
GPU-based Runtime Verification

Shay Berkovich
Dept. of Elec. and Comp. Eng.

University of Waterloo
200 University Avenue West
Waterloo N2L 3G1, Canada

Email: sberkovi@uwaterloo.ca

Borzoo Bonakdarpour
School of Computer Science

University of Waterloo
200 University Avenue West
Waterloo N2L 3G1, Canada

Email: borzoo@cs.uwaterloo.ca

Sebastian Fischmeister
Dept. of Elec. and Comp. Eng.

University of Waterloo
200 University Avenue West
Waterloo N2L 3G1, Canada

Email: sfischme@uwaterloo.ca

Abstract—Runtime verification is a monitoring technique to
gain assurance about well-being of a program at run time. Most
existing approaches use sequential monitors; i.e., when the state
of the program with respect to an event of interest changes, the
monitor interrupts the program execution, evaluates a set of
logical properties, and finally resumes the program execution.
In this paper, we propose a GPU-based method for design and
implementation of monitors that enjoy two levels of parallelism:
the monitor (1) works along with the program in parallel,
and (2) evaluates a set of properties in a parallel fashion as
well. Our parallel monitoring algorithms effectively exploit
the many-core platform available in the GPU. In addition
to parallel processing, our approach benefits from a true
separation of monitoring and functional concerns, as it isolates
the monitor in the GPU. Our method is fully implemented and
experimental results show significant reduction in monitoring
overhead, monitoring interference, and power consumption due
to leveraging the GPU technology.

Keywords-Runtime monitoring; parallel algorithms; tempo-
ral logic; formal methods

I. INTRODUCTION

In computing systems, correctness refers to the assertion
that a system satisfies its specification. Runtime verifica-
tion [1], [2], [3] refers to a technique where a monitor checks
at run time whether or not the execution of a system under
inspection satisfies a given correctness temporal property.
Runtime verification complements exhaustive verification
methods such as model checking and theorem proving, as
well as incomplete solutions such as testing and debugging.

The main challenge in augmenting a system with run-
time verification is dealing with its runtime overhead. This
overhead often introduces two types of defects to the system
under scrutiny: (1) unpredictable execution, and (2) possible
bursts of monitoring intervention in program execution.
Several techniques have been introduced in the literature
for reducing and controlling runtime overhead. Examples
include:
• improved instrumentation (e.g., using aspect-oriented

programming [4], [5]),
• combining static and dynamic analysis techniques (e.g.,

using typeset analysis [6] and PID controllers [7]),

This is an extended version of the paper that appeared in IPDPS’13.

• efficient monitor generation and management (e.g., in
the case of parametric monitors [8]), and

• schedulable monitoring (e.g., using time-triggered mon-
itors [9]).

Each of the above approaches remedies the overhead issue
to some extent and in specific contexts. However, there has
been little work on reducing and containing the overhead
of runtime verification through isolating the monitor in a
different processing unit.

With this motivation in mind, in this paper, we propose a
technique that permits the separation of the functional from
monitoring concerns into different computing units; i.e., the
program under inspection and its monitor run in parallel on
different hardware processing units. Our formal language for
monitoring properties is the linear temporal logic (LTL) and,
in particular its 3-valued semantics (LTL3) [10]. We utilize
the algorithm introduced in [10] for synthesizing a monitor
as a deterministic finite state machine from an LTL3 formula.

Although the idea of parallelizing the execution of a
monitor seems counterintuitive, we introduce two algorithms
that take a program trace as input and evaluate the trace in a
parallel fashion as follows. The algorithms divide each trace
into a set of sub-traces (multiple data) and then perform
identical evaluation functions on each sub-trace on different
processing units (single instruction). In other words, the
algorithms employ Single Instruction Multiple Data (SIMD)
parallelism and, hence, one can leverage a graphics process-
ing unit (GPU) for parallel evaluation of LTL properties. The
resulting monitoring architecture, where the program runs on
a CPU while simultaneously the monitor runs on a GPU is
shown in Figure 1. The main challenge in implementing such
algorithms is to ensure that the causal order of occurrence
of events in the program trace is respected when evaluating
a property in a parallel fashion. To this end, we formalize a
notion of LTL3 property history that encodes the causal order
of events for parallelization. Intuitively, a property history is
the maximum sequence of a monitor state changes to decide
a verification verdict. We show that this length may influence
the parallelization of verification of a program trace.

In Figure 1, the program under scrutiny stores a finite
program trace, which is the sequence of events that need to

be examined. The motivation behind building this trace is
to accumulate a load of events so the verification of the
properties with respect to the events can be parallelized.
The size of the trace and the decision on when to provide
the monitor with the trace are given as input parameters
by the system designer. Examples of contributing factors
in specifying these parameters include tolerable latency
for detecting violations of the specification and monitor
scheduling constraints. A host process receives the program
trace in the shared memory and distributes chunks of this
trace among a set of monitoring worker threads running on
the GPU. The worker threads are capable of monitoring
one or more properties simultaneously. Once one of the
properties is violated or satisfied, the monitor will report
this event back to the program. In case of a violation, there
needs to be a recovery or steering action to lead the program
back to its normal behavior. The feedback arrow in Figure 1
and its consequences are out of the scope of this work.

One can observe that this architecture leverages two levels
of parallelism: (1) between the program running on the
CPU and the monitor running on the GPU, and (2) among
the monitoring worker threads running on the GPU cores.
Moreover, notice that the main overhead incurred is the cost
of the data transfer between the host process (on the CPU)
and the monitoring threads on the GPU. Given the current
trend in merging the address space of CPU and GPU (e.g.,
in the AMD Fusion family of APUs), we expect this cost to
decrease.

Our objective in designing such an architecture is twofold:
(1) reducing the overhead through parallel processing, and
(2) decreasing the monitoring interference during the pro-
gram execution. While the former is the objective of most
research activities in the area of runtime verification, the
latter is highly desirable in the design, development, and en-
gineering of software applications especially in the domain
of safety-critical systems. For example, isolating the monitor
in a separate device facilitates certification of embedded soft-
ware, as regulators often require evidence of independence
between the safety and control systems (e.g., in the DO-178c
standard).

Although our algorithms are designed for SIMD archi-
tectures, our theoretical results and algorithms can be im-
plemented in both GPU-based and multi-core programming
environments, such as POSIX threads, MPI, OpenCL, and
CUDA with minimal portability efforts. Our approach is
fully implemented using the OpenCL language1 and, thus,
it is not limited to GPU platforms and can be used in multi-
core platforms that support OpenCL as well.

We present the results of a set of experiments to (1)
compare the monitoring overhead on the CPU and GPU, and
(2) study the throughput and scalability of our algorithms
for parallel verification of different properties. We also

1http://www.khronos.org/opencl/

Program
Host GPU

Monitor

DATA

Feedback

Program trace

Figure 1. GPU-based Monitor Architecture

describe a case study based on monitoring the embedded
controller of a flying unmanned aerial vehicle (UAV). We
analyze the power consumption and the CPU utilization of
GPU-based monitoring. Our conclusion is that GPU-based
runtime verification is an effective approach to significantly
reduce the runtime overhead and to isolate functional from
monitoring concerns. Moreover, we observe that GPU-based
monitoring leads to significantly lower power consumption
when compared to CPU-based monitoring. This is crucial
considering power constraints presented on some embedded
and safety-critical systems.

Organization: Section II presents the preliminary con-
cepts. Our notion of monitoring history is described in
Section III, while Section IV is dedicated to our algorithms
for parallel verification of LTL3 properties at run time.
We analyze experimental results in Section V. Section VI
discusses related work. Finally, in Section VII, we make
concluding remarks and identify future work.

II. PRELIMINARIES

A. Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is a popular formalism for
specifying properties of (concurrent) programs. The set of
well-formed linear temporal logic formulas is constructed
from a set of atomic propositions, the standard Boolean
operators, and temporal operators. Precisely, let AP be a
finite set of atomic propositions (e.g., x ≥ 2, where x is an
integer) and Σ = 2AP be a finite alphabet. A letter a in Σ is
interpreted as assigning truth values to the elements of AP ;
i.e., elements in a are assigned true > and elements not in
a are assigned false ⊥ (e.g., (x ≥ 2)∧(y = 5)). A word is a
finite or infinite sequence of letters w = a0a1a2 . . . , where
ai ∈ Σ for all i ≥ 0. We denote the set of all finite words
over Σ by Σ∗ and the set of all infinite words by Σω . For a
finite word u and a word w, we write u · w to denote their
concatenation.

Definition 1 (LTL Syntax): LTL formulas are defined in-
ductively as follows:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1Uϕ2

2

where p ∈ Σ, and, © (next) and U (until) are temporal
operators. �

Definition 2 (LTL Semantics): Let w = a0a1 . . . be an
infinite word in Σω , i be a non-negative integer, and |=
denote the satisfaction relation. Semantics of LTL is defined
inductively as follows:
w, i |= >
w, i |= p iff p ∈ ai
w, i |= ¬ϕ iff w, i 6|= ϕ
w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 ∨ w, i |= ϕ2

w, i |=©ϕ iff w, i+ 1 |= ϕ
w, i |= ϕ1 Uϕ2 iff

∃k ≥ i : w, k |= ϕ2 ∧ ∀j : i ≤ j ≤ k : w, j |= ϕ1.
In addition, w |= ϕ holds iff w, 0 |= ϕ holds. �

Notice that an LTL formula ϕ defines a set of words
(i.e., a language or a property) that satisfies the semantics
of that formula. We denote this language by L(ϕ). For
simplicity, we introduce abbreviation temporal operators:
♦ϕ (eventually ϕ) denotes >Uϕ, and �ϕ (always ϕ)
denotes ¬♦¬ϕ. For instance, formula �(p ⇒ ♦q) means
that ‘it is always the case that if proposition p holds,
then eventually proposition q holds’. One application of
this formula is in reasoning about non-starvation in mutual
exclusion algorithms: ‘if a process requests entering critical
section, then it eventually is granted to do so’.

In order to reason about correctness of programs with
respect to an LTL property, we describe a program in terms
of its state space and transitions. A program is a tuple
P = 〈S, T 〉, where S is the non-empty state space and T
is a set of transitions. A transition is of the form (s0, s1),
where s0, s1 ∈ S. A state of a program is normally obtained
by valuation of its variables and transitions are program
instructions. In this context, an atomic proposition in a
program is a Boolean predicate over S (i.e., a subset of
S).

We define a trace of a program P = 〈S, T 〉 as a finite or
infinite sequence of subsets of atomic propositions obtained
by valuation of program variables (i.e., program states).
Thus, a program trace can be defined as σ = s0s1s2 . . . ,
such that si ∈ S and each (si, si+1) ∈ T , for all i ≥ 0.
A program trace σ satisfies an LTL property ϕ (denoted
σ |= ϕ) iff σ ∈ L(ϕ). If σ does not satisfy ϕ, we say
that σ violates ϕ. A program P satisfies an LTL property ϕ
(denoted P |= ϕ) iff for each trace σ of P , σ |= ϕ holds.

B. 3-Valued LTL

Implementing runtime verification boils down to the
following problem: given the current program finite trace
σ = s0s1s2 . . . sn, whether or not σ belongs to a set of
words defined by some property ϕ. This problem is more
complex than it looks, because LTL semantics is defined
over infinite traces and a running program can only deliver a
finite trace at a verification point. For example, given a finite

trace σ = s0s1 . . . sn, it may be impossible for a monitor to
decide weather the property ♦p is satisfied.

To formalize satisfaction of LTL properties at run time,
in [10], the authors propose semantics for LTL, where the
evaluation of a formula ranges over three values ‘>’, ‘⊥’,
and ‘?’ (denoted LTL3). The latter value expresses the fact
that it is not possible to decide on the satisfaction of a
property, given the current program finite trace.

Definition 3 (LTL3 semantics): Let u ∈ Σ∗ be a finite
word. The truth value of an LTL3 formula ϕ with respect to
u, denoted by [u |= ϕ], is defined as follows:

[u |= ϕ] =


> if ∀w ∈ Σω : u · w |= ϕ,

⊥ if ∀w ∈ Σω : u · w 6|= ϕ,

? otherwise. �
Note that the syntax [u |= ϕ] for LTL3 semantics is

defined over finite words as opposed to u |= ϕ for LTL
semantics, which is defined over infinite words. For example,
given a finite program trace σ = s0s1 · · · sn, property ♦p
holds iff si |= p, for some i, 0 ≤ i ≤ n (i.e., σ is a good
prefix). Otherwise, the property evaluates to ?.

Definition 4 (Good and Bad Prefixes): Given a language
L ⊆ Σω of infinite words over Σ, we call a finite word
u ∈ Σ∗

• a good prefix for L, if ∀w ∈ Σω : u · w ∈ L
• a bad prefix for L, if ∀w ∈ Σω : u · w /∈ L
• an ugly prefix otherwise. �

In order to declare a verification verdict by a monitor
more efficiently, it is advantageous to recognize good and
bad prefixes as early as possible.

Definition 5 (Minimal Good/Bad Prefixes): A bad (good)
prefix u for language L ⊆ Σω is called minimal if each strict
prefix of u is not a bad (good) prefix. �

For example, for property ϕ ≡ (p U q), the prefix (p ∧
¬q)∗ is an ugly prefix, (p ∧ ¬q)∗· (¬p ∧ ¬q) is a minimal
bad prefix, and (p∧¬q)∗· (¬p∧q) is a minimal good prefix.

Implementing runtime verification for an LTL3 property
involves synthesizing a monitor that realizes the property. In
[10], the authors introduce a stepwise method that takes an
LTL3 property ϕ as input and generates a deterministic finite
state machine (FSM) Mϕ as output. Intuitively, simulating
a finite word u on this FSM reaches a state that illustrates
the valuation of [u |= ϕ].

Definition 6 (Monitor): Let ϕ be an LTL3 formula over
alphabet Σ. The monitor Mϕ of ϕ is the unique FSM
(Σ, Q, q0, δ, λ), where Q is a set of states, q0 is the initial
state, δ is the transition relation, and λ is a function that
maps each state in Q to a value in {>,⊥, ?}, such that:

[u |= ϕ] = λ(δ(q0, u)). �
Examples of monitors appear in Figures 2, 3, and 4. We

use the term a conclusive state to refer to monitor states

3

q⊤

true

ϕ = ⊤

(a)

ϕ ≡ �p

p¬p

q0

q

q0

q⊥

¬p ∧ ¬q

q0 p ¬p p ∧ ¬q

true

q⊤q⊤

true true

q⊥

true

ϕ ≡ ♦p ϕ ≡ p U q

(b)

Figure 2. Monitors for properties, where (a) ‖Hϕ‖ = 0, and (b) ‖Hϕ‖ = 1.

q> and q⊥; i.e., states where λ(q) = > and λ(q) = ⊥,
respectively. Other states are called an inconclusive state.
A monitor Mϕ is constructed in a way that it recognizes
minimal good and bad prefixes of L(ϕ). Hence, if Mϕ

reaches a conclusive state, it stays in this trap state. We
note that the construction algorithm in [10] synthesizes a
minimized automaton for an LTL3 property.

Definition 7 (Monitorable Property): An LTL3 property
ϕ is monitorable if L(ϕ) has no ugly prefixes. We denote
the set of all monitorable LTL3 properties by LTLmon

3 . �
In other words, a property is monitorable if for every finite

word, there still exists a (possibly) infinite continuation that
will determine whether the property is violated or satisfied.

III. LTL3 MONITORING HISTORY

The construction of a monitor for an LTL3 property as
described in Section II, allows evaluation of a prefix with
respect to the property by observing state-by-state changes
in the program under scrutiny. In other words, the monitor
processes each change of state in the program individually.
Such state-by-state monitoring is inherently sequential. The
core of our idea to leverage parallel processing in runtime
verification of a property is to buffer finite program traces
and then somehow assign one or more sub-trace to a
different monitoring processing units. We assume that the
length of the program trace is given as an input parameter
by the system designer. This length may depend on factors
such as: (1) hardware constraints (e.g., memory limitations),
(2) tolerable detection latency (i.e., the time elapsed since a
change of state until a property violation is detected), or (3)
the sampling period in time-triggered runtime verification
[9] (e.g., for scheduling purposes in real-time systems).

Although our idea seems simple and intuitive, its imple-
mentation may become quite complex. This is due to the
fact that truthfulness of some LTL3 properties is sensitive to
the causal order of state changes. For example, monitoring
property ϕ ≡ (p⇒ ♦q) has to take the order of occurrence

of atomic propositions p and q into account. This leads us
to our notion of history carried by an LTL3 formula. This
history can be seen as a measure of “parallelizability” of
the property. We first informally motivate the idea and then
present formal definitions.

One can observe that each state of Mϕ for a property ϕ
in LTLmon

3 represents a different logical step in evaluation
of ϕ. Thus, the structure of Mϕ characterizes the temporal
complexity of ϕ. Running a finite program trace on Mϕ

results in obtaining a sequence of states of Mϕ. This
sequence encodes a history (denoted Hϕ) of state changes
in the program under inspection and consequently in the
monitor. In the context of monitoring, we are only concerned
with the longest minimal good or bad prefixes in L(ϕ).
Thus, the length of the history for property ϕ (denoted
‖Hϕ‖) is the number of steps that the monitor needs at
most to evaluate ϕ. For example, for the trivial property
ϕ ≡ >, we have ‖Hϕ‖ = 0, since ϕ is evaluated in 0 steps
(see Figure 2(a)). Figure 2(b), shows three properties and
their corresponding monitors, where ‖Hϕ‖ = 1. Figure 3
demonstrates the monitor of property ϕ1 ≡ p ∧ (q U r),
where ‖Hϕ1‖ = 2. This is because the length of the longest
path from the initial state q0 to a conclusive state is 2 and
the monitor has no cycles.

Definition 8 (History): Let ϕ be a property in LTLmon
3

and w ∈ Σω be an infinite word. The history of ϕ with
respect to w is the sequence of states Hϕ

w = q0q1 . . . of
Mϕ = (Σ, Q, q0, δ, λ), such that qi ∈ Q and qi+1 =
δ(qi, wi), for all i ≥ 0. �

Definition 9 (History Length): Let ϕ be a property in
LTLmon

3 and w ∈ Σω be an infinite word. The history
length of ϕ with respect to w (denoted ‖Hϕ

w‖) is the
number of state transitions in history Hϕ

w = q0q1q2 . . . ,
such that qi 6= qi+1, for all i ≥ 0. The history length of
a property is then: ‖Hϕ‖ = max{‖Hϕ

w‖ | w ∈ Σω ∧
w has a minimal good/bad prefix}. �

4

q1

true

r

true

p ∧ q ∧ ¬r

¬q ∧ ¬r

q ∧ ¬r

q⊥ q⊤

¬p ∨ (¬q ∧ ¬r) p ∧ r
q0

Figure 3. Monitor for property ϕ1 ≡ p ∧ (q U r) with ‖Hϕ1‖ = 2.

q ∧ ¬r

true

r
q0 q1

q⊥

p ∧ ¬q ∧ ¬r ¬q ∧ ¬r

p ∧ q ∧ ¬r
¬p ∨ r

Figure 4. Monitor for property ϕ2 ≡ �(p ⇒ (q U r)) with ‖Hϕ2‖ =
∞.

We clarify a special case, where a monitor contains a
cycle reachable from its initial state and a conclusive state
is reachable from the cycle. In this case, according to
Definition 9, the history length of the associated property
is infinity. For example, Figure 4 illustrates such a monitor.
Obtaining length of infinity is due to the existence of cycle
q0 − q1 − q0.

Theorem 1: Let ϕ be a property in LTLmon
3 .Mϕ is cyclic

iff ‖Hϕ‖ =∞.
Proof: We distinguish two cases:

• (⇒) If a cycle exists inMϕ, then it does not involve a
conclusive state. This is because any conclusive state is
a trap. Thus, given a cycle q̄ = q0−q1−q2 . . . qk−q0 of
inconclusive states, one can obtain an infinite word w ∈
Σω , such that the corresponding history Hϕ

w will run
infinitely on q̄ and has infinite number of state changes.
Therefore, ‖Hϕ‖ = ‖Hϕ

w‖ =∞.
• (⇐) If the length of a property history is ∞, then it

has to be the case that some states in the history are
revisited. This implication is trivial, because the number
of states of a monitor is finite. Hence, the monitor must
contain a cycle.

In general, the structure of a monitor depends on the
structure of its LTL3 formula (i.e., the number of temporal
and Boolean operators as well as nesting depth of operators).
For instance, the temporal operator© increments the history
length of an LTL3 formula by 1. If a formula does not include

the U temporal operator, then the structure of its monitor
will be a linear sequence of states and will not contain any
loops. However, the reverse direction does not hold. For
instance, properties ϕ ≡ p ∨ (qU r) and ψ ≡ pU (qU r)
have both history of length 2.

Note that a finite history length for a property ϕ (i.e.,
‖Hϕ‖ = n, where n < ∞) does not necessarily imply
that any history will have a finite number of states before
reaching a conclusive state. This is because self-loops inMϕ

may exist. Finiteness of ‖Hϕ‖ simply means that monitoring
ϕ takes at most n state changes in Mϕ to reach a verdict.

IV. PARALLEL ALGORITHMS FOR EVALUATION OF LTL3

PROPERTIES

In Subsection IV-A, we analyze sequential evaluation
of LTLmon

3 properties. Then, we introduce our parallel
algorithm for evaluation of properties with finite history
length in Subsection IV-B. Subsection IV-C proposes a
more general (but less efficient) algorithm for properties
with infinite or finite history length. Both algorithms exhibit
SIMD parallelism. The parallelism comes from the fact
that the data trace is processed in parallel (multiple data)
by different processing units using the same monitoring
kernel code. However, the algorithms logic ensures the right
verification order, so that the final result is consistent with
sequential execution.

A. Sequential Evaluation

Let P = 〈S, T 〉 be a program and σ = s0s1s2 . . . be
a trace of P . Also, let ϕ be a property in LTLmon

3 and
Mϕ = (Σ, Q, q0, δ, λ) be its monitor, which is intended
to inspect program P . One can build a sequential imple-
mentation of Mϕ by employing a sequence of conditional
statements as follows. By every change of program state si,
i ≥ 0, monitor Mϕ calculates qi+1 = δ(qi, ui), where ui
is a mapping of program state si onto an alphabet Σ. The
output of each algorithm step is λ(qn+1). Thus, the time
required to evaluate n program states can be described by
the following equation:

Tseq = n.(tcalc + tbranch) (1)

where tbranch is the time spent in a conditional statement to
compute the next state of Mϕ and tcalc is the (proposition
to alphabet) translation time. For instance, consider the
LTLmon

3 property ϕ1 ≡ p ∧ (qU r) in Figure 3, where
p ≡ (log(x) ≤ 1.0), q ≡ (sin(y) ≤ 1), and r ≡ (tan(z) ≥
3.0). Here, x, y, and z are program variables and p, q, and
r are atomic propositions over the program states. Hence,
tcalc involves calculation of log(x), sin(y), and tan(z).

Note that tcalc and consequently Tseq , increase linearly
with computational complexity of (proposition to alphabet)
translation. Now, if we are to evaluate multiple LTLmon

3

properties (say m), the algorithm complexity becomes
O(m.n) and this linear increase appears in all evaluations:

5

Tseq = n.
(m∑
j=1

(tjcalc + tjbranch)
)

(2)

Our parallel algorithms described in this section tackle
this linear increase by distributing the calculation load across
multiple processing units.

B. Parallel Algorithm 1

Our first algorithm takes a program trace and processes it
in a parallel fashion by assigning different program states to
different GPU cores. To handle the causal order between the
state transitions, the algorithm starts a new iteration every
time a state transition occurs. Consequently, in each new
iteration, a different current monitor state will be given.
Intuitively, the number of iterations required to process the
whole program trace, is bounded by the history length of
the monitored property.

We now describe the algorithm in detail. The algorithm
takes a finite program trace σ = s0s1 . . . sn, a monitor
Mϕ = (Σ, Q, q0, δ, λ), and a current state qcurrent ∈ Q
(possibly q0) of the monitor as input and returns resulting
state qresult and the monitoring verdict λ(qresult) as output
(see Algorithm 1). The algorithm works as follows:

1) (Initialization) The algorithm initializes tuple I to
〈n + 1, qcurrent〉 (line 2). This tuple is used to keep
the index of the left-most program state in trace σ
that causes a state transition in the monitor and the
resulting state of this transition. The tuple may return
either the key (program state index) as in line 7
or the value (resulting monitor state) as in line 15.
StartIndex points to the first program state to be
processed in the current iteration (0 in the beginning).

2) (Parallel computation of next monitor state) In lines
4-11, the algorithm computes the contents of tuple I in
parallel. Tuple I is set to 〈i, qresult〉 only if program
state si results in enabling a transition from current
monitor state qcurrent and i is strictly less than the
previous value of key(I). This way, at the end of
this phase, tuple I will contain the left-most transition
occurred in the monitor. Observe that lines 7-9 are
protected as a critical section and, hence, different
processing units are synchronized. Notice that this
synchronization is implemented at the GPU work-
group level within the same computation unit. Thus,
there is no global synchronization and parallelism
among work groups is ensured. Moreover, observe that
the most costly task in the algorithm (i.e., predicate
evaluation in Line 5) is not in the critical section
and executes in parallel with other such evaluations.
This also means that the variable qresult is not shared
between different threads and each thread has its own
local copy of qresult . All other variables are shared.

Algorithm 1 For finite-history LTLmon
3 properties

Input: A monitor Mϕ = (Σ, Q, q0, δ, λ), a state qcurrent ∈ Q, and a
finite program trace σ = s0s1s2 . . . sn.

Output: A state qresult ∈ Q and λ(qresult).

/* Initialization */
1: StartIndex ← 0
2: I ← 〈n+ 1, qcurrent 〉
3: Let m be a mutex

/* Parallel computation of next monitor state given the current state */
4: for all (si,StartIndex ≤ i ≤ n) in parallel do
5: qresult ← δ(qcurrent , si)
6: lock(m)
7: if (qcurrent 6= qresult ∧ i < key(I)) then
8: I ← 〈i, qresult 〉
9: end if

10: unlock(m)
11: end for

/* Obtaining the result */
12: if key(I) = n+ 1 then
13: return qresult , ?
14: else
15: qresult ← value(I)
16: if λ(qresult) 6= ? then
17: return qresult , λ(qresult)
18: end if
19: qcurrent ← qresult
20: StartIndex ← StartIndex + key(I) + 1
21: goto line 2
22: end if

3) (Obtaining the result) The third phase of the algorithm
computes the final state of the monitor. If key of I is
set to the initial value n + 1, then no transition of
the monitor gets enabled by program trace σ. In this
case, the algorithm terminates and returns (qresult , ?)
as output (Line 13). Otherwise, if a change of state in
the monitor occurs and results in a conclusive state,
then the algorithm returns this state and the monitoring
verdict (line 17). Transition to an inconclusive state
yields update of both qcurrent and StartIndex and a
new iteration (lines 19-21).

For illustration, consider property ϕ1 ≡ p ∧ (q U r) and
its monitor in Figure 3. Let the current state of the monitor
be qcurrent = q0 and the input program trace be σ = (p∧q∧
¬r)· (¬p∧q∧¬r)· (p∧q∧¬r)· (p∧¬q∧¬r). By applying this
trace, first, the monitor makes a transition to state q1 after
meeting p ∧ q ∧ ¬r. Although the next two program states
(i.e., (¬p∧q∧¬r)· (p∧q∧¬r)) of the input trace also cause
program state transitions, the algorithm considers only the
left-most transition, thus the first iteration records transition
to q1 and the second iteration starts from s1. Finally, during
the second iteration only the last program state p∧¬q ∧¬r
enables the monitor transition from q1 to q⊥.

In the context of this example, it is straightforward to ob-
serve that algorithm performs 2 iterations, which is precisely
‖Hp∧(q U r)‖. In general, the number of algorithm iterations
is equal to the number of state transitions in the underlying

6

monitor automaton. Thus, the complexity of the algorithm
for verifying m properties is O(max{‖Hϕi‖ | 1 ≤ i ≤
m }). Following Theorem 1, the monitor constructed from
a finite-history property does not contain a cycle. In other
words, the number of monitor state transitions during (and,
hence, before reaching a conclusive state) is bounded by
‖Hϕ‖. Since there can be a maximum of ‖Hϕ‖ algorithm
iterations, this number may be less if an input trace imposes
a shorter path from qcurrent to a conclusive state of the
monitor. In case of the infinite history length, there are two
conditions that combined together may cause excessive iter-
ations and lead to performance degradation of the algorithm:
(1) existence of a self-loop in Mϕ, and (2) sequence of the
program states that results in constant stuttering in the moni-
tor automaton. The Algorithm presented in Subsection IV-C
addresses these two conditions.

The execution time of the algorithm on one program
trace can be described by the following formula:

T1 = tmt1+

E(n).max{
m∑
j=1

(ticalc + ti,jbranch) | 1 ≤ i ≤ n} (3)

where m is the number of properties and tmt1 is the memory
transfer time to the processing unit (which is negligible in
APUs). E(n) is the expected number of the monitor state
transitions (and algorithm iterations consequently) per n data
items.

C. Parallel Algorithm 2
The second algorithm is an adaptation of the algorithm

in [11] for parallel execution of deterministic finite state
machines. This algorithm does not tackle the issues with
causal order of state changes directly. Instead, it calculates
possible state transitions for every monitor state (except the
conclusive states, since they are traps), regardless of the
actual current state of the monitor. Then, in a sequential
phase the algorithm aggregates all the results to compute
one and only one currenloop traversingt state. This sequen-
tial run reflects the transitions in the underlying monitor
that are identical to those caused by sequential processing.
Consequently, this algorithm does not depend on the history
length of a property.

Now, we describe the algorithm in more detail. Similar to
Algorithm 1, it takes a finite program trace σ = s0s1 . . . sn,
a monitor Mϕ = (Σ, Q, q0, δ, λ), and a current state
qcurrent ∈ Q (possibly q0) of the monitor as input and
returns a resulting state qresult and the monitoring verdict
λ(qresult) as output. For parallelization, we leverage a well-
known exhaustive execution method, where we eliminate the
input interdependencies by considering all possible outputs.
The algorithm works as follows:

1) (Initialization) First, the algorithm computes all in-
conclusive states of the monitor. We do not consider

Algorithm 2 For infinite-history LTLmon
3 properties

Input: A monitor Mϕ = (Σ, Q, q0, δ, λ), a state qcurrent ∈ Q, and a
finite program trace σ = s0s1s2 . . . sn.

Output: A state qresult ∈ Q and λ(qresult).

/* Initialization */
1: Q? = {q ∈ Q | λ(q) =?}
2: Let A be a |Q?| × n matrix

/* Parallel exhaustive computation of monitor states */
3: for all (si, 0 ≤ i ≤ n) in parallel do
4: for all qj ∈ Q? do
5: Aqj ,si ← δ(qj , si)
6: end for
7: end for

/* Sequential computation of actual monitor state */
8: qresult ← qcurrent
9: for all (0 ≤ i ≤ n) sequentially do

10: qresult = Aqresult ,si
11: if λ(qresult) 6= ? then
12: return qresult , λ(qresult)
13: end if
14: end for

15: return qresult , ?

conclusive states, since they always act as a trap. In
order to eliminate input interdependencies, we main-
tain a lookup matrix A for storing intermediate results,
for each state of the monitor and a program state from
trace σ (see Figure 5).

2) (Parallel exhaustive state computation) In lines 3-
7, the algorithm computes the columns of matrix A
in parallel. Each element of A is calculated using a
monitor state and a program state. Note that a program
state identifies the set of atomic propositions and,
hence, the letters in Σ that hold in that state. Although
calculation of step i+1 depends on the output of step
i, by calculating and storing qi+1 for all possible qi,
this interdependency can be eliminated (i.e., for every
si and qj , we calculate element Aqj ,si = δ(si, qj)).

3) (Actual state computation) The third phase of the
algorithm consists of a sequential pass of length at
most n over the columns of matrix A. Initially, the
resulting state is qcurrent . The output of step i is the
content of Aqresult ,si . Notice that in this step, the value
of qresult changes only if a transition to a different
state of the monitor is enabled. This way, the algorithm
starts from state qcurrent and terminates in at most n
steps. The value of qresult reflects every change of
the state of the monitor when the algorithm executes
lines 8-14. In Figure 5, for example, this step-by-
step sequential evaluation jumps from qcurrent = q0
to qresult = q|Q?| after the second step and finally
concludes in qresult = q1. At any point, if qresult
happens to be a conclusive state, then the algorithm
terminates and returns the verification verdict of the

7

...

...

...

...

q|Q?|

s2 sns1s0

q0
q1

sn−1

Figure 5. Eliminating interdependencies for parallel execution

monitor (lines 11-13).
Finally, if the monitor does not reach a conclusive state, then
the algorithm returns the reached state by trace σ and value
?.

Unlike the first algorithm, the performance of this
algorithm does not depend on the structure of the monitor,
as all possible state transitions are absorbed by the final
sequential pass. On the other hand, the extra calculations
undertaken for every inconclusive state, as well as memory
transfer of the results of those calculations back to the
host process on the CPU, add to the execution time. The
complexity of the algorithm now depends on the size of
the input and the number of inconclusive states in the
underlying monitor: O(n.

∑m
i=1 |Q?|i). More precisely, the

total execution time of the algorithm can be described by
the following equation:

T1 = tmt1 + tmt2 + tseq+

max{
m∑
j=1

(ti,jcalc +

|Q?|j∑
k=1

ti,j,kbranch) | 1 ≤ i ≤ n} (4)

where m is the number of properties, tseq is the time spent
in the sequential phase (lines 8 to 14), and tmt1 and tmt2

are memory transfer times to and from processing unit
respectively. Again, if a parallel evaluation takes place on
a CPU or the program trace resides in the shared memory
(e.g., in APUs), then tmt1 and tmt2 are negligible.

V. IMPLEMENTATION AND EXPERIMENTS

This section is organized as follows. Subsection V-A
presents the implementation issues. Subsection V-B analyzes
the throughput and scalability of GPU-based monitors. Sub-
section V-C presents a case study for measuring the runtime
overhead and power consumption of our approach. We do
not compare our approach with the other methods, as current
monitoring frameworks use sequential monitors, whereas our
approach incorporates the GPU technology.

A. Implementation

The monitor code is specific to each property under
evaluation. Thus, in our implementation, for each LTLmon

3

0.
1

0.
2

0.
3

●

●

●

●

●

●

●

●

●
●

●

●

Algorithm 1

Algorithm 2

Sequential algorithm

0 20 40 60 80 100

Number of sin() operations

M
ea

n
th

ro
ug

hp
ut

 [G
B

/s
]

Figure 6. Throughput analysis - effect of computational load.

1
2

3
4

φ1 / 1 φ2 / 3 φ3 / 10

Property / Inconclusive states

M
ea

n
th

ro
ug

hp
ut

 r
at

io Line code

Evaluated properties = 1
Evaluated properties = 10

Figure 7. Throughput analysis - comparison of the algorithms.

property in the given specification, we automatically gener-
ate the monitor OpenCL kernel code by mapping the pro-
gram state variables onto the predicate alphabet. The kernel
generator uses the implementation of the monitor building
algorithm by incorporating the tool presented in [10]. A
specific command-line parameter controls which of the three
algorithms (1, 2, or sequential) will be the core of the kernel
code.

Most of our implementation issues were related to tuning
the generated kernel code, as the performance of GPU-based
execution is highly sensitive to changes in the OpenCL ker-
nel code. In particular, we took the following into account:

• Heterogeneous memory hierarchy promotes local syn-
chronization. This became especially obvious in using
the function atomic_min() for critical section pro-
tection when evaluating the left-most state transition
in Algorithm 1. If atomic_min() is applied to the
global state transition index, it slows down Algorithm 1
by approximately 30%. Thus, we reduced the problem
domain to the local memory. After every work-group
of 256 threads evaluated its left-most state transition,
one thread passes over the results and picks the first-

8

0.
1

0.
2

0.
3

●●●●●●●●
●●
●●

●●

●●

●●

●●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Alg 1, 10 properties

Alg 1, 1 property

Alg 2, 10 properties

Alg 2, 1 property

0 5000 10000 15000

Number of work items

M
ea

n
th

ro
ug

hp
ut

 [G
B

/s
]

Figure 8. Throughput analysis - throughput vs. the number of work items.

0.
0

0.
1

0.
2

0.
3

0.
4

0 5000 10000 15000
Chunk size [No. of program states]

M
ea

n
th

ro
ug

hp
ut

 [G
B

/s
]

Color code

GPU, Algorithm 2
GPU, Algorithm 1
CPU, Sequential algorithm

Figure 9. Throughput analysis - effect of the buffer and data sizes.

in-order transition. This way, we also ensure deadlock
freedom.

• Another implementation challenge is related to schedul-
ing. When a worker thread is blocked or is waiting for
completion of an I/O operation, it may automatically
switch to the next work-item to continue its work. We
leverage this feature by assigning several work-items to
the same thread (depending on the number of items in
the work buffer). Obviously, this will only work if the
number of program states in the verification buffer is
higher than the number of worker threads available.

• In AMD APUs, memory transfer between CPU and
GPU tends to be faster, as they reside on the same
die. The specific location of the memory allocation is
controlled by a set of memory flags when calling the
allocation function clCreateBuffer(). Specifically,
we observed that allowing kernels to allocate host-
accessible memory and to cache the buffer contents
pointed to by host pointer result in performance gain
in Algorithms 1 and 2.

Unlike the parallel algorithms, the sequential algorithm

runs exclusively on CPU. Thus, to allow faster CPU pro-
cessing and compiler optimizations, we chose to implement
this algorithm in C and not in OpenCL. In addition, as
mentioned in Subsection II-B, a monitor FSM is minimized
in size. These features ensure fair comparison between the
sequential and the parallel algorithms.

Implementation of Algorithms 1 and 2 are incorporated
in the tool RiTHM2. This tool takes a C program and a set
of LTL properties as input and generates an instrumented
C program that is verified at run time by a time-triggered
monitor. The implementation of the algorithms presented in
this paper are wrapped in a shared library with portable
interface, which in turn, serves as a verification backend
for RiTHM.

B. Throughput and Scalability Analysis

In the context of monitoring, throughput is the amount of
data monitored per second. In the following experiments, the
program trace is fed to the monitor directly from the main
memory, thus maximizing throughput of the algorithms. All
the experiments in this subsection are conducted on 32-bit
Ubuntu Linux 11.10 using a 8x3.07GHz Intel Core i7 and
6GB main memory and an AMD Radeon HD5870 graphics
card as GPU.

1) Effect of the Computational Load: From now on, we
refer to computational load as the number of evaluations
of all mathematical and arithmetic operations in order to
evaluate atomic propositions of a property. Computational
load has direct effect on the sequential monitoring time,
as it is performed by the CPU. However, in our GPU-
based approach, the computational load is spread over GPU
cores. We hypothesize that our approach will outperform a
sequential monitoring technique.

In order to validate our hypothesis, we emulate different
computational loads on property ϕ = �(¬a ∨ ¬b ∨ ¬c ∨
¬d ∨ ¬e), where ‖Hϕ‖ = 1. Notice that the number and
the type of the properties are not essential, as the goal is to
isolate the load factor. The loads are 1x, 5x, 20x, and 100x,
where ‘x’ is one sin() operation on a floating point operand.
We run our experiments for the parallel algorithms on 1600
cores available on the GPU and measure the throughput
of three algorithms (i.e., a sequential algorithm as well
as Algorithms 1 and 2 from this paper). Figure 6 shows
the results of this experiment (the error bars show the
95% statistical confidence interval). As can be seen, both
Algorithms 1 and 2 outperform the sequential algorithm
as the computational load increases. For instance, for 100
sin() operations Algorithms 1 outperforms the sequential
algorithm by a factor of 35. Thus, as Equations 3 and 4
in Section IV-B and Section IV-C suggest, there is a loose
dependency between our parallel algorithms’ throughput and

2To access the tool, please visit http://uwaterloo.ca/
embedded-software-group/projects/rithm.

9

the computational load. This observation along with the
graph in Figure 6 validates that the computational load is
not a bottleneck for our algorithms. On the contrary, the
sequential algorithm performance is poorer than the linear
dependency on the computational load in Equation 2 in
Section IV-A.

2) Performance Analysis of Algorithms 1 and 2: We hy-
pothesize that Algorithm 1 would outperform Algorithm 2,
as Algorithm 2 evaluates the next state of all inconclusive
states in the monitor. In addition, Algorithm 1 does not
transfer the calculated states back to the CPU (recall that
lines 8-14 of Algorithm 2 run on the CPU). The only
slowdown factor that appears in Equation 3, which does not
appear in Equation 4 is E(n). Given the finite number of
monitor state transitions, this factor becomes negligible as
the monitoring time increases.

The experimental setting consists of the following input
factors: algorithm type, number of properties for monitoring,
and the number of inconclusive states in the monitor of
a property. This is due to the fact that the number of
inconclusive states affects the amount of calculations the
second algorithm should carry (see Equation 4). The size
of the program trace is 16,384 states. We consider three
different properties. Two of the properties are taken from
the set of properties in [12] for specification patterns: ϕ1 ≡
�¬(a∨ b∨ c∨ d∨ e) and ϕ2 ≡ �((a∧♦b)⇒ ((¬c)U b)),
where the number of inconclusive states are 1 and 3,
respectively. The monitors of properties in [12] are relatively
small (the largest monitor has five states). Thus, our third
property is the following (rather unrealistic) formula whose
monitor has 10 inconclusive states:

ϕ3 ≡ ©© . . .©︸ ︷︷ ︸
10 next operators

(aU b)

Figure 7 confirms the hypothesis. We emphasize that the
graphs in the figure represent the ratio of the throughputs
of Algorithm 1 over Algorithm 2. The x-axis represents the
number of inconclusive states in the monitored property (1
for ϕ1, 3 for ϕ2, and 10 for ϕ3). The solid line shows the
experiments for one property and the dashed line plots the
experiments for a conjunction of ten identical properties.
Algorithm 1 consistently performs better on all of the prop-
erties. The ratio only grows when the number of inconclusive
states in the property increases.

3) Scalability: As illustrated in Figure 1, the host submits
chunks of the program trace to the monitoring tasks running
on the GPU. A chunk is the array containing a sub-trace to
the GPU internal buffers. Once the GPU is available, the host
process will pull the next task from the queue and will run
the task on the input data following the Single Instruction
Multiple Data (SIMD) pattern. The GPU also implements
the internal scheduling mechanism that controls the process
of assigning the data to the GPU cores. However, input array

can be represented as a number of work items. Thus, by
setting this number to one, we ensure that only one core
participates in the evaluation. Consequently, by increasing
the number of work items to the number of items in the input
data, we control the number of cores engaged in monitoring.
If the chunk size is greater than the number of cores, then
at some point the GPU scheduler will have to assign several
work items to the same core.

In this experiment, we fix all contributing factors as con-
stants (including the chunk size of 16, 384) and only change
the monitoring algorithm, the number of work items, and the
number of properties for monitoring. Figure 8 shows that the
algorithms are clearly scalable with respect to the number of
cores. The error bars represent the 95% confidence interval.
The graphs also show that the mean throughput increases
with the number of cores engaged in monitoring. At some
point, both algorithms reach the optimum, where all the
cores are utilized. From that point and on, the throughput
will be mostly affected by the GPU thread scheduler.

4) Effect of Data and Chunk Sizes on Throughput: The
factors of this experiment are the algorithm type, the number
of simultaneously-evaluated properties, and the amount of
data in each run (see Figure 9). The error bars indicate
the 95% confidence interval. The line color indicates the
type of algorithm. The five lines for each algorithm show
results for different amounts of data (i.e., 10, 20, 30, 40, and
50 data chunks). Figure 9 shows that sequential monitoring
is neither influenced by the chunk size nor the amount of
data. The mean throughput of the parallel monitoring shows
a strong correlation with the chunk size. This is expected,
since an increase of the chunk size results in a higher number
of the program states processed in parallel. This, in turn,
leads to the more efficient distribution of the work items
among the cores. However, note that this throughput gain is
limited by the amount of memory available in the GPU and
the tolerable delay of the program. The minor differences
between the results with different amounts of data show the
independence of the mean throughput from the amount of
data. This is expected behavior and increases our confidence
in the results.

C. Case Study: GPU-based Runtime Monitoring of a UAV

This section describes additional benefits of using GPU-
based monitoring. In our case study, the monitor checks at
run time a flying unmanned aerial vehicle (UAV) autopilot
software running on Beagle Board with QNX 6.5 OS. The
monitor runs on an ASUS E35-M1 board containing dual-
core AMD E350 APU and Ubuntu 11.10 OS. Another
process running alongside with monitor is LIDAR - a grid
reconstruction algorithm - that emulates the load of the
autopilot3. The scale of the software is as follows:

3A video clip of the actual experiment is available at http://www.youtube.
com/watch?v=Db2MifLmap0&feature=youtu.be.

10

LIDAR, 1.6 GHz DVS LIDAR, 800 MHz

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●
●
●
●

●●
●
●●

●●●
●

●

●

●

●

●●●●

●

●

●

●●

●

●
●
●

●●

●

●

●

●
●

●

●
●
●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●●
●
●
●

●

●

●
●●
●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●● ●
●
●
●
●
●
●
●
● ●●

●●●
●●●
●●●
●

40

60

80

100

LID
A

R
 only

LID
A

R
 +

 M
onitor_{C

P
U

}

LID
A

R
 +

 M
onitor_{alg.1}

LID
A

R
 +

 M
onitor_{alg.2}

LID
A

R
 only

LID
A

R
 +

 M
onitor_{alg.1}

LID
A

R
 +

 M
onitor_{alg.2}

C
P

U
 u

til
iz

at
io

n
[%

]

Figure 10. UAV case study - CPU utilization.

Type Name Avg Watt
1 Nothing Idle 15.56
2 No LIDAR CPU 20.20
3 GPU (Alg 1) 15.82
4 GPU (Alg 2) 15.72
5 LIDAR, 1.6 GHz DVS Base 27.81
6 CPU 28.80
7 GPU (Alg 1) 28.73
8 GPU (Alg 2) 28.04
9 LIDAR, 800MHz Base 22.29

10 GPU (Alg 1) 23.00
11 GPU (Alg 2) 22.42

Figure 11. UAV case study - power consumption.

• Size of Monitor: 52K
• Size of Autopilot: 78K
• Lines of code in Monitor: 3000
• Lines of code in Autopilot: 4000

Every 10ms, the autopilot sends the program state con-
sisting 14 float numbers to the monitor over a crossover
Ethernet cable using the UDP protocol. The host thread in
the monitor interpolates the data and fills up a buffer for
inspection. The GPU then processes the buffer using one of
the three evaluation algorithms. We verify the following five
properties at runtime:

• ϕ1 ≡ �(a ∧ b ∧ c)
This property verifies the sanity of the IMU (Inertial
Measurement Unit) sensors during the flight. IMU
measures the values of pitch, yaw, roll, and their
velocities. The property compares the numerical values
of the angular acceleration from the sensors with
calculated analytical values from the two consecutive
program states. Propositions a, b, and c express that
the calculations of the three dimensions are within
certain ranges.

• ϕ2 ≡ �(d⇒ (©¬d) ∨ (©©¬d) ∨ (©©©¬d))

Proposition d stands for “the number of satellites
is less than three”. The property expresses that this
undesirable proposition will not last for more than
four consecutive program states.

• ϕ3 ≡ �(e)
This property verifies whether the autopilot translates
the coordinates of latitude, longitude, and altitude
correctly. Proposition e expresses the conditions on
the transformation function.

• ϕ4 ≡ �(f ⇒ ♦g)
This property verifies that the UAV eventually lands.
Proposition f stands for ‘altitude higher than 500’ and
proposition g stands for ‘altitude less than 358’ - the
altitude above the sea level on the university campus.

• ϕ5 ≡ �(h ∧ i ∧ j ∧ k ∧ l)
This property verifies the requirements of Transport
Canada Agency stated in Safety Flight Operation Cer-
tificate Requirements document: the flight is permitted
only within specific coordinates on the campus of the
University of Waterloo.

If one of the properties is violated/satisfied, the monitor
will send a UDP packet indicating the property that has
converged, back to the autopilot, which notifies the ground
station.

The experiment consists of two parts: first part reports
the CPU utilization measurements (see Figure 10) and the
second part reports the power consumption during the flight
(Table 11). During the flight monitoring, we do not measure
execution time. Rather, we measure CPU utilization. As
Figure 10 shows, LIDAR alone consumes about 57% of
CPU time when running the system with default ondemand
policy. When this CPU scheduling policy is on, the OS
switches the CPU to highest frequency upon demand and
back to the lowest frequency after the task is done. While
switching the frequencies, Dynamic Voltage Scaling (DVS)
takes place. This explains the outliers in the GPU-based
evaluation algorithms, which otherwise barely increase the
regular consumption. On the contrary, running the CPU-
based (sequential) monitoring, results in utilizing practically
all the CPU resources. In safety critical systems with real-
time constraints, this can lead to the missing cycles, which is
obviously problematic. When GPU-based monitoring is on,
the amount of idle CPU time indicates that the frequency
can be lowered without risk of missing cycles. Second part
of the graph shows the system running on the userspace
scheduling policy with constant frequency of 800 MHz. The
utilization rises to 81%, but never reaches 100%. Figure 10
also shows that the overhead of our GPU-based monitoring
is negligible.

Figure 10 closely correlates with Table 11 that reports the
average of the power consumption measurements over the

11

time. E350 APU board is given constant power supply of
15 Volts and by recording the current level, we calculate the
consumed power. Rows 2-4 report the consumption of the
system without background load of LIDAR, while rows 5-8
show close consumption levels with LIDAR running. Al-
though without background load the GPU-base monitoring
consumes 25% less power than CPU-based, this approach
is not practical, as we aim at running the monitor and the
inspected program on the same board. To deal with this
issue, we set the constant CPU frequency to 800 MHz (rows
9-11 in the table correspond to the second part of Figure 10).
In addition to solid 25% reduction in power consumption,
this gives us predictable CPU utilization with minimum
outliers.

VI. RELATED WORK

There is a body of work that aims at reducing the runtime
overhead through an additional pre-processing phase. In [6],
the authors use static analysis to reduce the number of
residual runtime monitors. The framework in [13] statically
optimizes monitoring aspects. Although the objective of this
paper is also reducing the runtime overhead, GPU-based
runtime monitoring targets shipping the monitoring costs to
a different processing unit. Thus, our approach is orthogonal
to the existing approaches in runtime monitoring.

The main focus in the literature of runtime verification
is on event-triggered monitors [14], where every change in
the state of the system triggers the monitor for analysis.
Alternatively, in time-triggered monitoring [9], the monitor
samples the state of the program under inspection in regular
time intervals. The latter approach involves an optimiza-
tion problem that aims at minimizing the size of auxiliary
memory needed for state reconstruction at sampling time.
All these works, however, utilize sequential monitoring
techniques. Parallel monitoring has been addressed in [15] to
some extent by focusing on low-level memory architecture
to facilitate communication between application and analysis
threads. This approach is not quite relevant to the propose
method in this paper.

The concept of separation of a monitor from the moni-
tored program is also considered in [16], [17], [18]. How-
ever, to the best of our knowledge, our work is the first
that combines the following: (1) using non-dedicated parallel
architecture (GPU), (2) systematic and formal verification
of properties at runtime in a parallel fashion. Specifically,
in [16] the authors suggest using a dedicated co-processor
as a parallel profiling architecture. This co-processor im-
plements some common profiling operations as hardware
primitives. Similar to our method, instead of interrupting
the processor after every sample, multiple program samples
are pre-processed and buffered into a 1K buffer before
processing. The work in [16], [18] also concentrate on
hardware-based monitoring and, hence, the need in a dedi-
cated hardware. On the contrary, our approach utilizes the

available many-core platform (GPU or multi-core CPUs) in
a computing system.

Finally, in [19] the authors propose using GPU for runtime
monitoring, but their approach is limited to data race detec-
tion scenarios and not a general formal specification lan-
guage such as LTL. Consequently, no systematic approach
is proposed for generating the code that runs on GPU. For
instance, to run experiments the authors have parallelized
ERASER and GOLDILOC algorithms and adjusted them to
the syntax of CUDA. In addition, the authors do not resolve
interdependencies in data frames. More importantly, their
approach is not sound and may result in obtaining false
positives.

VII. CONCLUSIONS

In this paper, we proposed a technique to leverage parallel
processing for accelerating and isolating monitors in runtime
verification. Our idea is that the program under scrutiny
accumulates events that need to be examined by the monitor
as a program trace and hands over this trace to the monitor
for inspection. The size of the program trace and frequency
of triggering the monitor depends on design parameters, such
as monitoring scheduling and tolerable latency for detecting
a specification violation. Our technique achieves two levels
of parallelism: (1) external parallelism between the program
and the monitor, and (2) internal parallelism, where a set
of monitoring threads take a part of the program trace and
verify a set of properties of interest in a parallel fashion.
While both levels of parallelism indeed reduce the runtime
overhead, the former is particularly valuable in separating
the monitoring from functional concerns.

Our formal language to specify logical properties is the 3-
valued LTL [10], an extension of the standard linear temporal
logic over finite words. We tackled the main technical
challenge (i.e., respecting the causal order of events when
verifying properties by concurrent threads) by proposing a
notion of property history. We also introduced two paral-
lel algorithms for runtime monitoring of LTL3 properties.
However, our parallel algorithms are suitable for any logical
formalism where the monitor can be represented by a
finite state automaton. Through detailed experiments, we
demonstrated that our technique is indeed scalable and limits
the runtime overhead effectively. Although our technique
performs better on properties that require some level of
computational load, other systems with strict power and
CPU utilization constraints may benefit as well.

For future work, several research directions exist. We are
currently working on extending our algorithms to handle pa-
rameterized properties. In addition, identifying fragments of
LTL3 with respect to different history lengths may improve
the algorithms performance. Furthermore, one can apply our
notion of property history to make distributed monitoring
possible in cloud computing. Another open problem is to

12

extend the results of this paper in the context of timed
temporal logics runtime verification for real-time systems.

VIII. ACKNOWLEDGEMENT

This research was supported in part by NSERC DG
418396-2012, NSERC DG 357121-2008, ORF-RE03-045,
ORF-RE04-036, ORF-RE04-039, CFI 20314, CMC, and the
industrial partners associated with these projects.

REFERENCES

[1] S. Colin and L. Mariani, Run-Time Verification. Springer-
Verlag LNCS 3472, 2005, ch. 18.

[2] A. Pnueli and A. Zaks, “PSL Model Checking and Run-Time
Verification via Testers,” in Symposium on Formal Methods
(FM), 2006, pp. 573–586.

[3] D. Giannakopoulou and K. Havelund, “Automata-Based Ver-
ification of Temporal Properties on Running Programs,” in
Automated Software Engineering (ASE), 2001, pp. 412–416.

[4] F. Chen and G. Roşu, “Java-MOP: A monitoring oriented
programming environment for java,” in Tools and Algorithms
for the construction and analysis of systems (TACAS), 2005,
pp. 546–550.

[5] J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund,
S. A. Smolka, S. D. Stoller, and E. Zadok, “Aspect-oriented
instrumentation with GCC,” in Runtime Verification (RV),
2010, pp. 405–420.

[6] E. Bodden, “Efficient hybrid typestate analysis by determin-
ing continuation-equivalent states,” in International Confer-
ence on Software Engineering (ICSE), 2010, pp. 5–14.

[7] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S. A.
Smolka, S. D. Stoller, and E. Zadok, “Software monitoring
with controllable overhead,” Software tools for technology
transfer (STTT), vol. 14, no. 3, pp. 327–347, 2012.

[8] P. Meredith, D. Jin, F. Chen, and G. Roşu, “Efficient monitor-
ing of parametric context-free patterns,” Journal of Automated
Software Engineering, vol. 17, no. 2, pp. 149–180, June 2010.

[9] B. Bonakdarpour, S. Navabpour, and S. Fischmeister,
“Sampling-based runtime verification,” in Formal Methods
(FM), 2011, pp. 88–102.

[10] A. Bauer, M. Leucker, and C. Schallhart, “Runtime Verifi-
cation for LTL and TLTL,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 20, no. 4, pp.
14:1–14:64, 2011.

[11] J. Holub and S. Stekr, “On parallel implementations of deter-
ministic finite automata,” in Implementation and Application
of Automata (CIAA), 2009, pp. 54–64.

[12] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in Inter-
national Conference on Software Engineering (ICSE), 1999,
pp. 411 –420.

[13] E. Bodden, P. Lam, and L. Laurie, “Clara: A framework
for partially evaluating finite-state runtime monitors ahead of
time,” in Runtime Verification (RV), 2010, pp. 183–197.

[14] O. Kupferman and M. Y. Vardi, “Model Checking of Safety
Properties,” in Computer Aided Verification (CAV), 1999, pp.
172–183.

[15] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley, “A
concurrent dynamic analysis framework for multicore hard-
ware,” in Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2009, pp. 155–174.

[16] C. B. Zilles and G. S. Sohi, “A programmable co-processor
for profiling,” in High Performance Computer Architecture
(HPCA), 2001, pp. 241–253.

[17] H. Zhu, M. B. Dwyer, and S. Goddard, “Predictable runtime
monitoring,” in Euromicro Conference on Real-Time Systems
(ECRTS), 2009, pp. 173–183.

[18] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu, “Hard-
ware runtime monitoring for dependable COTS-based real-
time embedded systems,” in Real-Time Systems Symposium,
2008, pp. 481 –491.

[19] T. Elmas, S. Okur, and S. Tasiran, “Rethinking runtime veri-
fication on hundreds of cores: Challenges and opportunities,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2011-74, June 2011.

13

