The model’s parameters are as follows:

– T : maximum number of moves in a game,

– t: moves made so far, in {0,. . . ,T},

– et: computational ease of solving a state after t moves, from 0 (intractable)
to 1 (trivial),

– wt: fraction of available moves that are winning, from -1 (all losing) to 1
(all winning), with wt = −x < 0 indicating that all player moves are losing,
and furthermore that after the best move the opponent will have wt+1 close
to x,

– mt: score of move t, from -1 (weakest) to 1 (strongest),
– rt: rank of move t, from 1 (weakest) to kt (strongest), where kt is the

number of available moves,
– sp: strength of player p, from -1 (anti-perfect, always likely to play the

weakest move) to 0 (uniform random) to 1 (perfect, always likely to play the
strongest move).

We assume that games are non-pathological, in the sense defined by Dana
Nau [18], so that the smaller the search space, the greater the tendency to make a
strong move. Thus et, which approximates the size of the search space, increases
smoothly with t.

With these parameters, a game can be modelled as follows:

– for each move number t, compute mt by sampling from a distribution with
mean sp × et,

– then compute rt from mt,
– then make the move with rank rt,
– then compute wt+1 from wt and rt, say by sampling from a distribution,

with the sampling formula ensuring that the strongest move from a winning
position always leaves the opponent with no winning moves.

So, in this model, what is the expected cost of a blunder? The probability of
making a winning move depends on wt, the fraction of winning moves available,
and sp, the player’s strength. We assume that both players try to win and can
perform some useful computation, and so sp > 0 for both players. A blunder
is a uniform random move: in our model, this corresponds to a move whose
strength is uniformly sampled from the interval [-1, 1]. Since non-blunder moves
are sampled from a distribution D with expected value sp × et, a blunder is
similar to (and, if D is uniform, identical to) a move made by a player whose
strength temporarily drops to 0. Thus the expected cost of a blunder is the
drop in win rate caused by this temporary strength loss. So this form of blunder
analysis gives an indirect measurement of sp×et, namely playing strength times
ease of solving the game at move t.

In this paper, we consider what happens when the “blunder player” makes
exactly one blunder per game. We also considered experiments where the blunder
player makes two consecutive blunders, but this resulted in the blunder player’s
win rate being extremely low and difficult to measure, and so we do not include
any of this data.

3 Blunder Analysis of Fuego

Fuego is the open source Monte Carlo tree search Go program originally devel-
oped by the University of Alberta Computer Go group, led by Martin Müller

and including Markus Enzenberger, Broderick Arneson [16, 8, 15]. In 2009 Fuego
became the first computer Go program to win a 9×9 game without handicap
against a top professional player, 9-dan Chou Chun-Hsun. Fuego has won a
number of computer Go tournaments, including the 2010 UEC Cup [14, 7].

In our experiments, the default player never deliberately blunders. Baseline
data, which shows the respective black (first player) and white (second player)
win rates, is generated from a tournament between two default players. Each
move-k win rate is an average of win rates from a trial between a blunder-player,
who blunders only at that move, and a default player. The blunder-player data
values are drawn as two curves, one for each possible blunder-player color. A
third curve shows the fraction of games still active, namely unfinished, at that
point. Each data value and each baseline value is computed from a 500 game
trial.

Error bars show a binomial proportion confidence interval of 2
√

(p(1−p)/n),
where p is the proportion and n is the number of trials, yielding a confidence
of slightly more than 95%. Each move-k datum is computed only on games still
active at move k, so error bars enlarge as the number of active games decreases.

In these Go experiments, white receives a komi of 7.5 points. Unless otherwise
noted, Fuego runs 10000 MCTS simulations per move, and the resign threshold
is 0.05.

3.1 9×9 Go

Figure 1 shows the effect of Fuego blunders on the 9×9 board. The baselines
show black/white win rates of about 47%/53%, suggesting that on the 9×9
board the komi of 7.5 is in white’s favour in games between programs. The
move 1 (black) blunder-player has a 33% win rate, so the blunder cost of this
move is 47 − 33 = 14%. This win rate indicates that, for roughly 1/3 of the 49
possible 9×9 opening moves, Fuego wins in self-play from that opening. At move
56 the active game rate is below 0.5, so for this move more than half of the 500
trial games finished before the blunder-player had a chance to make its move-56
blunder; as mentioned earlier, each data value is computed only on the games
still active at that the time of the scheduled blunder, so the error bar here is
larger than at moves made when all 500 trial games were active.

In the early game, the 9×9 blunder-player win rate is relatively high, sug-
gesting that Fuego’s play here is relatively weak and/or that the number of
available winning moves is relatively high. By move 11 the blunder cost is about
47 − 18 = 29%, about double the move-1 blunder cost.

3.2 Go on other board sizes

Compare the 9×9 data with the 7×7 data in Figure 2 and the 13×13 data in
Figure 3. For the 7×7 data, the number of simulations per move is the same
but the number of available moves per position is smaller (than for 9×9). Thus
we expect Fuego to be stronger here, and this seems to be the case, as blunder
costs are higher than for 9×9 Go. Fuego may play 7×7 Go close to perfectly, in

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 10 20 30 40 50 60 70 80

bl
un

de
r-

pl
ay

er
 w

in
 r

at
e

blunder move #

Fuego vs. Fuego-blunder (9x9)

black blunder
white blunder
active games

black baseline
white baseline

Fig. 1. Fuego-blunder performance, 1000 sim./move, 9×9 board

which case the move-k blunder-player win rate is close to the move-k available-
winning-move rate.

By contrast, for the 13×13 data, with a larger number of moves per position,
we expect Fuego to be weaker. Again, this appears to be the case, as blunder
costs are lower. The move-1 blunder cost is under 4%, and it is only by about
move 50 that blunder cost is about 25%. For some reason, even though black
and white baseline win rates are within 1% of each other, black blunders are
typically more costly than white blunders. This is a topic for further study.

4 Blunder Analysis of MoHex

Hex is the classic connection game created by Piet Hein in 1942 [12] and John
Nash around 1948 [17]. The players alternate turns, trying to connect their two
sides. Figure 4 shows a game won by black.

Hex is simpler than Go in some aspects: stones never move once played,
checking the winning condition is easy, and the game cannot end in a draw. On
n×n boards the first player has a winning strategy, but no explicit such strategy
is known for any n > 9, and solving arbitrary positions is Pspace-complete. (For
more on Hex, including more on these results, see [6] or [10].) For this reason,
Hex is often used as a test bed for algorithmic development.

MoHex is the open source MCTS Hex program originally developed by the
University of Alberta Computer Hex group, led by Ryan Hayward and including

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 10 20 30 40 50

bl
un

de
r-

pl
ay

er
 w

in
 r

at
e

blunder move #

Fuego vs. Fuego-blunder (7x7)

black blunder
white blunder
active games

black baseline
white baseline

Fig. 2. Fuego-blunder performance, 1000 sim./move, 7×7 board.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 10 20 30 40 50 60 70 80 90 100

bl
un

de
r-

pl
ay

er
 w

in
 r

at
e

blunder move #

Fuego vs. Fuego-blunder (13x13)

black blunder
white blunder
active games

black baseline
white baseline

Fig. 3. Fuego-blunder performance, 1000 sim./move, 13×13 board.

Fig. 4. An empty 3×3 Hex board and a game won by Black.

Broderick Arneson and Philip Henderson [5, 3]. MoHex is built on top of the
Fuego Monte Carlo tree search framework. Its main game-specific ingredients
are a virtual connection1 engine and an inferior cell2 engine [3]. MoHex won
the gold medal for (11×11) Hex at the 2009 and 2010 ICGA Computer Games
Olympiads [1, 2].

The parameters for Hex experiments were in general the same as for the Go
experiments. Unless otherwise noted, MoHex ran 1000 MCTS simulations per
move.

4.1 11×11 Hex

Figure 5 shows the effect of MoHex blunders on the 11×11 board. The baselines
show first player (black) and second player (white) win rates of 62.8% and 37.2%
respectively.3 For some reason the white move-k + 1 blunder cost is for small k
slightly more than the black move-k blunder cost, but becomes less as k increases.
This is a topic for further study.

4.2 7×7 Hex and available-winning-move rate

Although n×n Hex is a first player win, the baseline black win rate here is
only 79%, rather than the 100% achievable by a perfect player. So, with 1000
simulations per move, MoHex is far from perfect, even on this small board.

However, the move-1 blunder win rate is about 57±4%. This is within error of
what is expected from a perfect player, since exactly 27/49≃0.55 of the possible
7×7 opening moves are winning [11], so any errors MoHex is making in these
games are not having much effect.

State-of-the-art Hex solvers can easily solve arbitrary 7×7 positions [13, 4].
So, in our 7×7 Hex experiment, for each position where the blunder player was
about to move, we ran an exact solver to find the number of available winning

1 A virtual connection is a point-to-point 2nd-player connection strategy, i.e. the player
can force the connection even if the opponent moves first.

2 An inferior cell is one that can be pruned in the search for a winning move.
3 This is perhaps partly due to MoHex arbitrarily assigning so-called dead cells (cells

which are not in a minimal winning path-completion for either player) always to the
black player in the inferior cell engine.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

bl
un

de
r-

pl
ay

er
 w

in
 r

at
e

blunder move #

Mohex vs. Mohex-blunder (11x11)

black blunder
white blunder
active games

black baseline
white baseline

Fig. 5. MoHex-blunder performance, 1000 sim./move, 11×11 board.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 5 10 15 20 25 30

bl
un

de
r-

pl
ay

er
 w

in
 r

at
e

blunder move #

Mohex vs. Mohex-blunder (7x7)

black blunder
white blunder
active games

black baseline
white baseline
available wins

Fig. 6. Blunder-MoHex performance, 1000 sim./move, 7×7 board, also showing
available-winning-move rate.

Fig. 7. A 7×7 Hex position with all winning black moves.

moves at that point. For example, Figure 7 shows an 8-stone 7×7 position and
all 21 winning moves. If black blunders in this position, black has a 21/41 chance
of selecting a winning move.

In addition to the usual blunder data, Figure 6 shows the available-winning-
move rates as two curves, one for each color. These curves are difficult to see,
as from move 12 they coincide almost exactly with the respective blunder rates,
suggesting that MoHex is playing most of these positions perfectly.

4.3 9×9 Hex and playing strength

Figures 8 and 9 show data on the same board size with two players of slightly
different strength. We expect that in general the stronger player will have higher
blunder cost, but in fact the opposite seems to occur here. This is a topic for
further study.

5 Conclusions

We have shown that blunder analysis can offer insight into player performance
and game difficulty. Our results with Fuego and MoHex suggest that when the
players are strong and the board size is relatively small, the blunder rate cor-
responds closely with the fraction of available winning moves. We conjecture
that this holds for other games and players. We propose blunder analysis as a
reasonable measure of perfect play in general.

One possible use of blunder analysis is as a tool for aiding in game time
management, i.e. deciding how much processing time to spend on move selection
at various points in a game. We leave this as a topic for further study.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 5 10 15 20 25 30 35 40 45 50

bl
un

de
r-

pl
ay

er
 w

in
 r

at
e

blunder move #

Mohex vs. Mohex-blunder (9x9)

black blunder
white blunder
active games

black baseline
white baseline

Fig. 8. MoHex-blunder performance, 1000 sim./move, 9×9 board.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 5 10 15 20 25 30 35 40 45 50

bl
un

de
r-

pl
ay

er
 w

in
 r

at
e

blunder move #

Mohex vs. Mohex-blunder (9x9) 250 sim./move

black blunder
white blunder
active games

black baseline
white baseline

Fig. 9. MoHex-blunder performance, 250 sim./move, 9×9 board.

Acknowledgements

We thank the referees for their helpful comments. We thank NSERC Discov-
ery (Hayward, Müller), NSERC USRA (Brausen), Prof. Jonathan Schaeffer and
Alberta iCORE (Spies), UofA India Internship (Qadir), and the UofA GAMES
group for their support of this project.

References

1. Arneson, B., Hayward, R.B., Henderson, P.: MoHex Wins Hex Tournament. ICGA
32(2), 114–116 (June 2009)

2. Arneson, B., Hayward, R.B., Henderson, P.: MoHex Wins Hex Tournament. ICGA
33(2), 181–186 (Sept 2010)

3. Arneson, B., Hayward, R.B., Henderson, P.: Monte Carlo Tree Search in Hex.
IEEE Transactions on Computational Intelligence and AI in Games. Special is-
sue on Monte Carlo Techniques and Computer Go 2(4), 251–257 (Dec 2010),
www.cs.ualberta.ca/˜hayward/publications.html

4. Arneson, B., Hayward, R.B., Henderson, P.: Solving Hex: Beyond Humans. In:
van den Herik, H.J., Iida, H., Plaat, A. (eds.) Computers and Games, 7th Inter-
national Conference, CG 2010. Lecture Notes in Computer Science, vol. 6515, pp.
1–10. Springer (2011), www.cs.ualberta.ca/˜hayward/publications.html

5. Arneson, B., Henderson, P., Hayward, R.B.: Benzene (2009–2011),
http://benzene.sourceforge.net/

6. Browne, C.: Connection Games: Variations on a Theme. A.K. Peters, Wellesley,
Massachusetts (2005)

7. University of Electro-Communications, J.: The Fourth Computer Go UEC Cup
(2010), http://jsb.cs.uec.ac.jp/ igo/past/2010/eng/

8. Enzenberger, M., Müller, M., Arneson, B., Segal, R.: Fuego – an Open-Source
Framework for Board Games and Go Engine based on Monte Carlo Tree Search.
IEEE Transactions on Computational Intelligence and AI in Games. Special issue
on Monte Carlo Techniques and Computer Go 2(4), 259–270 (Dec 2010)

9. Harper, D.: Online Etymology Dictionary (2001-2011),
http://www.etymonline.com/

10. Hayward, R., van Rijswijck, J.: Hex and Combinatorics. Discrete Mathematics 306,
2515–2528 (2006)

11. Hayward, R.B., Björnsson, Y., Johanson, M., Kan, M., Po, N., van Rijswijck, J.:
Solving 7 × 7 Hex: Virtual Connections and Game-state Reduction. In: van den
Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games, IFIP In-
ternational Federation for Information Processing, vol. 263, pp. 261–278. Kluwer
Academic Publishers, Boston (2003)

12. Hein, P.: Vil de laere Polygon? Politiken (December 26 1942)
13. Henderson, P., Arneson, B., Hayward, R.B.: Solving 8×8 Hex. In: Proc. IJCAI.

pp. 505–510 (2009)
14. International Computer Games Association: ICGA Tournaments (2011),

http://www.grappa.univ-lille3.fr/icga/
15. Kroeker, K.L.: A New Benchmark for Artificial Intelligence. Communications of

the ACM 54(8), 13–15 (Aug 2011)
16. Müller, M., Enzenberger, M., Arneson, B.: Fuego (2008–2011),

http://fuego.sourceforge.net/

17. Nash, J.: Some games and machines for playing them. Tech. Rep. D-1164, RAND
(February 1952)

18. Nau, D.S.: An investigation of the causes of pathology in games. Artificial Intelli-
gence 19(3), 257–278 (Nov 1982)

