
A Constraint-Based Approach to
Solving Games on Infinite Graphs

Tewodros A. Beyene
Technische Universtität München

Swarat Chaudhuri
Rice University

Corneliu Popeea
Technische Universtität München

Andrey Rybalchenko
Microsoft Research Cambridge and
Technische Universtität München

Abstract
We present a constraint-based approach to computing winning
strategies in two-player graph games over the state space of infinite-
state programs. Such games have numerous applications in pro-
gram verification and synthesis, including the synthesis of infinite-
state reactive programs and branching-time verification of infinite-
state programs. Our method handles games with winning con-
ditions given by safety, reachability, and general Linear Tempo-
ral Logic (LTL) properties. For each property class, we give a
deductive proof rule that — provided a symbolic representation
of the game players — describes a winning strategy for a par-
ticular player. Our rules are sound and relatively complete. We
show that these rules can be automated by using an off-the-shelf
Horn constraint solver that supports existential quantification in
clause heads. The practical promise of the rules is demonstrated
through several case studies, including a challenging “Cinderella-
Stepmother game” that allows infinite alternation of discrete and
continuous choices by two players, as well as examples derived
from prior work on program repair and synthesis.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords program synthesis; games; reactive synthesis; proof
rules; static analysis; Horn clauses

1. Introduction
Many fundamental questions in formal methods reduce to comput-
ing winning strategies in turn-based graph games [18], i.e., games
where two players take turns in moving a token along the edges of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535860

a graph, and a player wins if the sequence of nodes visited by the
token satisfies a certain ω-regular winning condition. For example:

• To synthesize a reactive system from a temporal specifica-
tion [7, 38, 43], one constructs a graph game where the goal
of one player is to satisfy the specification and the goal of the
other is to violate it. The desired system is realizable if and only
if the first player has a winning strategy in this game.

• The problem of verifying a branching-time property of a system
is naturally framed as a graph game [14]. Here, one player
models the existential path quantifiers in the property; the other
player models the universal quantifiers. The system satisfies
the property if and only if the existential player has a winning
strategy.

• Graph games are a natural model for “open” systems [32] that
explicitly model interactions between a controller (one player)
and its environment (the other player). To prove such a system
correct, we show that the controller has a strategy to enforce its
requirements no matter how the environment behaves.

There is a rich literature on algorithmic approaches to graph
games motivated by applications in formal methods [10, 12, 30,
47]. The majority of these approaches focus on decidable classes
of games, such as games on finite graphs. This focus limits the
applications of these techniques. For example, an algorithm that
requires a finite game graph can only be applied to the verifica-
tion and synthesis of finite-state systems. To use games in the anal-
ysis and synthesis of infinite-state programs, we need symbolic,
abstraction-based algorithms for solving games on the state spaces
of such programs. While a few such algorithms exist in the litera-
ture [12, 26], much more remains to be done on this topic.

This paper presents a new approach to this problem space. Our
contribution is an algorithmic technique based on automated de-
duction for solving (turn-based) games over infinite-state symbolic
transition systems.

Specifically, we target three classes of games over infinite
graphs: safety games, reachability games, and Linear Temporal
Logic (LTL) games [18]. These games differ in the winning condi-
tion for the player for whom we are computing a winning strategy
(call this player Eve; the other player is called Adam). In a safety
game, Eve wins a play (an infinite sequence of nodes visited by the
game token) if and only if the play avoids a certain “unsafe” set
of nodes. In a reachability game, a play is winning for Eve if and
only if it reaches a certain target set of nodes. In LTL games, Eve

wins a play if and only if the play satisfies an LTL property. We
note that, LTL games subsume parity games, an important class of
games where each node of the game graph is labeled with a “color”
from the set {1, . . . , N}, and a play is winning for Eve if and only
if the minimum color seen infinitely often in the play is odd.

The importance of solving the above types of games to formal
methods is well-established in the literature. For instance, the prob-
lem of solving a parity game over a program’s state space is equiv-
alent to that of verifying program properties written in the modal
µ-calculus [14, 18] (note that the µ-calculus subsumes popular tem-
poral logics like LTL, CTL, and CTL*). The solution of LTL games
is also at the core of reactive synthesis from temporal specifica-
tions. Reachability and safety games are important special cases of
LTL games that are sufficient for many applications, including pro-
gram repair [21, 29], program synthesis [41], synthesis of interface
specifications [1], and verification of the fragment of the µ-calculus
without alternation of fixpoint quantifiers.

For each of the above types of games, we give a deductive proof
rule that, given a symbolic representation of the game graph, sym-
bolically represents a winning strategy in the game using quantified
Horn constraints. The rule is then automated by applying the EHSF
engine for automated deduction [3].

To understand how our rules work, consider a safety game
where the objective of Eve is to satisfy the state property p at all
points in all plays. To find a winning strategy for Eve, our rule for
safety games computes an invariant inv that describes the set of
states from which Eve can win the game. This invariant needs to
satisfy the following criteria: (a) the initial condition of the game
implies inv ; (b) inv implies p; and (c) for all Adam transitions out
of inv (let us say to a destination state σ), σ satisfies p and there is
a Eve transition from σ back to inv .

Strategy computation in reachability games relies on well-
founded transition invariants [39] to guarantee that a target state is
reached after a finite number of rounds of the game. We solve LTL
games with temporal objective ϕ by converting ¬ϕ into a nondeter-
ministic Büchi automaton, then performing a fair termination check
on the product of this automaton and the game graph.

All of our rules are sound, meaning that if they derive a strategy
for a player, then the player actually wins under the strategy, as
well as relatively complete, meaning that they can always derive
a winning strategy when one exists, assuming a suitably powerful
assertion language.

From a practical point of view, the appeal of our rules is that they
leverage the most recent developments in SMT-solving, invariant
generation, and termination verification [3, 20]. Specifically, our
implementation CONSYNTH feeds our proof rules to the EHSF en-
gine in the form of Horn-like clauses (in some cases with existen-
tial quantifiers in clause heads). Solving the game now amounts to
resolving these clauses to a bounded depth, proving the unsatisfia-
bility of the resolvent, repeating the process and generalizing from
proofs of unsatisfiability to a solution for the original clauses. EHSF
does so using a combination of counterexample-guided abstraction-
refinement (CEGAR), interpolation, and SMT solving, and with
help from user-provided templates that capture high-level intuitions
about the strategy.

We evaluate CONSYNTH using several challenging case studies,
including the “Cinderella-Stepmother game” — an existing chal-
lenge problem for infinite-state graph games that allows infinite al-
ternation of discrete and continuous choices by the two players —
and games arising out of prior work on program repair [29] and
synthesis [45].

Now we summarize the main contributions of the paper:

• We take on the problem of solving games over state spaces of
infinite-state programs using the power of modern automated
software analysis technology.

• We present three deductive proof rules for solving such games
under the safety, reachability, and LTL winning conditions. Our
rules are sound and relatively complete, and our automata-
theoretic rule for LTL games avoids the need to determinize
a Büchi automaton.

• We offer a prototype implementation of our rules on top of an
existing automated deduction engine. We illustrate the promise
of the system through several case studies using examples posed
in prior work.

This paper is organized as follows. In Section 2, we describe the
Cinderella-Stepmother game as a motivating example. Section 3
formally defines graph games and the strategy computation prob-
lem. Section 4 gives our proof rules for solving games and proves
them correct, i.e., sound and relatively complete. Section 5 revisits
the example from Section 2 and applies our rules to variants of it;
Section 6 presents applications of our rules to repair and synthesis
problems from prior work. Section 7 presents concrete experimen-
tal results. Related work is described in Section 8; we conclude
with some discussion in Section 9.

2. The Cinderella-Stepmother game
In this section, we describe a synthesis problem that motivated this
work, and that we use in a case study later in the paper. A version
of the problem was previously posed by Rajeev Alur as a challenge
problem for the software synthesis community (see Bodlaender et
al. [4] and Hurkens et al. [28] for more on the problem).

The problem involves a turn-based game between the mythical
Cinderella, and her nemesis, the Stepmother. The game setup in-
volves five buckets arranged in a circle. Each bucket can hold up to
c (a constant) units of water; initially, all buckets are empty. In each
round of the game, Stepmother brings 1 unit of additional water
and splits it among the five buckets. If any of the buckets overflow,
Stepmother wins. If not, Cinderella empties two adjacent buckets.
Cinderella wins if the game goes on forever.

We can model the Cinderella-Stepmother game using the fol-
lowing symbolic transition system. Let v be a set of system vari-
ables that represent the amount of water in the five buckets, v =
(b1, b2, b3, b4, b5). All the buckets are initially empty — this fact is
specified as the initial condition

init(v) = (b1 = 0 ∧ · · · ∧ b5 = 0).

The transition relation of Stepmother represents a non-
deterministic choice of buckets in which 1 unit of additional
water is added:

stepmother(v, v′) = (b′1 + · · ·+ b′5 = b1 + · · ·+ b5 + 1

∧ b′1 ≥ b1 ∧ · · · ∧ b′5 ≥ b5).

The transition relation of the Cinderella player represents a non-
deterministic choice of two consecutive buckets that are emptied.

cinderella(v, v′) =

∨
i∈{1...5}

 b′i = 0 ∧ b′(i+1)%5 = 0

∧
(∧

j∈{1..5}

(
j 6= i ∧ j 6= (i+ 1)%5
→ b′j = bj

))  .

The condition that one of the buckets overflows is described by the
assertion

overflow(v) = (b1 > c ∨ · · · ∨ b5 > c).

Safety game We observe that in the above game, Cinderella
wants to enforce a safety property — specifically, the property
G(¬overflow(v)) — in every play of the game. This property is
Cinderella’s winning condition. Games are classified according to
the winning condition of the player for whom we want to compute

a strategy. Specifically, suppose we want to compute a strategy for
Cinderella. In that case, we are trying to solve a safety game.

Reachability game Now suppose we want to compute a strategy
for Stepmother instead. We note that the winning condition for
Stepmother is the reachability property F overflow(v). The game
is a reachability game.

LTL and parity games It is easy to define generalizations of the
game where the winning condition for a player is a general Lin-
ear Temporal Logic (LTL) property. Such a game is called an LTL
game. LTL games are an extremely challenging class of games
— the problem of solving such games on finite game graphs is
2EXPTIME-complete [38]. The intuitive reason for this hardness
is that it requires a conversion from an LTL formula to a nonde-
terministic Büchi automaton (an exponential blowup) and then the
determinization of this automaton (another exponential blowup).

An important special case of LTL games is parity games [18].
Here, each state of the transition system is assigned a color (a
number in {1, . . . , N}), and the winning condition for a play is
that the minimum color seen infinitely often in the play is odd. (The
condition can be stated in LTL in an obvious way.) In Section 7, we
use CONSYNTH on a parity game generalizing our original game.

Discussion From the determinacy of the classes of graph games
that we study [35], it follows that for every value of c, either
Cinderella or Stepmother has a winning strategy in each of the
above games. Now we give some intuitions about what such a
winning strategy would look like in the game as originally stated.
The discussion of how to automatically solve the problem using
CONSYNTH is postponed until Section 5.

First note that if c < 1.5 units, then Stepmother wins. Her
strategy is as follows: in the first round, she divides 1 unit into
two non-adjacent buckets. Then no matter what Cinderella does,
there will be a bucket with 0.5 units at the end of the round, and
Stepmother can cause a spill in second round by adding 1 unit in
that bucket. If c ≥ 3 units, Cinderella wins: she can just select
the buckets in a round-robin order, emptying two buckets in each
round, and this strategy is winning no matter what Stepmother does.

The problem becomes more challenging for 1.5 ≤ c < 3.
We leave this case as a challenge for the reader — it will soon be
apparent that it is highly nontrivial. In such cases, fully automated
strategy synthesis seems unrealistic, and computer-assisted proofs
driven by user-provided hints or templates are more plausible. This
is the strategy that our approach takes.

3. Preliminaries
In this section we formally define games and strategies, and also
sketch the deduction framework used to automate them.

3.1 Games
Syntax A (two-player, turn-based, graph) game is a pair consist-
ing of a symbolic transition system and a winning condition:

• We consider symbolic transition systems that are composed
from two players, Adam and Eve. Let v be a tuple of variables.
We assume that valuations of v describe states of the system
under consideration. (For simplicity, we do not distinguish be-
tween variables controlled by Eve and Adam.)
We represent the initial states of the transition system by an
assertion init(v). The transition relations of Adam and Eve are
given by assertions adam(v, v′) and eve(v, v′), respectively.

• A winning condition obj for a game is given by a set of infinite
sequences of system states. A game is said to be a safety game,
a reachability game, and an LTL game respectively when its

winning condition is a safety property, a reachability property,
and a general LTL property.

Semantics We present the semantics of games in two steps. First,
we define strategies of the individual players. A strategy σ for Eve
is a set of infinite trees over the states of the system that satisfies
the following conditions:

• The roots of trees in σ coincide with the set of initial states, and
are considered to be on the first level of the tree. (Here, the level
of a node is the length of the path to the root plus one.)

• The set of successors of each tree node s at an odd level consists
of the following set of states.

{s′ | (s, s′) |= adam(v, v′)}

• The set of successors of each tree node s at an even level
consists of a non-empty subset of the following set of states.

{s′ | (s, s′) |= eve(v, v′)}

Thus, a strategy for Eve alternates between universal choices of
Adam and existential choices of Eve. We call each infinite sequence
of system states that starts at a root of a strategy σ and follows some
branch a play π determined by σ.

A strategy σ for Eve is winning if every play determined by σ
is included in the winning condition.

For the given system and a formula ϕ that describes a winning
condition in some temporal logic, we write

(init(v), eve(v, v′), adam(v, v′)) |= ϕ

when Eve has a winning strategy.
We also consider Adam’s perspective. A strategy σ for Adam

is defined in a similar way. The roots of σ represent a non-empty
subset of init(v). σ alternates between existential choices of Adam
and universal choices of Eve. If a tree node s is on an odd level,
then its successors form a non-empty subset of {s′ | (s, s′) |=
adam(v, v′)}. Otherwise, the set of successors is {s′ | (s, s′) |=
eve(v, v′)}.

3.2 The EHSF engine
Our proof rules are automated using the EHSF [3] engine for resolv-
ing forall-exists Horn-like clauses extended with well-foundedness
criteria.

We skip the syntax and semantics of the clauses targeted by
this system — see [3] for more details. Instead, we illustrate these
clauses with the following example:

x ≥ 0→ ∃y : x ≥ y ∧ rank(x, y), rank(x, y)→ ti(x, y),

ti(x, y) ∧ rank(y, z)→ ti(x, z), dwf (ti).

Intuitively, these clauses represent an assertion over the inter-
pretation of “query symbols” rank and ti (the predicate dwf rep-
resents disjunctive well-foundedness, and is not a query symbol).
The semantics of these clauses maps each predicate symbol occur-
ring in them into a constraint over v.

Specifically, the above set of clauses has a solution that maps
both rank(x, y) and ti(x, y) to the constraint (x ≥ 0∧y ≥ x−1).

EHSF resolves clauses like the above using a CEGAR scheme to
discover witnesses for existentially quantified variables. The refine-
ment loop collects a global constraint that declaratively determines
which witnesses can be chosen. The chosen witnesses are used to
replace existential quantification, and then the resulting universally
quantified clauses are passed to a solver for such clauses. At this
step, we can benefit from emergent tools in the area of solving
Horn clauses over decidable theories, e.g., HSF [19] or µZ [27].
Such a solver either finds a solution, i.e., a model for uninterpreted
relations constrained by the clauses, or returns a counterexample,

which is a resolution tree (or DAG) representing a contradiction.
EHSF turns the counterexample into an additional constraint on
the set of witness candidates, and continues with the next itera-
tion of the refinement loop. Notably, this refinement loop conjoins
constraints that are obtained for all discovered counterexamples.
This way EHSF guarantees that previously handled counterexam-
ples are not rediscovered and that a wrong choice of witnesses can
be mended.

For the existential clause above, EHSF introduces a wit-
ness/Skolem relation sk over variables x and y, i.e., x ≥ 0 ∧
sk(x, y) → x ≥ y ∧ rank(x, y). In addition, since for each x
such that x ≥ 0 holds we need a value y, we require that such x
is in the domain of the Skolem relation using an additional clause
x ≥ 0 → ∃y : sk(x, y). In the EHSF approach, the search space
of a skolem relation sk(x, y) is restricted by a template function
TEMPL(sk)(x, y). In general, a template is required for both the
Skolem relation as well as for its guard. For this paper, templates
for the guards can be derived automatically as the projection from
the template of the corresponding Skolem relation, therefore we
omit them from our presentation.

4. Proof rules for games
In this section, we present proof rules for three kind of games:
safety, reachability and parity/LTL games. These proof rules con-
clude that Eve has a winning strategy by imposing implication and
well-foundedness conditions on auxiliary assertions over system
variables. For each proof rule we prove its soundness, i.e., a win-
ning strategy exists if the premises are satisfied by some auxiliary
assertions, and relative completeness, i.e., if a winning strategy ex-
ists then auxiliary assertions satisfying the premises exist under
an assumption that the assertion language of our choice is suffi-
ciently expressive. Such correctness criteria are standard for tem-
poral proof rules [33].

4.1 Safety games
We consider a safety game for which Eve has a winning strategy if
only states from safe(v) are visited by all plays.

We present the corresponding proof rule in Figure 1. The proof
rule relies on an invariant assertion inv(v) that represents a set of
states reached by Eve in a winning strategy. We connect the invari-
ant assertion with the reachable states by resorting to reasoning by
induction on the number of steps to reach a state. The condition S1
requires that the initial state of the game are considered in inv(v).
S2 represent the induction step. Here, we require that for every step
from inv(v) executed by Adam there exist a step by Eve that leads
back to inv(v). Of course, since the winning condition requires
that all states of a play need to satisfy safe(v), we require that all
states reached after Adam made a step as well as inv(v) satisfy the
assertion safe(v). The former condition is enforced by a conjunct
safe(v′) in the head of S2. The later condition is guaranteed by S3.

Theorem 1 (Correctness of rule RULESAFE). The proof rule
RULESAFE is sound and relatively complete.

Proof. We split the proof into two parts: soundness and complete-
ness.

Soundness We prove the soundness by contradiction. Assume
that there exists an assertion inv(v) that satisfies the premises
of RULESAFE, yet the conclusion of RULESAFE does not hold.
That is, there is no winning strategy for Eve. Hence, there exists
a strategy σ for Adam in which each play reaches a state that
violates safe(v). This strategy σ alternates between existential
choices of Adam and universal choices of Eve. Let aux (v) be a
set of states for which σ provides existentially chosen successors
wrt. Adam.

We derive a contradiction by relying on a certain play π that
is determined by σ. The play π is constructed iteratively. We
start from some root state s1 of σ, which also satisfies the ini-
tial condition init(v). Note that s1 |= inv(v), due to S1, and
s1 |= aux (v) due to σ. Each iteration round extends the play ob-
tained so far by two states, say s′ and s′′. We maintain a condition
that each such s′′ satisfies inv(v) and aux (v). Let s be the last
state of the play π constructed so far. Due to our condition, we
have s |= inv(v) ∧ aux (v). Then, σ determines a successor state
s′ such that (s, s′) |= adam(v, v′), and S2 guarantees that there
exists a state s′′ such that (s′, s′′) |= eve(v, v′) and s′′ |= inv(v).
Furthermore, s′′ satisfies aux (v) due to σ. Finally, from S2 and S3
follows that s′ |= safe(v) and s′′ |= safe(v), respectively.

By iteratively constructing π using the above step we obtain a
play that satisfies the strategy σ. Thus, we obtain a contradiction,
since according to our construction all states in π satisfies safe(v),
however σ guarantees that each play eventually reaches a state that
violates safe(v).

Completeness Assume that Eve has a winning strategy, say σ,
i.e., the conclusion of RULESAFE holds. We prove the complete-
ness claim by showing how to construct inv(v) that satisfies the
premises of RULESAFE.

This strategy σ alternates between universal choices of Adam
and existential choices of Eve. Let inv(v) be a set of states
for which σ provides universally chosen successors wrt. Adam.
Since σ is a winning strategy, all states satisfying inv(v) also sat-
isfy safe(v), i.e., inv(v) satisfies S3. inv(v) satisfies S1, since σ
guarantees that Eve wins from every initial state. Now we consider
an arbitrary state s that satisfies inv(v). σ guarantees that for every
successor s′ of s wrt. Adam there exists a successor s′′ wrt. Eve
such that s′′ |= inv(v). Furthermore, since σ is winning, we have
s′ |= safe(v). Thus we conclude that inv(v) satisfies the condi-
tion S2 as well.

4.2 Reachability games
In contrast to safety games, the winning condition of reachability
games ensures that a certain set of states called dst(v) is eventually
reached by each play. Reasoning about such eventuality properties
demands the use of well-founded orders.

We present a rule RULEREACH for proving that Eve has a win-
ning strategy for a reachability property given by an LTL formula
Fdst(v) in Figure 2. RULEREACH requires an invariant assertion
inv(v) together with a binary relation round(v, v′). Similarly to
RULESAFE, we use inv(v) to keep track of states that are reached
by Eve. This is captured by R1 and a part of R2. To ensure that
Adam makes progress when aiming at the set dst(v) we keep track
of pairs of states towards reaching it in round(v, v′), see the last
conjunct in R2. We note that the proof rule only imposes conditions
when dst(v) is not yet reached, as encoded by the second conjunct
in R2. Finally, to ensure that dst(v) is eventually reached by each
play we require that round(v, v′) represents a well-founded rela-
tion. Thus, it is impossible to return to inv(v)∧¬dst(v) infinitely
many times.

Theorem 2 (Correctness of rule RULEREACH). The proof rule
RULEREACH is sound and relatively complete.

Proof. We split the proof into two parts: soundness and complete-
ness.

Soundness We prove the soundness by contradiction. Assume
that there exist assertions inv(v) and round(v, v′) that satisfy the
premises of RULEREACH, yet the conclusion of RULEREACH does
not hold. That is, there is no winning strategy for Eve. Hence, there
exists a strategy σ for Adam in which each play never reaches a

Find assertion inv(v) such that:

S1 : init(v) → inv(v)

S2 : inv(v) ∧ adam(v, v′)→ safe(v′) ∧ ∃v′′ : eve(v′, v′′) ∧ inv(v′′)

S3 : inv(v) → safe(v)

(init(v), eve(v, v′), adam(v, v′)) |= G safe(v)

Figure 1. Proof rule RULESAFE for a safety game, i.e., the winning condition is given by a formula G safe(v).

Find assertions inv(v) and round(v, v′) such that:

R1 : init(v) → inv(v)

R2 : inv(v) ∧ ¬dst(v) ∧ adam(v, v′) ∧ ¬dst(v′) → ∃v′′ : eve(v′, v′′) ∧ inv(v′′) ∧ round(v, v′′)

R3 : well -founded(round(v, v′))

(init(v), eve(v, v′), adam(v, v′)) |= F dst(v)

Figure 2. Proof rule RULEREACH for a reachability game, i.e., the winning condition is given by a formula F dst(v).

state that satisfies dst(v). This strategy σ alternates between exis-
tential choices of Adam and universal choices of Eve. Let aux (v)
be a set of states for which σ provides existentially chosen succes-
sors wrt. Adam. Note that the implication aux (v) → ¬dst(v) is
valid, since no play determined by σ visits dst(v).

We derive a contradiction by relying on a certain play π that is
determined by σ. The play π is constructed iteratively, in a similar
way as done in the proof of Theorem 1. We start from some root
state s1 of σ, which satisfies the initial condition init(v). Note
that s1 |= inv(v), due to R1, and s1 |= aux (v) due to σ. Each
iteration round extends the play obtained so far by two states, say s′

and s′′. We maintain a condition that each such s′′ satisfies inv(v)
and aux (v). Let s be the last state of the play π constructed so
far. Due to our condition, we have s |= inv(v) ∧ aux (v). Then,
σ determines a successor state s′ such that (s, s′) |= adam(v, v′),
and R2 guarantees that there exists a state s′′ such that (s′, s′′) |=
eve(v, v′) and s′′ |= inv(v). Furthermore, s′′ satisfies aux (v)
due to σ. Finally, from R2 also follows that s′ |= ¬dst(v) and
(s, s′′) |= round(v, v′).

By iteratively constructing π = s1, s2, . . . using the above
step we obtain a play that satisfies the strategy σ. Thus, there
is an infinite sequence of states s1, s3, s5, . . . that takes states
occurring at odd positions in π such that each pair of consecutive
states s2i−1 and s2i+1 is connected by round(v, v′), for i ≥ 1.
The existence of such an infinite sequence contradicts the well-
foundedness condition imposed by R3.

Completeness Assume that Eve has a winning strategy, say σ,
i.e., the conclusion of RULEREACH holds. We prove the complete-
ness claim by showing how to construct inv(v) and round(v, v′)
that satisfy the premises of RULEREACH.

The strategy σ alternates between universal choices of Adam
and existential choices of Eve. Each play π = s1, s2, s3, . . .
contributes elements to inv(v) and round(v, v′) as follows. Let
k be the position of the first occurrence of a state in π that satisfies
dst(v), i.e., we have sk |= dst(v) and si 6|= dst(v) for each
i ∈ 1..k− 1. Such position exists, since the play satisfies Fdst(v).

Then, for each i ≥ 1 such that 2i − 1 ≤ k we add the state s2i−1

to inv(v). Furthermore, for each i ≥ 1 such that 2i + 1 ≤ k we
add the pair of states s2i−1 and s2i+1 to round(v, v′).

We note that the above construction ensures that for each pair of
states s and s′′ such that (s, s′′) |= round(v, v′′) holds: i) we have
s 6|= dst(v), and ii) there exists a state s′ such that s′ 6|= dst(v),
(s, s′) |= adam(v, v′), and (s′, s′′) |= eve(v, v′).

We observe that inv(v) satisfies R1, since σ guarantees that Eve
wins from every initial state. Now we consider each pair of states s
and s′ that satisfies the left hand side of R2. σ guarantees that there
exists a successor s′′ wrt. Eve. Regardless whether s′′ |= dst(v)
the above construction guarantees that the right-hand side of R2 is
satisfied by assigning s, s′, and s′′ to v, v′, and v′′, respectively.

Now we show by contradiction that round(v, v′) is well-
founded. Assume otherwise, i.e., there exists an infinite sequence of
states s1, s2, . . . induced by round(v, v′). As noted previously, for
each pair of consecutive states si and si+1 there exists an interme-
diate state s′i such that the sequence s1, s′1, s2, . . . , si, s′i, si+1, . . .
is a play. Since this play does not visit any state that satisfies dst(v),
we obtain a contradiction to the assumption that Eve has a winning
strategy. Hence, we conclude that R3 is satisfied.

4.3 LTL and parity games
Now we show how to solve LTL games and, as a special case, parity
games. To state the parity winning condition we assume that the set
of all states is partitioned into N subsets that are denoted by the
assertions p1(v), . . . , pN (v). Thus, p1(v) ∨ · · · ∨ pN (v) is valid
and for each 1 ≤ i < j ≤ N we have that pi(v) ∧ pj(v) is
unsatisfiable. Without loss of generality we assume that N is an
odd number.

The parity condition states that the system wins the game for
a given computation if among the subsets pi1(v), . . . , piK (v) that
are visited infinitely many times by the computation the minimal
identifier is odd, i.e., min{i1, . . . , iK} is odd. We can represent

the parity condition by the following LTL formula ϕ.

ϕ = GFp1(v)

∨ GFp3(v) ∧ FG¬(p1(v) ∨ p2(v))

· · ·
∨ GFpN (v) ∧ FG¬(p1(v) ∨ · · · ∨ pN−1(v))

The first disjunct states that p1(v) is visited infinitely often, while
the second disjunct states that p3(v) is visited infinitely often and
there exists a suffix that neither visits p1(v) nor p2(v). The last
disjunct states that pN (v) is visited infinitely often and there is a
suffix that visits no other subset.

To solve games where the winning condition is an LTL for-
mula ϕ, we negate ϕ and apply a standard technique, e.g., [17],
for translating LTL formulas to Büchi automata on the result-
ing ¬ϕ. Let B be the obtained automaton. We represent B using
assertions over the program counter of the automaton pcB and the
system variables v. Let the initial condition of the automaton be
given by initB(pcB). We represent the transition relation of B by
nextB(pcB, v, pc′B). This transition relation evolves the value of
the program counter of the automaton while taking into consid-
eration the current state of the system given by a valuation of v.
Finally, we assume that accB(pcB) represents the accepting states
of the automaton.

Given a sequence of states π = s1, s2, . . . we define a
run of B on π to be an infinite sequence of automaton states
q0, q1, q2, . . . such that q0 |= initB(pcB) and (qi−1, si, qi) |=
nextB(pcB, v, pc′B) for each i ≥ 1. A run is accepting wrt. the
Büchi acceptance condition if it contains infinitely many states that
satisfy accB(pcB). The automaton B accepts a play π if there ex-
ists an accepting run on π. Note that our construction ensures that
if B accepts π then π 6|= ϕ.

A proof rule BÜCHITERM for LTL games based on the
above automata-theoretic approach [44] is presented in Figure 3.
BÜCHITERM requires that the negation of the winning condition is
translated into a Büchi automaton B, which together with the sys-
tem description appears in the proof rule. An interesting property
of this proof rule is that it relies on a non-deterministic Büchi au-
tomaton representation of the negated winning condition, and does
not require any determinization via Rabin, Muller, or Streett accep-
tance conditions.

We consider a synchronous parallel product of the transition
relations of the players and the transition relation of the Büchi
automaton, which is expressed in the proof rule by appropriate
conjunctions. We use w = (v, pcB) to refer to the vector of the
system variables and the program counter of the automaton.

The existence of a winning strategy for Eve depends on
the identification of auxiliary assertions inv(w), aux (w,w′, v′′),
round(w,w′, w′′), and fair(w,w′) as follows. inv(w) keeps track
of the system states reached by Adam, similarly to RULESAFE
and RULEREACH. To deal with the non-determinism in the transi-
tion relation of the automaton, we introduce an intermediate book-
keeping assertion aux (w,w′, v′′), which allows us to decouple
the treatment of the automaton state q′′ from the selection of s′′.
round(w,w′, w′′) contains all triples of adjacent program states
occurring in plays. Here, it is more fine-grained than the counter-
part in RULEREACH, as we keep track of intermediate states vis-
ited by Eve instead of only considering the combined steps (vis-
ited by Adam). For keeping track of acceptance fair(w,w′) con-
tains all pairs of program states that describe play segments visiting
Büchi accepting states at least once. We derive fair(w,w′) from
round(w,w′, w′′) using transitive closure-like conditions B4 and
B5. Finally, the well-foundedness condition B6 shows that accept-
ing states cannot be visited infinitely many times.

Theorem 3 (Correctness of rule BÜCHITERM). The proof rule
BÜCHITERM is sound and relatively complete.

Proof. We split the proof into two parts: soundness and complete-
ness.

Soundness We prove the soundness by contradiction. As-
sume that there exist assertions inv(w), aux (w,w′, v′′),
round(w,w′, w′′), and fair(w,w′) that satisfy the premises of
BÜCHITERM, yet the conclusion of BÜCHITERM does not hold.
That is, there is no winning strategy for Eve. Hence, there exists a
strategy σ for Adam in which each play violates ϕ. This strategy
σ alternates between existential choices of Adam and universal
choices of Eve. We derive a contradiction by relying on a certain
set of trees whose branches are sequences (s1, q1), (s2, q2), . . .
that are jointly determined by σ and the assumed assertions (via
BÜCHITERM).

The requisite branches are constructed iteratively, in a similar
way as the play construction is done in the proof of Theorem 1.
We start from some root state s1 of σ, which satisfies the initial
condition init(v). Then the play is extended from a state s by
considering an existential choice s′ offered by σ that is followed
by an existential choice s′′ offered by B2. We obtain appropriate
runs q0, q1, . . . by applying B1, B2, and B3 for values of v, v′, and
v′′ determined by currently considered s, s′, and s′′, respectively.
Since the automaton B is non-deterministic, for each s, s′, and s′′

there is a set of appropriate automaton states. Considering each
choice leads to a tree construction, as described below.

First, we consider s1 and B1, and for each q1 such that there
exists q0 with init(s1) ∧ initB(q0) ∧ nextB(q0, s1, q1) we add
a (s1, q1) as a root to our tree. We remember the state q0 that
was used to create each (s1, q1). Then, for each tree leaf (s, q) we
perform the following tree expansion. First, we consider the state
s′ that σ provides as a successor of s. Then, we rely on B2, and for
each q′ such that nextB(q, s′, q′) holds we add (s′, q′) as a child
node of (s, q). Furthermore, for given s and q, and each s′ and q′

we take s′′ such that eve(s′, s′′) ∧ aux (s, q, s′, q′, s′′). Now we
rely on B3, and for each q′′ such that nextB(q′, s′′, q′′) holds we
add (s′′, q′′) as a child node of the corresponding (s′, q′).

By applying the above tree expansion steps we construct a set
of trees where every branch is a sequence (s1, q1), (s2, q2), . . .
that comes with the corresponding initial automaton state q0. Note
that s1, s2, . . . is a play determined by σ, hence it violates ϕ.
Thus, there exists a branch for which the sequence q0, q1, . . . is
an accepting run of B for the corresponding play determined by
the branch. Let (si1 , qi1), (si2 , qi2), . . . be a subsequence such
that qij |= accB(pcB) for each j ≥ 1. Then, each pair (sij , qij)
contributes

((sij , qij), (sij+1 , qij+1))

(or its closest neighbour visited by Adam) to fair(w,w′). Thus, the
condition B6 is violated.

Completeness Assume that Eve has a winning strategy, say σ,
i.e., the conclusion of BÜCHITERM holds. We prove the complete-
ness claim by showing how to construct inv(w), aux (v, w′, v′′),
round(v, w′, w′′), and fair(w,w′) that satisfy the premises of
BÜCHITERM.

The strategy σ alternates between universal choices of
Adam and existential choices of Eve. Each play π =
s1, s2, s3, . . . contributes elements to inv(w), aux (v, w′, v′′), and
round(w,w′, w′′) in the following way through an appropriate
sequence of automaton states q0, q1, q2, Since π |= ϕ, we
note that π is not accepted by B. Hence, either there is an infi-
nite run q0, q1, q2, . . . that is not accepting, or the exists a finite
run q0, . . . , qn that cannot be extended (i.e., there is no automaton

Find assertions inv(w), aux (w,w′, v′′), round(w,w′, w′′), and fair(w,w′) where w = (v, pcB) such that:

B1 : init(v) ∧ initB(pcB) ∧ nextB(pcB, v, pc′B) → inv(v, pc′B)

B2 : inv(w) ∧ adam(v, v′) ∧ nextB(pcB, v
′, pc′B) → ∃v′′ : eve(v′, v′′) ∧ aux (w,w′, v′′)

B3 : aux (w,w′, v′′) ∧ nextB(pc′B, v
′′, pc′′B) → inv(w′′) ∧ round(w,w′, w′′)

B4 : round(w,w′, w′′) ∧ (accB(pcB) ∨ accB(pc′B))→ fair(w,w′′)

B5 : fair(w,w′) ∧ round(w′, w′′, w′′′) → fair(w,w′′′)

B6 : well -founded(fair(w,w′))

(init(v), eve(v, v′), adam(v, v′)) |= ϕ

Figure 3. Proof rule BÜCHITERM for an LTL game, i.e., the winning condition is given by an LTL formula ϕ. From ¬ϕ we obtain a Büchi
automaton B with an initial condition initB(pcB), a transition relation nextB(pcB, v, pc′B), and accepting states accB(pcB).

state qn+1 such that nextB(qn, sn, sn+1)). In either case, for each
i ≥ 0 (and 2i+ 1 ≤ n if the run is finite) we let (s2i−1, q2i−1) be
an element of inv(w), (s2i−1, q2i−1, s2i, q2i, s2i+1) be an element
of aux (w,w′, v′′), and (s2i−1, q2i−1, s2i, q2i, s2i+1, q2i+1) be an
element of round(w,w′, w′′). Then we define fair(w,w′) for the
obtained round(w,w′, w′′) as the least solution of B4 and B5.

Since the run is not accepting, it visits accepting states only
finitely many times. Hence, fair(w,w′) is well-founded.

5. Case study: Cinderella-Stepmother games
In this section we illustrate our constraint-based approach to solv-
ing games applying it to the Cinderella-Stepmother game intro-
duced in Section 2. We consider five variants of this game corre-
sponding to different winning conditions. In Section 7 we report on
running times required for solving these games using CONSYNTH.

5.1 Games with Cinderella’s safety objective
In these games, we attempt to obtain winning strategies for Cin-
derella in her attempt to keep the buckets from overflowing. The
winning condition for Cinderella is G ¬overflow(v). As men-
tioned in Section 2, the Cinderella player has simple winning strate-
gies for bucket capacity c ≥ 3. For values 2 ≤ c ≤ 3, the strategies
are more involved. (For values c ≤ 2 there are no strategies for the
player Cinderella to win the game).

Round strategy We define the first game using the value c = 3
for the bucket capacity. A winning strategy might follow an al-
ternation of consecutive buckets that are emptied. Accordingly,
we use an auxiliary variable r for a pair of buckets to be emp-
tied, to remember the previous choice made by the Cinderella
player. The tuple of game variables contains the five bucket vari-
ables from v and is extended with the round variable r as follows:
w = (b1, b2, b3, b4, b5, r). The initial states assertion sets the round
variable to r = 1. We let Adam play the role of Stepmother and
therefore the transition relation of Adam is based on the assertion
stepmother(v, v′), while the transition relation of Eve is given by
cinderella(v, v′). (Both constraints are given in Section 2.)

init(w) = (b1 = 0 ∧ · · · ∧ b5 = 0 ∧ r = 1)

eve(w,w′) = cinderella(v, v′)

adam(w,w′) = (stepmother(v, v′) ∧ r′ = r)

Considering the safety condition obj (w) = G(¬overflow(v)), we
instantiate the proof rule from Figure 1 as follows.

(init(w), adam(w,w′), eve(w,w′)) |= obj (w)

There exists a strategy for Eve provided that the premises of the
proof rule are satisfied. These premises are Horn clauses over the
auxiliary assertion inv(w). We apply a solver, e.g., CONSYNTH,
to find a solution for the auxiliary assertion. The clauses S1 and
S3 are universally quantified over the game variables, while the
existentially quantified clause S2 is skolemized in the CONSYNTH
approach. We use the skolem relation sk(w,w′, w′′) to denote
the witness constraint corresponding to the existentially quantified
variables w′′.

inv(w) ∧ stepmother(v, v′) ∧ r′ = r ∧ sk(w,w′, w′′)→
cinderella(v′, v′′) ∧ inv(w′′)

CONSYNTH requires a template for the skolem relation and we
present below the intuition behind this constraint. For each of
the five disjuncts from cinderella(v, v′) transition relation, we
add guards (one guard exclusive to the others) and update the
value of the round variable. We use c1(v, v′) to c5(v, v′) to denote
the five disjuncts from the transition relation of the Cinderella
player introduced in Section 2. We obtain the following template
constraint.

TEMPL(sk)(w,w′, w′′) = (r′ = 1 ∧ r′′ =?1 ∧ c1(v′, v′′) ∨
r′ = 2 ∧ r′′ =?2 ∧ c2(v′, v′′) ∨
r′ = 3 ∧ r′′ =?3 ∧ c3(v′, v′′) ∨
r′ = 4 ∧ r′′ =?4 ∧ c4(v′, v′′) ∨
r′ = 5 ∧ r′′ =?5 ∧ c5(v′, v′′))

The template parameters are denoted by “?”-variables and different
subscripts indicate distinct template parameters.

Our approach is able to synthesize automatically the values used
to update the round and implicitly the order in which the Cinderella
player should alternate emptying the buckets. CONSYNTH returns
the solution ?1 = 4, ?2 = 1, ?3 = 1, ?4 = 3, ?5 = 1. Correspond-
ing to this solution, the strategy for the Cinderella player consists
of a repeating sequence of three player moves:

1. Since initially r = 1 and the first disjunct is enabled, decide to
empty buckets 1 and 2 and update the round variable r′′ = 4.

2. Since the disjunct r′ = 4∧ r′′ =?4 is enabled, decide to empty
buckets 4 and 5 and update the round variable to r′′ = 3.

3. Since the disjunct r′ = 3∧ r′′ =?3 is enabled, decide to empty
buckets 3 and 4 and update the round variable to r′′ = 1.

After these three moves, r has value 1, the first disjunct is again
enabled and the strategy will continue with the first move/decision
above. This strategy ensures that the Cinderella player empties

often enough all the buckets and therefore the Stepmother player
cannot enforce an overflow. This game is won by the Cinderella
player based on the round strategy described above.

Second strategy We show how our approach can be used to ob-
tain a strategy for the case of the game that is more difficult for
Cinderella to win, i.e., c = 2.

We fix the roles of the two players similar to the previous
paragraph: eve(v, v′) = cinderella(v, v′) and adam(v, v′) =
stepmother(v, v′). To explain the rationale behind the Cinderella’s
decisions for this case, we refer to the proof rule from Figure 1. We
repeat the second clause S2 instantiated for the two players of the
C-S game:

inv(v)∧stepmother(v, v′)→ safe(v′)∧∃v′′ : cinderella(v′, v′′)

∧ inv(v′′)

To change the state of the system from v′ to v′′, the strategy for
the Cinderella player takes into consideration her previous move
(reflected in variables v) and the reply by Stepmother (reflected in
variables v′). Therefore the template for the strategy considers five
cases depending on which buckets the Cinderella player may have
emptied in the previous turn:

TEMPL(sk)(v, v′, v′′) = (b1 = 0 ∧ b2 = 0 ∧ T12(v′, v′′) ∨
b2 = 0 ∧ b3 = 0 ∧ T23(v′, v′′) ∨
b3 = 0 ∧ b4 = 0 ∧ T34(v′, v′′) ∨
b4 = 0 ∧ b5 = 0 ∧ T45(v′, v′′) ∨
b5 = 0 ∧ b1 = 0 ∧ T51(v′, v′′)).

The Tij conjuncts refer to non-obvious knowledge and relate to an
invariant stating that each pair of non-adjacent buckets should have
total contents at most 1 [28]. The first part of the template, i.e., T12,
is based on the intuition that if in the previous round Cinderella
emptied buckets 1 and 2 (b1 = 0 ∧ b2 = 0), then during the next
round she will decide to empty another pair of buckets. That is,
either the pair of buckets 3 and 4 (b′′3 = 0 ∧ b′′4 = 0) or the pair of
buckets 4 and 5 (b′′4 = 0 ∧ b′′5 = 0) will be emptied. However, the
condition on which to decide if to empty buckets 3 and 4 or buckets
4 and 5 is not straightforward. We use template parameters and
leave the decision to be automated by our game solving approach.
The formula T12 is provided as follows.

T12(v′, v′′) = (?5 ∗ b′5+?2 ∗ b′2 ≤ 1 ∧ b′′3 = 0 ∧ b′′4 = 0 ∨
?1 ∗ b′1+?3 ∗ b′3 ≤ 1 ∧ b′′4 = 0 ∧ b′′5 = 0)

Following a similar argument, we obtain the formulas that complete
the definition of the template TEMPL(sk)(v, v′, v′′):

T23(v′, v′′) = (?1 ∗ b′1+?3 ∗ b′3 ≤ 1 ∧ b′′4 = 0 ∧ b′′5 = 0 ∨
?2 ∗ b′2+?4 ∗ b′4 ≤ 1 ∧ b′′5 = 0 ∧ b′′1 = 0)

T34(v′, v′′) = (?2 ∗ b′2+?4 ∗ b′4 ≤ 1 ∧ b′′5 = 0 ∧ b′′1 = 0 ∨
?3 ∗ b′3+?5 ∗ b′5 ≤ 1 ∧ b′′1 = 0 ∧ b′′2 = 0)

T45(v′, v′′) = (?3 ∗ b′3+?5 ∗ b′5 ≤ 1 ∧ b′′1 = 0 ∧ b′′2 = 0 ∨
?4 ∗ b′4+?1 ∗ b′1 ≤ 1 ∧ b′′2 = 0 ∧ b′′3 = 0)

T51(v′, v′′) = (?4 ∗ b′4+?1 ∗ b′1 ≤ 1 ∧ b′′2 = 0 ∧ b′′3 = 0 ∨
?5 ∗ b′5+?2 ∗ b′2 ≤ 1 ∧ b′′3 = 0 ∧ b′′4 = 0).

The template parameters are marked as before by “?”-variables
and we aim to obtain solutions for the five template parameters
?1, ?2, ?3, ?4, ?5. Our approach is indeed able to synthesize auto-
matically values for these parameters. The tool CONSYNTH re-
turns the solutions ?1 = 1, ?2 = 1, ?3 = 1, ?4 = 1, ?5 = 1.
The resulting strategy for the Cinderella player guarantees that no
state with overflow can be reached. For a different perspective, we

refer the interested reader to an article on (non-automated) reason-
ing and invariants needed to establish strategies for the Cinderella-
Stepmother game similar to the ones we synthesize [28].

5.2 Game with Stepmother’s reachability objective
We continue illustrating our approach with the Cinderella-
Stepmother game, this time based on a reachability objective: the
winning condition for the Stepmother player requires that a state
with overflow is reached, obj (v) = F overflow(v). For this game,
we use the bucket capacity c = 1.4, a value for which the Step-
mother has indeed a winning strategy. To derive this strategy, we
instantiate the proof rule for the reachability game as follows.

init(v) = (b1 = 0 ∧ · · · ∧ b5 = 0)

eve(v, v′) = stepmother(v, v′)

adam(v, v′) = cinderella(v, v′)

Next we provide a template corresponding to the existentially quan-
tified clause. The insight behind the template is that the quantity of
water from each bucket increases during the turn of Stepmother,
but without specifying the amount, i.e., (b′′i = b′i+?i ∧?i ≥ 0).

TEMPL(sk)(v, v′, v′′) = (?1 + · · ·+?5 = 1 ∧∧
i∈{1..5}

(b′′i = b′i+?i ∧?i ≥ 0)

Our approach computes the auxiliary assertions that are required by
the reachability proof rule and a witness for the existential quan-
tifier. The witness instantiates the template parameters and repre-
sents the Stepmother’s strategy to ensure that the buckets eventually
overflow no matter what moves are made by the Cinderella player.

sk(v, v′) = (b′1 = b1 + 0.8 ∧ b′2 = b2

∧ b′3 = b3 + 0.1 ∧ b′4 = b4 ∧ b′5 = b5 + 0.1)

In this case, since the addition of water is done in non-adjacent
buckets, e.g., b1 and b3, eventually the game reaches an overflow
state, and the Stepmother is the player to win this game.

5.3 Games with Cinderella’s LTL objectives
Apart from games with safety and reachability objectives, our ap-
proach is able to handle games with more general LTL objectives.
For this game, we use the following player roles.

init(v) = (b1 = 0 ∧ · · · ∧ b5 = 0)

eve(v, v′) = cinderella(v, v′)

adam(v, v′) = stepmother(v, v′)

We use the value c = 1.4 for the bucket capacity, similar to Sec-
tion 5.2. As already explained, with this value Stepmother has a
strategy to win the game with the objective ϕ(v) = Foverflow(v).
Consequently, Cinderella does not have a strategy to win the
game with the objective set to the complement formula, i.e.,
¬ϕ(v) = G ¬overflow(v). For this section, we formalize a win-
ning condition that is a weaker logical formula than ¬ϕ(v) for
which Cinderella has a winning strategy. The objective constraint
GF ¬overflow(v) states that an overflow state does not occur in-
finitely often in the plays of the game.

More generally, we use color to indicate the most significant
bucket for which an overflow occurs.

• A state without overflow: (color = 0).
• A state with overflow such that i is the smallest index of those

that correspond to buckets that have overflown: (color = i).

We group the states of the system based on the truth value of the
predicates color = i as follows.

p0(v) = (color = 0) = (b1 ≤ 1.4 ∧ · · · ∧ b5 ≤ 1.4)

p1(v) = (color = 1) = (b1 > 1.4)

p2(v) = (color = 2) = (b1 ≤ 1.4 ∧ b2 > 1.4)

p3(v) = (color = 3 ∨ color = 4 ∨ color = 5) = . . .

A winning condition corresponding to a value i ensures that states
from pi(v) occur infinitely often in the plays of the system, and that
i is the smallest value for which states occur infinitely often.

win(v, i) = (GF pi(v) ∧
∧

j∈{0,..,i−1}

FG ¬pj(v))

Our approach for solving games with LTL objectives proceeds
in three steps: 1) complement the LTL formula ϕ representing the
winning condition; 2) construct a Büchi automaton corresponding
to the complemented formula ¬ϕ; 3) instantiate the proof rule from
Figure 3 using the Büchi automaton representation.

LTL game 1 For the first LTL game, we define the objective
for the Cinderella player obj (v) = win(v, 0) = GF p0(v).
We complement the objective formula to obtain FG ¬p0(v) =
FG overflow(v), then construct the Büchi automaton correspond-
ing to the complemented formula as follows.

initB(pcB) = (pcB = 0)

nextB(pcB, v, pc′B) = (pcB = 0 ∧ pc′B = 0 ∨
pcB = 0 ∧ pc′B = 1 ∧ overflow(v) ∨
pcB = 1 ∧ pc′B = 1 ∧ overflow(v))

accB(pcB) = (pcB = 1)

We instantiate the proof rule from Figure 3 as follows.

(init(v), adam(v, v′), eve(v, v′)) |= obj (v)

There exists a strategy for Eve provided that the premises of the
proof rule are satisfied. These premises are Horn clauses over the
auxiliary assertion inv(w), aux (w,w′, v′′), round(w,w′, w′′),
and fair(w,w′). We apply CONSYNTH to find a solution for the
auxiliary assertions. The clause B2 is an existentially quantified
clause. By skolemization of the existential clause B2 we obtain the
following.

inv(w) ∧ stepmother(v, v′) ∧ nextB(pcB, v, pc′B)

∧ sk(w,w′, v′′)→ cinderella(v′, v′′) ∧ aux (w,w′, v′′)

Using the template described in the paragraph ”Second strategy”
from Section 5.1, our approach is able to derive solutions for the
auxiliary assertions and the following template parameters ?1 =
?2 =?3 =?4 =?5 = 1. We conclude that Cinderella is the player
to win this game, and that her strategy ensures that states without
overflow occur infinitely often in the plays of the game.

LTL game 2 For the second LTL game, we define the objective
for the Cinderella player win(v, 0) ∨ win(v, 2). The objective
for the Stepmother player is win(v, 1) ∨ win(v, 3). The formula
corresponding to the Cinderella’s objective:

ϕ = (GF p0(v) ∨ (GF p2(v) ∧ FG ¬p1(v) ∧ FG ¬p0(v))).

The complemented formula is

¬ϕ = (FG ¬p0(v) ∧ (FG ¬p2(v) ∨GF p1(v) ∨GF p0(v))).

The Büchi automaton corresponding to the complemented formula
contains 10 distinct control states, from which two are accepting
states. Using our proof rule, we are able to compute automatically
auxiliary assertions and obtain that the same second strategy is
winning for the Cinderella player.

Note that for the player Cinderella, the LTL game 2 (with objec-
tive win(v, 0) ∨ win(v, 2)) is easier to win than the LTL game 1
(with objective win(v, 0)). However, the relation between the two
objectives is not immediately usable in a deductive approach like
ours. We presented both LTL games 1 and 2, since our approach
based on the proof rule from Figure 3 constructs different Buechi
automata and different auxiliary assertions for the two objectives.

6. Case study: program repair/synthesis games
In this section we illustrate how our constraint-based approach to
solving games applies to the synthesis of reactive programs from
temporal specifications. We consider synthesis problems obtained
from program repair questions, see Section 6.1 and Section 6.2,
as well as inference of thread synchronization, see Section 6.3. In
Section 7 we report on running times required for solving these
games using CONSYNTH.

6.1 Program repair game with safety objective
We model program repair as a game following [29]. That is, given
a set of suspect statements, we look for a modification of those
program statements such that the modified program satisfies its
specification. For the first repair game, we assume that a program
is given by a tuple (init(v),next(v, v′), error(v)) that represents
initial states, a transition relation, and error states, respectively.

As an example we consider the program shown in Figure 3 in
[29]. The program has three program variables v = (l, gl , pc). The
variable l models a lock, the variable gl is used to keep track of
the status of the lock, while the variable pc is the program counter
variable. The initial states of the program are

init(v) = (gl = 0 ∧ l = 0 ∧ pc = `0).

We show the control-flow graph of the program below.

`0

`2 `4

`5 `6

ρ1 ρ2

ρ3

ρ4 ρ5

ρ6

ρ7

The transition relation is defined as follows.

ρ1(v, v′) = (pc = `0 ∧ pc′ = `2 ∧ l′ = l ∧ gl ′ = gl)

ρ2(v, v′) = (pc = `0 ∧ pc′ = `4 ∧ l′ = l ∧ gl ′ = gl)

ρ3(v, v′) = (pc = `2 ∧ pc′ = `4 ∧ l ≤ 0 ∧ l′ = 1)

ρ4(v, v′) = (pc = `4 ∧ pc′ = `5 ∧ gl 6= 0 ∧ l′ = l ∧ gl ′ = gl)

ρ5(v, v′) = (pc = `4 ∧ pc′ = `6 ∧ gl = 0 ∧ l′ = l ∧ gl ′ = gl)

ρ6(v, v′) = (pc = `5 ∧ pc′ = `6 ∧ l ≥ 1 ∧ l′ = 0 ∧ gl ′ = gl)

ρ7(v, v′) = (pc = `6 ∧ pc′ = `0 ∧ l′ = l)

next(v, v′) = (ρ1(v, v′) ∨ · · · ∨ ρ7(v, v′))

Note that in ρ3(v, v′) and ρ7(v, v′) the variable gl is assigned a
non-deterministic value, since it is not constrained by the corre-
sponding assertions. The execution of the program enters an error
state at location `2 if the lock variable l is held, and at location `5
if the lock variable l is not held, i.e., we have

error(v) = (pc = `2 ∧ l = 1 ∨ pc = `5 ∧ l = 0).

We instantiate the safety game proof rule such that the system
role is played by the program transition relation and the environ-
ment role is to provide inputs to the program (in this case, the pro-

gram does not expect any inputs).

eve(v, v′) = next(v, v′)

adam(v, v′) = skip(v, v′)

obj (v) = G ¬error(v)

A repair of the program restricts the transition relation of the pro-
gram such that G ¬error(v) holds. To this end, we provide a
template corresponding to the existentially quantified clause of the
proof rule:

TEMPL(sk)(v, v′, v′′) = (pc′ = `2 ∧ pc′′ = `4 ∧ gl ′′ =?1

∨ pc′ = `6 ∧ pc′′ = `0 ∧ gl ′′ =?2)

Our algorithm returns the witness for the existential quantifier
clause that instantiates the template parameters ?1 = 1 and ?2 = 0.
This corresponds to a repaired program that assigns the value 1 to
gl at location `2, and assigns the value 0 to gl at location `6. We
obtain the same program repair as the solution originally presented
in [29].

6.2 Concurrent program repair games with safety and
response objectives

We illustrate how our approach can be applied to concurrent pro-
gram repair problems, and in particular to repair problems under
fairness assumptions. We use the CRITICAL SECTION example
from Figure 5 in [29] for this purpose. In this example, the assign-
ment turn1B = false at location `2 is faulty. The goal is to re-
pair this assignment, and hence, the entire program by checking if
there exists an assignment to the variable turn1B from its domain
{true, false} such that the resulting program satisfies certain tem-
poral properties. These properties are used in directing the repair
process towards the correct version of the program.

Let (f1a, f1b, t1b, f2a, f2b, t2b) be abbreviations of origi-
nal variable names (flag1A, flag1B , turn1B , flag2A, flag2B ,
turn2B). We encode the original program over variables v =
(pc1, pc2, x, y, f1a, f1b, t1b, f2a, f2b, t2b) using an initial condi-
tion init(v) such that

init(v) = (f1a = 0 ∧ f1b = 0 ∧ t1b = 0 ∧ f2a = 0

∧ f2b = 0 ∧ t2b = 0 ∧ pc1 = `1 ∧ pc2 = `1),

and a transition relation next(v, v′). Since the program is multi-
threaded with two threads, we give next(v, v′) as a disjunction of
transition relations of individual threads

next1(v, v′) ∧ pc′2 = pc2 ∨ next2(v, v′) ∧ pc′1 = pc1.

For the first thread we define (note that we explicate assignments of
a non-deterministic value to a variable z by z′ = ND and we omit
equalities for variables that do not change, hence, each variable z
that does not appear in z′ = . . . is constrained by z′ = z):

next1(v, v′) = (pc1 = `1 ∧ pc′1 = `2 ∧ f1a ′ = 1 ∨
pc1 = `2 ∧ pc′1 = `3 ∧ t1b′ = ND ∨
pc1 = `3 ∧ f1b = 1 ∧ t1b = 1 ∧ pc′1 = `3 ∨
pc1 = `3 ∧ (f1b = 0 ∨ t1b = 0) ∧ pc′1 = `4 ∨
pc1 = `4 ∧ pc′1 = `5 ∧ f1a ′ = 0 ∨
pc1 = `5 ∧ t1b = 1 ∧ pc′1 = `6 ∧ f2a ′ = 1 ∨
pc1 = `5 ∧ t1b = 1 ∧ pc′1 = `9 ∨
pc1 = `6 ∧ pc′1 = `7 ∧ t2b′ = 1 ∨
pc1 = `7 ∧ f2b = 1 ∧ t2b = 1 ∧ pc′1 = `7 ∨
pc1 = `7 ∧ (f2b = 0 ∨ t2b = 0) ∧ pc′1 = `8 ∨
pc1 = `8 ∧ pc′1 = `9 ∧ f2a ′ = 0 ∨
pc1 = `9 ∧ pc′1 = `1).

Note that the second disjunct above leaves the value of t1b un-
restricted, as denoted by t1b′ = ND . For the second thread we
define:

next2(v, v′) = (pc2 = `1 ∧ pc′2 = `2 ∧ f1b′ = 1 ∨
pc2 = `2 ∧ pc′2 = `3 ∧ t1b′ = 0 ∨
pc2 = `3 ∧ f1a = 1 ∧ t1b = 0 ∧ pc′2 = `3 ∨
pc2 = `3 ∧ (f1a = 0 ∨ t1b = 1) ∧ pc′2 = `4 ∨
pc2 = `4 ∧ pc′2 = `5 ∧ f2b′ = 1 ∨
pc2 = `5 ∧ pc′2 = `6 ∧ t2b′ = 0 ∨
pc2 = `6 ∧ f2a = 1 ∧ t2b = 0 ∧ pc′2 = `6 ∨
pc2 = `6 ∧ (f2a = 0 ∨ t2b = 1) ∧ pc′2 = `7 ∨
pc2 = `7 ∧ pc′2 = `8 ∧ f2b′ = 0 ∨
pc2 = `8 ∧ pc′2 = `9 ∧ f1b′ = 0 ∨
pc2 = `9 ∧ pc′2 = `1).

In the original problem there are two properties directed by
which the program should be repaired. The first property requires
that the two threads do not enter their critical sections at the same
time. This property is specified with the following LTL formula.

ϕ1(v) = G ((pc1 = `4 → pc2 6= `4) ∧
(pc1 = `8 → pc2 6= `7))

The second property requires that neither of the threads can be in a
deadlock state. This property is specified as follows.

ϕ2(v) = G ((pc1 = `3 → F (pc1 = `4)) ∧
(pc1 = `7 → F (pc1 = `8)) ∧
(pc2 = `3 → F (pc2 = `4)) ∧
(pc2 = `6 → F (pc2 = `7)))

Safety game Doing the program repair using the first prop-
erty amounts to applying the safety proof rule from Figure 1 to
find inv(v). Since there is no interaction with the environment,
adam(v, v′) will simply be equivalent with skip(v, v′). To apply
our proof rule, we use next(v, v′) for eve(v, v′) and ϕ1(v) as the
winning condition obj . We use the following template for the exis-
tential clause:

TEMPL(sk)(v, v′, v′′) = (t1b′′ =?1).

CONSYNTH computes the solution ?1 = 1, and correspond-
ingly we obtain a modified version of next1(v, v′) where the non-
deterministic assignment t1b′ = ND from the second disjunct is
replaced by t1b′ = 1.

Fair LTL game The second property relies on fairness assump-
tions. To deal with the fairness, we apply a transformation tech-
nique from [36] that reduces fair parallelism semantics to the
usual parallelism semantics. The idea is to use the equivalence
P |=fair Φ if and only Tfair(P) |= Φ, where P is the original
program, Tfair is the fair transformation function, Tfair(P) is the
transformed program with embedded tracking of fairness, and Φ is
the property to check. The transformation does not change the ini-
tial states of the program, but it significantly modifies the semantics
of the transition relation of the program. A counter variable is in-
troduced for each thread from the program, and the first statement
of each loop is strengthened by adding a guard and an update in-
volving the counter variables. See [36] for details. For our example
program, the transformation:

• introduces the counters k1 and k2,
• adds the guard k1 ≤ k2 and the update constraint (k′1 =

ND ∧ k′2 = k2 − 1) to the first, third and ninth disjunct
from next1(v, v′),

• adds the guard k2 ≤ k1 and the update constraint (k′1 =
k1 − 1 ∧ k′2 = ND) to the first, third and sixth disjunct
in next2(v, v′).

Let initT (v, k1, k2) = init(v) be the initial condition of the trans-
formed program. We refer to the transformed transition relations
as nextT 1(v, k1, k2, v

′, k′1, k
′
2) and nextT 2(v, k1, k2, v

′, k′1, k
′
2),

and present them below.

nextT 1(v, k1, k2, v
′, k′1, k

′
2) =

(pc1 = `1 ∧ pc′1 = `2 ∧ f1a ′ = 1

∧ k1 ≤ k2 ∧ k′1 = ND ∧ k′2 = k2 − 1 ∨
. . . ∨
pc1 = `3 ∧ f1b = 1 ∧ t1b = 1 ∧ pc′1 = `3

∧ k1 ≤ k2 ∧ k′1 = ND ∧ k′2 = k2 − 1 ∨
. . . ∨
pc1 = `7 ∧ f2b = 1 ∧ t2b = 1 ∧ pc′1 = `7

∧ k1 ≤ k2 ∧ k′1 = ND ∧ k′2 = k2 − 1 ∨
. . .)

nextT 2(v, k1, k2, v
′, k′1, k

′
2) =

(pc2 = `1 ∧ pc′2 = `2 ∧ f1b′ = 1

∧ k2 ≤ k1 ∧ k′1 = k1 − 1 ∧ k′2 = ND ∨
. . . ∨
pc2 = `3 ∧ f1a = 1 ∧ t1b = 0 ∧ pc′2 = `3

∧ k2 ≤ k1 ∧ k′1 = k1 − 1 ∧ k′2 = ND ∨
. . . ∨
pc2 = `6 ∧ f2a = 1 ∧ t2b = 0 ∧ pc′2 = `6

∧ k2 ≤ k1 ∧ k′1 = k1 − 1 ∧ k′2 = ND ∨
. . .)

The second property is more complicated than the first property
since it involves nesting of temporal operators. Like the case for
the first property, we assume adam(v, v′) to be equivalent with
skip(v, v′). We make nextT (v, v′) to play the role of eve(v, v′),
and G ((pc1 = `3 → F pc1 = `4) ∧ (pc1 = `7 → F pc1 =
`8) ∧ (pc2 = `3 → F pc2 = `4) ∧ (pc2 = `6 → F pc2 = `7)) is
now a winning condition obj .

We reuse the template used for the previous game and we get
exactly the same solution. That is, we determine t1b′ = ND to
t1b′ = 1 in the second disjunct of nextT 1(v, k1, k2, v

′, k′1, k
′
2).

6.3 Synthesis of synchronization game with safety objective
Synthesis of synchronization in multi-threaded programs [45] can
be automated using our approach. For illustration, we use the
example program from Figure 1 in [45] and represent it using
a tuple (init(v),next(v, v′), error(v)) for the case when three
threads are involved in computation. The program variables are
v = (x, y1, y2, z, pc1, pc2, pc3), the initial states are described by
init(v) = (x = 0 ∧ z = 0 ∧ pc1 = `1 ∧ pc2 = `1 ∧ pc3 = `1).
The transition relation of the program is

next(v, v′) = (next1(v, v′) ∧ pc′2 = pc2 ∧ pc′3 = pc3 ∨
next2(v, v′) ∧ pc′1 = pc1 ∧ pc′3 = pc3 ∨
next3(v, v′) ∧ pc′1 = pc1 ∧ pc′2 = pc2)

such that

next1(v, v′) =

(pc1 = `1 ∧ pc′1 = `2 ∧ x′ = x+ z ∧ skip(y1, y2, z) ∨
pc1 = `2 ∧ pc′1 = `3 ∧ x′ = x+ z ∧ skip(y1, y2, z))

next2(v, v′) =

(pc2 = `1 ∧ pc′2 = `2 ∧ z′ = z + 1 ∧ skip(x, y1, y2) ∨
pc2 = `2 ∧ pc′2 = `3 ∧ z′ = z + 1 ∧ skip(x, y1, y2))

next3(v, v′) =

(pc3 = `1 ∧ pc′3 = `2 ∧ x = 1 ∧ y′1 = 3 ∧ skip(x, y2, z) ∨
pc3 = `1 ∧ pc′3 = `2 ∧ x = 2 ∧ y′1 = 6 ∧ skip(x, y2, z) ∨
pc3 = `1 ∧ pc′3 = `2 ∧ (x ≤ 0 ∨ x ≥ 3) ∧ y′1 = 5 ∧
skip(x, y2, z) ∨
pc3 = `2 ∧ pc′3 = `3 ∧ y′2 = x ∧ skip(x, y1, z) ∨
pc3 = `3 ∧ pc′3 = `4 ∧ y1 6= y2 ∧ skip(x, y1, y2, z)).

Different interleavings of the three threads lead to different values
of y1 and y2. An assertion in the third thread at location `3 requires
that the values given to y1 and y2 are not equal, i.e., we have

error(v) = (pc3 = `3 ∧ y1 = y2).

For the given program, some interleavings lead to the values of y1
and y2 being equal, while other interleavings lead to distinct values
for the two variables. The goal of [45] is to add synchronization
to the program such that the assertion holds on all executions.
To apply our proof rule to this problem, we encode the choice
between executing a single step and executing an atomic section
using auxiliary variables. The transition relation of the program is
augmented with guards deciding a single step or an atomic section
based on the values of the auxiliary variables. For our example,
we use four auxiliary variables (c11, c21, c31, c32). We obtain an
extended tuple of variablesw = (v, c11, c21, c31, c32). A constraint
cij = ` is used in thread i to decide that the control flows from
location `j to location `. Correspondingly, the transition relation of
the first thread is augmented to:

next1(w,w′) =

(pc1 = `1 ∧ c11 = `2 ∧ pc′1 = `2 ∧ x′ = x+ z ∧ skip(. . .) ∨
pc1 = `1 ∧ c11 = `3 ∧ pc′1 = `3 ∧ x′ = x+ 2 ∗ z ∧ skip(. . .) ∨
pc1 = `2 ∧ pc′1 = `3 ∧ x′ = x+ z ∧ skip(. . .))

The transition relations of the second and third thread are instru-
mented similarly. We instantiate the safety game proof rule such
that the system role is played by the instrumented program transi-
tion relation and the environment role is to provide inputs to the
program (similar to the previous case, this example program does
not expect any inputs).

init(w) = init(v)

eve(w,w′) = (next1(w,w′) ∨ next2(w,w′) ∨ next3(w,w′))
adam(w,w′) = skip(w,w′)

Furthermore, we represent the search of initial parameter values us-
ing a strengthening of the original initial condition with an assertion
mid(w, t) such that:

init(w)→ ∃t : mid(w, t)

(mid(w, t), eve(w,w′), adam(w,w′)) |= G ¬error(w)

We use CONSYNTH and provide the following template for the
existential clause involving the initial states.

TEMPL(sk)(w, t) = (c11 =?11 ∧ c21 =?21

∧ c31 =?31 ∧ c32 =?32).

Name Game Player p Objective for player p Result Time (z3) Time (Barcelogic)
G1 Cinderella (c = 3) Cinderella G ¬overflow X 3.2s 1.2s
G2 Cinderella (c = 2) Cinderella G ¬overflow X 1m52s 1m52s
G3 Cinderella (c = 1.4) Stepmother F overflow X 18s 1m14s
G4 Cinderella (c = 1.4) Cinderella win(0) X 7m16s SysError
G5 Cinderella (c = 1.4) Cinderella win(0) ∨ win(2) X 4.7s 4.7s
G6 Repair-Lock Program G ¬error X 0.3s 0.3s
G7 Repair-Critical Program G ¬error X 17.7s 16.9s
G8 Repair-Critical Program G (at p → F ¬at p) X 53.3s 3m6s
G9 Synth-Synchronization Program G ¬error X T/O 1s

Table 1. Statistics for case studies. A T/O-mark stands for time out after 15 minutes.

A solution to mid(w, t) sets the auxiliary variables to target
program locations so that the objective of the game is satisfied, i.e.,
the error states are not reachable. CONSYNTH returns the following
witness for the existential quantifier clause:

sk(w, t) = (c11 = 3 ∧ c21 = 3 ∧ c31 = 4 ∧ c32 = 3).

We note that our proof rule does not represent an optimization prob-
lem. The solutions we obtain correspond to a synthesized program
that is not necessarily the most efficient one, i.e., the longest atomic
sections may be picked instead of smaller steps. Dealing with opti-
mality is a subject for future work.

7. Experimental results
In this section we describe how we used CONSYNTH as a proof-
of-concept implementation of our proposed approach to solving
infinite-state games. CONSYNTH is implemented in SICStus Pro-
log and is a solver for Horn clauses over linear inequalities. The
implementation uses two SMT solvers for handling non-linear con-
straints: the Z3 solver [13] and the Barcelogic solver [5, 6].

For our experiments we used a computer with an Intel Core
2 Duo 2.53 GHz CPU and 4 GB of RAM. Table 1 shows the
results corresponding to the case studies described in the paper:
Cinderella-Stepmother games with safety objectives (G1 and G2),
with reachability objectives (G3) and with more general LTL ob-
jectives (G4 and G5). Lastly, we show results on the program re-
pair/synthesis games (G6, G7, G8 and G9).

For each game we report the player and the objective for which
we synthesize strategies (see Columns 3 and 4). Column 5 shows
the result obtained from our tool: an X-mark stands for a strategy
successfully synthesized by our tool using either Z3 or Barcelogic
as solving back-ends. In one case (G5), due to the general LTL ob-
jective we obtain a large Büchi automaton. Our normal encoding
times-out for both Z3 and Barcelogic. However, CONSYNTH can
synthesize a winning strategy quickly if we exploit an optimization
where we treat infinite datatypes symbolically using a decision pro-
cedure, and finite domain datatypes explicitly without abstraction.
Because the control locations of the Büchi automaton pcB range
over a finite domain, this optimization allows the tool to track the
states of pcB explicitly, and this simplifies the proof obligations.

We believe our approach will benefit from future improvements
in constraint solving. The cases when either Z3 or Barcelogic times
out are challenging SMT problems and of potential interest to the
SMT-solving community.

8. Related work
There is a rich literature on decision procedures for graph games
with application to formal methods [14, 32, 38, 43]. In particular,
many techniques, both explicit-state [43] and symbolic [25, 37],
are known for games on finite graphs. Decidability results are
also known for games on certain restricted classes of infinite

graphs, such as pushdown graphs [8, 46] and prefix-recognizable
graphs [9].

Known approaches to games on graphs that represent state
spaces of general infinite-state programs can be divided into two
categories: those based on symbolic execution and those based on
abstraction-refinement. De Alfaro et al [12] offer an example of the
first kind of approach. In this work, a symbolic semi-algorithm is
used to explore the state space of the game directly. In contrast, we
reduce the problem of solving a game to Horn constraint solving,
leaving the constraints to be solved by a dedicated solver relying
on CEGAR and interpolation.

The second category of methods [2, 15, 16, 22–24] lift predi-
cate abstraction and CEGAR, originally proposed for safety veri-
fication, to games. The core idea here is the use of abstract tran-
sition systems where overapproximate (“may”) and underapprox-
imate (“must”) transitions are permitted, and which are model-
checked against properties with 3-valued semantics. In contrast to
existing approaches of this sort, we do not directly construct a pro-
gram abstraction with must-transitions or 3-valued semantics. In-
stead, we use a Skolem relation that is iteratively refined. More-
over, our backend solver uses disjunctively well-founded transition
invariants [39] to resolve liveness goals for players, which (so far
as we are aware) existing approaches do not do. This algorithmic
difference has a significant impact in practice.

Our approach is perhaps more closely related to a recent paper
by Cook and Koskinen [11], which uses a combination of CEGAR
with a form of Skolemization for verification of branching-time
properties of programs. However, this method only studies verifica-
tion of CTL — the class of properties that we handle is significantly
larger (e.g., it includes the full µ-calculus).

Games have a particularly close connection to program syn-
thesis and repair, areas that have seen a flurry of activity in the
last few years. However, in recent as well as classical algorithms
in these areas, the focus is tends to be either on finite-state sys-
tems [29, 38, 41], or on functional, rather than reactive, pro-
grams [31, 42, 45]. In contrast, the natural application of our ap-
proach is in the repair and synthesis of infinite-state reactive pro-
grams.

Finally, our work here was inspired by the rich tradition of
on deductive program synthesis [34, 38, 40]. The main difference
between this line of work and ours lies in our focus on automation.
For example, Slanina [40] also offers a deductive rule for games
with response objectives. However, the proof rule demands global
ranking functions and justice and compassion assumptions, which
are known to be difficult to discharge automatically.

9. Conclusion
We have presented a constraint based approach to computing win-
ning strategies in infinite-state games. The approach consists of: (1)
a set of sound and relatively complete proof rules for solving such
games, and (2) automation of the rules on top of an existing auto-

mated deduction engine. We demonstrate the practical promise of
our approach through several case studies using examples derived
from prior work on program repair and synthesis.

Many avenues for future work remain open. The system we
have presented is a prototype. Much more remains to be done on
engineering it for greater scalability. In particular, we are especially
interested in applying the system to reactive synthesis questions
arising out of embedded systems and robotics. On the theoretical
end, exploring opportunities of synergy between our approach and
abstraction-based [22, 24] and automata-theoretic approaches to
games [43] remains a fascinating open question.

Acknowledgements
This research was supported in part by the ERC project 308125,
by the DFG Graduiertenkolleg 1480 (PUMA), and by NSF Awards
#1162076 and #1156059.

References
[1] R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of interface

specifications for java classes. In POPL, pages 98–109, 2005.
[2] T. Ball and O. Kupferman. An abstraction-refinement framework for

multi-agent systems. In LICS, pages 379–388. IEEE, 2006.
[3] T. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially

quantified Horn clauses. In CAV, 2013.
[4] M. Bodlaender, C. Hurkens, V. Kusters, F. Staals, G. Woeginger, and

H. Zantema. Cinderella versus the Wicked Stepmother. In IFIP TCS,
pages 57–71, 2012.

[5] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio. The Barcelogic SMT solver. In CAV, pages 294–298, 2008.

[6] C. Borralleras, S. Lucas, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio. SAT modulo linear arithmetic for solving polynomial
constraints. J. Autom. Reasoning, 48(1):107–131, 2012.

[7] J. R. Büchi and L. Landweber. Solving sequential conditions by finite-
state strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

[8] T. Cachat. Symbolic strategy synthesis for games on pushdown
graphs. In ICALP, pages 704–715. 2002.

[9] T. Cachat. Uniform solution of parity games on prefix-recognizable
graphs. Electronic Notes in Theoretical Computer Science, 68(6):71–
84, 2003.

[10] K. Chatterjee and L. Doyen. Energy parity games. TCS, 2012.
[11] B. Cook and E. Koskinen. Reasoning about nondeterminism in pro-

grams. In PLDI, 2013.
[12] L. De Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms

for infinite-state games. In CONCUR, pages 536–550. Springer, 2001.
[13] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In

TACAS, 2008.
[14] E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determi-

nacy. In FOCS, pages 368–377. IEEE, 1991.
[15] H. Fecher and M. Huth. Ranked predicate abstraction for branching

time: Complete, incremental, and precise. In ATVA, pages 322–336.
Springer, 2006.

[16] H. Fecher and S. Shoham. Local abstraction–refinement for the µ-
calculus. STTT, 13(4):289–306, 2011.

[17] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
CAV, pages 53–65, 2001.

[18] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, 2002.

[19] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Ry-
balchenko. HSF(C): A software verifier based on Horn clauses - (com-
petition contribution). In TACAS, 2012.

[20] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko.
Synthesizing software verifiers from proof rules. In PLDI, 2012.

[21] A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean programs
with an application to C. In CAV, pages 358–371. Springer, 2006.

[22] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Dont know in
the µ-calculus. In VMCAI, pages 233–249, 2005.

[23] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. When not
losing is better than winning: Abstraction and refinement for the full
µ-calculus. Information and Computation, 205(8):1130–1148, 2007.

[24] A. Gurfinkel and M. Chechik. Why waste a perfectly good abstrac-
tion? In TACAS, pages 212–226. 2006.

[25] A. Harding, M. Ryan, and P.-Y. Schobbens. A new algorithm for
strategy synthesis in ltl games. In TACASs, pages 477–492. Springer,
2005.

[26] T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided
control. In ICALP, pages 886–902, 2003.

[27] K. Hoder, N. Bjørner, and L. M. de Moura. Z- an efficient engine for
fixed points with constraints. In CAV, pages 457–462, 2011.

[28] A. J. C. Hurkens, C. A. J. Hurkens, and G. J. Woeginger. How Cin-
derella won the bucket game (and lived happily ever after). Mathemat-
ics Magazine, 84(4):pp. 278–283, 2011.

[29] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a
game. In CAV, pages 226–238, 2005.

[30] M. Jurdziński. Small progress measures for solving parity games. In
STACS, pages 290–301, 2000.

[31] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional
synthesis. In PLDI, 2010.

[32] O. Kupferman and M. Y. Vardi. Robust satisfaction. In CONCUR,
pages 383–398, 1999.

[33] Z. Manna and A. Pnueli. Completing the temporal picture. Theor.
Comput. Sci., 83(1):91–130, 1991.

[34] Z. Manna and R. Waldinger. A deductive approach to program syn-
thesis. TOPLAS, 2(1):90–121, 1980.

[35] D. Martin. Borel determinacy. The Annals of Mathematics, 102(2):
363–371, 1975.

[36] E.-R. Olderog and K. R. Apt. Fairness in parallel programs: The
transformational approach. TOPLAS, 10(3), 1988.

[37] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive(1) designs.
In VMCAI, pages 364–380, 2006.

[38] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL, pages 179–190. ACM, 1989.

[39] A. Podelski and A. Rybalchenko. Transition invariants. In LICS, 2004.
[40] M. Slanina. Control rules for reactive system games. In AAAI Spring

Symposium on Logic-Based Program Synthesis, 2002.
[41] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A.

Saraswat. Combinatorial sketching for finite programs. In ASPLOS,
pages 404–415, 2006.

[42] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification
to program synthesis. In POPL, pages 313–326, 2010.

[43] W. Thomas. On the synthesis of strategies in infinite games. In STACS,
pages 1–13, 1995.

[44] M. Y. Vardi. Verification of concurrent programs: The automata-
theoretic framework. Ann. Pure Appl. Logic, 51(1-2):79–98, 1991.

[45] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis
of synchronization. In POPL, 2010.

[46] I. Walukiewicz. Pushdown processes: Games and model-checking.
Information and computation, 164(2):234–263, 2001.

[47] W. Zielonka. Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. Theoretical Computer Science, 200
(1):135–183, 1998.

