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Abstract
The virtues of deterministic parallelism have been argued for
decades and many forms of deterministic parallelism have been
described and analyzed. Here we are concerned with one of the
strongest forms, requiring that for any input there is a unique de-
pendence graph representing a trace of the computation annotated
with every operation and value. This has been referred to as internal
determinism, and implies a sequential semantics—i.e., considering
any sequential traversal of the dependence graph is sufficient for
analyzing the correctness of the code. In addition to returning deter-
ministic results, internal determinism has many advantages includ-
ing ease of reasoning about the code, ease of verifying correctness,
ease of debugging, ease of defining invariants, ease of defining
good coverage for testing, and ease of formally, informally and ex-
perimentally reasoning about performance. On the other hand one
needs to consider the possible downsides of determinism, which
might include making algorithms (i) more complicated, unnatural
or special purpose and/or (ii) slower or less scalable.

In this paper we study the effectiveness of this strong form of
determinism through a broad set of benchmark problems. Our main
contribution is to demonstrate that for this wide body of prob-
lems, there exist efficient internally deterministic algorithms, and
moreover that these algorithms are natural to reason about and not
complicated to code. We leverage an approach to determinism sug-
gested by Steele (1990), which is to use nested parallelism with
commutative operations. Our algorithms apply several diverse pro-
gramming paradigms that fit within the model including (i) a strict
functional style (no shared state among concurrent operations), (ii)
an approach we refer to as deterministic reservations, and (iii) the
use of commutative, linearizable operations on data structures. We
describe algorithms for the benchmark problems that use these de-
terministic approaches and present performance results on a 32-
core machine. Perhaps surprisingly, for all problems, our internally
deterministic algorithms achieve good speedup and good perfor-
mance even relative to prior nondeterministic solutions.

Categories and Subject Descriptors D.1 [Concurrent Program-
ming]: Parallel programming

General Terms Algorithms, Experimentation, Performance

Keywords Parallel algorithms, deterministic parallelism, parallel
programming, commutative operations, graph algorithms, geome-
try algorithms, sorting, string processing
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1. Introduction
One of the key challenges of parallel programming is dealing with
nondeterminism. For many computational problems, there is no in-
herent nondeterminism in the problem statement, and indeed a se-
rial program would be deterministic—the nondeterminism arises
solely due to the parallel program and/or due to the parallel ma-
chine and its runtime environment. The challenges of nondetermin-
ism have been recognized and studied for decades [23, 24, 37, 42].
Steele’s 1990 paper, for example, seeks “to prevent the behavior
of the program from depending on any accidents of execution or-
der that can arise from the indeterminacy” of asynchronous pro-
grams [42]. More recently, there has been a surge of advocacy for
and research in determinism, seeking to remove sources of non-
determinism via specially-designed hardware mechanisms [19, 20,
28], runtime systems and compilers [3, 5, 36, 45], operating sys-
tems [4], and programming languages/frameworks [11].

While there seems to be a growing consensus that determinism
is important, there is disagreement as to what degree of determin-
ism is desired (worth paying for). Popular options include:

• Data-race free [2, 22], which eliminate a particularly problem-
atic type of nondeterminism: the data race. Synchronization
constructs such as locks or atomic transactions protect ordinary
accesses to shared data, but nondeterminism among such con-
structs (e.g., the order of lock acquires) can lead to considerable
nondeterminism in the execution.
• Determinate (or external determinism), which requires that the

program always produces the same output when run on the
same input. Program executions for a given input may vary
widely, as long as the program “converges” to the same output
each time.
• Internal determinism, in which key aspects of intermediate

steps of the program are also deterministic, as discussed in
this paper.
• Functional determinism, where the absence of side-effects in

purely functional languages make all components independent
and safe to run in parallel.
• Synchronous parallelism, where parallelism proceeds in lock

step (e.g., SIMD-style) and each step has a deterministic out-
come.

There are trade-offs among these options, with stronger forms of
determinism often viewed as better for reasoning and debugging
but worse for performance and perhaps programmability. Making
the proper choice for an application requires understanding what
the trade-offs are. In particular, is there a “sweet spot” for deter-
minism, which provides a particularly useful combination of de-
buggability, performance, and programmability?

In this paper, we advocate a particular form of internal de-
terminism as providing such a sweet spot for a class of nested-
parallel (i.e., nested fork-join) computations in which there is no



inherent nondeterminism in the problem statement. An execution
of a nested-parallel program defines a dependence DAG (directed
acyclic graph) that represents every operation executed by the com-
putation (the nodes) along with the control dependencies among
them (the edges). These dependencies represent ordering within se-
quential code sequences, dependencies from a fork operation to its
children, and dependencies from the end of such children to the
join point of the forking parent. We refer to this DAG when an-
notated with the operations performed at each node (including ar-
guments and return values, if any) as the trace. Informally, a pro-
gram/algorithm is internally deterministic if for any input there is
a unique trace. This definition depends on the level of abstraction
of the operations in the trace. At the most primitive level the op-
erations could represent individual machine instructions, but more
generally, and as used in this paper, it is any abstraction level at
which the implementation is hidden from the programmer. We note
that internal determinism does not imply a fixed schedule since any
schedule that is consistent with the DAG is valid.

Internal determinism has many benefits. In addition to leading
to external determinism [37] it implies a sequential semantics—i.e.,
considering any sequential traversal of the dependence DAG is suf-
ficient for analyzing the correctness of the code. This in turn leads
to many advantages including ease of reasoning about the code,
ease of verifying correctness, ease of debugging, ease of defin-
ing invariants, ease of defining good coverage for testing, and ease
of formally, informally and experimentally reasoning about perfor-
mance [3–5, 11, 19, 20, 28, 36, 45]. Two primary concerns for inter-
nal determinism, however, are that it may restrict programmers to
a style that (i) is complicated to program, unnatural, or too special-
purpose and (ii) leads to slower, less scalable programs than less re-
strictive forms of determinism. Indeed, prior work advocating less
restrictive forms of determinism has cited these concerns, particu-
larly the latter concern [25].

This paper seeks to address these two concerns via a study of a
set of benchmark problems. The problems are selected to cover a
reasonably broad set of applications including problems involving
sorting, graphs, geometry, graphics and string processing. Our main
contribution is to demonstrate that for this wide body of problems,
there exist fast and scalable internally deterministic algorithms,
and moreover that these algorithms are natural to reason about
and not complicated to code.

Our approach for implementing internal determinism for these
benchmarks is to use nested parallel programs in which concurrent
operations on shared state are required to commute [42, 44] in their
semantics and be linearizable [27] in their implementation. Many of
the algorithms we implement use standard algorithmic techniques
based on nested data parallelism where the only shared state across
concurrent operations is read-only (e.g., divide-and-conquer, map,
reduce, and scan) [6]. However, a key aspect to several of our
algorithms is the use of non-trivial commutative operations on
shared state. The notion of commutativity has a long history, dating
back at least to its use in analyzing when database transactions
can safely overlap in time [44]. A seminal paper by Steele [42]
discusses commutativity in the context of deterministic nested-
parallel programs, showing that when applied to reads and writes
on memory locations, commutativity of concurrent operations is
sufficient to guarantee determinism.

Although there has been significant work on commutativity,
there has been little work on the efficacy or efficiency of using non-
trivial commutativity in the design of deterministic parallel algo-
rithms. Much of the prior work on commutativity focuses on en-
forcing commutativity assuming the program was already written
within the paradigm (e.g., using type systems [12]), automatically
parallelizing sequential programs based on the commutativity of
operations [39, 40, 43], or using commutativity to relax the con-

straints in transactional systems [26, 30], an approach that does
not guarantee determinism. In contrast, this paper identifies use-
ful applications of non-trivial commutativity that can be used in the
design of internally deterministic algorithms.

We describe, for example, an approach we refer to as determin-
istic reservations for parallelizing certain greedy algorithms. In the
approach the user implements a loop with potential loop carried
dependencies by splitting each iteration into reserve and commit
phases. The loop is then processed in rounds in which each round
takes a prefix of the unprocessed iterates applying the reserve phase
in parallel and then the commit phase in parallel. Some iterates can
fail during the commit due to conflicts with earlier iterates and need
to be retried in the next round, but as long as the operations com-
mute within the reserve and commit phases and the prefix size is
selected deterministically, the computation is internally determin-
istic (the same iterates always fail).

We describe algorithms for the benchmark problems using these
approaches and present performance results for our Cilk++ [31]
implementations on a 32-core machine. Perhaps surprisingly, for
all problems, our internally deterministic algorithms achieve good
speedup and good performance even relative to prior nondetermin-
istic and externally deterministic solutions, implying that the per-
formance penalty of internal determinism is quite low. We achieve
speedups of up to 31.6 on 32 cores with 2-way hyperthreading (for
sorting). Almost all our speedups are above 16. Compared to what
we believe are quite good sequential implementations we range
from being slightly faster on one core (sorting) to about a factor of
2 slower (spanning forest). All of our algorithms are quite concise
(20-500 lines of code), and we believe they are “natural” to reason
about (understandable, not complicated, not special purpose). The
paper presents code for two of the algorithms as illustrative exam-
ples; code for all of the algorithms (as well as complete descriptions
of the benchmarks) can be found at www.cs.cmu.edu/~pbbs. We
believe that this combination of performance and understandability
provides significant evidence that internal determinism is a sweet
spot for a broad range of computational problems.

The paper is organized as follows. Section 2 defines key terms
and our programming model. Section 3 presents useful commuta-
tive building blocks. Section 4 describes the benchmark problems
studied. Section 5 presents our approaches and algorithms. Our ex-
perimental study is in Section 6, and conclusions in Section 7.

2. Programming Model
This paper focuses on achieving internally deterministic behav-
ior in “nested-parallel” programs through “commutative” and “lin-
earizable” operations. Each of these terms limits the programs per-
mitted by the programming model, but as Section 5 exhibits, the
model remains expressive. This section defines each of these terms.

Nested parallelism. Nested-parallel computations achieve paral-
lelism through the nested instantiation of fork-join constructs, such
as parallel loops, parallel map, parbegin/parend, parallel regions,
and spawn/sync. More formally, nested parallel computations can
be defined inductively in terms of the composition of sequential
and parallel components. At the base case a strand is a sequential
computation. A task is then a sequential composition of strands and
parallel blocks, where a parallel block is a parallel composition of
tasks starting with a fork and ending with a join. Figure 1 shows
an example of a nested-parallel program using a syntax similar to
Dijkstra’s parbegin [21].

A nested parallel computation can be modeled (a posteriori)
as a series-parallel control-flow DAG over the operations of the
computation: the tasks in a parallel block are composed in parallel,
and the operations within a strand as well as the strands and parallel
blocks of a task are composed in series in the order they are



1. x := 0
2. in parallel do
3. { r3 := AtomicAdd(x, 1) }
4. { r4 := AtomicAdd(x, 10)
5. in parallel do
6. { r6 := AtomicAdd(x, 100) }
7. { r7 := AtomicAdd(x, 1000) }

}
8. return x

Figure 1. A sample nested-parallel program. Here, the in parallel
keyword means that the following two {. . .} blocks of code may
execute in parallel. AtomicAdd(x, v) atomically updates x to x :=
x+ v and returns the new value of x.

executed. We assume all operations take a state and return a value
and a new state (any arguments are part of the operation). Nodes
in the control-flow DAG are labeled by their associated operation
(including arguments, but not return values or states). We say that
an operation (node) u precedes v if there is a directed path from
u to v in the DAG. If there is no directed path in either direction
between u and v, then u and v are logically parallel, meaning that
they may be executed in parallel.

The support of nested parallelism dates back at least to Dijk-
stra’s parbegin-parend construct. Many parallel languages support
nested parallelism including NESL, Cilk, the Java fork-join frame-
work, OpenMP, the TBB, and TPL. Although not appropriate for
certain types of parallelism, e.g., pipeline parallelism, nested paral-
lelism has many theoretical and practical advantages over more un-
structured forms of parallelism, including simple schedulers for dy-
namically allocating tasks to cores, compositional analysis of work
and span, and good space and cache behavior (e.g., [1, 6, 8, 10]).

Languages with nested parallelism rely on runtime schedulers
to assign subcomputations to cores. Whereas these runtime sched-
ulers are inherently nondeterministic to handle load balancing and
changes in available resources, our goal is to guarantee that the pro-
gram nevertheless behaves deterministically.

Internal determinism. We adopt a strong notion of determinism
here, often called internal determinism [35]. Not only must the
output of the program be deterministic, but all intermediate values
returned from operations must also be deterministic. We note that
this does not preclude the use of pseudorandom numbers, where
one can use, for example, the approach of Leiserson et al. [33] to
generate deterministic pseudorandom numbers in parallel from a
single seed, which can be part of the input.

This paper defines determinism with respect to abstract opera-
tions and abstract state, not with respect to machine instructions and
memory state. Nevertheless, the definition supplied here is general
and applies to both cases. The difference hinges on the notion of
“equivalence.” Given a definition of equivalent operations, states,
and values, we define internal determinism as follows.

For a (completed) computation its trace is the final state along
with the control-flow DAG on which operation nodes are (further)
annotated with the values returned (if any). Figure 2 shows two
traces corresponding to executions of the program shown in Fig-
ure 1. Two control-flow DAGs are equivalent if they have the same
graph structure and corresponding nodes are labeled with equiva-
lent operations. Two traces are equivalent traces if they have equiv-
alent final states, equivalent control-flow DAGs, and corresponding
DAG nodes are annotated with equivalent return values.

Definition 1. A program is internally deterministic if for any fixed
input I , all possible executions with input I result in equivalent
traces.
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Figure 2. Two possible traces for the program in Figure 1. The
diamonds, squares, and circles denote forks, joins, and data opera-
tions, respectively. Nodes are numbered by line number, as a short
hand for operations such as AtomicAdd(x, 1). The left trace corre-
sponds to the interleaving/schedule 1, 2, 3, 4, 5, 6, 7, 8, whereas the
right trace corresponds to 1, 2, 4, 5, 7, 6, 3, 8. Because the interme-
diate return values differ, the program is not internally determinis-
tic. It is, however, externally deterministic as the output is always
the same. If AtomicAdd did not return a value, however, then the
program would be internally deterministic.

Note that since the parallelism is dynamic, a nondeterministic
program may result in dramatically different DAGs. Because all de-
cisions in a computation are based only on the result of operations
performed, however, if operations return equivalent results despite
different schedulings, then the structure of the DAG is guaranteed
to remain the same.

For primitive types like integers, it is clear what equivalence
means. When working with objects and dynamic memory alloca-
tion, however, a formal definition of equivalent objects and states
becomes more complicated, and not within the scope of this paper.
Informally, when we say that states or values are equivalent, we
mean semantically equivalent, i.e., that no sequence of valid oper-
ations can distinguish between them (see, e.g., [26]).

Commutativity. Internally deterministic programs are a subset of
parallel programs, and thus programming methodologies that yield
internal determinism restrict a program’s behaviors. The method-
ology we adopt in this paper is to require all logically parallel ac-
cesses of shared objects to use operations that commute. The fact
that this restriction yields internally deterministic programs is ob-
served in many works, see for example [15, 40, 42] among others.

We adopt Steele’s notation and definition of commutativity [42].
We use f(S) → S′ ⇒ v to denote that when the operation f is
executed (without any concurrent operations) starting from system
(object) state S, the system transitions to state S′ and f returns the
value v. To simplify notation, operations not returning values are
viewed as returning v = ∅.

Definition 2. Two operations f and g commute with respect to
state S if the order in which they are performed does not matter.
That is, if

f(S)→ Sf ⇒ vf

g(Sf )→ Sfg ⇒ vg

and

g(S)→ S′g ⇒ v′g

f(S′g)→ S′gf ⇒ v′f



then f and g commute with respect to S if and only if Sfg = S′gf ,
vf = v′f , and vg = v′g , where “=” here denotes equivalence.
(Note that there is no requirement that Sf = S′g .)

Moreover, we say that two operations commute if they com-
mute with respect to all valid states S. It is possible to relax this
definition (e.g., [26, 44]), but we found this definition sufficient for
our purposes.

Linearizability. Commutativity is not a sufficient condition for
deterministic behavior, as commutativity alone does not guarantee
that the implementation of the operations work correctly when their
instructions are interleaved in time. To guarantee safety of concur-
rent execution of operations we use the standard definition of lin-
earizability [27], which enforces atomicity of the operations. In our
setting, operations are concurrent if and only if they are logically
parallel. Thus, linearizability guarantees that there is a total order
(or history), H , of the annotated operations in a trace T such that
H is a legal sequential execution of those operations, starting from
the initial state. That is, (i) H is a valid scheduling of T ’s control-
flow DAG, and (ii) each annotated operation in T remains legal
(including its return value) when executed atomically in the order
of H . We note that linearizability is a property of the implementa-
tion and not the semantics of the operation (e.g., two insertions into
a dictionary might semantically commute, but an implementation
might fail when interleaved). One way to guarantee linearizability
is to use a lock around all commuting operations, but this is ineffi-
cient. In this paper we use only non-blocking techniques to achieve
linearizability among commuting operations. We however do not
guarantee that all commuting operations are linearizable, just that
the logically parallel ones are.

Summary. The model we will use for internally deterministic
behavior is summarized by the following theorem.

Theorem 1. Let P be a nested-parallel program. If for all inputs,
all logically parallel operations commute and are linearizable, then
P is internally deterministic.

Proof. (sketch) Consider any fixed input I and any fixed (com-
pleted) execution of P with input I . Let G (T ) be the resulting
control-flow DAG (trace, respectively), and let H be its lineariz-
ability history. We will show that T is equivalent to a canonical
trace T ∗ obtained by executing P with input I using only a single
core. Let G∗ and H∗ be the control-flow DAG and linearizability
history for T ∗. We show by induction on the length of H∗ that (i)
G and G∗ are equivalent and (ii) H permuted to match the order in
H∗ of equivalent nodes is also a linearizability history for T , im-
plying equivalent return values. We construct such a permutation,
H ′, inductively, with H ′ = H initially. Assume inductively that
(i) the subgraph of G∗ corresponding to the nodes in H∗[1..i] has
an equivalent subgraph in G, and (ii) H ′ is a linearizability history
for T such that H ′[1..i] and H∗[1..i] are equivalent ([j..k] denotes
subsequence). Consider i+ 1, and let σ∗ be the i+ 1’st annotated
node in H∗. It follows inductively that there is a node σ in T with
equivalent parent(s) and an equivalent operation, say the jth node
in H ′. If j = i + 1, we are done, so assume j > i + 1. None of
the nodes in H ′[i + 1..j − 1] can precede or be preceded by σ,
so σ must commute with each such node. Thus, σ can be pairwise
swapped up to position i+ 1 in H ′ while preserving a linearizabil-
ity history, establishing both inductive invariants. The argument is
readily extended to show the equivalence of the final states by aug-
menting each execution with operations that read the final state.
The theorem follows.

Our approach is similar to previous models for enforcing deter-
ministic behavior [15, 42] except that in Steele [42] commutativity

is defined in terms of memory operations and memory state, and in
Cheng et al. [15] commutativity is defined with respect to critical
sections and memory state. Here we define commutativity in terms
of linearizable abstract operations and abstract state.

3. Commutative Building Blocks
Achieving deterministic programs through commutativity requires
some level of (object or operation) abstraction. Relying solely on
memory operations is doomed to fail for general purpose program-
ming. For example requiring a fixed memory location for objects al-
located in the heap would severely complicate programs and/or in-
hibit parallelism, possibly requiring all data to be preallocated. In-
stead, this section defines some useful higher-level operations that
we use as commutative operations in many of our algorithms. They
are all defined over abstract data types supporting a fixed set of
operations. We also describe non-blocking linearizable implemen-
tations of each operation. These implementations do not commute
at the level of single memory instructions and hence the abstraction
is important.

Priority write. Our most basic data type is a memory cell that
holds a value and supports a priority write and a read. The priority
write on a cell x, denoted by x.pwrite(v) updates x to be the
maximum of the old value of x and a new value v. It does not return
any value. x.read() is just a standard read of the cell x returning
its value. We often use priority write to select a deterministic
winner among parallel choices, e.g., claiming a next-step neighbor
in breadth first search (Section 5.3).

Any two priority writes x.pwrite(v1) and x.pwrite(v2) com-
mute, in accordance with Definition 2, because (i) there are no re-
turn values, and (ii) the final value of x is the maximum among its
original value, v1, and v2, regardless of which order these opera-
tions execute. A priority write and a read do not commute since the
priority write can change the value at the location. We implement
non-blocking and linearizable priority writes using a compare and
swap. With this implementation the machine primitives themselves
do not commute.

Priority reserve. In our “deterministic reservation” approach de-
scribed later in Section 5, multiple program loop iterates attempt
to reserve the same object in parallel, and later the winner op-
erates on the reserved object. For deterministic reservations we
use a data type that supports three operations, a priority reserve
(x.reserve(p)), a check (x.check(p)), and a check-and-release
(x.checkR(p)), where p is a priority. As with a priority write, a
higher priority value overwrites a lower priority and hence the high-
est priority will “reserve” the location. The one difference is that we
require a unique priority tag ⊥ to denote when the location is cur-
rently unreserved. The priority ⊥ has the lowest priority, and it is
invalid to make a pwrite call with p = ⊥. As with pwrite, any
number of reserves commute, and we implement a linearizable
non-blocking version using compare and swap.

The x.checkR(p) call requires p 6= ⊥. If the current value at
location x has priority p, then the reservation is released (i.e., the
value⊥ is written to x), and TRUE is returned to indicate that p was
the highest priority reservation on x. If the current priority is not p,
then the state does not change and FALSE is returned. Operations
x.checkR(p1) and x.checkR(p2) commute if and only if p1 6= p2.
A check is the same as a checkR without the release and commutes
in the same way. A priority reserve and either form of check do not
commute.

Our algorithms ensure that for any given location, (i) priority
reserves are not called logically in parallel with either form of
check, and (ii) all logically parallel operations use distinct prior-
ities. Thus, the commutativity and resulting internal determinism
extend to those algorithms.



Dynamic map. The purpose of our dynamic map is to incre-
mentally insert keyed elements and, once finished inserting, to re-
turn an array containing a pseudorandom permutation of these el-
ements, omitting duplicates. A dynamic map supports two opera-
tions: M.insert(x), which inserts keyed element x into the map
M without returning any value, andM.elements(), which returns
an arbitrary, but deterministic, permutation of all the elements in
the map M . The map removes duplicate keys on insert: if ele-
ments y and x have the same key and y is already in the map when
M.insert(x) is called, one of the elements (chosen deterministi-
cally based on a user specified priority) is discarded.

We implement our dynamic map using a history-independent
hash table [7]. In a history-independent data structure the final lay-
out does not depend on the operation order. In particular, the key of
each element is treated as a priority, and the hash table is equiva-
lent to one in which all insertions were performed sequentially in a
nonincreasing priority order using linear probing. Elements are in-
serted by first hashing the key and going to the corresponding hash
location, then scanning consecutive hash-table slots until finding ei-
ther an empty slot or a slot containing and equal- or lower-priority
element. If empty, the new element is inserted and the operation
completes. If the slot is occupied by an equal-priority element, ei-
ther the new or old element is discarded (deterministically based
on priority) and the operation completes. If the slot is occupied
by a lower-priority element, the higher-priority element is put in
that slot (using compare and swaps to provide linearizability), and
the lower-priority element is evicted. The linear probe continues to
find a slot for the lower-priority element. An elements call sim-
ply filters the underlying array (using the parallel filter operation
discussed in Section 5), finding all the nonempty slots and placing
them in order in a return array. Our implementation is non-blocking
requiring no locks.

To see that two inserts commute, it is easy to show induc-
tively that after each insert, the hash table is identical to one
in which those elements present were inserted in priority order.
This property implies that the ordering between two insertions does
not matter. The M.insert(x) operation does not commute with
M.elements() operation since for some states of S, x is not in M
and will affect the result of elements.

Disjoint sets. Our spanning-forest algorithms rely on a structure
for maintaining a collection of disjoint sets corresponding to con-
nected components. Each set is associated with a unique element
acting as the identifier for the set. A disjoint-set data type supports
two operations: a find and a link. For an instance F , the F.find(x)
operation returns the set identifier for the set containing x. The
F.link(S, x) operation requires that S be a set identifier and the
set containing x be disjoint from the set S. It logically unions the
set S with the set containing x such that the identifier for the result-
ing unioned set is the identifier of the set containing x. Here, x and
S denote references or pointers to elements in the sets.

We implement an instance F of the disjoint set data type as a
collection of trees with parent pointers, where the root of each tree
acts as a unique identifier for the set [17]. A F.find(x) operation
simply follows parent pointers up the tree and returns the root. It
may also perform path compression [17], which points nodes along
the query-to-root path directly to the root, thereby accelerating
future queries. A link(S, x) operation is implemented by pointing
S to the root-node of the set containing x.

Two find operations commute with each other as they cause
no semantic modifications—i.e. any changes to the pointer struc-
ture caused by path compression cannot be discerned by future
operations on F . Two link operations commute with each other
as long as they do not share the same first argument. That is
to say, F.link(S1, x1) and F.link(S2, x2) commute as long as
S1 6= S2; having x1 and x2 be equal or from the same set is al-

lowed, as is having x1 in set S2 or x2 in set S1. The link(S1, x1)
and find(x2) only commute if x1 = x2.

We now consider linearizability. Even with path compression,
find operations are linearizable (and non-blocking) since there is
only one possible update to each pointer (the a priori root of the
tree). This requires no compare and swap or any other special mem-
ory operations. Logically parallel link operations with distinct first
arguments, and no cycles among the linked sets, are also lineariz-
able and non-blocking with no special memory operations since
they only require updating a pointer which is not shared by any
other logically parallel operation. In our implementation we do not
guarantee that finds and links are linearizable. Hence, in our al-
gorithms that use disjoint sets, finds are never logically parallel
with links: they alternate phases of only finds and only links.

We note that we use an asymmetric link operation instead of
the standard symmetric union. This is because union does not
commute in our definition which requires two operations to com-
mute for all start states. In a more relaxed definition of commuta-
tivity, union can be made to commute [30].

4. Benchmark Problems
For testing the utility of nested-parallel internally deterministic al-
gorithms we use a set of problem-based benchmarks. These bench-
marks are defined in terms of the problem they solve instead of any
particular code or algorithm to solve the problem. We feel that this
is important for our purposes since it might be that very different
algorithmic approaches are suited for a deterministic algorithm vs.
a nondeterministic algorithm. The benchmark suite is selected to
cover a reasonable collection of fundamental problems. The focus,
however, is on problems involving unstructured data since there is
already very good coverage for such benchmarks for linear algebra
and typically deterministic algorithms are much simpler for these
problems. The problems are selected to be simple enough to allow
reasonably concise implementations, but interesting enough to be
non-trivial. For all problems we use a variety of different inputs and
avoid just random inputs. Here we define the problems.
Comparison Sort: For a sequence S and comparison function <
defining a total order on elements of S, return the values of S sorted
by <. Sorting is a fundamental problem and a subroutine in many
algorithms. The benchmark code must work with any element type
and comparison function.
Remove Duplicates: For a sequence of elements of type t, a hash
function h : t→ int, and comparison function f , return a sequence
in which any duplicates (equal valued elements) are removed. This
is an example of a dictionary-style operation that can use hashing.
Breadth First Search: For a connected undirected graph G, and
source vertex s, return a breadth-first-search (BFS) tree, rooted at
s, of the vertices in G.
Spanning Forest: For an undirected graph G = (V,E), return
edges F ⊂ E, such that for each connected component Ci =
(Vi, Ei) in G, a spanning tree Ti (|Ti| = |Vi|−1) ofCi is contained
in F. Furthermore, |F | =

P
Ci⊂G(|Vi| − 1).

Minimum Spanning Forest: For an undirected graph G =
(V,E) with weights w : E → <, return a spanning forest of
minimum total weight.
Maximal Independent Set: For a connected undirected graph
G = (V,E), returnU ⊂ V such that no vertices inU are neighbors
and all vertices in V \U have a neighbor in U . This is an important
subroutine in many parallel algorithms because it can be used to
identify a set of vertices that can be operated on deterministically
in parallel (due to disjoint edge sets).
Triangle Ray Intersect: For a set of triangles T and rays R in
three dimensions, return the first triangle each ray intersects, if any.



Problem D&C Reduce Scan Filter DR CL
Comparison Sort yes yes
Remove Duplicates yes DM
Breadth First Search yes yes PW
Spanning Forest yes yes DS
Min Spanning Forest sub yes yes DS
Max Independent Set yes yes yes
Triangle Ray Intersect yes yes yes
Suffix Array sub yes yes yes
Delaunay Triangulation sub yes sub yes yes
Delaunay Refine yes yes yes DM
N-body yes yes yes
K-Nearest Neighbors sub yes

Table 1. Techniques used in our algorithms for each of the bench-
marks. D&C indicates divide-and-conquer; Reduce, Scan and Fil-
ter are standard collection operations; DR indicates deterministic
reservations; and CL indicates the use of a non-trivial commutative
and linearizable operation other than reservations: dynamic map
(DM), disjoint sets (DS), or priority write (PW). sub indicates that
it is not used directly, but inside a subroutine, e.g., inside a sort. See
Section 5 for further details.

This is a common operation in graphics and is the most widely used
special case of ray casting.
Suffix Array: For a string S of n characters return an equal length
integer array A that specifies the sorted order of the suffixes of
S. This is an important operation used in many applications in
computational biology, compression, and string processing.
Delaunay Triangulation: For a set of n points in two dimen-
sions, return a triangulation such that no point is contained in the
circumcircle of any triangle in the triangulation [18]. Delaunay tri-
angulations are likely the most widely used partitioning of space in
two and three dimensions and used in many CAD applications.
Delaunay Refine: For a Delaunay Triangulation on a set of n
points, and an angle α, add new points such that in the resulting
Delaunay Triangulation, no triangle has an angle less than α.
N-body: For a set of n point sources in three dimensions, each
point p with coordinate vector ~p and a mass mp, return the force
induced on each one by the others based on the Coulomb force
~Fp =

P
q∈P,q 6=p mqmp(~q − ~p)/||~q − ~p||3. The N-body problem

is important in protein folding, astrophysics, and slight generaliza-
tions are now often used for solving PDEs.
K-Nearest Neighbors: For n points in two or three dimensions,
and a parameter k, return for each point its k nearest neighbors
(euclidean distance) among all the other points. The problem is
fundamental in data analysis and computational geometry.

5. Internally Deterministic Parallel Algorithms
In this section we describe the approaches we used when design-
ing our internally deterministic parallel algorithms and outline the
resulting algorithms for each of the benchmarks. Many of the ap-
proaches used are standard, but we introduce what we believe to be
a new approach for greedy algorithms based on deterministic reser-
vations. This approach plays a key role in our implementation of
five of the problems. We also make use of our commuting and lin-
earizable implementations of various operations for five problems.
Table 1 summarizes what approaches/techniques are used in which
of our algorithms.

5.1 Nested Data Parallelism and Collection Operations
The most common technique throughout the benchmark implemen-
tations is the use of nested data parallelism. This technique is ap-

plied in a reasonably standard way, particularly in the use of fork-
join and parallel loops (with arbitrary nesting) in conjunction with
parallel operations on collections. For the operations on collections
we developed our own library of operations on sequences. We make
heavy use of divide and conquer. In the divide-and-conquer algo-
rithms we almost always use parallelism within the divide step (to
partition the input data), and/or the merge step (to join the results),
typically using the collection operations in our sequence library.

The three collection operations reduce, scan, and filter are
used throughout our algorithms. As is standard, reduce takes a
sequence S and a binary associative function f and returns the
“sum” of elements with respect to f , while scan (prefix sum) takes
a sequence S and a function f and returns a sequence of equal
length with each element containing the sum with respect to f
of all preceding elements in S. Our implementations of reduce
and scan are deterministic even if f is not associative—e.g., with
floating point addition. The filter operation takes a sequence S
and a function f returning a boolean and returns a new sequence
containing only the elements e for which f(e) is true, in the same
order as in S. Filter uses a scan in its implementation.

Reduce is used to calculate various “sums”: e.g., to calculate the
bounding box (maximum and minimum in each coordinate) of a set
of points. Filter is used in most of our algorithms. In the divide-and-
conquer algorithms it is typically used to divide the input into parts
based on some condition. In the other algorithms it is used to filter
out elements that have completed or do not need to be considered.
It plays a key role in deterministic reservations. Scan is used in
a variety of ways. In the sorting algorithm it is used to determine
offsets for the sample sort buckets, in the suffix array algorithm it is
used to give distinct elements unique labels, and in the breadth first
search algorithm it is used to determine the positions in the output
array to place distinct neighbor arrays.

5.2 Deterministic Reservations
Several of our algorithms (maximal independent set, spanning for-
est, minimum spanning forest, Delaunay triangulation, and Delau-
nay refine) are based on a greedy sequential algorithm that pro-
cesses elements (e.g., vertices) in linear order. These can be imple-
mented using speculative execution on a sequential loop that iter-
ates over the elements in the greedy order.

Various studies have suggested both compiler [39, 40] and run-
time techniques [25, 43] to automate the process of simulating in
parallel the sequential execution of such a loop. These approaches
rely on recognizing at compile and/or run time when operations
in the loop iterates commute and allowing parallel execution when
they do. Often the programmer can specify what operations com-
mute. We are reasonably sure that the compiler-only techniques
would not work for our benchmark problems because the conflicts
are highly data dependent and any conservative estimates allow-
ing for all possible conflicts would serialize the loop. The run-
time techniques typically rely on approaches similar to software
transactional memory: the implementation executes the iterations
in parallel or out of order but only commits any updates after deter-
mining that there are no conflicts with earlier iterations. As with
software transactions, the software approach is expensive, espe-
cially if required to maintain strict sequential order. In fact in prac-
tice the suggested approaches typically relax the total order con-
straint by requiring only a partial order [39], potentially leading
to nondeterminism. A second problem with the software approach
is that it makes it very hard for the algorithm designer to analyze
efficiency—it is possible that subtle differences in the under-the-
hood conflict resolution could radically change which iterates can
run in parallel.

We present an approach, called deterministic reservations, that
gives more control to the algorithm designer and fits strictly within
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Figure 3. A generic example of deterministic reservations. Top
and bottom depict the array of iterates during consecutive rounds.
In each round, a prefix of some specified size is selected. All of
these prefix iterates perform the reserve component. Then they
all perform the commit component. The dark regions in the top
array represent iterates that successfully commit. All uncommitted
iterates (shown in white) are packed towards the right, as shown in
the bottom array. The next round then begins by selecting a prefix
of the same size on the bottom array.

the nested-parallel framework (needing neither special compiler
nor runtime support). In this approach the algorithm designer con-
trols exactly on what data the conflicts occur and these conflicts
are deterministic for a given input. The generic greedy algorithm
for deterministic reservations works as follows, illustrated in Fig-
ure 3. It is given a sequence of iterates (e.g., the integers from 0 to
n− 1) and proceeds in rounds until no iterates remain. Each round
takes any prefix of the remaining unprocessed iterates, and consists
of two phases that are each parallel loops over the prefix, followed
by some bookkeeping to update the sequence of remaining iterates.
The first phase executes a reserve component on each iterate, using
a priority reserve (reserve) with the iterate priority, in order to re-
serve access to data that might interfere (involve non-commuting or
non-linearizable operations) with other iterates. The second phase
executes a commit component on each iterate, using a check to
see if the reservations succeeded, and if the required reservations
succeed then the iterate is processed, otherwise it is not. Typically
updates to shared state (at the abstraction level available to the pro-
grammer) are only made if successful. After running the commit
phase, the processed iterates are removed. In our implementation
the unprocessed iterates are kept in a contiguous array ordered by
their priority. Selecting a prefix can therefore just use a prefix of the
array, and removing processed iterates can be implemented with a
filter over the boolean results of the second phase.

The specifics of the reserve and commit components depend on
the application. The work done by the iterate can be split across the
two components. We have found, however, that in the unstructured
problems in the benchmarks just determining what data might inter-
fere involves most of the work. Therefore the majority of the work
ends up in the reserve component. In most cases all reservations
are required to succeed, but we have encountered cases in which
only a subset need to succeed (e.g., our minimum spanning-forest
code reserves both endpoints of an edge but only requires that one
succeeds).

We note that the generic approach can select any prefix size
including a single iterate or all the iterates. There is a trade off,
however between the two extremes. If too many iterates are se-
lected for the prefix, then many iterates can fail. This not only re-
quires repeated effort for processing those iterates, but can also
cause high-contention on the reservation slots. On the other hand
if too few iterates are selected then there might be insufficient par-
allelism. Clearly the amount of contention depends on the specific
algorithms and likely also on the input data.

As long as the prefix size is selected deterministically and all op-
erations commute and are linearizable within the reserve phase and
separately within the commit phase, a program will be internally
deterministic. This means the algorithm designer only needs to an-
alyze commutativity/linearizability within each phase. In our code
we have implemented a function speculative for that takes four
arguments: a structure that implements the reserve and commit
components (both taking an index as an argument), a start index,
an end index, and a prefix size.

5.3 Algorithms
We now describe each of the algorithms we use to implement the
benchmarks discussed in Section 4. In all cases we considered a
variety of algorithms and selected the one we felt would perform
the best. In many cases we arrived at the algorithm discussed after
trying different algorithms. In all cases the algorithms are either
motivated by or directly use results of many years of research on
parallel algorithm design by many researchers. Due to limitations
of space we only very briefly describe any algorithms that mostly
use previous ideas.
Comparison Sort: We use a low-depth cache-efficient sample
sort [9]. The algorithm (1) partitions the input into

√
n blocks,

(2) recursively sorts each block, (3) selects a global sample of size√
n logn by sampling across the blocks, (4) sorts the sample, (5)

buckets each of the blocks based on the sample, (6) transposes the
keys so keys from different blocks going to the same bucket are
adjacent, and (7) recursively sorts within the buckets. The transpose
uses a cache-efficient block-transpose routine. When the input is
small enough, quicksort is used. The algorithm is purely nested
parallel. There is nesting of the parallelism (divide-and-conquer)
in the overall structure, in the merge used for bucketing blocks, in
the transpose, and in the quicksort.
Remove Duplicates: We use a parallel loop to concurrently
insert the elements into the dynamic map described in section 3.
This data structure already removes all duplicates internally and
returns the distinct elements with a call to elements (which in-
ternally uses a filter). The ordering returned by the routine is
deterministic but does not correspond to the input ordering in any
natural way and different hash functions will give different order-
ings. We set the hash table size to be twice the size of the input.
Breadth First Search: We use a level-ordered traversal of the
graph that guarantees the same BFS tree as the standard sequential
queue-based algorithm [17]. In level-order traversal each vertex
u adds each of its unvisited neighbors v to the next frontier and
makes u the parent of v in the BFS tree. In standard parallel
implementations of BFS [32, 39] each level is processed in parallel
and nondeterminism arises because vertices at one level might
share a vertex v at the next level. These vertices will attempt to
add v to the next frontier concurrently. By using a compare-and-
swap or similar operation, it is easy to ensure that a vertex is
only added once. However, which vertex adds v depends on the
schedule, resulting in internal nondeterminism in the BFS code and
external nondeterminism in the resulting BFS tree.

We avoid this problem by using a priority write. The vertices
in the frontier are prioritized by their position in the array and we
process each level in two rounds. In the first round each vertex in
the frontier writes its priority to all neighbors that have not been
visited in previous rounds. In the second round each vertex v in
the frontier reads from each neighbor u the priority. If the priority
of u is v (v is the highest priority neighbor in the frontier), then
we make v the parent of u and add u to the next frontier. The
neighbors are added to the next frontier in the priority order of the
current frontier. This uses a scan to open enough space for each
neighbor list, and maintains the same ordering on every frontier as
the sequential queue-based algorithm maintains.



struct STStep {
int u; int v;
edge *E; res *R; disjointSet F;
STStep(edge* _E, disjointSet _F, res* _R)

: E(_E), R(_R), F(_F) {}

bool reserve(int i) {
u = F.find(E[i].u);
v = F.find(E[i].v);
if (u == v) return 0;
if (u > v) swap(u,v);
R[v].reserve(i);
return 1;}

bool commit(int i) {
if (R[v].check(i)) { F.link(v, u); return 1;}
else return 0; }

};

void ST(res* R, edge* E, int m, int n, int psize) {
disjointSet F(n);
speculative_for(STStep(E, F, R), 0, m, psize);

}

Figure 4. C++ code for spanning forest using determinis-
tic reservations (with its operations reserve, check, and
speculative for), where m = |E| and n = |V |.

Spanning Forest: Sequentially a spanning forest can be gener-
ated by greedily processing the edges in an arbitrary order using a
disjoint sets data structure. When an edge is processed if the two
endpoints are in the same component (which can be checked with
find) it is removed, otherwise the edge is added to the spanning
forest and the components are joined (with union). This algorithm
can be run in parallel using deterministic reservations prioritized
by the edge ordering and will return the exact same spanning for-
est as the sequential algorithm. The idea is simply to reserve both
endpoints of an edge and check that both reservations succeed in
the commit component. Indeed this is how we implement Mini-
mum Spanning Forest, after sorting the edges. However there is an
optimization that can be made with spanning forests that involves
only requiring one of the reservations to succeed. This increases
the probability a commit will succeed and reduces the cost. This
approach returns a different forest than the sequential version but is
internally deterministic for a fixed schedule of prefix sizes.

The C++ code is given in Figure 4. For an iterate i correspond-
ing to the edge E[i] the reserve component does a find on each
endpoint (as in the sequential algorithm) returning u and v (w.l.o.g.,
assume u ≤ v). If u = v, the edge is within a component and can
be dropped returning 0 (false)1, otherwise the algorithm reserves v
with the index i (R[v].reserve(i)). The commit component for in-
dex i performs a R[v].check(i) to see if its reservation succeeded.
If it has, it links v to u and otherwise the commit fails. At the end of
the algorithm the edges E[i] in the spanning tree can be identified
as those where R[i] 6= ⊥. The only difference from the sequen-
tial algorithm is that after determining that an edge goes between
components instead of doing the union immediately it reserves one
of the two sides. It later comes back to check that the reservation
succeeded and if so does the union (link).

We note that in a round the reservation guarantees that only one
edge (the highest priority) will link a vertex v to another vertex.
This is the condition required in Section 3 for commutativity of
link. Also because the link and find are in different phases
they are never logically parallel, as required. Finally we note that

1 If false is returned by reserve() then the iterate is dropped without
proceeding to the commit.

enum FlType {LIVE, IN, OUT};

struct MISStep {
FlType flag; vertex *V;
MISStep(char* _F, vertex* _V) : flag(_F), V(_V) {}

bool reserve(int i) {
int d = V[i].degree;
flag = IN;
for (int j = 0; j < d; j++) {

int ngh = V[i].Neighbors[j];
if (ngh < i) {

if (Fl[ngh] == IN) { flag = OUT; return 1;}
else if (Fl[ngh] == LIVE) flag = LIVE; } }

return 1; }

bool commit(int i) { return (Fl[i] = flag) != LIVE;}
};

void MIS(FlType* Fl, vertex* V, int n, int psize)
speculative_for(MISStep(Fl, V), 0, n, psize);

}

Figure 5. C++ code for maximal independent set using determin-
istic reservations.

because we link higher to lower vertex numbers the algorithm will
never create a cycle. In this algorithm our code sets psize, the size
of the prefix, to be .02|E| and we have observed that on our test
graphs less than 10% of the reservations fail.

Minimum Spanning Forest: We use a parallel variant of Kruskal’s
algorithm. The idea of Kruskal’s algorithm is to sort the edges and
then add them one-by-one using disjoint sets as in the spanning
forest code. We can therefore use deterministic reservations prior-
itized by the sorted order to insert the edges. Unlike the spanning
forest described above, however, we need to reserve both endpoints
of an edge to guarantee the edges are inserted in “sequential” order.
However, during the commit component we only need that one of
the two endpoint succeeds because to commute link only requires
that one of the two arguments is unique. If v succeeds, for example,
then we can use link(v, u). Note this is still internally determin-
istic because which endpoints succeed is deterministic. In our code
we also make a further optimization: We sort only the smallest k
edges (k = min(|E|, 4|V |/3) in our experiments) and run MSF
on those, so that the remaining edges can be filtered out avoiding
the need to sort them all. The sequential algorithm to which we
compare our code does the same optimization.

Maximal Independent Set: Sequentially the maximal indepen-
dent set can easily be calculated using the greedy method: loop over
the vertices in an arbitrary order and for each vertex if no neighbors
belong in the set add it to the set. There is a particularly simple way
to implement this with deterministic reservations without even re-
quiring an explicit reserve. The C++ code based on our interface
is given in Figure 5 and an example of how the algorithm proceeds
is shown in Figure 6. The struct MISStep defines the code for
the reserve and commit components for each loop iteration. The ar-
ray V stores for each of the n vertices its degree and a pointer to an
array of neighbors. The array Fl keeps track of the status of each
vertex—LIVE indicates it is still live, IN indicates it is done and in
the set, and OUT indicates it is done and not in the set (a neighbor
is in the set). The reserve phase for each iteration i loops over the
neighbors of V[i] and sets a local variable flag as follows:

flag =

8<: OUT any earlier neighbor is IN
LIVE any earlier neighbor is LIVE
IN otherwise
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Figure 6. A sample graph and an execution of deterministic reser-
vations for finding a maximal independent set. Here, the subscript
of a node corresponds to its priority in the deterministic reserva-
tions. The prefix size is chosen to be 4. (1) shows the initial graph in
priority order, and (2)-(4) show subsequent rounds of the algorithm.
The vertical line indicates the end of the current prefix. Dark-gray
nodes are those that become IN or OUT during that round: nodes
with a thick border are IN and accepted into the MIS, and nodes
with an “X” are OUT as they have a neighbor already in the MIS.
For example, u1 is the only node accepted into the MIS during the
first round. Similarly, u2 becomes OUT in the second round as it
has a neighbor already in the MIS (namely, u1). White nodes are
those belonging to the current prefix that remain LIVE. For ex-
ample, in the first round u2, u3, and u4 all have a higher priority
neighbor in the same prefix and remain live. Only nodes that sur-
vive the previous round (LIVE nodes) are displayed in the array
and part of the current prefix, so u5 is skipped in (3). Nodes in the
MIS are also shown with thick border in the graph.

The second case corresponds to a conflict since for an earlier
neighbor it is not yet known if it is IN or OUT. The commit phase
for iteration i simply copies the local flag to Fl[i]. Since Fl is
only read in the reserve phase and only written (to location i) in
the commit phase, all operations commute.
Triangle Ray Intersect: We use a k-d tree with the surface area
heuristic (SAH) [34] to store the triangles. Our algorithm is similar
to the parallel algorithm discussed in [16] and makes use of divide-
and-conquer and heavy use of scan and filter.
Suffix Array: We use a parallel variant of the algorithm of
Karkkainen and Sanders [29]. It uses sorting and merging as sub-
routines, which involves nesting, but otherwise only makes use of
reduce, scan and filter.
Delaunay Triangulation: We use a Boyer-Watson style incre-
mental Delaunay algorithm with deterministic reservations. The
points are used as the elements. To reduce contention, the prefix
is always selected to be smaller than the current size of the mesh.
The algorithm therefore starts out sequentially until enough points
have been added. The reserve component of the code, for a point p,
identifies all triangles that contain p in their circumcircle, often re-
ferred to as the hole for p. Adding p requires removing the hole and
replacing it with other triangles. The reserve component therefore
reserves all vertices around the exterior of the hole. The majority
of the work required by a point p is in locating p in the mesh and
then identifying the triangles in the hole. The commit component
checks if all the reserved vertices of the mesh have succeeded, and
if so, removes the hole and replaces it with triangles surrounding p
and filling the hole. The reservations ensure that all modifications

to the mesh commute since the triangles in the mesh only interact
if they share a vertex. In fact, reserving the edges of the hole would
be sufficient and reduce contention, but our mesh implementation
has no data structures corresponding to edges on which to reserve.
For efficiently locating a point p in the mesh we use the nearest
neighbor structure described below.
Delaunay Refine: This algorithm uses the same routines for in-
serting points as the Delaunay triangulation. However, it does not
need a point location structure but instead needs a structure to store
the bad triangles. We use dynamic map for this purpose.
N-body: We use a parallel variant of the Callahan-Kosaraju al-
gorithm [13]. This is a variant of Greengard and Rothkin’s well-
known FMM algorithm but allows more flexibility in the tree struc-
ture. The algorithm makes use of traditional nested parallelism with
divide-and-conquer, as well as reduce and scan.
K-Nearest Neighbors: We use a quad- and oct-tree built over all
input points for 2d and 3d inputs, respectively. As with the k-d tree
used in triangle-ray intersection, the tree is built using only divide-
and-conquer and nested parallelism. Once built, the tree is static
and used only for queries of the points.

6. Experimental Results
We ran our experiments on a 32-core (with hyper-threading) Dell
PowerEdge 910 with 4 × 2.26GHZ Intel 8-core X7560 Nehalem
Processors, a 1066MHz bus, and 64GB of main memory. The
parallel programs were compiled using the cilk++ compiler (build
8503) with the -O2 flag. The sequential programs were compiled
using g++ 4.4.1 with the -O2 flag.

This section reports on the results for the benchmarks, as sum-
marized in Table 2. We discuss six of the benchmarks in some de-
tail, relating the performance to other published results. For each
benchmark and given core count, the reported time for each input
is the median time over three trials. We give only average timings
over all inputs for the remaining benchmarks due to limited space.

For Comparison Sort, we used a variety of inputs all of length
107. This includes sequences of doubles in three distributions and
two sequences of character strings. Both sequences of character
strings are the same but in one the strings are allocated in order
(i.e., adjacent strings are likely to be on the same cache line) and
in the other they are randomly permuted. We compare our inter-
nally deterministic sample sort to three other sorts: the standard
template library (STL) sort, the parallel STL sort [41], and a sim-
ple divide-and-conquer quicksort that makes parallel recursive calls
but partitions the keys sequentially. The results are summarized in
Figure 7(a) and Table 3(a). Due to the cache-friendly nature of our
algorithm, on average it is more efficient than any of the algorithms
even on one core. However it is not quite as fast on the double-
precision values since there the cache effects are less significant.
As expected the quicksort with serial partitioning does not scale.

For Remove Duplicates, our inputs were all of length 107. We
use both sequences of integers drawn from three distributions and
sequences of integers corresponding to character strings. As shown
in Figure 7(b) and Table 3(b), our parallel internally deterministic
algorithm obtains good speedup (over 24x on 64 threads) and
outperforms the serial version using 2 or more threads. On a single
thread, it is only slightly slower than the serial version.

For Breadth First Search (BFS), and all of the graph algorithms,
we use three types of graphs: random graphs, grid graphs, and
rMat graphs [14]. The rMat graphs have a power-law distribution
of degrees. All edge counts are the number of undirected edges—
we actually store twice as many since we store the edge in each
direction. We compare our internally deterministic BFS to a serial
version and a nondeterministic version (ndBFS). The results are
summarized in Figure 7(c) and Table 3(c). Our nondeterministic



Application 1 thread 64 threads Speedup
Algorithm (32h)

Comparison Sort
serialSort 3.581 – –

*stlParallelSort 3.606 0.151 23.88
sampleSort 2.812 0.089 31.6
quickSort 3.043 0.68 4.475

Remove Duplicates
serialHash 0.882 – –
deterministicHash 1.034 0.042 24.62

Breadth First Search
serialBFS 3.966 – –

**ndBFS 5.4 0.28 19.29
deterministicBFS 7.136 0.314 22.73

**LS-PBFS† 4.357 0.332 13.12
Spanning Forest

serialSF 2.653 – –
deterministicSF 6.016 0.326 18.45

**Galois-ST$ 12.39 1.136 10.91
Minimum Spanning Forest

serialMSF 8.41 – –
parallelKruskal 14.666 0.785 18.68

Maximal Independent Set
serialMIS 0.501 – –

**ndMIS 1.649 0.056 29.45
deterministicMIS 0.782 0.054 14.48

Triangle Ray Intersect
kdTree 8.7 0.45 19.33

Suffix Array
parallelKS 13.4 0.785 17.07

Delaunay Triangulation
serialDelaunay 56.95 – –
deterministicDelaunay 80.35 3.87 20.76

*Galois-Delaunay 114.116 39.36 2.9
Delaunay Refine

deterministicRefine 103.5 6.314 16.39
**Galois-Refine‡ 81.577 5.201 15.68

N-body
parallelCK 122.733 5.633 21.79

K-Nearest Neighbors
octTreeNeighbors 37.183 3.036 12.25

Table 2. Weighted average of running times (seconds) over vari-
ous inputs on a 32-core machine with hyper-threading (32h). A “*”
indicates an internally nondeterministic implementation and a “**”
indicates an externally (and hence internally) nondeterministic im-
plementation. All other implementations are internally determinis-
tic. †LS-PDFS does not generate the BFS tree, while our programs
do. $Galois-ST generates only a spanning tree, while our code gen-
erates the spanning forest. ‡Galois-Refine does not include the time
for computing the triangle neighbors and initial bad triangles at the
beginning while our code does (takes 10-15% of the overall time).

version is slightly faster than the deterministic version due to the
fact that it avoids the second phase when processing each round.
We have also compared times to published results. We ran the
parallel breadth-first search algorithm from [32] on our graphs and
our performance is very close to theirs (their algorithm is labeled
LS-PBFS in our tables and figures). Our performance is 5 to 6 times
faster than the times reported in [25] (both for 1 thread and 32
threads), but their code is written in Java instead of C++ and is
on a Sun Niagara T2 processor which has a clock speed of 1.6Ghz
instead of 2.26Ghz so it is hard to compare.

For Minimum Spanning Forest (MSF), we compare our inter-
nally deterministic algorithm to an optimized version of Kruskal’s
serial algorithm (see Section 5). Our results are shown in Fig-
ure 7(d) and Table 3(d). Our code is about 1.7x slower on a single
thread. We also compared our times to the parallel version of Boru-
vka’s algorithm from the recent C++ release (2.1.0) of the Galois
benchmark suite [38] (labeled as Galois-Boruvka in our table) on
our inputs. Their code did not terminate in a reasonable amount of
time on the random and rMat graphs; for the 2D-grid graph, our
code is much faster and achieves much better speedup than their
algorithm.

For Maximum Independent Set (MIS), we compare our inter-
nally deterministic algorithm to the very simple and efficient se-
rial algorithm and a nondeterministic version that uses locks (with
compare-and-swap) before adding a vertex to the set. The results
are summarized in Figure 7(e) and Table 3(e). As the experiments
show, for this problem the deterministic algorithm is actually faster
than the nondeterministic one. This is presumably because the de-
terministic version can avoid the reservation as discussed in Sec-
tion 5 and therefore has little overhead compared to the serial algo-
rithm. On one thread the nondeterministic algorithm is about a fac-
tor of 1.6x slower than the serial algorithm. We view this as quite
good given the simplicity of the serial code. We note that MIS is
about 5-10x faster than BFS on the same size graph.

For Delaunay Triangulation, we use two point distributions:
points distributed at random and points distributed with the Kuzmin
distribution. The latter has a very large scale difference between the
largest and smallest resulting triangles. We compare our internally
deterministic algorithm to a quite optimized serial version. Our
results are shown in Figure 7(f) and Table 3(f). On one core it
is a factor of about 1.4 slower, but it gets good speedup. We
compared our code to the implementations in the Galois benchmark
suite [38] (labeled as Galois-Delaunay and Galois-Refine in our
tables and figures), and our triangulation code is faster and achieves
better speedup on the same machine. We note, however, that on the
Delaunay refinement problem we achieve almost the same run time
as the Galois benchmarks (after subtracting the time for computing
the initial processing of triangles from our times, which is about 10-
15% of the overall time, since this is not part of the timing in the
Galois code). Since the time for the refinement code is dominated
by triangle insertion and the code for triangulation is dominated by
point location, it would appear that the reason for our improved
performance is due to our point location, and triangle insertion
performs about equally well.

7. Conclusion
This paper has provided evidence that internally deterministic pro-
grams can remain efficient and indeed even rival the best nondeter-
ministic approaches. In fact, in the case of MIS, using deterministic
reservations revealed that some synchronization overheads could
be removed, thereby improving performance.

Our approach uses nested parallelism with commuting and lin-
earizable parallel operations. We have not addressed the issue of
how to verify that operations commute or are linearizable, but the
techniques we use are simple enough that it is quite easy to reason
about the correctness. For example in deterministic reservations a
user only needs to verify that the operations within the reserve com-
ponent and separately within the commit component commute. It
should also be feasible to adapt efficient techniques for runtime race
detection [15] to check for parallel non-commuting operations.

It would also be interesting to conduct an empirical study sup-
porting the programmability and debuggability claims for internal
determinism. We have provided evidence that the programs in this
paper have short code descriptions, but we have not studied how
natural these programs are to develop in the first place.



(a) Comparison Sort 107 random 107 exponential 107 almost sorted 107 trigram 107 trigram (permuted)
Algorithm (1) (32h) (1) (32h) (1) (32h) (1) (32h) (1) (32h)
serialSort 1.42 – 1.1 – 0.283 – 4.31 – 5.5 –

*stlParallelSort 1.43 0.063 1.11 0.057 0.276 0.066 4.31 0.145 5.57 0.236
sampleSort 2.08 0.053 1.51 0.042 0.632 0.028 3.21 0.095 3.82 0.131
quickSort 1.58 0.187 1.06 0.172 0.357 0.066 3.35 0.527 4.78 1.31

(b) Remove Duplicates 107 random 107 random (values up to 105) 107 exponential 107 trigram 107 trigram (permuted)
Algorithm (1) (32h) (1) (32h) (1) (32h) (1) (32h) (1) (32h)
serialHash 0.654 – 0.311 – 0.504 – 0.849 – 1.31 –

deterministicHash 0.895 0.037 0.419 0.019 0.658 0.026 0.997 0.046 1.45 0.052

(c) BFS random local rMat graph 3d grid
Algorithm graph n = 224 n = 107

n = 107 m = 5× 107

m = 5× 107

(1) (32h) (1) (32h) (1) (32h)
serialBFS 4.14 – 4.86 – 2.9 –
**ndBFS 6.07 0.226 6.78 0.294 3.35 0.322

deterministicBFS 7.13 0.255 9.25 0.345 5.03 0.343
**LS-PBFS 4.644 0.345 5.404 0.426 3.023 0.225

(d) MSF random local rMat graph 2d grid
Algorithm graph n = 224 n = 107

n = 107 m = 5× 107

m = 5× 107

(1) (32h) (1) (32h) (1) (32h)
serialMSF 8.47 – 11.2 – 5.56 –

parallelKruskal 14.3 0.78 19.7 1.08 10.0 0.49
*Galois-Boruvka† – – – – 35.128 7.159

(e) MIS random local rMat graph 2d grid
Algorithm graph n = 107 n = 224 n = 107

m = 5× 107 m = 5× 107

(1) (32h) (1) (32h) (1) (32h)
serialMIS 0.447 – 0.669 – 0.388 –
**ndMIS 1.49 0.051 2.11 0.068 1.35 0.042

deterministicMIS 0.665 0.047 1.09 0.07 0.593 0.041

(f) Delaunay Triangulation 2d in cube 2d kuzmin
Algorithm n = 107 n = 107

(1) (32h) (1) (32h)
serialDelaunay 55.1 – 58.8 –

deterministicDelaunay 76.7 3.5 84.0 4.24
*Galois-Delaunay 110.705 39.333 117.527 36.302

Table 3. Running times (seconds) of algorithms over various inputs on a 32-core machine (with hyper-threading). A “*” indicates an
internally nondeterministic implementation and a “**” indicates an externally (and hence internally) nondeterministic implementation.
†Galois-Boruvka did not terminate in a reasonable amount of time for the first two inputs.
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Figure 7. Log-log plots of running times on a 32-core machine (with hyper-threading). Our deterministic algorithms are shown in red.
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