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Abstract 

A family of elliptic curves for cryptographic use is proposed for which 
the determination of the order of the corresponding algebraic group is 

much easier than in the general case. This makes it easier to meet the 
cryptographic requirement that this order have a large prime factor. 

Another advantage of this farniliy is that the group operation simplifies 
slightly. Explicit numerical examples are given that are suitable for 
practical use. 

Introduction 
An exponential function and a corresponding discrete logarithm function 

can be defined in every finite cyclic group [Massey 19831. There appears 
to be no reason why the exponential function in the multiplicative group 
of a finite field should be the hardest one to invert and therefore the best 
candidate for a one-way function. An attractive alternative is to use a 

cyclic subgroup of the group of points on an elliptic curve defined over a 
finite field. There is evidence [Miller 19861 that the discrete logarithm 
defined for a cyclic subgroup of this group is much more difficult to 
compute than that in the multiplicative group of a finite field. 
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Some basic definitions 
We describe here briefly how to calculate in a group of points on an 
elliptic curve. For a more complete treatment of the theory of elliptic 
curves, see [Koblitz 1987],[ Hartshome 19831. 

The group of points on an elliptic curve over an arbitrary field 
can be defined as the set of solutions (x,y) of a certain third-order 
algebraic equation, including the "point" at infinity (w,w) which is the 
neutral element of the group, together with an operation on these 
"points". In a field with characteristic p >3, the general Weierstrass 
equation can be reduced by means of coordinate transformations to the 
form y2=x3+ax+b, whereas for characteristic p =3 it can only be reduced 

reduced to y2+y=x3+ax+b. The condition for nonsingularity is 
3 2 4a +27b d); the group of points of a singular elliptic curve is isomorphic 

to the multiplicative or additive group of the field over which the curve is 
defied [Husemoeller 1987, p.781. 

We will only deal with the two cases characteristic p = 2 and 
characteristic p > 3 because these are the cases of greatest practical 
interest. The group operation for these cases is defined as follows. To an 
arbitrary pair of points P and Q specified by their coordinates (xl,yl) 
and (x2,y2), respectively, the group operation assigns a third point P*Q 
with the coordinates (x3,y3). These coordinates are computed in the 

following way for characteristic p>3. 

to y 2 3  =x +ax2+bx+c, and in the case of characteristic p =2 it can be 

(x3,y3) = (=,DO) when P=Q, P=(O,O) and P is an element of the group; 

x3=((3 x12+a)/(2yl))2-2 x1 
y3=(x1-x3)(3x12+a)/(2y1)-y1 if P=Q. 



In the case of characteristic p=2, the equations become 

(x3,y3) = (=,-) when P#Q and x1+x2 =O 

~3=(~1+x3)(y1+y2)/(x 1+x2)+y 1+1 
x3 =((y 1+Y2)/(X1+X2))2"1+X2 

when P#Q and x1+x2 a. 

(x3,y3) = (=,-) when P=Q, P=(O,O) and P is an element of the group; 
~ 3 = ( ~ 1  2 2  +a) 
~ 3 = ( ~ 1  2 +a)(xl+x3)+yl+1 if P=Q. 

The geometric interpretation of the operation * becomes clear if one 
sketches an elliptic curve in the affine plane over the real numbers. To 
compute P*Q, one first joins these two points by a straight line. Algebraic 
considerations show that this line must intersect the curve at a third point. 
The point P*Q is the point whose x-coordinate is the same as for this third 
point and whose y-coordinate is the negative of the y-coordinate of this 
third point. 

The order of the group 
It is possible to implement the Diffie-Hellman public key-distribution 
system without knowing the order of the underlying cyclic group. 
However, the Pohlig-Silver-Hellman algorithm for computing discrete 
logarithms can be used in an arbitrary cyclic group and runs in time 
O ( 6 )  where p is the largest prime factor of the order of the group. 
Therefore it is vital to know that the order of the cyclic group is large 
enough- to provide cryptographic security. If we use the multiplicative 
group of a finite field this problem is trivial: the group order is just 
equal to pn-1. However, the computation of the order of the group of 
points on an elliptic curve over a finite field is difficult in general. 
Schoofs algorithm to determine this order runs in polynomial time but is 
not very practical[ Schoof 19851. 
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A Cryptographically Useful Subclass of Elliptic Curves 
To avoid cumbersome computation of the group order, we suggest the use 
of the subclass of elliptic curves having the coefficient a = 0 in their 
defining equation. These equations then read 

y2=x3+b for characteristic p > 3 and 
y2+y =x3+b for characteristic p = 2. 

This specialization has been considered previously in 
cryptology for random bit generators [Kaliski 19871. We observe that 
every nonzero coefficient b satisfies the nonsingularity condition. The 
following special properties for this specialization are well known. 

Property 1 :Let p be a prime #2,3. If p 3 -1 (mod 3) the equation 
y2=x3+b has exactly p solutions (x,y) in GF(P)~  (excluding the neutral 
element) for every b in GF(p)[Kaliski 19871. 

Property 2: The integer 3 does not divide pf-1 if and only if the 
integer f is odd and p= -l(mod 3)[Grosswald 19841. 

Property 3: Let m be an odd positive integer greater than 1. 
Then y2+y=x3+b has exactly 2m solutions (x,y) (excluding the neutral 
element) in GF(2m)2[Lidl Niederreiter 19831. 

These properties combine to give the following recipe for group orders. 
P r Q D O S  i t ion: The order of the group of the elliptic curve 

defined by y2=x3+b over GF@) with p i  -l(mod 3) is p+l. The order of 
the group of the elliptic curve defined by y2+y=x3+b over GF(2m), 
where m is odd, is 2m+ 1. 
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Choice of the Elliptic Curve and Cyclic Subgroup 
1. The case GF(p) 
If p=  -l(mod 3), it follows that p+l must be divisible by 3 and, since p is 
an odd prime, p+l is also divisible by 2. This means that the largest prime 
factor of the group order p+l will be achived if p+l is of the form 
p+l=2.3.p* where p* is another prime. If p+l=2.3.p* it is also very easy 
to find a generating element for the cyclic subgroup of order p* or 
greater to use as a base of the discrete logarithm. Since we have the free 
parameter b in the defining equations of the curves it is no problem to 
choose an arbitrary element and to compute its sixth power; if the result is 
not the neutral element, the order of this particular element is a multiple 
of p* and so cryptographically useful. 
2. The case GF(2m) 

Because 2%l is not divisible by 2, the next smallest possible factor of the 
order 2"+1 is 3. Cryptographically, we want 2m+l=3p* where p* is a 
prime. Our computations have shown that this is indeed possible for some 
interesting m. 

Numerical Results 
The prime number theorem states that the probability that an integer 
selected arbitrarily in the interval [l,x] is a prime is l/ln(x). For 
p+l=6p*, we are interested in the probability that q and 6q-1 are both 
prime when q is randomly selected in the interval [ l,x]. For a rough 
estimate we may assume the two occurrences to be independent, so we 
have 

P(x and 6x-1 prime) - l/(ln(x) ln(6x-1)) 

If we want to have an x with hundred decimal digits we get 

This means that with an efficient prime number test (and a reasonably fast 
computer) it is feasible to search. As numerical results we get 
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GF@): 
p*={ 1010+19, 1020+1267, 102l+367, 1050+4209, 1O1Oo+42337} and 
furthermore p*=28'356'863'9 10'078'205'288'6 14'550'6 19'3 14'021'777 
for which p=6p*-1=2127+24933 is prime. This, is the smallest prime 
greater than 2127 for which (p+1)/6 is also prime. For this curve which is 
convenient in computer arithmetic we also give the element (3,5) which 
lies on the curve defined over GF(p) through y2=x3-2 and has order p. 

The second example of this kind is 
p*=1'537'228'672'809'132'109 for which p=6p*-1=263+16845 is prime. 
This is the smallest prime greater than 263 for which (p+1)/6 is prime. 
The element ( 3 3  again lies on the curve y2=x3-2 and has order p. 

GF(2m): 
If we take m=127 there exists the extremely simple irreducible 
polynomial g ( ~ ) = x l ~ ~ + x + l  and p*=(2127+1)/3 is prime. The element 
(x,x) has maximal order 2127+l on the elliptic curve it generates. 

Taking m=61 and generating GF(261) with the irreducible 
polynomial G ( x ) = x ~ ~ + x ~ + x ~ + x + ~ ,  we obtain elliptic curves of order 
261+1=3p* whereby p*=(2G11+1)/3 is prime. The element (x,x) - the 
components being expressed in GF(2)[x]/(g(x)) - has order Z61+1 which 
is maximal on the elliptic curve it generates. 

What follows is a list of exponents m for which (2m+1)/3 is 
prime. 

2 - 100: [3,5,7,11,13,17,19,23,31,41,43,47,53,59,61,71,79,83,89] 
100 - 200: [ 101,107,113,127,13 1,137,149,167,173,179,191,197,199] 
200 - 300: [ 227,233,239,251,257,263,269,28 1,2931 
300 - 400: [ 311,313,317,341,347,353,359,383,3891 
400 - 500: [401,419,431,443,449,461,467,479,491] 
500 - 600: [ 503,509,52 1,557,563,569,587,5 93,5991 
600 - 700: [6 17,64 1,647,653,659,677,6831 
700 - 800: [701,719,743,761,773,797] 
800 - 900: [809,821,827,839,857,863,881,887] 

1500 - 1600: [1511,1523,1553,1559,1571,1583] 
>1600 : [ 1601,1607,1613,1619,1637 ,... ] 
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