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Abstract. This paper studies All-or-Nothing Transforms (AONTs),
which have been proposed by Rivest as a mode of operation for block
ciphers. An AONT is an unkeyed, invertible, randomized transforma-
tion, with the property that it is hard to invert unless all of the output is
known. Applications of AONTs include improving the security and speed
of encryption. We give several formal definitions of security for AONTs
that are stronger and more suited to practical applications than the
original definitions. We then prove that Optimal Asymmetric Encryp-
tion Padding (OAEP) satisfies these definitions (in the random oracle
model). This is the first construction of an AONT that has been proven
secure in the strong sense. Our bound on the adversary’s advantage is
nearly optimal, in the sense that no adversary can do substantially bet-
ter against the OAEP than by exhaustive search. We also show that no
AONT can achieve substantially better security than OAEP.
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1 Introduction

The concept of an All-or-Nothing Transform (AONT) was introduced by Rivest
[18] to increase the cost of brute force attacks on block ciphers without changing
the key length. As defined in that paper, an AONT is an efficiently computable
transformation f , mapping sequences of blocks (i.e., fixed length strings) to
sequences of blocks, which has the following properties:

– Given all of f(x1 , . . . , xn) = (y1 , . . . , yn′), it is easy to compute x1, . . . , xn.
– Given all but one of the blocks of the output (i.e., given y1, . . . , yj−1, yj+1,

. . . , yn′ for any 1 ≤ j ≤ n′), it is infeasible to find out any information about
any of the original blocks xi.
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As mentioned by Rivest [18], an AONT should be randomized, so that a known
message does not yield a known output.

An AONT itself does not perform any encryption, since there is no secret
key information involved. However, if its output is encrypted, block by block,
with a block cipher, the resulting scheme will have the following interesting
property: An adversary cannot find out any information about any block of
the message without decrypting all the blocks of the ciphertext. Now if the
adversary attempts to do an exhaustive search for the key, she will need to
perform n′ decryptions before determining whether a given key is correct. Thus,
the attack will be slowed down by a factor of n′, without any change in the
size of the secret key. This is particularly important in scenarios where the key
length is constrained to be insecure or marginally secure (e.g., because of export
regulations).

Another very important application of AONTs, as proposed by Johnson et
al. [12] for inclusion in the IEEE P1363a standard, is to make fixed-blocksize
encryption schemes more efficient. Instead of encrypting the whole message block
by block, we can apply AONT to it, and encrypt just some of the blocks of the
output. This will be an improvement if the AONT is more efficient than the
cipher. It is especially useful if the cipher is a public key cryptosystem, such as
RSA [17] or ElGamal [6]. This way we can, for instance, use RSA to securely
encrypt messages longer than the key size, without need for a symmetric cipher.
This gives an even greater improvement for elliptic-curve cryptosystems, which
typically have a block length that is too small to efficiently use the traditional
approach of encrypting a symmetric session key, together with padding and
redundancy (see Johnson and Matyas [11]). A similar application of AONTs,
as proposed by Rivest [19], would be to reduce communication requirements, in
case the encryption function greatly expands its input.

The use of AONT with encryption can be particularly useful for remotely
keyed encryption, i.e., applications where the part of the system that contains
the keys is separate, and where bandwidth restrictions prevent us from sending
the whole message from the insecure to the secure component [4]. An example
of such a scenario would be the case where the keys are stored in a smartcard,
and the user wishes to encrypt or decrypt large files. Through the use of AONT,
we can completely eliminate any encryption components from the host system,
and restrict such operations to the smart card (this is a generalization of the
scheme of Jakobsson et al. [10], substituting general AONTs for the OAEP-like
construction used in that paper). The host would transform the message with an
AONT, and send one block to the smartcard. The smartcard would encrypt that
block, and return it to the host. The encryption of the message will then be the
output of the AONT, with one block encrypted. Assuming the block encryption
is secure, the whole message will be secure. Note that since the host system
does not contain any encryption algorithms, it might not be subject to export
regulations.

The major problem with the definition of Rivest [18] is as follows: That
definition only speaks about the amount of information that can be learned
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about a particular message block. It does not, however, address the issue of
information about the message as a whole (e.g., the XOR of all the blocks). To
make the AONT truly useful, we would want it to hide all information about the
input if any part of the output is missing (we will refer to this as the semantic
security model). For instance, if an AONT is used for the purpose of slowing
down exhaustive search of the key space, a relation between several blocks of
the plaintext may provide enough information to the adversary for the purpose
of detecting an invalid key.

Another disadvantage of Rivest’s model [18] is that it does not consider the
relation between the number of bits of AONT output that the adversary has,
and the information that is leaked about the input. That model only considers
the cases when the adversary has the whole output (in which case she should
be able to completely determine the input), and when at least one complete
block of the output is missing (in which case it should be infeasible to determine
any block of the input). It would be interesting to consider exactly how much
information about the input can be determined by looking at all but a certain
number l bits of the AONT output, and how much effort is required to obtain
that information.

1.1 This Work

The goal of this paper is to provide an AONT construction that is provably
secure in the strong sense described above. Our contributions are as follows:

– We give new formal definitions of AONT security in terms of semantic se-
curity and indistinguishability. These definitions address the concerns men-
tioned above and provide the security needed for practical applications. They
are parallel to the two notions of security for public-key cryptosystems, de-
fined by Goldwasser and Micali [9]. We consider both the non-adaptive sce-
nario (where the positions of the bits that are removed from AONT output
are fixed before the experiment), and the adaptive scenario (where the ad-
versary can choose the positions).

– We prove that OAEP (see Sect. 1.2), a construction originally introduced by
Bellare and Rogaway in a different context, satisfies these definitions (in the
random oracle model).

– We give an upper bound on the adversary’s advantage in getting information
about OAEP input when given all but l bits of OAEP output, as opposed
to having none of the output. The bound is exact, i.e., does not involve
asymptotics. It does not use any computational assumptions and relies only
on the properties of random oracles. The bound is directly proportional to
the number of adversary’s queries to the random oracle and is inversely
exponential in the number of bits of OAEP output that are withheld from
the adversary.

– We then show that our upper bound is nearly optimal, in the sense that
no adversary can do substantially better against OAEP than by exhaustive
search. In addition, it will follow that no AONT can achieve substantially
better security (i.e., upper bound on the adversary’s advantage) than OAEP.
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Fig. 1. A diagram of the OAEP

1.2 OAEP

Optimal Asymmetric Encryption Padding (OAEP) was originally introduced by
Bellare and Rogaway [2] for the purpose of constructing semantically secure and
plaintext-aware public-key encryption schemes from arbitrary trapdoor permu-
tations. For parameters n and k0, “generator” G : {0, 1}k0 → {0, 1}n, and “hash
function” H : {0, 1}n → {0, 1}k0, the transform OAEP : {0, 1}n × {0, 1}k0 →
{0, 1}n′

, for n′ = n + k0, is defined as

OAEPG,H(x, r) = x⊕G(r) ‖ r⊕H(x⊕G(r)) ,

where ‖ denotes concatenation. Here x is the message and r is a random string.
In applications, n would be the length of a message, and k0 would be the security
parameter, e.g., k0 = 128. We will often refer to the first half of the OAEP output
(i.e., x⊕G(r)) as s, and to the second half (i.e., r⊕H(s)) as t. Here |s| = n and
|t| = k0. We may also write OAEPG,H(x), implying that r is chosen uniformly
at random from {0, 1}k0.

A diagram of the OAEP appears in Fig. 1.
Functions G and H are “random oracles,” as introduced in by Bellare and

Rogaway [1]. Bellare and Rogaway [2] show that if G and H are “ideal,” i.e.,
they are random functions, and f : {0, 1}k0+n → {0, 1}k0+n is a trapdoor per-
mutation, then the encryption scheme

EG,H(x) = f(OAEPG,H(x, r)) ,

with r chosen at random for each encryption, is semantically secure, in the sense
of Goldwasser and Micali [9]. They also show that a small modification of that
scheme provides plaintext-awareness (introduced by Bellare and Rogaway [2]).
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1.3 Previous Work

Rivest [18] has proposed the following construction (“the package transform”)
as a candidate AONT:

– Let E be a block cipher. Let K0 be a fixed, publicly known key for E.
– Let the input message be the sequence of blocks m1 , m2, . . . , ms.
– Choose at random a key K′ for E.
– Compute the output sequence m′

1, m′
2, . . . , m′

s′ , for s′ = s + 1, as follows:
• Let m′

i = mi ⊕ E(K′, i) for i = 1, 2, . . . , s.
• Let

m′
s′ = K′ ⊕ h1 ⊕ h2 ⊕ · · · ⊕ hs,

where

hi = E(K0, m
′
i ⊕ i)

for i = 1, 2, . . . , s.

No formal proof was given that this construction is actually an AONT. The
heuristic argument for security is based on the idea that if any block of the output
is unknown, then K′ cannot be computed, and so it is infeasible to compute any
message block. Rivest [18] mentions that “the package transform” can be viewed
as a special case of the OAEP, for G(x) = E(x, 1)‖E(x, 2)‖ · · ·‖E(x, s) and
H(x) =

⊕s
i=1 E(K0, xi⊕ i). However, no claims about OAEP itself are made in

that paper.
Johnson et al. [12], in their contribution for the IEEE P1363a standard, give

an OAEP-like transform that uses four rounds of hash applications instead of
two. A heuristic analysis of the security of that construction is given by Matyas
et al. [13]. Using an informal assumption about the hardness of the underlying
hash functions, they argue that the number of operations required to determine
the secret bits in the input message grows exponentially with the number of
unknown bits. However, we are not aware of any formal proof of security of the
transform of Johnson et al. [12]. In any case, the analysis of Matyas et al. [13] is
not directly applicable if there are fewer than four rounds, so it does not work
for OAEP.

Stinson [20] gives a treatment of AONTs from the point of view of uncon-
ditional security. Similarly to Rivest [18], Stinson’s definition only considers the
amount of information leaked about a particular block of the message, as op-
posed to the whole message. He uses a straightforward formalization of Rivest’s
definition above, suitably modified for information-theoretic security. Stinson
then goes on to propose some constructions for AONTs using linear transforms,
which can be proven secure in that model. The basic idea of these constructions
is to use the function φ(x) = xM−1, where x is a vector of s message blocks
(considered as elements of GF (q), for some prime power q), and M is an in-
vertible s by s matrix over GF (q), such that no entry of M is equal to 0. It is
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easy to see that each component of x linearly depends on all the components of
y = φ(x) (since x = yM).

It is conceivable that “the package transform” of Rivest [18] would be se-
cure in the semantic security model (with sufficiently strong assumptions about
the block cipher). The construction of Johnson et al. [12] may also be secure,
although no formal proof has been given. However, the linear constructions of
Stinson [20] would definitely not be secure in that model, since it is easy to
come up with linear relations among the elements of x by looking at just a few
elements of φ(x) (in fact, since φ is linear and deterministic, every output of
φ(x) gives a linear relation on elements of x). Even if the message is padded
with random blocks, it is still possible to extract partial information about the
message if the number of known outputs is larger than the number of random
blocks.

It is interesting to note that the relationship between the number of missing
bits and adversary’s required effort has come up in other contexts. Merkle [14],
in one of the first papers on public key cryptography, defines the concept of a
“puzzle,” which is a cryptogram that requires Θ(N) work to break, where N is
some number depending on the security parameters (the total amount of work
put in by the communication parties is going to be Θ(N)). Merkle’s proposed
construction of such “puzzles” is to take a block cipher and restrict the size of
the key space, by varying only Θ(log N) bits of the key and fixing the rest. It
is assumed that breaking a cryptogram of the underlying cipher, when all but
Θ(logN) bits of the key are known, requires Θ(N) work.

Even et al. [7] assume the existence of a “uniformly secure” block cipher for
their construction of a contract signing protocol. They consider a block cipher
“uniformly secure” if it is infeasible to find a key for a given plaintext-ciphertext
pair when no information about the key is known; but if the first i bits of the
key are known, then there is an algorithm for breaking the cryptogram in time
t(k − i), for some function t(·), and no algorithm can do it faster than in time
1
2t(k − i). Here k is the key length.

Both Merkle [14] and Even et al. [7] conjecture that standard block ciphers,
such as Lucifer [8] or DES [16], satisfy their assumptions. However, uniform
security is probably not a common consideration in block cipher design, as almost
all applications of these primitives assume the whole key to be secret. Thus it
may be unsafe to make such an assumption about standard block ciphers. In
fact, this is, in effect, one of the criticisms given by Ben-Or et al. [3] of the work
of Even et al. [7]. It seems to us, however, that the methods of our paper can be
used to give a simple construction that will turn any block cipher that is secure
in the regular sense into one which is uniformly secure. See Sect. 5 for details.

1.4 Outline

The outline of the rest of the paper is as follows. Section 2 describes the notation
and model. In Sect. 3, we give formal definitions of security for AONTs. Section 4
presents the results on the security of OAEP as an AONT. Section 5 discusses
open problems.
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2 Notation and Model

Let us speak briefly about our notation and model. All algorithms used are oracle
Turing machines, possibly randomized. Oracle queries execute in unit time. If
A is a randomized algorithm, we may write A(x1, . . .) to mean the distribution
of A’s output on certain inputs. We may also specify the coins explicitly, as
in A(rA, x1, . . . ), in which case the notation will refer to the fully determined
output.

We will write x
R← X to mean that a variable x is to be chosen at random

according to distribution X. As a shorthand, x1, x2
R← X denotes x1

R← X,
x2

R← X. On the other hand, x ← X will mean that x is to be set to the result
of evaluating expression X (which is not random). If S is a set, then we will
write x

R← S to mean that x is chosen uniformly at random from S. We will
write Pr[x R← X; y R← Y ; z ← Z; . . . : p(x, y, z, . . .)] to mean the probability of
predicate p(x, y, z, . . .), when x is chosen at random according to distribution
X, y is chosen at random according to distribution Y , z is set to the result of
evaluating expression Z (possibly a function of x and y), etc. Similarly, we will
write E[x R← X; . . . : f(x, . . . )] to mean the expected value of f(x, . . . ) when x
is chosen at random according to distribution X, etc.

To specify the distribution of a random function (“random oracle”), such as
G and H for OAEP, we will use notation like G, H

R← Ω, where Ω is the set of
all maps from the set {0, 1}∗ of finite strings to the set {0, 1}∞ of infinite strings.
The notation should be interpreted as appropriate in its context, restricting the
input and truncating the output of the function as necessary.

For x ∈ {0, 1}∗, 1 ≤ i ≤ |x|, and 0 ≤ l ≤ |x| − i + 1, let substr(x, i, l) denote
the substring of x starting at bit i (with the leftmost bit being 1) and having
length l.

For any integer m and L ⊆ [1, m], we define hm,L : {0, 1}m → {0, 1}m−|L|

as follows: hm,L takes a bit string of length m and throws out (“hides”) the bit
positions indicated by L. More precisely, if we let L̄i, for 1 ≤ i ≤ m− |L| denote
the ith smallest element of L̄ = [1, m] \ L, then

hm,L(x) = substr(x, L̄1, 1)‖ substr(x, L̄2, 1)‖ · · · ‖ substr(x, L̄m−|L|, 1) .

For n′ ≥ l ≥ 0, let
{

n′

l

}
= {L ⊆ [1, n′] : |L| = l}.

3 Definitions

Our definitions of security for AONTs are patterned after the notions of secu-
rity for encryption defined by Goldwasser and Micali [9]: polynomial security
(polynomial indistinguishability) and semantic security.1 We also try to define
security “exactly,” as in Bellare and Rogaway [2]: instead of concerning ourselves
1 To prevent confusion, we note that while Bellare and Rogaway [2] talk about se-

mantic security (for encryption), the definition they give is actually stated in terms
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with asymptotics (i.e., showing that the adversary’s advantage is “negligible” in
the security parameters), we are interested in giving an exact bound on the ad-
versary’s advantage, as a function of the adversary’s running time, the number
of bits of AONT’s output given to the adversary, etc.

For simplicity, we will formulate the definitions in terms of a single random
oracle Γ . No generality is lost, since a single random oracle can be used to
simulate several, by constructing the query as the concatenation of the oracle
index and the original query. For instance, we could use Γ to simulate random
oracles G and H by translating query x to G into query 0‖x to Γ and query y to
H into 1‖y. In addition, it would be easy to change the definitions for the case
of no random oracles.

The non-adaptive indistinguishability scenario is as follows: Let L be an ar-
bitrary set of l bit positions. The adversary runs in two stages:

1. Find stage: The adversary is given L and access to Γ . She outputs x0 ∈
{0, 1}n, x1 ∈ {0, 1}n, and cf ∈ {0, 1}∗.

2. Guess stage: The adversary is given cf and, for random bit b, AONTΓ (xb)
with bit positions L missing. The adversary has access to Γ . She has to guess
b.

Note that x0 and x1 do not need to be explicitly passed to the guess stage, since
they may be included in cf . We may view cf as the saved state of the adversary
at the end of the find stage.

We want the adversary’s probability of correctly guessing b to be as close as
possible to 1

2 . The formal definition is as follows:

Definition 1 (Non-adaptive indistinguishability). Let AONT be a ran-
domized transform mapping n-bit messages to n′-bit outputs and using random
oracle Γ . Let l be between 1 and n′. An adversary A is said to succeed in
(T, qΓ , ε)-distinguishing AONT with l missing bits if there exists L ∈ {

n′

l

}

such that

Pr[Γ R← Ω; (x0, x1, cf)
R← AΓ (L, find); b R← {0, 1};

y
R← AONTΓ (xb) : AΓ (hn′,L(y), cf , guess) = b] ≥ 1

2
+ ε ,

and, moreover, in the experiment above, A runs for at most T steps, and makes
at most qΓ queries to Γ .

It follows from this definition that in order for an AONT to be secure in the
sense of non-adaptive indistinguishability for certain choices of parameters, it
needs to be that for every adversary and every L, the adversary’s advantage has
to be less than ε.

of indistinguishability. This is acceptable in their context, since the two notions are
known to be equivalent for encryption (see Micali et al. [15]). In our context, how-
ever, we state and analyze each one separately, since no equivalence has yet been
proven.
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The adaptive indistinguishability scenario is as follows: The adversary runs
in three stages. The first stage chooses a value of L, while the last two stages are
same as in the non-adaptive indistinguishability scenario. The adversary runs as
follows:

1. Select stage: The adversary is given l and access to Γ . She selects l bit
positions and outputs L ∈ {

n′
l

}
and cs ∈ {0, 1}∗.

2. Find stage: The adversary is given cs and access to Γ . She outputs x0 ∈
{0, 1}n, x1 ∈ {0, 1}n, and cf ∈ {0, 1}∗.

3. Guess stage: The adversary is given cf and, for random bit b, AONTΓ (xb)
with bit positions L missing. The adversary has access to Γ . She has to guess
b.

Similarly to the remark about x0 and x1 above, we note that L does not need
to be explicitly passed to the find and guess stages, since it may be included in
cs, and then put into cf .

In the formal definition, we will assume that the adversary’s select stage will
always output a valid value of L ∈ {

n′
l

}
(this can be implemented by having a

suitable encoding).

Definition 2 (Adaptive indistinguishability). Let AONT be a randomized
transform mapping n-bit messages to n′-bit outputs and using random oracle
Γ . Let l be between 1 and n′. An adversary A is said to succeed in (T, qΓ , ε)-
adaptively-distinguishing AONT with l missing bits if

Pr[Γ R← Ω; (L, cs)
R← AΓ (l, select); (x0, x1, cf)

R← AΓ (cs, find);

b
R← {0, 1}; y R← AONTΓ (xb) : AΓ (hn′,L(y), cf , guess) = b] ≥ 1

2
+ ε ,

and, moreover, in the experiment above, A runs for at most T steps, and makes
at most qΓ queries to Γ .

Note that for the application of speeding up encryption that was mentioned
above in Sect. 1, it is sufficient for the AONT to be secure for a fixed choice
of the missing part of the output (since the user decides which part will be
encrypted). Thus, for that application, it is sufficient for the AONT to be secure
in the non-adaptive scenario. However, when an AONT is used to increase the
cost of exhaustive search, it needs to be secure in the adaptive scenario, since
then the adversary has a choice of which blocks to decrypt.

For the adaptive and non-adaptive indistinguishability scenarios, we will as-
sume, without loss of generality, that A never asks the same oracle query more
than once (A can accomplish this by remembering the history of past queries;
this history can be passed between stages through cs and cf).

The non-adaptive semantic security scenario is as follows: Let L be an arbi-
trary set of l bit positions and f : {0, 1}n → {0, 1}∗ be an arbitrary determinis-
tic function. The adversary runs in two unconnected stages (each stage can be
viewed as a separate algorithm):
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– Find stage: The adversary is given L and access to Γ . She outputs x ∈
{0, 1}n.

– Guess stage (no data is passed from the find stage): The adversary is given
L and AONTΓ (x) with bit positions L missing. The adversary has access to
Γ . She has to guess f(x).

In the context of the traditional definition of semantic security for encryption, the
adversary’s find stage may be seen as the sampling algorithm for a distribution
of messages, and the guess stage as the actual predicting algorithm. We want
the adversary not to be able to do substantially better than always outputting
the most probable value of f(x). The formal definition is as follows:

Definition 3 (Non-adaptive semantic security). Let AONT be a random-
ized transform mapping n-bit messages to n′-bit outputs and using random oracle
Γ . Let l be between 1 and n′. Let f : {0, 1}n→ {0, 1}∗ be any deterministic func-
tion. An adversary A is said to succeed in (T, qΓ , ε)-predicting f from AONT
with l missing bits if there exists L ∈ {

n′
l

}
such that

Pr[Γ R← Ω; x R← AΓ (L, find); y R← AONTΓ (x) :

AΓ (L, hn′,L(y), guess) = f(x)] ≥ pA,f + ε , (1)

where

pA,f = E[Γ R← Ω : max
z

Pr[x R← AΓ (L, find) : f(x) = z]] ,

and, moreover, in the experiment (1), A runs for at most T steps, and makes at
most qΓ queries to Γ .

The expectation in the definition of pA,f is necessary to handle the possibility
that the adversary may choose x to be a function of Γ (e.g., x could be set to the
result of querying Γ on some fixed input). This would result in perfect prediction
(both the find and guess stages can compute the same x), even though the output
of the find stage will appear random, for random Γ . Thus, the quantity

max
z

Pr[Γ R← Ω; x R← AΓ (L, find) : f(x) = z]

could be much smaller than the adversary’s success probability. However, for
any fixed Γ , this adversary would always output the same x, so pA,f = 1. Thus,
this adversary’s advantage ε will have to be zero.

In the semantic security scenario (both adaptive and non-adaptive), no
information is passed between the adversary’s find and guess stages, except
hn′,L(AONTΓ (x)) (otherwise, the find stage could simply pass the value of f(x)).
We will therefore remove the assumption that A can’t make the same query to Γ
more than once. We will still assume, though, that all queries are unique within
a single stage.

The adaptive semantic security scenario is same as the non-adaptive one,
except for the addition of the select stage before the find stage, in which the
adversary outputs L. The formal definition is as follows:
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Definition 4 (Adaptive semantic security). Let AONT be a randomized
transform mapping n-bit messages to n′-bit outputs and using random oracle Γ .
Let l be between 1 and n′. Let f : {0, 1}n → {0, 1}∗ be any deterministic function.
An adversary A is said to succeed in (T, qΓ , ε)-adaptively-predicting f from
AONT with l missing bits if

Pr[Γ R← Ω; (L, cs)
R← AΓ (l, select); x R← AΓ (cs, find); y R← AONTΓ (x) :

AΓ (hn′,L(y), cs, guess) = f(x)] ≥ pA,f + ε , (2)

where

pA,f = E[Γ R← Ω; (L, cs)
R← AΓ (l, select) : max

z
Pr[x R← AΓ (cs, find) : f(x) = z]] ,

and, moreover, in the experiment (2), A runs for at most T steps, and makes at
most qΓ queries to Γ .

Note that since information may be passed from the select stage to the find and
guess stages (through cs), we can assume that no query from the select stage
is repeated in any of the other stages. There is no danger in passing cs to the
guess stage, since cs is generated before x is chosen (note that pA,f involves an
expectation over cs, so the adversary will not gain any advantage by choosing
(x, f(x)) at the select stage and then passing it to the other stages).

4 Security Results

Throughout most of this section we will be using two random oracles G and H .
As mentioned above, we can still use our definitions, since Γ could be used to
simulate G and H . We will write AG,H in place of AΓ . We will also use notation
(T, qG, qH, ε)-· · · (e.g., “an adversary (T, qG, qH, ε)-distinguishes”) as a shorthand
for (T, qG + qH, ε)-· · · , with the additional condition that at most qG queries are
made to G and at most qH queries are made to H .

4.1 Non-adaptive Indistinguishability: Upper Bound

Theorem 1. Suppose l ≤ k0 and k0 ≥ 14. Suppose that there exists an adver-
sary A that (T, qG, qH, ε)-distinguishes OAEP with l missing bits, where qG ≤
2k0−1. Then

ε ≤ 8qG
k0

log2 k0
2−l .

The proof has been omitted due to page limits and can be found in the full
version of this paper [5]. The intuition behind the result is as follows: Let r0 be
the value of r that was used to generate ỹ = hn′,L(OAEPG,H(xb)) in a particular
experiment. Then, the adversary cannot find out any information about xb unless
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she queries G for G(r0) (since xb only appears in OAEPG,H(xb, r0) as xb⊕G(r0)).
There are ∼ 2l possible values of r0, corresponding to the 2l values of y that
are consistent with ỹ. Thus we would expect the probability that any of the
adversary’s queries to G are equal to r0 to be bounded by approximately qG2−l.
The complication is that there may be fewer than 2l possible values of r0 and
that these values may not be equally probable, given ỹ. These possible variations
in probability cause the term O( k0

log k0
).

Note that this result, like all the others in this paper, does not use any
computational assumptions and the bound is information theoretic, based on
the properties of random oracles. In fact, the bound does not directly depend
on T , the adversary’s running time. It does, however, have implications for the
running time, since T ≥ qG + qH (every oracle query takes unit time).

4.2 Non-adaptive Indistinguishability: Lower Bound

To see how good our upper bound is, let us try to give a lower bound on the
adversary’s advantage, by estimating the success of exhaustive search. This lower
bound applies to any AONT.

Theorem 2. Let AONT be a randomized transform mapping n-bit messages to
n′-bit outputs and using random oracle Γ . Let l be between 1 and n − 3. Then,
for any L ∈ {

n′
l

}
and any N between 1 and 2l, there exists an adversary that

(NT, NqΓ , ε)-distinguishes AONT with l missing bits, with

ε ≥ 1
16

N2−l.

Here T and qΓ are the time and number of queries to Γ , respectively, taken by
a single evaluation of AONT.

The proof has been omitted due to page limits and can be found in the full
version of this paper [5]. The idea of the proof is as follows: The exhaustive search
algorithm that achieves the advantage of at least 1

16
N2−l works by choosing x0

and x1 independently at random in the find stage. The guess stage tries random
values of the missing bits, up to N times, and, if the inverse AONT returns xb′

for b′ ∈ {0, 1}, produces b′ as the guess. If none of the trials has succeeded, a
random bit is returned. The idea of the analysis of this algorithm is that every
trial in the guess stage has probability of at least 2−l of succeeding with the
correct value of b (since there exists a choice of the missing bits, namely the
values that actually appeared in y, that leads to xb). On the other hand, since
x1−b is chosen uniformly and independently, the probability of getting x1−b in
any particular trial is 2−n ≤ 2−l−3.

We see from Theorems 1 and 2, that no adversary can improve by a factor
of more than O( k0

log k0
) over exhaustive search. Since, for large l, this factor is

negligible compared to 2−l, our bounds for OAEP are nearly optimal.
We also see that no AONT can be substantially more secure than OAEP, in

the sense that no AONT can have an upper bound that is better than OAEP’s
by a factor of more than O( k0

log k0
).
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4.3 Adaptive Indistinguishability

Theorem 3. Suppose l ≤ k0, l ≤ n
2 , and k0 ≥ 14. Suppose that there exists

an adversary A that (T, qG, qH, ε)-adaptively-distinguishes OAEP with l missing
bits, where qG ≤ 2k0−1. Then

ε ≤ 8(qG + qH)
k0

log2 k0
2−l .

The proof has been omitted due to page limits and can be found in the full
version of this paper [5]. It is very similar to the proof of Theorem 1, with the
only major difference being that we have to consider the possible correlation
between L and H (since L may be chosen by the adversary to depend on H).
This is taken care of by showing that with large probability (depending on qH),
the queries made in the select stage will not constrain H enough to spoil those
properties of it that are used in the proof of Theorem 1.

We can easily see that for the adaptive indistinguishability scenario, as for
the non-adaptive one, our bound is optimal within a factor of O( k0

log k0
) of the

advantage given by exhaustive search for an arbitrary AONT (in this scenario,
exhaustive search would choose a random L in the select stage).

4.4 Non-adaptive Semantic Security

Theorem 4. Suppose l ≤ k0 and k0 ≥ 14. Suppose that there exists a determin-
istic function f : {0, 1}n→ {0, 1}∗ and an adversary A that (T, qG, qH, ε)-predicts
f from OAEP with l missing bits, where qG ≤ 2k0−1. Then

ε ≤ 8qG
k0

log2 k0
2−l .

The proof has been omitted due to page limits and can be found in the full
version of this paper [5]. It is a simple modification of the proof of Theorem 1,
with the difference being the estimation of the adversary’s success probability
in the case where she has not queried G for G(r0) (where r0 is the value of r
used to compute OAEPG,H(x) in the experiment). In the case of Theorem 1
that success probability was 1

2 , while here it can be easily seen to be less than
or equal to pA,f .

We have not yet shown a lower bound for the semantic security scenarios.
We still expect our upper bound for these scenarios to be nearly optimal, as for
the indistinguishability scenarios.

4.5 Adaptive Semantic Security

Theorem 5. Suppose l ≤ k0, l ≤ n
2
, and k0 ≥ 14. Suppose that there exists a de-

terministic function f : {0, 1}n → {0, 1}∗ and an adversary A that (T, qG, qH, ε)-
adaptively-predicts f from OAEP with l missing bits, where qG ≤ 2k0−1. Then

ε ≤ 8(qG + qH)
k0

log2 k0
2−l .
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The proof of Theorem 5 is a simple combination of the proof of Theorem 1 with
the modifications needed for Theorems 3 and 4 (see the full version of this paper
for details [5]).

5 Open Problems

The first open problem that comes to mind is to improve our bounds. The best
would be to bring the upper bounds within a constant factor of exhaustive search,
or to devise an algorithm that does better than exhaustive search. Also, it would
be interesting to give lower bounds for the semantic security scenarios.

Another open problem is to show equivalence (or non-equivalence) of our
definitions, trying to carry over the exact bounds as much as possible. There
are also other possible models to consider, such as a scenario where, instead of
specifying the positions of the missing bits in advance, the adversary is allowed
to ask for bits after seeing the value of other bits. Also, just as there are several
variations of the definition of semantic security for encryption, one might con-
sider other definitions for AONTs, and whether they are equivalent to the ones
in this paper.

One of the most interesting open problems related to AONTs is to construct a
secure AONT (in the sense of our definitions) without the use of random oracles.
One might start by trying to modify the OAEP by replacing either G or H by
a deterministic function. In any case, until formal results about deterministic
AONTs are obtained, it would be fruitful to investigate the practical security
concerns that arise in the use of OAEP as an AONT, when the random oracles
are instantiated with deterministic hash functions.

Another interesting question is whether there is any relation between the
properties of OAEP as an AONT, and its original proposed use for constructing
secure cryptosystems. One might ask, for instance, if OAEP could be replaced
by an arbitrary AONT in the construction of Bellare and Rogaway [2].

One could also look into the possibility of generalizing the definitions of
AONT security, so that instead of getting a certain number of bits of the output,
the adversary gets the equivalent amount of information through other means,
i.e., by seeing the value of some transformation of the output that reduces its
entropy by l. The function hn′,L is just one example of such a transformation.

Finally, now that we have a provably secure AONT, it would be of great
interest to find new applications of this primitive. We hope that its usefulness
extends far beyond its original applications.

We note that an AONT that satisfies our definitions, such as OAEP, can be
used to implement the “puzzles” of Merkle [14], or the notion of uniform security
of Even et al. [7]. The “puzzles” could be made by publishing a certain number
of bits of AONT output on a bit string of sufficient redundancy (so that, with
overwhelming probability, only one such string corresponded to the published
information). Similarly, cryptograms of uniform security could be achieved by
publishing a part of AONT output on the key used in the cryptogram. It seems,
though, that a simpler construction would suffice: Let E(K, M)→ C be a regular
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symmetric cryptosystem, and let H be a random oracle. Then, it seems to us
that, using the methods of this paper, it can be shown that E(H(K), M)→ C is
a uniformly secure cryptosystem. On the other hand, the AONT construction for
the “puzzles” has the advantage that it does not use encryption, which could put
it outside the scope of export regulations. It would be interesting to investigate
these issues further.
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