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a b s t r a c t

This paper describes a simple and efficient method for determining the optimal portfolio for a risk
averse investor. The portfolio selection problem is of long standing interest to finance scholars and it
has obvious practical relevance. In a complete market the modern procedure for computing the optimal
portfolio weights is known as the martingale approach. Recently, alternative implementations of the
martingale approach based on Monte Carlo methods have been proposed. These methods use Monte
Carlo simulation to compute stochastic integrals. This paper examines the efficient implementation of
one of these methods due to [Cvitanic, J., Goukasian, L., Zapatero, F. 2003. Monte Carlo computation of
optimal portfolios in completemarkets. J. Econom. Dynam. Control 27, 971–986].We explainwhy a naive
application of the quasi-Monte Carlo method to this problem is often only marginally more efficient
than the classical Monte Carlo method. Using the dimension reduction technique of [Imai, J., Tan, K.S.,
2007. A general dimension reduction method for derivative pricing. J. Comput. Financ. 10 (2), 129–155]
it is possible to significantly reduce the effective dimension of the problem. The paper shows why the
proposed technique leads to a dramatic improvement in efficiency.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The asset allocation decision is of great interest to the finance
discipline. It deals with the optimal portfolio choice of the
individual agent — a problem of theoretical importance in its own
right. Asset allocation choice has always been of practical relevance
to individuals. In recent years, it has assumed even greater
importance because pension plans in many jurisdictions are now
switching fromdefined benefit plans to defined contribution plans.
This switch transfers the investment risk (and in many cases the
asset allocation decision) from the company to the employees.
Investment advisors1 provide asset mix recommendations that
indicate that the proportion of stocks to bonds should decrease as
the investor becomes more risk averse.
Finance theorists have long been interested in providing a

scientific framework for this decision. The earliest paper on
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1 For a discussion of this point, see Brennan and Xia (2000) and Canner et al.
(1997). Bajeux-Besnainou et al. (2001) show that intertemporal hedging and
stochastic interest rates can resolve the Canner, Mankiv and Weil asset allocation
puzzle. However Lioui (2007) shows that the puzzle may still persist.
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portfolio selection is due to Markowitz (1952) who solved the
asset allocation problem in a one period model for an investor
with quadratic utility. One of the main lessons from this work
is that investors should diversify, a lesson that is still sometimes
ignored.2 Also in 1952, Arrow (Arrow, 1952)wrote his foundational
paper on the pricing of contingent claims in a complete market
setting. In the late 1960’s Robert Merton wrote a series3 of
important papers on the consumption investment problem using
the powerful continuous-time framework. Merton assumed the
investor adjusts the asset proportions and the consumption rate
on a continuous basis to maximize expected utility. He formulated
the problem in a dynamic programming framework and used
techniques from optimal stochastic control to derive solutions.
Merton was able to derive explicit solutions in a few cases by
making strong assumptions about the investor’s utility function
and the asset price dynamics. For more general settings it is often
difficult to construct solutions under the dynamic programming
approach especially for high dimensional problems. Although

2 The dangers of the lack of diversification were dramatically illustrated in the
Enron case. Enron was the seventh largest company in the United States prior to its
collapse in December 2001. Many Enron employees had a significant proportion of
their retirement plans invested in Enron’s own stock.
3 See Merton (1969, 1971).
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Brennan et al. (1997) (BLS) solve the HJB equation numerically
using a finite difference approach, their solution is numerically
unstable since the optimal weights bounce between 100% stock
and 100% bonds within a small number of periods.
The so called martingale approach, derived independently by

a number of authors,4 has distinct advantages over the dynamic
programming approach and it is easier to implement. The basic
idea is to first obtain the investor’s optimal wealth using the fact
that in a complete market setting, the investor’s budget constraint
can be transformed into a static budget constraint. The investor’s
optimal final wealth can be viewed as a contingent claim which
can be priced under the equivalent martingale measure. Under the
complete market assumption, this payoff can also be hedged using
the existing traded assets and this replicating portfolio furnishes
the investor’s optimal investment choice. Themartingale approach
requires the solution of a linear partial differential equation, in
contrast to the non-linear partial differential equation associated
with the dynamic programming approach. In a few specialized
cases,5 closed-form solutions can be obtained by making special
assumptions about the asset price dynamics and/or the investor’s
utility specification. Closed-form solutions6 are much prized
because they are usually simpler to work with and serve as a guide
to our intuition.
However for realistic asset price dynamics, closed-form solu-

tions are generally unavailable and numerical methods must be
used to compute the optimal portfolios. Recently three different
approaches – all based onMonte Carlo (MC) simulation –have been
proposed to compute the optimal portfolioweights. Detemple et al.
(2003) (DGR) propose a simulation method that is based on a
particular representation of the optimal portfolio weights as con-
ditional expectations of random variables. This representation is
derived from the Ocone and Karatzas (1991) formula for the
weights under the martingale approach. In this case, the optimal
portfolio weights are expressed in terms of conditional expecta-
tions that involve the optimal wealth and Malliavin derivatives of
the state variables. These Malliavin derivatives capture the impact
of innovations in the underlying drivers of uncertainty (the Brow-
nian motions) on the state variables. The DGR method can handle
realistic problems with complex dynamics for the state variables
and several asset classes.
Cvitanic et al. (2003) (CGZ) noted that the covariation between

the optimal wealth process and the uncertainty shocks provides an
expression for the optimal portfolio weights. This covariation can
be estimated numerically by simulating the explicit expressions
for the optimal wealth process. Under the martingale approach,
the investor’s optimal wealth process can be written directly as
an expectation of a stochastic integral. Hence, as in the DGR
case the CGZ approach involves the numerical simulation of
stochastic integrals. The third simulation based approach is due
to Brandt et al. (2005) who propose an approximate procedure
that uses a series expansion of the value function together with
regressions of conditional expectations on powers of the state
variables. Thismethod is based on combining a number of different
approximations and its implementation and convergence raises
some interesting questions.7
Thus all three numerical methods are based on MC simulation.

MC can accommodate a broad range of models and it can be
used for high-dimensional problems, unlike the partial differential

4 Cox and Huang (1989), Karatzas et al. (1987), Pliska (1986).
5 Brennan and Xia (2000), Kim and Omberg (1996), Liu (2007) and Wachter
(2002) derive closed-form solutions.
6 For a general discussion of the concept of closed-form solution in finance and
some tentative attempts at defining it, see Boyle et al. (2002).
7 See footnote 21 of Detemple et al. (2003).
equation based approaches. In the first two methods, MC is used
as a numerical technique to evaluate high dimensional integrals.
Hence the efficiency of these two methods depends directly on
an accurate evaluation of such integrals. However, MC is often
criticized for its slow convergence. The conventional wisdom is
that standard MC attains a convergence rate of O(N−1/2) for
sample size N and this is the case for many applications. However
Detemple et al. (2005) point out that when the CGZ method is
combined with an Euler discretization scheme the convergence
is only O(N−1/3). The O(N−1/2) convergence rate will only be
obtained if the exact transition densities are known and Euler
discretization can be avoided.
The aimof the present paper is to exploremethods of improving

the efficiency of MC simulation in this context. We investigate the
possibility of using quasi-Monte Carlo (QMC) methods to speed up
the computations and we concentrate on the CGZ method.
Quasi-Monte Carlo (QMC) uses specially selected deterministic

points rather than random points as in standard MC. These points
have the property that they are more uniformly distributed than
the randompoints. Sequenceswith this property are known as low
discrepancy sequences. QMC promises a much higher asymptotic
convergence rate than MC. Early applications of QMC to some
finance problems have reported the advantages of QMC over MC.
See, for example Paskov and Traub (1995) and Joy et al. (1996).
However for some high dimensional problems, the advantages

of QMC are difficult to realize using the standard QMC approach.
This is related to the fact that even though QMC sequences have
good distributional properties, we do not get the benefit of this at
higher dimensions unless we use a very large number of points.
For high dimensional problems, standard QMC may not provide
much improvement over classical MC. This point has been noted
by several authors. See for example Akesson and Lehoczky (2000),
Ninomiya and Tezuka (1996), and Tan and Boyle (2000).
In our application we will be concerned with estimating the

value of stochastic path integrals and we generate the paths
by simulation. If the path has d time steps, we can map the
construction of a sample path into a point in the d-dimensional
unit hypercube. For our applications, we can exploit the good
distributional properties of QMC points in the lower dimensions if
we can transform the problem of path generation so that the shape
of the path is determined in large part by the first few dimensions.
For some simple problems, the Brownian bridge construction
provides an elegantmethod of doing this (see Caflisch et al. (1997)).
The principal component construction proposed by Acworth et al.
(1998) provides another way of enhancing QMC.
More recently Imai and Tan (2007) show that their proposed

linear transformation (LT) leads to dramatic efficiency gains when
it is combined with QMC. The LT construction makes explicit
linkage between the efficiency of QMC and the effective dimension
of the problem of interest. By optimally reducing the effective
dimension, they demonstrate that the superior rate of QMC can
be recovered. Their construction is powerful and general. In the
current paper we use the LT construction to compute the optimal
portfolio weights within the CGZ framework. We show that the
Imai and Tan procedure leads to a significant improvement in
computational efficiency over both MC and standard QMC.
The layout of the rest of the paper is as follows. Section 2

describes the basic problem and the solution procedure of CGZ.
First we describe the martingale approach. Then we discuss the
CGZ solution procedure. We illustrate the procedure in a special
case where there is a closed-form solution. In Section 3, we
explain how to adapt the QMC method to exploit the structure
of a problem. In particular, we provide additional insight on the
relationship between the effective dimension of a problem and
the efficiency of QMC. Then we introduce the LT construction of
Imai and Tan (2007). In Section 4, we discuss a basic example that
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will serve as a prototype andwe also demonstrate how to adapt the
LT construction to solve the optimal portfolio problems. Section 5
provides numerical results. We compare different simulation
methods and show the superiority of the LT method over standard
QMC.Wealso quantify explicitly the extent towhich the LTmethod
reduces the dimensionality of the problem since this is the source
of its computational superiority. Section 6 concludes the paper.

2. The Monte Carlo covariation method

This section describes the Monte Carlo Covariation Method
for optimal portfolio selection. We first describe the basic
optimization problem and the details of the financial market and
investor preferences. Then we discuss the martingale method and
describe the approach proposed by Cvitanic et al. (2003) (CGZ).We
illustrate their method using a simple example where the optimal
solution is known and there is no need for a numerical approach.

2.1. Portfolio selection using the Martingale method

In this subsection we give a brief summary of the martingale
approach to portfolio selection. For more details of this approach
see Cox and Huang (1989). We assume a complete market where
there is no arbitrage. There are m risky assets. The price of asset i
satisfies the following stochastic differential equation

dS it
S it
= µitdt + (σ

i
t)
′dWt , (2.1)

whereW is a vector of m standard Brownian motions and µi and
σ i denote, respectively, the drift and the volatility of the asset price
process. The bank account process Bt follows

dBt = rtBtdt, (2.2)

where rt is the locally riskless interest rate.
The market price of risk, θt , is anm× 1 vector, defined by

θt = (σt)
−1(µt − rt1), (2.3)

where 1 is the unit vector, µt is the m × 1 vector whose i-th
component isµit , and σt is them×mmatrix whose i-th column is
σ it . We assume that θt is continuously differentiable and satisfies
the Novikov condition.
The state price density represents the continuous time general-

ization of Arrow–Debreu prices and it can be defined in terms of θ.
By defining the following process

ξt = ξ0 exp
{
−
1
2

∫ t

0
θ′sθsds−

∫ t

0
θ′sdWs

}
, (2.4)

then the discounted value of ξ , as given by

e−
∫ t
0 rsdsξt ,

is the state price density.
We consider an investor, with initial wealth x0, who wishes to

maximize expected utility by selecting a dynamic portfolio with
positions in the risky assets and the riskless asset. For example,
if the investor were to maximize the expected utility of terminal
wealth, XT , over time horizon T , then the optimal dynamic trading
strategy,π∗t , is the solution to the following optimization problem:

max
π
E [u(XT )|F0] (2.5)

subject to X0 = x0 (2.6)
dXt = [π′tµt + (Xt − π

′
t1)rt ]dt + π

′
tσtdWt (2.7)

Xt ≥ 0, t ∈ [0, T ]. (2.8)
In the above formulation, them×1 vector πt denotes the amounts
invested in the n risky assets at time t and u(·) is the utility
functionwhich is assumed to be strictly increasing, strictly concave
and twice differentiable. The budget constraint (2.6) ensures that
we begin with the initial exogenous level of wealth x0 while the
constraint (2.7) corresponds to the wealth process of the investor
that must be satisfied over time t ∈ [0, T ].
Alternatively, if the investor were to maximize the expected

utility from consumption and ct represents the investor’s con-
sumption at time t , then the problem faced by the investor is
to solve the following optimization problem for the optimal con-
sumption plan c∗t and the optimal investment strategy π

∗
t :

max
π,c
E
[∫ T
0 u(cs)ds

∣∣∣F0] (2.9)

subject to X0 = x0
dXt = [π′tµt + (Xt − π

′
t1)rt − ct ]dt + π

′
tσtdWt

Xt ≥ 0, ct ≥ 0, t ∈ [0, T ].

We now summarize the martingale approach for determining
the optimal portfolio. We only focus on the investment optimiza-
tion problem (2.5) as a similar technique can be applied to the
consumption-investment problem (2.9).
Together with (2.3) and (2.7), the dynamics of Xt can be

rewritten as

dXt = (π′tσtθt + rtXt)dt + π
′

tσtdWt
= (rtXt)dt + π′tσt(dWt + θtdt)

= (rtXt)dt + π′tσtdW
Q
t ,

whereWQ is a vector of standard Brownian motions with respect
to the equivalentmartingalemeasure Q . The BrownianmotionsW
and WQ are related through the Girsanov theorem (see Karatzas
and Shreve (1991)):

WQt = Wt +
∫ t

0
θsds.

The investor’s optimal terminal wealth is the solution to the
optimization problem (2.5) subject to the constraints (2.6)–(2.8).
Because we are assuming a complete market, the optimal terminal
wealth can be regarded as a contingent claimwith payoff at time T
equal to XT . This implies that the investor’s initial wealth and her
final wealth at time T must satisfy

X0 = x0 = EQ
[
e−

∫ T
0 rsdsXT

∣∣∣F0] = E [ξTe− ∫ T0 rsdsXT ∣∣∣F0] . (2.10)

More generally, the wealth process for any time t can be expressed
as

Xt = EQ
[
e−

∫ T
t rsdsXT

∣∣∣Ft] = E[Ht,TXT |Ft ] (2.11)

where

Ht,u = e−
∫ u
t rsds

ξu

ξt
, u > t. (2.12)

The above results imply that the dynamic constraints considered
in our optimization problems can be transformed into equivalent
constraints that are static and hence easier to dealwith. In fact they
can be incorporated directly into the maximization problem and
this leads to a solution for the investor’s optimal wealth in terms of
the state price density and the investor’s utility function. We now
provide a brief summary of the derivation of this result.
Suppose g(·) denotes the inverse of the agent’s marginal utility

function in (2.5); i.e.

u′(g(y)) = y.
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Our assumptions on the utility function imply that g is strictly
decreasing and continuous. For a more general definition of this
inverse function, see Karatzas and Shreve (1998, p. 95). Using
standard optimization techniques, the investor’s optimal terminal
wealth, X∗T , corresponding to problem (2.5) is given by

X∗T = g
(
λe−

∫ T
0 rsdsξT

)
, (2.13)

where λ is a Lagrange multiplier. Since the optimal terminal
wealth X∗T must satisfy (2.10), this provides a way of obtaining the
Lagrange multiplier λ; namely solving the following equation:

x0 = E
[
ξTe−

∫ T
0 rsdsg

(
λe−

∫ T
0 rsdsξT

)∣∣∣F0] . (2.14)

Recall that our objective is to determine the optimal portfolios
π∗t . We now present themethod proposed by Cvitanic et al. (2003),
which is known as the Monte Carlo covariation method. First note
that from the Martingale Representation Theorem,8 the wealth
process (2.11) must satisfy the following diffusion process

dXt = αtdt + ν′tdWt , (2.15)

where αt is the drift and νt is the m-dimensional diffusion
coefficient. It follows from (2.7) that the dynamics for the investor’s
optimal wealth also satisfies

dX∗t = [π
∗
′

t µt + (X
∗

t − π
∗
′

t 1)rt ]dt + π
∗
′

t σtdWt .

Because the last two stochastic differential equations represent the
same process, their diffusion terms must be equal. Hence

ν′t = π
∗
′

t σt ,

which immediately leads to the following formula for π∗t :

π∗t = (σt)
−1νt . (2.16)

This means that if we were able to calculate the vector νt , then
we could obtain the optimal portfolio weights π∗t . Apart from a
few special cases,9 one cannot obtain an explicit expression for νt .
Hence we need to rely on some numerical procedures. CGZ point
out that there are two simulation-based approaches to estimate νt .
As explained by CGZ the i-th component of the vector νt is given

by the following limit:

ν it = lim
1t→0

E

[ (
X∗t+1t − X

∗
t

) (
W it+1t −W

i
t

)
1t

∣∣∣∣∣Ft
]

= lim
1t→0

E

[ (
X∗t+1t − X

∗
t

)
Z it

√
1t

∣∣∣∣∣Ft
]
, (2.17)

where Z it is a standard normal random variable. Furthermore,
combining both (2.11) and (2.13), we have

X∗t+1t = E
[
Ht+1t,TX∗T

∣∣Ft+1t]
= E

[
Ht+1t,Tg

(
λe−

∫ T
0 rsdsξT

)∣∣∣Ft+1t] . (2.18)

The expectations in both (2.17) and (2.18) can be evaluated
using Monte Carlo simulation. However, the former expectation
is conditional on information up to time t while the latter is
conditional on information up to time t + 1t . This implies that
we need to use a two-tier Monte Carlo simulation approach to
estimate both (2.17) and (2.18), as explained by CGZ.

8 See Oksendal (1998).
9 One of these cases is when the investor has power utility and the risky assets
have a multivariate lognormal distribution. We discuss this case below.
The second Monte Carlo based approach is more direct and
we call it the direct method. From the law of iterated conditional
expectations, (2.17) can be expressed as

ν it = lim
1t→0

E

[ (
Ht+1t,TX∗T − X

∗
t

)
Z it

√
1t

∣∣∣∣∣Ft
]
. (2.19)

The direct method allows us to estimate νt directly and is
computationally more efficient than the two-tier10 simulation
procedure. The standard errors of the estimate are easier to
compute if we use the direct method and as we shall explain
later there is an additional computational advantage in using this
approach for the simulation technique considered here. Hence, in
this paper, we use the direct approach to estimate νt .
It is interesting to note the connection between Eq. (2.19) and

Malliavin calculus applications in finance (see Fournié et al. (1999,
2001)). Eq. (2.19) is an approximation to the Malliavin weight
estimator based on the Euler discretization.

2.2. An example with an analytical solution

It is instructive to discuss a simple and familiar example where
there is an analytical solution for νt and π∗t . This provides insight
into the procedure in a simple setting. In addition this closed-
form expression is useful for examining the convergence of the
limit in Eq. (2.17) as 1t becomes small. We assume that the
investor has a power utility function and for simplicity there is
just one risky asset whose return dynamics are given by geometric
Brownianmotion. The risk-free rate is constant and equal to r0. We
assume the investor wishes to solve problem (2.5). In other words,
the investor selects the optimal portfolio that will maximize her
expected utility of wealth at time T , given initial wealth of x0.
The risky asset dynamics are given by

dSt
St
= µdt + σdWt ,

where µ and σ are constants and Wt is a standard Brownian
motion. The investor’s utility function is

u(x) =
xγ

γ
, γ ≤ 1, γ 6= 1.

It is well known that the optimal amount in the risky asset in this
case is a constant proportion of the optimal wealth; i.e.,

π∗t =
µ− r0

σ 2(1− γ )
X∗t , (2.20)

where X∗t is the investor’s optimal wealth at time t . The above
result was first derived by Merton (1971) and the expression

µ− r0
σ 2(1− γ )

is often known as the Merton ratio.
In this particular case, there is an explicit expression for X∗t

because the stochastic integral in (2.11) has a simple closed-form
solution. Thus the complete solution to the problem can be derived
directly using the martingale method. Although this solution is
well known,we present it again here since it serves to illustrate the
martingale approach to the portfolio selection problem. In addition
it shows how the CGZ approach works in a simple setting.

10 As noted the two-tier simulation method is the one recommended by CGZ. The
reasons are described in their paper and derive from the inequality Var(E[Y | X]) <
Var(Y ).
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First note that the market price of risk is constant since

θt =
µ− r0
σ
= θ0.

This implies that the process ξt at time t simplifies to

ξt = e−
1
2
∫ t
0 θ
2
0 ds−

∫ t
0 θ0dWs = e−

1
2 θ
2
0 t−θ0(Wt−W0).

Using the fact that the investor has power utility, the optimal
terminal wealth (2.13) can be expressed as

X∗T = (λe
−
∫ T
0 r0dsξT )

1
γ−1

= λ
1

γ−1 e−
1

γ−1 [
1
2 θ
2
0 T+r0T+θ0(WT−W0)].

Also, it follows from (2.14) that we can obtain an explicit
expression for the Lagrange multiplier λ as

λ
1

γ−1 = X0e
r0ρT−

1
2 θ
2
0 ρT

(
1

γ−1

)
, (2.21)

where ρ = γ /(γ − 1).
Furthermore using (2.11), it is easy to verify that the optimal

wealth at time t can be expressed explicitly as

X∗t = λ
1

γ−1 G(t)e
θ0
1−γ (Wt−W0), (2.22)

where G(t) is a deterministic function of time given by

G(t) = e
1
2 θ
2
0 (ρ

2(T−t)−ρT+t)+r0(−ρT+t). (2.23)

Armed with the explicit expressions, we revisit the CGZ
approach of deriving the optimal portfolio weight. By defining

νt(h) = E

[ (
X∗t+h − X

∗
t

)
(Wt+h −Wt)
h

∣∣∣∣∣Ft
]

for h ≥ 0, then it follows from (2.17) that

νt = lim
h→0

νt(h).

For our example, straightforward calculations show that

νt(h) = X∗t
θ0

1− γ

[
G(t + h)
G(t)

e
θ20 h

2(1−γ )2

]
(2.24)

and taking the limit h→ 0, we obtain

νt = X∗t
θ0

1− γ
.

Hence the optimal investment in the risky asset is

π∗t = σ
−1νt = σ

−1 θ0

1− γ
X∗t =

µ− r0
σ 2(1− γ )

X∗t .

This solution is of course is the Merton ratio we referred to earlier.
We were able to obtain an analytical expression in the present

example because of the specialized assumptions. In more general
cases, we will not be able to obtain an analytical expression for ν
and we will have to rely on numerical methods.

3. Adapting the quasi-Monte Carlo method

In this section we explain the Imai and Tan adaption of the
quasi-Monte Carlomethod. As noted earlier theirmethod has com-
putational advantages over standard QMC in evaluating stochas-
tic integrals. First, we introduce the concept of effective dimension
and discuss the connection between the effective dimension of a
problem and the efficiency of a QMC implementation. Then we de-
scribe the LT method of Imai and Tan and explain the key ideas in
this method.
It is well known that the classical Monte Carlo (MC) method
relies on random sequences and attains a convergence rate of
O(N−1/2) for sample size N for many11 applications. The quasi-
Monte Carlo (QMC) method, on the other hand, achieves a
convergence rate of O(N−1 logd N) in dimension d. While QMC
converges asymptotically at a much faster rate than MC, it is
important to appreciate their relative performance for the sample
sizes that are feasible in practice, especially in high dimensional
applications. It turns out that for large d and for practical
values of N , the factor logd N in the rate of convergence of
QMC is not negligible. The deterioration of QMC with increasing
dimensions is well documented. In the following subsection,
we provide additional insight on the role of dimensions on the
performance of QMC. We distinguish between the effective and
the nominal dimensions, and their impact on QMC. Motivated by
these discussions, Section 3.2 describes a general technique of
recovering the superior rate of convergence of QMC. This is the
linear transformation proposed by Imai and Tan (2007).

3.1. Effective dimension and nominal dimension

We first provide some background on the ANOVA (analysis of
variance) of a function. For a detailed description of the ANOVA
decomposition of a function, see Efron and Stein (1981). The set
A = {1, 2, . . . , d} denotes the coordinate axes of [0, 1)d. Then
for any subset u ⊆ A, we define |u| as its cardinality and A − u
as its complementary set. A generic point of [0, 1)d is written as
x = (x1, . . . , xd)′ and xu denotes the |u|-vector of components xj
for j ∈ u.
Now consider an integrand f (x) where x ∈ [0, 1)d. Under the

(mild) condition that f is a square integrable function, the ANOVA
decomposition expresses the integrand f as a sum of 2d additive
functions as follows:

f (x) =
∑

u⊆{1,2,...,d}

fu(x), (3.1)

where the function fu, which depends only on the components of x
in the set u, is defined recursively by

fu(x) =
∫
[0,1)A−u

f (x)dxA−u −
∑
v u
fv(x), (3.2)

with the usual convention that f∅(x) =
∫
[0,1)d f (x)dx = I(f ). The

ANOVA decomposition is orthogonal in that
∫
fu(x)fv(x)dx = 0,

for u 6= v. Let σ 2(f ) and σ 2u (f ) denote the variance of f and fu,
respectively. Formally, these two quantities are defined as σ 2(f ) =∫
[0,1)d(f (x) − I)

2dx, and σ 2u (f ) =
∫
[0,1)u [fu(x)]

2dx, for |u| > 0,
respectively. Also, σ 2

∅
= 0 and an alternate way of computing

σ 2(f ) is via σ 2(f ) =
∑
|u|>0 σ

2
u (f ). Furthermore, based on the

above variance decomposition we define Du as the total variance
corresponding to the subset u; i.e.,

Du =
∑
v⊆u

σ 2v (f ). (3.3)

In the context of QMC, it is important to distinguish between
the notion of nominal and effective dimensions of a function. When
a function f (x) depends on d variables, it is typically said to have
a nominal dimension d whereas its effective dimension can be
quite small. Motivated by the ANOVA decompositions, Caflisch

11 As mentioned in the introduction to this paper, Detemple et al. (2005) show
that a lower convergence rate will obtain in the CGZ applications if the Euler
approximation is involved. However it is convenient to frame the convergence
discussion in terms of the classical convergence rate.
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et al. (1997) introduced two definitions of effective dimension:
The effective dimension of f , in the superposition sense, is the
smallest integer dS such that

∑
|u|≤dS

σ 2u (f ) ≥ pσ
2(f ). The effective

dimension of f , in the truncation sense, is the smallest integer dT
that satisfies D{1,2,...,dT }(f ) ≥ pσ

2(f ). The critical level p is usually
close to one. The truncation dimension indicates the number of
important variables which essentially capture the given function f .
The superposition dimension measures to what extent the low-
order ANOVA terms dominate the function.
Consider a QMC point set P = {xi}Ni=1, xi ∈ [0, 1)

d is used to
approximate the value of I(f ). Then the error associated with such
a set of point P satisfies the following bound:∣∣∣∣∣ 1N

N∑
i=1

f (xi)− I(f )

∣∣∣∣∣ ≤∑
|u|>0

DN,u(Pu)‖fu‖ (3.4)

where Pu is the projection of the point set P on [0, 1)|u|, DN,u(Pu)
is the discrepancy corresponding to Pu of N points, and ‖fu‖ is the
variation of fu. See Hickernell (1998) for various suitable choices of
discrepancy and variation.
The bound in (3.4) explicitly associates the QMC error with

the uniformity of all the projections Pu as well as all the low-
dimensional structures fu. The significance of this error bound
is that QMC relies on the low discrepancy sequences which are
constructed to have greater uniformity than random sequences.
However, for finite number of points, such ‘‘greater’’ uniformity
is not preserved for all dimensions and for all projections. It is
well known that (see Morokoff and Caflisch (1994)) as dimension
increases, the uniformity of low discrepancy sequences decreases.
Nevertheless, as argued in Wang and Fang (2003) QMC can still
be more effective than MC, particularly on problems with low
truncation dimension. This can be justified by decomposing the
bound (3.4) as∣∣∣∣∣ 1N

N∑
i=1

f (xi)− I(f )

∣∣∣∣∣ ≤ ∑
u⊆{1,...,dT }

DN,u(Pu)‖fu‖

+

∑
u∩(A−{1,...,dT })6=∅

DN,u(Pu)‖fu‖, (3.5)

assuming the truncation dimension of f is dT . Note the role of dT
in the above representation. When dT is small, the discrepancies of
all the low-dimensional projections of low discrepancy point sets
Pu aremuch smaller relative to those of the random point sets. This
implies that the first summation in (3.5) is much smaller for QMC
than for MC. As we further increase the dimension, the uniformity
of the low discrepancy point sets deteriorates, which implies that
for higher values of ‖u‖, DN,u(Pu) of QMC can be larger than MC.
Yet the second summation in (3.5) can be insignificant since the
quantities ‖fu‖ are often small. The overall effect is that for QMC,
if terms on the right-hand side of (3.5) are small the error bound
is low. In this case QMC can be more effective than MC when f has
low truncation dimension.

3.2. The linear transformation (LT) construction

We have just argued there is a strong connection between the
effective dimension and the efficiency of QMC. In particular, as long
as the truncation dimension of a problem is low, we can expect
QMC to outperformMC, even though its nominal dimension can be
very large. This also suggests that if a problem can be transformed
into an equivalent problem with a lower truncation dimension,
then QMC will be more efficient in evaluating the transformed
problem. This is the key idea of the linear transformation (LT)
construction proposed by Imai and Tan (2007). They show
that their method significantly recovers the superior rate of
convergence of QMC, even for very high nominal dimensional
applications. We now provide a brief discussion of the standard
application of QMC and use this to describe the LT construction.
Let Nd(µ,Σ) denote a d-variate normal distribution with mean

vector µ and covariance matrix Σ. Suppose we are interested
in computing E[f (Z)], where f is a differentiable function and
Z ∼ Nd(0, I) with d-dimensional zero vector 0 and d-dimensional
identify matrix I . The procedure for estimating E[f (Z)] using QMC
can be summarized as follows:

Step 1: Generate a point from a d-dimensional low discrepancy
sequence. Let x = (x1, . . . , xd)′ ∈ [0, 1)d be the point
generated.

Step 2: Generate normal vector ε = (ε1, . . . , εd)
′ from x via

the inverse transformation; i.e., εi = Φ−1(xi), i =
1, . . . , d, where Φ(·) is the cumulative standard normal
distribution.

Step 3: Compute f (ε). This is the value of f corresponding to the
simulated normal vector ε.

Step 4: Repeat Steps 1–3 to obtain a large number of realizations
of f and the QMC estimate of the expectation is the
average of these realizations.

The essence of the LT construction is to recognize that for any
d-dimensional orthogonalmatrixA, if ε ∼ Nd(0, I), then z = Aε ∼
Nd(0, I) since A′A = I . This implies that we can produce another
consistent QMC estimate of E[f (Z)] by simulating the realization
in Step 3 using f (Aε), instead of f (ε). The orthogonal matrix A
is non-unique and hence to enhance QMC, A can be carefully
selected so that the truncation dimension of the transformed f (Aε)
is minimized.
Imai and Tan (2007) provide a systematic procedure for

obtaining the matrix A. This entails solving the following
optimization problem:

max
Ak∈Red

(
∂ f (Aε)
∂εk

∣∣∣∣
ε=ε̂k

)2
subject to ‖Ak‖ = 1 and 〈A∗j , Ak〉 = 0, j = 1, . . . , k− 1.

(3.6)

In the above algorithm, Aj denotes the j-th column of A, 〈a, b〉
denotes the inner product between vectors a and b, and ε̂k =
(1, . . . , 1, 0 . . . , 0)′ denotes a d-dimensional vector with k − 1
leading ones.
The above algorithm is carried out iteratively for k =

1, 2, . . . , d. In the k-th optimization step, the objective is to
determine the optimal Ak given the optimal columns A∗j , j =
1, . . . , k − 1 that have already been determined in the previous
iterations. The objective function in the algorithm can be
interpreted as the variance contribution due to the k-th dimension
and hence iteratively maximizing this quantity ensures that the
truncation dimension of f under the prescribed transformation
is minimized. Imai and Tan (2007) refer to this approach as the
linear transformation (LT) construction. The power of the above
procedure lies in its flexibility. It can be applied to an arbitrary
function f (Z). More importantly when the LT construction is
combined with QMC, a significant increase in efficiency of QMC
can be achieved. In the following section, wewill demonstrate how
to apply the LT construction for computing the optimal portfolio
weights.

4. Implementation of the LT construction

In the last section, we described the LT construction which
is a method of increasing the efficiency of QMC. In this section,
we demonstrate how to adapt this algorithm to solve the
optimal portfolio problem. We will use the example considered
in Cvitanic et al. (2003) as the benchmark case. The following
subsection describes the benchmark example and introduces some
additional notation. The remaining two subsections describe how
to implement the LT construction in this case.
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4.1. Description of the Benchmark example

In this subsection, we describe the example studied by Cvitanic
et al. (2003). We assume the economy has only one risky asset
and one riskfree asset. The risky asset follows geometric Brownian
motion with a constant drift µS and a constant volatility σS :

dSt
St
= µSdt + σSdWt . (4.1)

The money market (bank account) account process Bt follows

dBt = rtBtdt, (4.2)

where rt is the stochastic interest rate and has the following
dynamics

drt = µr (rt) dt + σr (rt) dWt . (4.3)

In this example, we set µr (rt) = κr(r̄ − rt) and σr (rt) = σr
√
rt

so that (4.3) becomes the Cox, Ingersoll and Ross (CIR) (Cox et al.,
1985) interest rate model. Similarly, we assume that the market
price of risk θ follows the diffusion process

dθt = µθ (θt) dt + σθ (θt) dWt , (4.4)

where µθ (θt) = κθ (θ̄ − θt) and σθ (θt) = σθ . Hence the market
price of risk follows an Ornstein Uhlenbeck process. Note that
St , rt and θt are all driven by the same Brownian motion. This is
a rather simple example but the method we describe is applicable
to problems involving several Brownian motions.
We assume the investor has the power utility with parameter

γ and wishes to maximize the expected utility of terminal wealth.
This implies that the investor is faced with the optimization
problem as formulated in (2.5).
It is convenient to introduce some new notation. By definingΘt

as

Θt =
1
2

∫ t

0
θ2s ds+

∫ t

0
θsdWt

and Rt as

Rt =
∫ t

0
rsds,

we express the state price density as

ξt = ξ0 exp
(
−
1
2

∫ t

0
θ2s ds−

∫ t

0
θsdWs

)
= e−Θt (4.5)

since ξ0 = 1. Under the additional assumption of power utility, it
is easy to verify that the optimal terminal wealth (2.13) becomes

X∗T = λ
1

γ−1 e−
(RT+ΘT )
γ−1 , (4.6)

while the optimal wealth at time t is given by

X∗t = λ
1

γ−1
1

e−(Θt+Rt )
E
[
e−ρ(ΘT+RT )|Ft

]
. (4.7)

Setting t = 0 in the above equation provides uswith an expression
for the Lagrange multiplier λ:

λ =

{
x0

E
[
e−ρ(RT+ΘT )|F0

]}γ−1 . (4.8)

Substituting the above result into (4.7) leads to

X∗t =
x0

e−(Θt+Rt )
E
[
e−ρ(ΘT+RT )|Ft

]
E
[
e−ρ(ΘT+RT )|F0

] . (4.9)

To conclude this subsection, let us summarize the simulation
procedure for estimating the optimal portfolio π∗t at time t . This
involves the following three steps:
Step 1: Estimate the Lagrange multiplier from (2.14). For our
base case example, we use (4.8).

Step 2: Estimate νt using either the two-tier simulation approach
of (2.17) or the directmethod of (2.19). For our numerical
examples, we use (2.19), togetherwith (4.6) and (4.9) and
the estimated Lagrange multiplier from the first stage.

Step 3: Compute π∗t using (2.16).

4.2. Computation of λ using the LT method

Recall that before deriving the optimal portfolioweight, we first
need to estimate the Lagrange multiplier. This involves estimating
the following expectation (see (4.8))

E
[
e−ρ(RT+ΘT )

∣∣F0] .
Both RT andΘT are stochastic integrals and to numerically evaluate
these integrals, one approach is to generate a large number of
sample paths corresponding to the interest rate and the market
price of risk. We achieve this by discretizing the respective
diffusion processes. For example given the processes (4.3) and (4.4)
with initial values r0 and θ0, and using the Euler discretization, each
sample path of the interest rate and the market price of risk can be
simulated recursively via

rn = rn−1 + µr (rn−1)1t + σr (rn−1)
√
1tzn, (4.10)

θn = θn−1 + µθ (θn−1)1t + σθ (θn−1)
√
1tzn, (4.11)

for n = 1, . . . , d. Here d denotes the number of time steps,
1t = T

d is the size of a time step, and z = (z1, . . . , zd)′ ∼
N(0, I). Note again that both the interest rate and themarket price
of risk are driven by the same random factor. Furthermore the
trajectories of {rn, n = 1, . . . , d} and {θn, n = 1, . . . , d} require d
standardized independently distributed normal samples. For each
simulated sample path, the corresponding realizations of RT and
ΘT are approximated by

RT =
∫ T

0
rsds ≈

d−1∑
n=0

rn1t (4.12)

ΘT =
1
2

∫ T

0
θ2s ds+

∫ T

0
θsdWs

≈

d−1∑
n=0

(
1
2
θ2n1t + θn

√
1tzn+1

)
. (4.13)

We now let Y (z1, . . . , zd) ≡ e−ρ(RT+ΘT ) to emphasize the fact
that the function Y depends explicitly on d normally distributed
samples (z1, . . . , zd). As described in the last section, an efficient
estimator of E[Y ] can be obtained by using the LT method
which generates (z1, . . . , zd) from (ε1, . . . , εd) via an optimal
orthogonal matrix A. In the remaining subsection, we explain how
to implement the LT construction by considering the optimization
algorithm (3.6) with k = 1.
First we need to derive the partial derivative ∂Y

∂εl
, l = 1, . . . , d.

This is given by

∂Y
∂εl
= −ρe−ρ(RT+ΘT )

(
∂RT
∂εl
+
∂ΘT

∂εl

)
. (4.14)

It follows from (4.12) that

∂RT
∂εl
≈

d−1∑
n=0

∂rn
∂εl

1t
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so that for n = 1, . . . , d− 1, ∂rn
∂εl
can be defined recursively as

∂rn
∂εl
=
∂rn−1
∂εl

(
1+

∂µr (rn−1)
∂rn−1

1t +
∂σr (rn−1)
∂rn−1

√
1tzn

)
+ σr (rn−1)

√
1tan,l

=
∂rn−1
∂εl

βr (rn−1, zt)+ σr (rn−1)
√
1tan,l, (4.15)

where ai,j denotes the (i, j) entry of the matrix A and

βr (rn−1, zn) =
(
1+

∂µr (rn−1)
∂rn−1

1t +
∂σr (rn−1)
∂rn−1

√
1tzn

)
.

Note that ∂r0
∂εl
= 0 and ∂zn

∂εl
= an,l for n, l = 1, . . . , d. In our

example with CIR interest rate dynamics, we have ∂µr (rn)
∂rn
= −κr

and ∂σr (rn)
∂rn
= −

1
2σr r

−
1
2

n .
In the same way, it follows from (4.13) that

∂ΘT

∂εl
≈

d−1∑
n=0

{
∂θn

∂εl

(
θn1t +

√
1tzn+1

)
+ θn1tan+1,l

}

=

d−1∑
n=0

{
k1 (θn, zn+1)

∂θn

∂εl
+ k2 (θn) an+1,l

}
(4.16)

where k1 (θn, zn+1) = θn1t +
√
1tzn+1 and k2 (θn) = θn1t .

By setting ε = (0, . . . , 0)′, it is easy to verify that both ∂RT
∂εl
and

∂ΘT
∂εl
are linear functions of ai,l; i = 1, . . . , d. This implies that we

can find a coefficient vector b = (b1, . . . , bd)′ that satisfies the
following equation:

∂Y
∂εl

∣∣∣∣
ε=(0,...,0)′

= −ρe−ρ(RT (ε)+ΘT (ε))
(
∂RT
∂εl
+
∂ΘT

∂εl

)∣∣∣∣
ε=(0,...,0)′

= 〈b,Al〉.

Consequently under the LT construction, the optimal A∗1 is the
solution to the following optimization problem:

max
A1∈Rd
〈b,Al〉2 subject to ‖A1‖ = 1.

This corresponds to (3.6) when we set k = 1. It follows from
Theorem 1 of Imai and Tan (2007) that the optimal solution to the
above optimization problem is

A∗1 = ±
b
‖b‖

.

This completes the procedure for optimizing the first column of A.
Subsequent columns of A can similarly be optimized by repeating
algorithm (3.6) with other points of expansion.

4.3. Computation of ν0 using the LT method

In this subsection, we proceed to the second step of the
simulation procedurewhich involves estimating νt using the direct
formulation (2.19). We are interested in determining ν0. It is
convenient to denote, assuming t = 0, the function in the
expectation of (2.19) as U; i.e.

U(z1, . . . , zd) =
1
√
1t
(H1t,TX∗T − x0)z1

=
1
√
1t

(CVT − x0) z1, (4.17)

where C = er01t+(ρ−1)δTλρ−1 is a constant and VT =

e−ρ(RT+ΘT )+Θ1t is a function of (z1, . . . , zd).
As noted before, the key to the LT construction is the
determination of the optimal orthogonal matrix A. The LT
construction can similarly be applied to the above function. To see
this, let us revisit algorithm (3.6) with k = 1.
First note that for l = 1, . . . , d,

∂VT
∂εl
= VT

{
−ρ

(
∂RT
∂εl
+
∂ΘT

∂εl

)
+ θ0
√
1ta1,l

}
.

Then
∂U
∂εl
=

1
√
1t

[
Cz1

∂VT
∂εl
+ (CVT − X0) a1,l

]
=

1
√
1t

[
Cz1VT

{
−ρ

(
∂RT
∂εl
+
∂ΘT

∂εl

)
+ θ0
√
1ta1,l

}
+ (CVT − X0) a1,l

]
=

1
√
1t

[
−ρCVT z1

(
∂RT
∂εl
+
∂ΘT

∂εl

)
+

{
CVT

(
θ0
√
1tz1 + 1

)
− X0

}
a1,l

]
.

By setting ε = (0, . . . , 0)′, we have

∂U
∂εl

∣∣∣∣
ε=(0,...,0)′

=
1
√
1t
(CVT − X0)a1,l.

Therefore it is easy to see that the optimal solution is A∗1 =
(1, 0, . . . , 0)′ and this completes the procedure for optimizing the
first column of A. Other columns of A can similarly be optimized by
iteratively applying algorithm (3.6).
As pointed out earlier the LT construction is general and flexible.

We can also apply this technique to estimate νt from (2.17)
which is based on the two-tier simulation. This is the procedure
recommended by Cvitanic et al. (2003). Because of the two-tier
simulation, we would need to re-optimize the orthogonal matrix
A at each second tier simulation. Consequently this significantly
increases the computational effort and hence when using the LT
construction, it is more efficient to use the direct approach.

5. Numerical results

In this section, we assess the effectiveness of the various
simulation techniques. We compare the efficiency of classical
Monte Carlo, standard quasi Monte Carlo and our LT enhanced
quasi-Monte Carlo. Section 5.1 provides the simulated results on
estimating the optimal portfolio weights. We show that the LT
method is superior to both standard QMC and classical MC in this
example. Section 5.2 calculates the dimension reduction for the
first ten dimensions under the LT approach and hence provides an
attribution of the superior convergence of the LT approach.

5.1. Estimating optimal portfolio weights

In this subsection, we give the results of using different
simulation methods for finding the optimal portfolio weights. We
use the same example as Cvitanic et al. (2003) which we have
described in Section 4.1. Table 1 provides the parameter values for
our base case examples. Recall that the power utility function is
well defined for γ ≤ 1, γ 6= 1 and the relative risk aversion is given
by1−γ . In our simulation studies,wehave excluded any results for
γ ∈ (0, 1) as we experienced numerical instabilities for γ in this
range. This finding is consistent with the results of Korn and Kraft
(2004) who showed that the solution to the portfolio optimization
problem can blow up for γ ∈ (0, 1) for a problem very similar
to ours.
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Table 1
Base example parameter values

Parameter Value

r̄ 0.0600
σr 0.0364
κr 0.0824
θ̄ 0.0871
σθ 0.2100
κθ 0.6950
r0 0.0600
θ0 0.1000
σS 0.2000
γ −1,−2,−5, and−10
T 1, 5, and 10 years

For each set of parameter values, we produced four simulation
based results. The first two results, which we labeled as MC1 and
MC2, were based on the classical Monte Carlomethod. The optimal
portfolio weights π∗0 were estimated directly from (2.19) with
discretization time step 1t = 1/100 years. The key difference
between the reported values MC1 and MC2 lies on how the
standard errors of the estimates were estimated. The MC1 results
are based on a single large number of simulations (N = 220 =
1,048,576) and the standard errors are estimated based on this
single sequence of estimates. Because of the large number of the
sample paths that have been simulated, this value provides a
benchmark for the standard Monte Carlo method. They also show
how much work is needed to obtain accurate results with this
method.
The results correspond to MC2 are obtained by conducting the

simulations in 30 independent batches. For each batch, 16,384
sample paths are generated and (2.19) is again used to provide an
estimate forπ∗0 . The overall estimate ofπ

∗

0 is obtained by averaging
over the 30 independent batch averages. The standard error of
the overall estimate is calculated based upon the 30 independent
batch averages. Note that the total number of simulation runs is
30× 16,384, which is slightly less than half of that based on MC1.
The rationale for reportingMC2 is to provide uswith a level playing
field when we compare MC and QMC. This is because we need
to carry out the simulation in batches in order to estimate the
standard errors of the QMC estimates.
The third set of results, labeledQMC, correspond to the standard

application of the randomized QMC together with scrambled
Sobol’ low discrepancy sequence and Latin Supercube Sampling.
Since we have set 1t = 1/100, this implies that for the
examples with T = 1 year we need a 100-dimensional low
discrepancy sequence. Similarly, for T = 5 and 10 years, the
respective nominal dimensions of the problems are 500 and 1000.
The Latin Supercube Sampling proposed by Owen (1998) is a
convenient way of creating a high-dimensional low discrepancy
sequence by appropriately concatenating the lower dimensional
low discrepancy sequences. Similar to MC2, we produce the QMC
results based on 30 independent batches each with 16,384 sample
paths.
The fourth set of results, which we denote by QMC-LT, are

based on the LT construction with QMC. To compare the results
between the standard QMC and LT-based QMC on a consistent
basis, the same low discrepancy sequences are used for both of
these methods. As explained in the earlier sections, the LT method
requires a preliminary calculation of the optimal orthogonalmatrix
A in order to fully exploit the uniformity of the low discrepancy
sequence. This introduces some additional computational work,
especially for high-dimensional portfolio selection problems. As
pointed out in Imai and Tan (2007), one way of alleviating the
computational effort is by only optimizing the early dimensions of
the orthogonal matrix. Consider a d-dimensional problem. Instead
of optimizing the entire d columns of the orthogonal matrix,
Table 2
Estimates of π∗0 based on different simulation methods

γ CGZ MC1 MC2 QMC QMC-LT

T = 1 year (100 nominal dimensions)

−1 0.252 0.2554 0.2457 0.2484 0.2541
(0.0010) (0.0050) (0.0042) (0.0007)

−2 0.175 0.1810 0.1689 0.1721 0.1793
(0.0013) (0.0065) (0.0054) (0.0009)

−5 0.110 0.1099 0.0954 0.0991 0.1077
(0.0016) (0.0079) (0.0066) (0.0008)

−10 0.059 0.0785 0.0631 0.0669 0.0762
(0.0017) (0.0085) (0.0071) (0.0008)

T = 5 years (500 nominal dimensions)

−1 0.295 0.3059 0.3153 0.2866 0.3153
(0.0037) (0.0120) (0.0151) (0.0013)

−2 0.230 0.2513 0.2642 0.2265 0.2519
(0.0048) (0.0154) (0.0189) (0.0018)

−5 0.170 0.2006 0.2166 0.1704 0.1990
(0.0059) (0.0186) (0.0223) (0.0026)

−10 0.139 0.1786 0.1959 0.1462 0.1769
(0.0063) (0.0200) (0.0237) (0.0029)

T = 10 years (1000 nominal dimensions)

−1 0.328 0.3572 0.3625 0.3520 0.3571
(0.0052) (0.0227) (0.0198) (0.0021)

−2 0.270 0.3170 0.3249 0.3110 0.3167
(0.0064) (0.0293) (0.0252) (0.0030)

−5 0.190 0.2796 0.2902 0.2728 0.2753
(0.0074) (0.0354) (0.0303) (0.0041)

−10 0.167 0.2635 0.2753 0.2563 0.2582
(0.0079) (0.0381) (0.0326) (0.0046)

The values in parentheses denote the standard errors of the estimates.

we can optimize only up to d∗ columns by iteratively using
(3.6). The remaining columns are then generated randomly as
long as the resulting matrix is orthogonal. This translates into a
significant reduction in computational effort when d∗ � d. In
our examples with T = 1, we only optimize the first 10 columns
of the orthogonal matrix with the remaining 90 dimensions
randomly generated. Similarly for T = 5 and T = 10, we optimize
the orthogonal matrix up to 45 and 75 dimensions, respectively.
The loss of efficiency from using such suboptimal matrices is
likely to be negligible since under the LT-based QMC, the first few
dimensions already capture most of the variation. We confirm this
observation in the following subsection.
Table 2 reports our simulated results for T ∈ {1, 5, 10} and

γ ∈ {−1,−2,−5,−10}. Note that the time horizon T controls
the nominal dimensions of the problem since we have fixed
the discretization time step. Along with our results (MC1, MC2,
QMC and QMC-LT), we also tabulate the corresponding estimates
reported in Cvitanic et al. (2003).12 These authors did not report
individual standard errors. Recall that their values were estimated
(2.17) using two-tier simulation based on the standardMonte Carlo
method.
We summarize our results as follows:

• The QMC-LT estimates lie within the confidence limits of the
MC1 estimates confirming their accuracy.
• Using the standard errors as a measure of efficiency, the
standard QMC is just marginally better than those of the
standard Monte Carlo (i.e. MC2) for the 100 dimensional
examples with T = 1. However, as we increase the dimension
to 500, there are cases where QMC performs worse than MC2.
This clearly illustrates the potential problem with the standard

12 Our results in Table 2 indicates that the numbers reported by CGZ become
somewhat less accurate for higher values of risk aversion (1− γ ) and longer times
to maturity.
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Table 3
Computational time (in seconds) for MC2, QMC and QMC-LT methods

T Method Setup time Marginal executive time
LT N = 1024 N = 4096 N = 16,384

LSS Batch LSS Batch LSS Batch

1
MC2 – – 0.047 – 0.187 – 0.750
QMC – 0.297 0.453 0.562 1.828 2.172 7.390
QMC–LT 0.047 0.297 0.547 0.562 3.031 2.188 8.937

5
MC2 – – 0.234 – 0.937 – 3.766
QMC – 0.328 2.281 0.719 9.031 4.531 36.860
QMC–LT 4.375 0.312 4.422 0.766 18.046 4.517 70.781

10
MC2 – – 0.468 – 1.875 – 7.515
QMC – 0.344 4.594 0.907 18.406 7.422 73.438
QMC-LT 39.906 0.313 12.906 0.922 51.625 7.375 207.328
application of QMC. In high dimensions, the standard QMC does
not always outperform classical Monte Carlo; see for example
Akesson and Lehoczky (2000) who describe this phenomenon.
• It is of interest to note the loss of efficiency of the standard QMC
with increasing dimensions disappears when the underlying
method is combined with the LT construction. The efficiency
gain, as measured by the ratio of the standard error of the
MC2 estimate to the standard error of the QMC-LT estimate,
is around 10 in most cases. For example, consider the 1000-
dimensional problem with γ = −2, the standard error based
on MC2 is 0.0293. The corresponding standard error based on
QMC-LT is 9.8 times smaller while the standard error using
QMC is only 1.2 times smaller. The superiority of QMC-LT
can be attributed to its effectiveness in dimension reduction.
Under the LT construction, the effective dimension of the
problem becomes significantly lower, regardless of its nominal
dimension (which are 100, 500 and 1000 in our examples).

The results in Table 2 clearly demonstrate the greater rate of
convergence of the LT-based QMC method relative to MC and
QMC. The greater efficiency of the proposed method, however,
is achieved at the expense of the higher computational cost. To
have a fair assessment of the method, it is important to take into
consideration the additional computational time. Table 3 reports
the CPU time (in seconds) for the various methods based on the
computer platform Intel XeonTM CPU3.60 GHz, 2.00 GB RAM. Note
thatwehave divided the CPU time into ‘‘set up time’’ and ‘‘marginal
execution time’’. The latter refers to the time it takes to generate
one batch estimate for sample sizes N = 1024, 4096, 16,384. The
column labeled ‘‘LSS’’ denotes the time required to Latin Supercube
Sampling the scrambled Sobol low discrepancy sequence. This
table indicates that the additional time it requires for the LT-based
QMC, particularly in higher dimensions and with larger sample
runs, can be quite significant. The LT-based QMC has the further
disadvantage of requiring initial setup cost for determining the
optimal orthogonal matrix A, as reported in Table 3.
Table 3 illustrates the deficiency of the proposed QMC-LT

method if we were to focus exclusively on the computational
effort. A more appropriate comparison is to take into account of
both computational effort and the reduction of variance. Suppose
an algorithm A produces a variance σ 2A of the estimator in
computational time tA. Similarly for algorithm B which generates
another pair (σ 2B , tB). One possible measure of gauging the
efficiency of algorithm A relative to algorithm B is to compute the
following efficiency ratio

σ 2A tA
σ 2B tB

.

An efficiency ratio greater than one implies the algorithm B ismore
efficient than the algorithm A and vice versa if the ratio is less than
one. Table 4 depicts the efficiency ratio of MC2 relative to QMC
and QMC-LT, respectively. The ratios are calculated assuming 30
Table 4
Efficiency ratio of MC2 relative to QMC and QMC-LT, respectively, and assuming 30
replications with 16,384 sample run in each batch

γ T = 1 year T = 5 years T = 10 years
QMC QMC-LT QMC QMC-LT QMC QMC-LT

−1 0.11 3.44 0.06 4.25 0.12 4.07
−2 0.11 3.52 0.06 3.65 0.13 3.32
−5 0.11 6.57 0.06 2.55 0.13 2.59
−10 0.11 7.61 0.06 2.37 0.13 2.39

replications with each batch consists of 16,384 sample runs. After
incorporating the computational budget, the efficiency ratio for the
QMC is much smaller than one, indicating its inferiority relative to
the MC estimates. The proposed LT-based QMC, on the other hand,
is uniformly more efficient even though it introduces additional
computational burden.

5.2. The effectiveness of dimension reduction

We now delve into the origins of the good performance of the
QMC-LT method by analyzing the dimension reduction associated
with each of the first ten dimensions for the different problems.
Recall that for a given function f , its truncation dimension is the
smallest integer dT such that D{1,2,...,dT }(f ) ≥ pσ

2(f ). For example
if p = 99% and dT = 2, then this implies that the first two
dimensions capture more than 99% of the total variations, even
though the nominal dimension of f can be very large. It was
also argued that the efficiency of the QMC is intricately related
to the effective dimension. The simulation results from the last
subsection signifies the clear advantage of the LT-based QMC. In
this subsection, we analyze the source of the good performance of
the LT construction.
We analyze the efficiency by considering the following ratio

D{1,2,...,u}
σ 2

. (5.1)

We refer to this quantity as the cumulative explanatory ratio since
it gives the proportion of the variance captured by the first u
dimensions (i.e. D{1,2,...,u}) relative to the total variance (i.e. σ 2). In
general it is not possible to provide an explicit expression for Du
(see (3.3)). However, as shown in Sobol’ (2001) this quantity can
be calculated (using notation from Section 3) using

Du =
∫
[0,1)2d−|u|

f (x)f (xu, yA−u)dxdyA−u − [I(f )]2, (5.2)

where x = (xu, xA−u) and y = (yu, yA−u). The above representa-
tion allows us to estimate Du using simulation methods.
Table 5 depicts the estimated proportions (in percentage) for

T ∈ {1, 5, 10}, d ∈ {2, 4, 6, 8, 10}, and for both standard and
LT-based simulation approaches. These values are estimated using
theMonte Carlomethodwith 100,000 simulation trials. Recall that
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Table 5
Estimates of the ratio D{1,2,...,d}/σ 2 (in percentage) for T ∈ {1, 5, 10}, γ ∈ {−1,−2,−5,−10} and based on ‘‘Standard’’ and ‘‘LT’’ methods

d γ = −1 γ = −2 γ = −5 γ = −10
Standard LT Standard LT Standard LT Standard LT

T = 1 year (100 nominal dimensions)

2 1.2 95.3 0.5 95.1 0.3 72.4 0.3 72.3
4 2.0 98.0 1.4 97.9 1.2 97.7 1.2 97.7
6 3.5 98.0 2.9 98.0 2.7 98.1 2.7 98.1
8 4.9 98.1 4.3 98.0 4.2 98.3 4.1 98.3
10 6.1 98.2 5.5 98.1 5.3 98.3 5.3 98.3

T = 5 years (500 nominal dimensions)

2 0.6 72.3 0.5 63.9 0.5 57.5 0.5 56.8
4 0.1 97.7 0.0 86.0 0.0 89.0 −0.1 88.7
6 −0.5 98.1 −0.5 96.7 −0.5 94.7 −0.4 94.6
8 0.2 98.3 0.1 98.5 0.1 97.9 0.1 97.7
10 −0.4 98.3 −0.5 98.7 −0.6 98.6 −0.6 98.6

T = 10 years (1000 nominal dimensions)

2 0.7 41.1 0.6 39.3 0.6 38.1 0.6 37.4
4 1.2 61.7 1.2 60.0 1.2 67.1 1.2 66.3
6 0.6 83.6 0.5 82.3 0.5 80.9 0.5 80.3
8 0.0 94.5 0.0 93.9 −0.1 92.1 −0.1 91.8
10 1.0 96.9 1.0 96.5 1.0 93.6 1.0 93.3
the LT construction involves optimizing the orthogonal matrix A
while the standard simulation approach can be considered as a
special case of LT construction by setting A = I . Note that some
of the estimated values are negative. This can be attributed to the
statistical sampling errors as the true values for these cases are
close to zero.
The immediate conclusion is that the numerical results present

overwhelming evidence favoring the transformed problems based
on the LT construction over the original problems. The LT
construction is remarkably effective in reducing the truncation
dimension of the original problem. For example, consider the
case with nominal dimensions of 100 (i.e. T = 1). The upper
panel of Table 5 indicates that, under the LT construction, the first
four dimensions already contribute more than 97% of the total
variation. If we were to set the confidence level p at 97%, the
truncation dimension of these examples is no more than four, for
the ranges of γ considered here. This is in sharp contrast to the
standard implementation of the optimal portfolio problems where
the cumulative explanatory of the first four dimensions is no more
than 2%. Even if we were to expand the set to ten dimensions,
the standard simulation method still captures no more than 6.1%
of the total variance. Consequently in the truncation sense, the
effective dimension of the original problem is significantly higher
than the effective dimension of the transformed problem. This
largely explains the greater efficiency of the LT-based QMC that
we observed in the last subsection. This also justifies the use of the
suboptimal orthogonal matrix A.
The cumulative explanatory ratio also provides a useful way

of quantifying the difficulty of a problem. In particular, it could
be used to predict the performance of classical QMC. Notice that
as we increase the time horizon T , the proportion of the variance
captured by the same number of dimensions declines. Similarly as
we decrease γ from−1 to−10, there is also a slight deterioration
of the ratios. This suggests that the problem becomes increasingly
more challenging with increasing T and decreasing γ . This is
consistentwith our simulation results from the last subsection; the
estimates of the standard errors are progressively larger. However,
it should be emphasized for the example with T = 10 and γ =
−10, even though its nominal dimension is 1000, the cumulative
ratio up to ten dimensions is well over 90% for the LT construction.
This compares favorably to the standard approach which is only
capable of capturing about 1% of the total variability.
6. Summary

This paper discussed an enhanced numerical procedure to solve
the portfolio selection problem. We showed how to improve
the efficiency of simulation based methods using the approach
proposed by Cvitanic et al. (2003). We demonstrated that the
Linear Transformation method proposed by Imai and Tan (2007)
significantly improves the efficiency of quasi-Monte Carlo in
this connection. Specifically the Linear Transformation method
achieves standard errors that are about one tenth of those obtained
by standard quasi-Monte Carlo methods. It would be interesting to
apply this method to the procedure advocated by Detemple et al.
(2003). Based on standard Monte Carlo methods, Detemple Garcia
and Rindisbacher conclude that theirmethod ismore efficient than
the CGZ procedure. It seems probable the approach developed in
this paperwill lead to significant efficiency improvements over the
standard Monte Carlo method in this case as well. This is left for
future research.
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