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a b s t r a c t

A portfolio selection model which allocates a portfolio of currencies by maximizing the
expected return subject to Value-at-Risk (VaR) constraint is designed and implemented.
Based on an econometric implementation using intradaily data, the optimal portfolio
allocation is forecasted at regular time intervals. For the estimation of the conditional
variance from which the VaR is computed, univariate and multivariate GARCH models
are used. Model evaluation is done using two economic criteria and two statistical
tests. The result for each model is given by the best forecasted intradaily investment
recommendations in terms of the optimal weights of the currencies in the risky portfolio.
The results show that estimating the VaR from multivariate GARCH models improves the
results of the forecasted optimal portfolio allocation, compared to using a univariatemodel.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We design and implement a financial model for forecasting optimal portfolio allocations of currencies using intradaily
data. The optimal allocation maximizes the expected portfolio return subject to VaR constraint. In the econometric
implementation of the model, we deal with portfolios made of two or three currencies, among the euro (EUR), the Great
Britain pound (GBP), and the Japanese yen (JPY), with the numeraire being the US dollar (USD). Our model is set up for
foreign exchange dealers who re-balance their portfolio of currencies at regular time intervals during each trading day and
must satisfy a daily VaR constraint.
We use several econometric models to compute the optimal portfolios. Each model is estimated using historical data up

to a certain date. Each estimated model then serves to generate, for the next time interval, an out-of-sample forecast of the
expected return and a quantile of the future return distribution, which are used as inputs to compute the optimal allocation
of risky currencies. The optimization step also determines the optimal amount of numeraire that dealers are allowed to
borrow or lend. The whole procedure is carried out sequentially by adding one observation at a time to the estimation
sample and generating the forecasted investment recommendations for the next time interval.
Our theoretical portfolio allocationmodel is based on themodel of Campbell et al. (2001)whopropose allocating financial

assets by maximizing the expected return, subject to the constraint that the expected maximum loss should meet the VaR
constraint.We consider a dynamicmodel instead of a static one and investigate an intradaily portfolio rebalancing instead of
interdaily rebalancing. We take into consideration, in this case, market microstructural issues such as intradaily seasonality
(i.e. market opening and closing, lunch time, . . . etc.); we implement univariate andmultivariatemodels to estimate portfolio
returns and VaR; we predict and evaluate portfolio weights in an out-of-sample setting; finally, we check the robustness
and statistical significance of our results using economic criteria and statistical tests.

∗ Corresponding address: Department of Finance, University of Quebec in Montreal, 315 Rue Sainte Catherine Est, Montreal, Quebec, H2X 3X2, Canada.
Tel.: +1 514 987 3000x2627; fax: +1 514 987 0422.
E-mail address: ben_omrane.walid@uqam.ca (W. Ben Omrane).

0167-9473/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2009.05.027

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:ben_omrane.walid@uqam.ca
http://dx.doi.org/10.1016/j.csda.2009.05.027


L. Bauwens et al. / Computational Statistics and Data Analysis 54 (2010) 2400–2418 2401

In this way, we use both univariate and multivariate GARCH and non-GARCH models and compare the performance of
the differentmodels on the basis of two economic criteria (the generatedwealth and a performance ratio) and two statistical
tests (the failure rate and the dynamic quantile tests). Our results indicate clearly that using multivariate GARCH models
improves the results of the optimal portfolio allocation in terms of the evaluation criteria.
Choosing foreign exchangemarkets for empirical evidence has a double advantage. Firstly, we avoidmaking assumptions

(sometimes not supported by financial theory) to simplify computations. For example intradaily rebalancing in stock
markets would not be practically meaningful, since there are significant transaction costs and fees involved, while in the
case of foreign exchange trading, there are no transaction costs other than the bid–ask spread. Secondly, foreign exchange
data allow us to be closer to real trading, to the extent that foreign exchange dealers rebalance, intradaily, their currency
portfolio and realize their profits or losses at the end of each business day.
Many studies have investigated dynamic portfolio selection under the variance and value-at-risk (VaR) constraints. All

of them focus on stock and bond portfolios and consider daily frequency data.
Pojarliev and Polasek (2003) analyze the performance of stock portfolio strategies in a mean–variance framework. They

implement an asymmetric GARCH model and the multivariate BEKK model to forecast the portfolio variance. Based on the
Sharpe ratio, they find that the multivariate GARCH model outperforms the univariate one. Alexander and Baptista (2004)
compare portfolio selection implications arising from imposing a VaR constraint on their model versus the imposition of a
conditional value-at-risk (CVaR) constraint. They show that, for a given confidence level, a CVaR constraint is tighter than
a VaR constraint if the CVaR and VaR bounds coincide; but in the absence of a risk-free security, CVaR has a perverse effect
in that it is more likely to force highly risk-averse agents to select portfolios with larger risk. De Goeij and Marquering
(2004) analyzes bond and stock market interactions by modeling conditional covariances using diagonal and asymmetric
VECH models. They show that daily returns on the S&P 500 and NASDAQ indexes exhibit significant leverage effects and
find substantial gains due to asymmetric volatility timing. Giannopoulos et al. (2005) show that VaR computation based
on the empirical variance underestimates stock portfolio risk compared to a univariate GARCH model. Zhang and Huang
(2006) proposes a new approach that combinesMarkov andmax-stable processes to calculate the VaR and evaluate portfolio
allocations under VaR constraints. A stochastic process {Yt}t∈T is called amax-stable process if the following property holds:
if {Y (i)t }t∈T , i = 1, 2, . . . , r , are independent copies of the process, then the process {maxi≤r Y it }t∈T has the same distribution
as {rY (1)t }t∈T ((De Haan, 1984)). They find that VaR based on their approach outperforms the empirical variance–covariance
approach and that the latter underestimates the risks during recession and expansion time.
Specht and Winker (2008) use a Principal Component GARCH (PC-GARCH) model to compute the conditional

variance–covariance matrix and estimate the VaR. Using the latter as a constraint and the portfolio expected return
as a performance measure, they show that PC-GARCH outperforms the empirical variance model. To estimate the
variance–covariance matrix, they implement univariate and multivariate GARCH models.
In Section 2, we present the portfolio allocation model. In Section 3, we describe the econometric models we use for

the prediction of the VaR. In Section 4, we present the empirical illustration using intradaily exchange rate data. In the last
section, we conclude.

2. Portfolio allocation model

Although VaR is a very popular measure of risk, it has been criticized because it does not satisfy one of the four properties
for coherent risk measure, namely subadditivity (Artzner et al., 1999; Rockafellar and Uryasev, 2000; Szegö, 2002). The rest
of the coherent risk measure properties are: positive homogeneity, monotonicity and transitional invariance. However, VaR
becomes subadditive and can be considered as a coherent risk measure, if used in the case of elliptic joint distributions,
like the normal and Student distributions with finite variances (Embrechts et al., 1999; Szegö, 2002). Our empirical study
considers onlyNormal and Student-t distributions. Inwhat follows,we take the VaR as industry-standard andwe implement
the model of Campbell et al. (2001) including some adjustments (such as model dynamics, market microstructural issues,
univariate andmultivariate VaR estimations) to find the optimal intradaily portfolio allocation of currencies that maximizes
the expected portfolio return subject to a VaR constraint. We make the following assumptions:

• Dealers hold an initial wealth involving only the numeraire.
• Dealers re-balance their currency portfolio regularly (e.g. every thirty minutes) during each trading day. They make
capital gains or losses, due to exchange rate fluctuations, and interest gains or losses from their wealth lent or borrowed
at the end of the day. At the end of the day, dealers have to close their risky positions in order tomeet their daily inventory
control guideline causing the amount of the overnight currency interest rate to be roughly null. We only consider the
gains or losses coming from the overnight interest rate related to numeraire and the exchange rate fluctuations. If there
are no currency positions, dealers have to lend their total wealth involving only the numeraire.
• There are no transaction costs except the bid–ask spread. This assumption is consistent with the stylized fact found in
FX markets, that dealers pay the ask price when they buy and charge the bid price when they sell.
• There is no interest rate spread; i.e. the daily interest rate at which dealers can borrow or lend is the same. In our context,
this assumption is acceptable since the difference between the lending and borrowing overnight interest rates is very
small. In addition, the amount of numeraire to borrow or lend at the end of each day equals the cumulative counter-value
of the long and short positions taken by the dealer along the day, each time he re-balances his portfolio. The daily amount
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of interest received or paid is equivalent to the cumulative intradaily one. Indeed, this allows the computational of the
interest rate amount just before each re-balancing, and the estimation of the net total daily amount.
• The interest rate remains unchanged over the out-of-sample period of 30 days.
• The desired amount of numeraire that dealers maywant to borrow should be obtained quickly because of the high speed
of intradaily operations. The borrowing can take the form of a ‘‘count in advance’’ that involves no trading costs. If a dealer
represents a bank, the borrowing and lending inside the same institution is, most of the time, granted.

Let n+ 1 be the number of available currencies for trading. Taking the (n+ 1)-th currency as numeraire, in our case the
USD, let pi,t , with i = 1, . . . , n, be the exchange rate between currencies i and n + 1 expressed in units of currency n + 1
per unit of currency i (e.g. 1.25 USD per 1 EUR). Define the return of currency i at time t as ri,t−1 = log(pi,t)− log(pi,t−1), for
i = 1, . . . , n.
LetWt−1 be the dealer’s wealth, in USD, at time t-1. DefineΩt−1 ≡ {wt−1 ∈ Rn :

∑n
i=1wi,t−1 = 1} as the set of portfolio

weights at time t−1.Note that this formulation allows for short-selling of someof the currencies in the portfolio and assumes
that the income from these short-sales is invested in the other currencies of the portfolio. Then, xi,t−1 = wi,t−1Wt−1/pi,t−1
represents the amount of currency i held at time t − 1. This implies:

xi,t−1pi,t−1 = wi,t−1Wt−1, (2.1)

and

Wt−1 =
n∑
i=1

xi,t−1 pi,t−1. (2.2)

The wealth at time t can be expressed as:

Wt = Wt−1

(
1+

n∑
i=1

wi,t−1 ri,t

)
. (2.3)

We allow the dealers to borrow or to lend USD according to their degree of risk aversion. If dealers are less risk averse, they
would like to borrow in order to invest this money in currencies that allow them to maximize their expected returns. This
borrowing can be seen as a leverage to obtain a higher return.
Denote by bt−1 the amount of USD that a dealer can borrow (bt−1 > 0) or lend (bt−1 < 0) at the risk-free interest rate rf .

With borrowing and lending, Eq. (2.3) becomes

Wt = (Wt−1 + bt−1)

(
1+

n∑
i=1

wi,t−1ri,t

)
− bt−1(1+ rf ). (2.4)

Dealers wish to maximize their expected wealth since future returns are not known. Accordingly, Eq. (2.4) in terms of
conditional expectations is given by

Et−1[Wt(wt−1)] = (Wt−1 + bt−1)(1+ Et−1[rt(wt−1)])− bt−1(1+ rf ), (2.5)

where Et−1[rt(wt−1)] is the expected portfolio return at the end of the rebalancing period. The expectation operator Et−1
is conditional on all the information available at time t − 1. In order to maximize this objective function, dealers face two
constraints: the budget constraint and the risk constraint given in terms of the VaR. The budget constraint is given by

Wt−1 + bt−1 =
n∑
i=1

xi,t−1pi,t−1 = x′t−1pt−1. (2.6)

The VaR constraint for a given intradaily time interval and probability of occurrence α is

Pt−1[Wt(wt−1) ≤ Wt−1 − VaR∗] ≤ α, (2.7)

where Pt−1 is the probability given all the information available at time t − 1, and VaR∗ is the dealer’s desired VaR level.
The intradaily portfolio optimization problem is solved by the maximization of the expected return, Eq. (2.5), subject to

the budget constraint, Eq. (2.6), the VaR-constraint, Eq. (2.7), and the simplex constraint (
∑n
i=1wi,t−1 = 1). The objective is

to determine the weights that maximize the expected return subject to those constraints, i.e.

w∗t−1 ≡ argmax
wt−1

(Wt−1 + bt−1)(1+ Et−1[rt(wt−1)])− bt−1(1+ rf ). (2.8)

Substituting the budget constraint (2.6) in the objective function (2.5) yields

Et−1[Wt(wt−1)] = x′t−1pt−1(Et−1[rt(wt−1)] − rf )+Wt−1(1+ rf ). (2.9)

Eq. (2.9) shows that a risk-averse dealer is ready to invest a fraction of his wealth in foreign currencies if the expected return
of the portfolio is bigger than the risk free rate.
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Substituting (2.9) (before taking the expectation) in (2.7) gives

Pt−1[x′t−1pt−1(rt(wt−1)− rf )+Wt−1(1+ rf ) ≤ Wt−1 − VaR
∗
] ≤ α, (2.10)

such that

Pt−1

[
rt(wt−1) ≤ rf −

VaR∗ +Wt−1rf
x′t−1pt−1

]
≤ α (2.11)

defines the quantile qt(wt−1, α) of the distribution of the portfolio return at the confidence level α. Using this result, the
investment value can be written as

x′t−1pt−1 =
VaR∗ +Wt−1rf
rf − qt(wt−1, α)

. (2.12)

Finally, substituting (2.12) in (2.9) and dividing by the initial wealthWt−1 we obtain

Et−1[Wt(wt−1)]
Wt−1

=
VaR∗ +Wt−1rf

Wt−1rf −Wt−1qt(wt−1, α)
(Et−1[rt(wt−1)] − rf )+ (1+ rf ). (2.13)

Thus, the optimal set of weights is given by

w∗t−1 ≡ argmax
wt−1

Et−1rt(wt−1)− rf
Wt−1rf −Wt−1qt(wt−1, α)

= argmax
wt−1

(PR(wt−1)). (2.14)

The computation of the optimalweights is done numerically by performing a grid search over a range of values ofwt−1. In
our applications, the dimension of the latter is two or three (the number of risky currencies), but since the sumof theweights
must be equal to one, the dimension of the problem is reduced to one or two. For two currencies, wemake a grid search over
the interval [−100%,+100%] (since short selling is possible) for the first element of wt−1 and the second element is set to
100 minus the first. For a dimension of two, the interval for each of the first two elements ofwt−1 is [−200%, 100%] and the
last element is obtained as 100 minus the sum of the first two. Note thatWt−1 does not affect the optimal portfolio weights
since it is a scale constant in the maximization. PR(wt−1) can be interpreted as the ratio of expected risk premium related
to the currencies portfolio to the risk. The denominator could be considered as a measure for regret, since it measures the
potential opportunity loss in investing in portfolio of currencies. Indeed, PR(wt−1) is a portfolio performance measure like
the Sharpe (1964) ratio. The latter is considered as a performance measure within the mean–variance framework and is
given by Et−1rt (wt−1)−rf

σt (wt−1)
.

The dealer’s initial wealth and desired VaR∗ do not affect the maximization of PR(wt−1). Dealers first allocate the
currencies and then the amount of borrowing or lending. Thus the well-known two fund separation theorem (see for
example Huang and Litzenberger (1988)) holds, as in the mean–variance framework. The amount to borrow or to lend
reflects by how much the VaR of the portfolio, Wt−1qt(wt−1, α), differs from the desired VaR∗. The amount of numeraire
that a given dealer borrows or lends is obtained by substituting (2.6) in (2.12), which gives

b∗t−1 =
VaR∗ +Wt−1qt(w∗t−1, α)
rf − qt(w∗t−1, α)

. (2.15)

We use this model to compute intradaily portfolio allocations for trading in FXmarkets. In this context, the time interval
during which the optimization is conducted is supposed to be short. This fact introduces some high-frequency data aspects
that must be considered in the econometric implementation to estimate the optimal portfolio allocations. An important
aspect to consider is the seasonal component present in high frequency data. In the next section, we explain, in detail, the
econometric implementation of the model and how we deal with the high-frequency features of the data.

3. Econometric implementation

We want to compute w∗t−1 and b
∗

t−1 as defined in Eqs. (2.14) and (2.15), respectively. To implement this, we need to
estimate Et−1[rt(wt−1)] and qt(w∗t−1, α) from historical data (i.e. until date t − 1 inclusive), using an econometric model of
the portfolio return distribution.We can do this sequentially for a sequence of periods and evaluate the ex-post performance
of the investments recommended by the econometric procedure.
Our methodology for the estimation of the optimal portfolio allocation and its evaluation comprise five steps that we

describe below.

3.1 Adjustment of each currency return for intradaily seasonality
We start by estimating the intradaily component, φi(t), which characterizes the second moment of the returns of
currency i at time t of the day. Following Andersen and Bollerslev (1997) and Bauwens et al. (2005), this intradaily
seasonal (or diurnal) component is defined as the expected volatility conditioned on time-of-day, where the expectation
is computed by averaging the squared observed returns over the cross-sectional time intervals for each day of the week.
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In order to get rid of the diurnal pattern of the volatility of intradaily returns, we adjust the returns by dividing them
by the square root of φi(t) for i = 1, . . . , n, to get ‘‘deseasonalized’’ returns. If ri,t is the observed return of currency i at
time t , and Ri,t is the deseasonalized one, then Ri,t = ri,t/

√
φi(t). Actually, the function φi(t) is different for each day of

the week (see Section 4.1).
3.2 Specification and estimation of an econometric model of portfolio returns
For the specification of an econometric model of portfolio returns, we distinguish two cases: the univariate and
multivariate cases. In the univariate case, we model the deseasonalized portfolio returns Rp,t as follows:

Rp,t = µp,t + εt , (3.1)

where µp,t is the conditional mean and εt an error term.
In the multivariate setting, we replace Rp,t by a n × 1 vector Rt which contains the returns Ri,t , i = 1, . . . , n, of the n
foreign currencies at time t:

Rt = µt + εt , (3.2)

where µt and εt are n× 1 vectors.
3.2 (a) Specification of the conditional mean

We specify the conditional mean of Ri,t , with i = p in the univariate case, and i = 1, . . . , n in the multivariate
case, as the AR(1) process

µi,t = µi + ρiRi,t−1, (3.3)
or as a slowly changing parameter that is estimated by the mean of the observations until time t − 1:

µi,t = Et−1(Ri,t), µ̂i,t =
1
t

t−1∑
s=0

Ri,s. (3.4)

3.2 (b) Specification of the conditional variance
In the univariate case, Eq. (3.1), the error term εt is decomposed asσp,tzt where zt is an IID processwith zeromean
and unit variance. In this case, given a portfolio allocation, we compute the deseasonalized portfolio returns to
estimate the conditional variance σ 2p,t using two univariate specifications:
(a) A ‘‘non-parametric’’ model in which we assume that σ 2p,t is slowly evolving in time and is estimated at time
t by the empirical variance of the data until t − 1.

σ 2p,t = Vart−1(Rp,t), σ̂ 2p,t =
1
t

t−1∑
s=0

(Rp,s − µ̂p,t)2. (3.5)

(b) The GARCH(1,1) model of Bollerslev (1986), written
σ 2p,t = ωp + δpε

2
t−1 + βσ

2
p,t−1. (3.6)

In the multivariate case, Eq. (3.2), the error term εt equals Σ
1/2
t zt , where Σ

1/2
t is, for example, the Cholesky

factorization of then×n conditional variance–covariancematrixΣt , andwhere then×1vector zt is an IIDprocess
with mean zero and variance In (the identity matrix of order n). For this case, we use three multivariate GARCH
models (see Bauwens et al. (2006) for a detailed presentation of multivariate GARCH models). We consider also
a ‘‘non-parametric’’ model in which we assume thatΣt is slowly evolving in time:
(c) The dynamic conditional correlation (DCC) model of Tse and Tsui (2002), defined by

Σt = DtΛtDt . (3.7)
The n × n matrix Dt is a diagonal matrix containing the conditional variances σ 2i,t , for i = 1, 2, . . . , n, each
specified as

σ 2i,t = ωi + δiε
2
i,t−1 + βiσ

2
i,t−1, (3.8)

i.e. a univariate GARCH(1,1) equation. The n× nmatrixΛt is the conditional correlation matrix, defined
by

Λt = (1− θ1 − θ2)Λ+ θ1Ψt−1 + θ2Λt−1, (3.9)
whereΛ is a constant correlation matrix, θ1 and θ2 are non-negative parameters which should be satisfying
θ1 + θ1 < 1, and Ψt−1 is the n × n correlation matrix of ετ for τ = t − M, t − M + 1, . . . , t − 1. Its i, j-th
element is given by

Ψij,t−1 =

M∑
m=1
ui,t−muj,t−m√(

M∑
m=1
u2i,t−m

)(
M∑
m=1
u2j,t−m

) , (3.10)

where ui,t = εit/σi,t . The scalar M must be greater than or equal to n to ensure that Ψt is semi-positive-
definite. Notice that the right-hand side of (3.9) is such that the diagonal elements ofΛt are equal to one for
all i and t (assuming thatΛ0 is a correlation matrix).
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(d) The constant conditional correlation (CCC) model of Bollerslev (1990), is a particular case of the DCC where
θ1 = θ2 = 0 and

Λt = Λ. (3.11)
(e) The BEKK(1,1,1) model of Engle and Kroner (1995), where the conditional variance–covariance matrix is
defined by

Σt = C ′C + A′εt−1ε′t−1A+ G
′Σt−1G, (3.12)

where A and G are n× nmatrices, and C is upper triangular.
(f) The slowly evolving in time covariance (COV), where Σt is estimated at time t by the empirical covariance
of the data until t − 1, and for i, j = 1, . . . , n:

Σt = COVt−1(Rt), Σ̂t =
1
t

t−1∑
s=0

(Rs − µ̂t)(Rs − µ̂t)′, (3.13)

where µ̂t = (µ̂1,t , µ̂2,t , . . . µ̂n,t), see (3.4).
We assume two parametric distributions for zt : the standard Gaussian distribution and the standard Student-t
distribution, each univariate ormultivariate depending onwhether themodel is for Rp,t or Rt . With the Student-t
distribution we allow for fat tails in the distribution of zt .
Following Mittnik and Paolella (2000), we use the weighted maximum likelihood (WML) procedure in order to
givemoreweight to recent data, i.e. wemultiply the log-likelihood contributions of the observation of period t by
ρT−t , where ρ (≤1) is an exponential decay factor and T is the total number of observations used for estimation.
If ρ = 1we are back to usual ML estimation.We choose ρ as oneminus theminimum of the failure rate (defined
later in this section) for a given VaR confidence level.
Fig. 1 illustrates the failure rate-ρ relationship for portfolios made of EUR, GBP and JPY for an investor using
VaR at 10% significance level. The model used to create this figure is the GARCH(1,1) with normal innovation
distribution. The optimalρ thatminimizes the failure rate is equal to 0.994.We find similar results for other cases.
Moreover, the value of the optimal ρ is robust to different innovation distributions.We useWML in an increasing
window setup, i.e. the number of observations of the sample increases through time in order to consider the new
information available. The improvement, in terms of better approximation to the desired confidence levels, using
WML in an increasing window setup instead of ML, is of the order of 10%.

3.3 Estimation of the VaR
To estimate the VaR,we need to go back from the adjusted returns to the original ones. In the univariate case inwhich

we work directly on the portfolio return, we simply multiply the estimated conditional means and standard deviations
by the square root of the diurnal component φ(t) of the portfolio. The Value-at-Risk for time t at the confidence level α
is calculated as

VaRpt,α = (µ̂p,t + σ̂p,tqα)
√
φ(t), (3.14)

where µ̂p,t and σ̂p,t are the forecasted conditional mean and standard deviation, and qα is the (α)-th quantile of the
distribution of zt .
For the multivariate setting, once we have estimated the parameters of the model, we compute the forecast Σ̂t of the
matrix Σt using one of the multivariate GARCH models. After that, we introduce the diurnal factors by the following
transformation:

Σ̄t = diag
(√
φ1(t), . . . ,

√
φn(t)

)
Σ̂tdiag

(√
φ1(t), . . . ,

√
φn(t)

)′
(3.15)

where φi(t), for i = 1, . . . , n, are the diurnal factors corresponding to each currency. With this matrix, we can compute
the conditional variance of the portfolio return as

σ̄ 2t = w
′

t Σ̄twt , (3.16)

wherewt is n× 1 vector of portfolio weights. We also reintroduce the seasonality factor in each forecasted conditional
mean: µ̄i,t = µ̂i,t

√
φi(t), for i = 1, . . . , n, where µ̂i,t is defined either as in (3.4) or, following (3.3), as µ̂i + ρ̂iRi,t−1 (µ̂i

and ρ̂i denoting the WML estimates). Thus, the forecasted conditional mean of the portfolio return is

µ̄t = w
′

t µ̂t . (3.17)

Once we have computed µ̄t and σ̄ 2t , the Value-at-Risk for time t at the confidence level α is given by

VaRt,α = µ̄t + σ̄tqα. (3.18)

3.4 Determination of the optimal risky investment and amount to borrow or to lend
We compute the portfolio weights that maximize the expected return subject to the VaR constraint according to Eq.
(2.14). Once we have determined the optimal weights for the investments in the risky currencies, and given the value
of the desired VaR (VaR∗), we determine the amount borrowed or lent by using Eq. (2.15).
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Fig. 1. Failure rates-ρ relationship.

3.5 Evaluation of the models
We use four criteria to evaluate the models: two statistical tests and two economic tests. The first statistical test is
the failure rate test proposed by Kupiec (1995). According to this test, the model is correctly specified if the observed
portfolio return at time t is bigger than the VaR predicted at t− 1 for time t in 100α% of the predictions. The failure rate
for the long trading positions is defined as

f =
1
m

T∑
t=T−m+1

1[rt < −VaRt,α], (3.19)

where, m is the number of out-of-sample days, T is the total number of observations, rt is the observed return at time
t , VaRt,α is the threshold value and 1 denotes the indicator function. Correspondingly, the failure rate for short trading
positions is defined as the percentage of positive returns larger than the one-step-ahead VaR for short positions. Let η
be the number of VaR violations in the out-of-sample interval of m points. Then, η has a binomial distribution with
parameters α and m. Ideally, the failure rate should be equal to α. Thus, the null hypothesis is H0 : f = α. The
corresponding likelihood ratio statistic,

LR = 2 log[f η(1− f )m−η] − 2 log[αη(1− α)m−η], (3.20)

is asymptotically distributed as a χ2(1) random variable.
A property that the VaR should have, besides respecting the VaR level, is that the VaR violations should not be serially
correlated. In order to test this property, we use the dynamic conditional quantile test proposed by Engle andManganelli
(2004). The basic idea is that this property can be tested by defining the sequence

ht = 1[rt < −VaRt,α] − α, (3.21)

such that the expected value of ht is zero. The dynamic quantile test is an (OLS) Fisher test under the null that all
regression coefficients, including the intercept, are zero in a regression of the variable ht on its own past, on the current
VaR and on any other regressors. We perform the test using the current VaR and five lags of the VaR violations as
explanatory variables.
The first economic test we use is based on the comparison of the wealth evolution provided by implementing the
recommendations of the different models. Accordingly, the best model is the one that provides the highest wealth (or
return) at the end of a forecast period, for a given risk level. The second economic test is based on the comparison of the
results through a performance ratio. This performance ratio is defined as the ratio in (2.14), where the expected return
is replaced by the realized return. With this ratio, we can compare the results of the different models. The preferred
model is the one with the highest performance ratio.

4. Empirical illustration

The foreign exchange market is a market maker based trading system, where dealers interact around the clock (i.e. in
successive time zones). Themost active trading centers are New York, London, Frankfurt, Sydney, Tokyo and Hong Kong.We
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Table 1
Summary of models.

Model name Mean equation Variance equations

Univariate
Emp-Emp (3.4) (3.5)
Emp-GARCH (3.4) (3.6)
AR-GARCH (3.3) (3.6)

Multivariate
Emp-DCC (3.4) (3.7)–(3.10)
AR-DCC (3.3) (3.7)–(3.10)
Emp-CCC (3.4) (3.11)
AR-CCC (3.3) (3.11)
Emp-BEKK (3.4) (3.12)
AR-BEKK (3.3) (3.12)
Emp-COV (3.4) (3.13)

Numbers in parenthesis denote equation numbers in the paper.
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Fig. 2. Diurnal patterns of the EUR/USD volatility.

consider two portfolio allocation problems: one in which the dealer, located in the US, considers only two currencies (EUR
and GBP) and one in which the dealer considers three currencies (EUR, GBP and JPY).
In this section, after describing the data, we present the portfolio recommendations of different econometric

implementations, and the results of their statistical and economic evaluations. We programmed all computations using
the Ox language, version 3.20 (see Doornik (2002)) and used a Pentium 4, 2.0 GHz. The average time to compute the optimal
intradaily FX portfolio allocation depends on the model estimated. The most efficient one (Emp-CCC) takes around 2 min.

4.1. Data description

The database (provided by Olsen and Associates) consists of five-minute quotes for the EUR/USD, GBP/USD, and JPY/USD
over the period ranging from January 1st, 1999 until December 31st, 2003, i.e. five years. These currency quotes are
market makers’ quotes and not transaction prices, as would be preferable. Since Danielsson and Payne (2002) showed that
the statistical properties of five-minute US dollar/Deutsche Mark quotes are similar to those of transaction quotes, and
transaction quotes are not widely available, we have resorted to using quotes. The database also contains the date, the
time-of-day stamped to the five minutes in Greenwich mean time (GMT), and the mid-quotes.
From the five-minute mid-quotes, we compute thirty-minute and four hours returns, since we assume two cases where

the dealers re-balance their portfolios every thirty minutes or four hours. The return at time t is computed as the difference
between the logarithms of themid-quotes at times t and t−1.We consider only data for the continuous trading period that
goes from 12:00 GMT to 20:00 GMT (8 h per day). We exclude from the sample all the US holidays and control for daylight
saving time (the time change between the winter and the summer). Finally, to avoid the trade opening noise, we eliminate
the first return of the day. The total number of returns of our sample is equal to 20,144.
As explained in Section 3, we adjust the returns for the diurnal component of volatility. The seasonally adjusted (SA)

returns are obtained by dividing the returns by the square root of their cross-sectional intradaily average volatility. Fig. 2
displays the intradaily diurnal functions for each day of the week for the EUR/USD, as an example.
Volatility is generally at its highest level one hour after the US market opening, due to the simultaneous activity of the

American and the European markets. It decreases around 20 h GMT when the New York trading session ends. The profiles
of the GBP/USD and USD/JPY diurnal functions are very similar to the ones shown in Fig. 2.
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Table 2
Descriptive statistics of thirty-minute returns.

EUR/USD GBP/USD JPY/USD
Returns SA returns Returns SA returns Returns SA returns

Mean 0.002 0.025 0.002 0.030 −0.00005 0.002
SD 0.116 0.999 0.086 0.999 0.102 1.000
Max 1.115 9.707 0.788 9.667 0.994 9.756
Min −0.845 −7.403 −0.562 −6.696 −1.343 −9.363
Skew 0.038 0.067 0.086 0.087 −0.345 −0.168
Kurt 8.558 7.429 6.667 6.008 13.250 8.900
ρ1 −0.006 −0.016 −0.017 −0.026 −0.034 −0.041
ρ2 0.013 0.008 0.009 0.006 0.005 0.003
Q (1) 0.69 5.09 5.51 13.48 23.32 34.12

(0.105) (0.024) (0.019) (0.0) (0.0) (0.0)
Q (2) 4.07 6.50 7.25 14.39 23.84 34.32

(0.131) (0.039) (0.027) (0.001) (0.0) (0.0)

The SA returns are the returns adjusted for the diurnal component of volatility (see Section 3.1). SD is the standard deviation, Skew and Kurt are the
skewness and kurtosis coefficients, ρ1 and ρ2 the autocorrelation coefficients of order 1 and 2, Q (1) and Q (2) the corresponding Ljung–Box statistics, with
their p-values below them (between brackets). The number of observations is 20,144 (period from 01/04/1999 until 12/31/2003).

Table 2 presents summary statistics of the thirty-minute returns for the three exchange rates, before and after seasonal
adjustment. The means of the SA returns are almost equal to zero and their distributions have fatter tails than the normal,
but they are almost symmetric. The distributions of the unadjusted returns are more leptokurtic and still close to being
symmetric except for the JPY/USD. In the series of SA returns, there is a small but significantly (at the 2.5% level) negative
autocorrelation of order one and a smaller positive autocorrelation of order two, which is not so significant. The negative
autocorrelation in FX returns has been discussed in the academic literature. According to Goodhart and Figliuli (1991), the
negative autocorrelation stems from constraints in the control of positions, while according to Bollerslev and Domowitz
(1993) and Lo and MacKinlay (1990), this feature comes from the computation of asynchronous price series at the interval
endpoints.

4.2. Example of investment recommendations

To illustrate our procedure, we present in detail the investment recommendations of a particular multivariate model.
These recommendations specify the amount of US dollars to borrowor to lend and, if applicable, the allocation of this amount
to each currency of the risky portfolio. The example is based on a portfolio of three risky currencies (EUR, GBP and JPY). The
initial wealth is assumed to be one million USD. For the risk-free interest rate, we use the overnight rate in November 2003,
equal to 4.47% (annually), which remains constant over the 30 day out-of-sample period. We consider two cases, and we
assume that the dealers re-balance their positions every 30 min (16 times per day) and 4 h (2 times per day). At the end
of the day, corresponding to the usual practice in FX trading, they close their positions, i.e. they buy (sell) the currencies
on which they are short (long), and they lend the remaining USD at the overnight interest rate. However, the effect of this
overnight rate has almost no impact on their wealth evolution.
The particular model we consider for this example has a changing conditional mean vector estimated by the sample

mean of the observations until time t − 1.
For the conditional variance–covariancematrix, we use the BEKK specification of Engle and Kroner (1995) coupledwith a

trivariate Student-t-distribution andwe estimate it usingWML (settingρ equal to 0.994, oneminus the value thatminimizes
the failure rate for the specified confidence level). We fix the confidence level (α) for the estimation of the VaR at 10% and
the desired VaR (VaR∗) at 5%. This means that the VaR level associated with the risky portfolio allocation is smaller than the
desired VaR, i.e. this position is less risky than desired. Accordingly, in order to obtain the desired VaR, the dealer should
borrow a given amount of US dollars and invest it in the risky currencies. We use an estimation sample of 250 days (from
11/18/2002 until 11/16/2003), with 16 observations per day, and an out-of-sample forecasting period of 30 days (from
11/17/2003 until 12/31/2003).
Fig. 3 shows the evolution of the recommended amount of borrowed US dollars as a fraction of the initial wealth. For this

specific example, and given that the assumed desired level of risk (VaR∗) is larger than the portfolio VaR, the model always
suggests to borrow at the risk-free rate and to invest the borrowed money in the risky currency portfolio. The average
fraction of the dealer’s wealth that is borrowed is equal to 61% over the forecast period, but there is clearly a positive trend
in the fraction.
The model recommendations also concern the percentages of the funds (own and borrowed) to invest in each of the

three risky currencies. Fig. 4 presents the weight evolution of one of the currencies, the euro. The weights fluctuate in three
intervals of values: approximately 0.63–0.68 (most frequently), 0.75–0.80, and 0.45–0.50 (least frequently). On average, the
model suggests investing 67% of the dealer’s total funds in EUR. The corresponding averages for GBP and JPY are 58% and
36%, respectively.
These model recommendations are consistent with the return evolution of the currencies during the out-of-sample

period. Table 3 presents the descriptive statistics for this period. The average return of the EUR/USD is almost 44% and
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Fig. 3. Recommended fraction of wealth to borrow.

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0 50 100 150 200 250 300 350 400 450

Fig. 4. Evolution of the euro weight in the portfolio.

Table 3
Descriptive statistics of the forecast period returns (Sample 1, 30 min).

EUR/USD GBP/USD JPY/USD

Mean 0.013 0.009 0.005
SD 0.108 0.079 0.080
Max 0.704 0.524 0.311
Min −0.510 −0.275 −0.447
Skew 0.515 0.811 −0.517
Kurt 8.005 6.989 7.002
ρ1 0.080 0.003 −0.035
ρ2 −0.042 −0.030 −0.027
Q (1) 3.11 0.003 0.56

(0.078) (0.958) (0.450)
Q (2) 3.95 0.39 0.98

(0.139) (0.822) (0.610)

SD is the standard deviation, Skew and Kurt are the skewness and kurtosis coefficients, ρ1 and ρ2 the autocorrelation coefficients of order 1 and 2, Q (1)
and Q (2) the corresponding Ljung–Box statistics, with their p-values below them (between brackets). The number of observations is 480, corresponding
to the forecast period from 11/17/2003 until 12/31/2003. The data frequency is 30 min.

160% larger than for the GBP/USD and the JPY/USD, respectively. Therefore, it is not surprising that the dealer takes more
position in EUR and in GBP than in JPY, as recommended by the model.
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Fig. 5. Wealth evolution of five investment strategies.

Finally, Fig. 5 presents thewealth evolution of five investment strategies for an initial wealth of onemillion dollars. Three
strategies correspond to investments in a single currency at a time (EUR, GBP, JPY), one corresponds to the optimal portfolio
of the three currencies (PORT) derived from themodel, and the last one (Rf) consists of investing the initial wealth at the risk-
free interest rate. It emerges firstly that the riskless strategy (Rf) generates a smaller final wealth than the other strategies.
Secondly, the wealth obtained by the intradaily optimal portfolio allocationmodel is always larger than thewealth obtained
by investing only in GBP or in JPY, and most of the time also larger than the wealth obtained by investing only in EUR. As
already pointed out, the results can be explained by the observation that, during the forecast period, the returns generated
by the euro are, most of the time, positive.

4.3. Economic and statistical evaluation

In this section, we present the economic and statistical evaluation of the models presented in Section 2. The economic
evaluation criteria are the total return (R) and the performance ratio (PR) at the end of the investment period (i.e. an out-of-
sample forecast period). The statistical criteria are the failure rate test (FR) and the dynamic quantile test (Dq). These criteria
and tests are explained in detail at the end of Section 3.
In Table 4 we present the results for portfolios made of two currencies (EUR and GBP), and in Table 5 the results for

portfolios made of three currencies (EUR, JPY, and GBP). In both tables, we consider thirty-minutes portfolio rebalancing.
The out-of-sample period goes from 11/17/2003 until 12/31/2003 (30 trading days). For the failure rate test, we report the
test statistic, and values in bold indicate significance at the 5% level. For the Dq test, we report the p-value of the F-statistic.
From these results we draw the following conclusions:

1. Most failure rate tests are significant at the 5% level formultivariatemodels, except the ‘Emp-COV’model, but the reverse
is true for univariate models. However, we observe that the models are conservative, since most of the failure rates are
below the desired α.

2. Almost all the models pass the dynamic quantile test at the 5% significance level, the exceptions being a few univariate
models for two currencies. It appears that most models are correctly specified in the sense that the VaR violations are
not serially correlated.

3. Compared to the Student-t distribution, the normal one produces, in all cases, a higher return and performance ratio
when α = 1%, while the reverse conclusion is true in most cases at 5% and especially at 10%.

4. The returns obtained by estimating the conditional mean using the empirical mean of the data until time t − 1 are in a
large majority of cases not smaller than the returns obtained by estimating the mean using an autoregressive process.
For the performance ratios, no specification of the mean dominates the other. In terms of the statistical tests, the two
approaches deliver similar results.

5. The results obtained by the BEKK and the DCC models are very similar but it takes almost 50% more CPU time to use the
BEKK model than the DCC model.

6. The results obtained by the BEKK and DCC models dominate in most cases those obtained by the CCC model. Thus, the
time-varying correlations seem to matter in our portfolio optimization setting.

7. The returns and performance ratios obtained by the ‘Emp-Emp’ and the ‘Emp-COV’ models are almost as good as those
obtained using the univariate and multivariate GARCH models. Nevertheless, the ‘Emp-Emp’ and the ‘Emp-COV’ models
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Table 4
Evaluation criteria of models for two currencies (Sample 1, 30 min, EUR and GBP).

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.055 0.046 0.078 0.081 0.098 0.105
PR 12.43 9.48 26.28 27.89 44.19 52.28

Emp-Emp FR 0.023 0.020 0.081 0.085 0.117 0.135
Dq 0.03 0.94 0.33 0.07 0.79 0.57
R 0.061 0.047 0.087 0.078 0.109 0.110
PR 9.49 8.02 20.00 23.19 35.71 42.61

Emp-GARCH FR 0.004 0.012 0.019 0.017 0.038 0.046
Dq 0.54 0.62 0.03 0.06 0.42 0.07
R 0.050 0.045 0.071 0.075 0.095 0.092
PR 9.01 10.68 17.45 19.89 28.74 48.56

AR-GARCH FR 0.010 0.008 0.029 0.029 0.065 0.087
Dq 0.99 0.93 0.71 0.04 059 0.01

R 0.054 0.034 0.079 0.057 0.101 0.079
PR 2.57 2.68 8.05 8.45 12.59 13.16

Emp-CCC FR 0.013 0.010 0.031 0.035 0.067 0.085
Dq 0.01 0.01 0.05 0.03 0.14 0.09
R 0.036 0.028 0.051 0.059 0.062 0.080
PR 3.46 2.59 6.49 6.06 12.15 11.99

AR-CCC FR 0.013 0.010 0.031 0.035 0.068 0.082
Dq 0.02 0.00 0.06 0.05 0.09 0.07
R 0.047 0.037 0.065 0.061 0.081 0.094
PR 4.01 2.66 7.48 8.00 12.06 16.10

Emp-DCC FR 0.017 0.010 0.054 0.056 0.096 0.116
Dq 0.29 0.99 0.31 0.62 0.23 0.47
R 0.037 0.031 0.051 0.061 0.065 0.085
PR 3.11 2.48 6.28 9.08 14.37 16.28

AR-DCC FR 0.015 0.008 0.048 0.042 0.079 0.081
Dq 0.99 0.99 0.23 0.29 0.06 0.91
R 0.043 0.040 0.059 0.070 0.080 0.094
PR 3.12 2.89 7.07 8.87 12.15 16.46

Emp-BEKK FR 0.017 0.010 0.050 0.052 0.081 0.104
Dq 0.99 0.99 0.10 0.40 0.18 0.34
R 0.041 0.038 0.086 0.070 0.100 0.091
PR 3.18 3.01 9.86 9.57 14.15 17.91

AR-BEKK FR 0.015 0.010 0.040 0.031 0.060 0.069
Dq 0.99 0.99 0.09 0.05 0.58 0.55
R 0.058 0.052 0.079 0.084 0.100 0.108
PR 13.25 10.24 27.11 27.99 45.38 54.82

Emp-COV FR 0.019 0.021 0.074 0.081 0.110 0.121
Dq 0.046 0.72 0.43 0.12 0.31 0.64

This table presents the statistic and economic criteria for evaluating the models over the out-of-sample 30-day forecast period from 11/17/2003 until
12/31/2003. The optimization procedure is carried out each 30 min, i.e. 16 re-balances per day. R denotes the total return of the investment over the 30-
day period. PR is the performance ratio computed according to Eq. (2.14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the F-statistic for the dynamic quantile test (see Section 3). For
a definition of the models, see Table 1.

have higher failure rates, which indicates that it is not as correctly specified and that the risk is higher than the target
one.

8. Figures, displayed in Tables 6 and 10, obtained with four hour rebalancing and corresponding to three currency portfolio
exhibits slightly better results as those corresponding to thirty minute rebalancing. The difference comes mostly from
the lower transaction costs paid in case of four hour rebalancing.

Bauwens et al. (2006) state that whether ‘‘the univariate repeated approach is more adequate than the multivariate one’’
is an open question. According to our results, using a multivariate GARCHmodel (either the CCC, BEKK or the DCC) provides
better results in the statistical and economic sense. Moreover, the multivariate approach is more economical in CPU time
than the repeated univariate one: for example, the computing time is reduced by 33% for two currencies and by 50% for
three when using the DCC model, compared to a univariate GARCHmodel (since the latter has to be estimated many times,
when searching for the optimal weights of the portfolio).
In order to ensure that the results presented above are not driven by a sequence of ‘abnormal’ positive returns for some

currency, we compute a second set of portfolio allocations for another sample. The estimation period goes from 06/19/2002
until 06/17/2003 and the out-of-sample forecast period from06/18/2003 until 07/31/2003 (30 days). Fig. 6 shows thewealth
evolution in both samples if everything is invested in EUR. Table 7 presents the descriptive statistics of the second sample.
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Table 5
Evaluation criteria of models for three currencies (Sample 1, 30 min).

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.031 0.026 0.043 0.044 0.057 0.058
PR 1.46 1.05 2.99 3.06 5.12 5.82

Emp-Emp FR 0.027 0.023 0.094 0.106 0.113 0.144
Dq 0.48 0.98 0.38 0.48 0.73 0.97
R 0.024 0.024 0.038 0.040 0.048 0.051
PR 3.15 2.15 3.97 4.75 7.01 8.75

Emp-GARCH FR 0.005 0.009 0.039 0.043 0.082 0.089
Dq 0.41 0.23 0.14 0.23 0.56 0.38
R 0.019 0.014 0.039 0.038 0.046 0.047
PR 1.99 1.58 6.12 5.87 6.42 7.45

AR-GARCH FR 0.003 0.012 0.039 0.041 0.091 0.094
Dq 0.13 0.09 0.51 0.07 0.47 0.12
R 0.027 0.024 0.037 0.036 0.058 0.062
PR 15.13 13.11 24.56 26.89 42.01 43.25

Emp-CCC FR 0.015 0.006 0.046 0.540 0.100 0.127
Dq 0.08 0.08 0.12 0.09 0.12 0.11
R 0.024 0.024 0.027 0.034 0.046 0.045
PR 4.08 6.18 17.13 18.87 33.16 35.58

AR-CCC FR 0.001 0.007 0.002 0.001 0.005 0.007
Dq 0.19 0.21 0.07 0.06 0.15 0.17
R 0.024 0.022 0.042 0.047 0.058 0.069
PR 14.12 11.00 29.58 30.45 49.42 54.85

Emp-DCC FR 0.010 0.008 0.045 0.043 0.089 0.093
Dq 0.99 0.99 0.32 0.35 0.37 0.42
R 0.024 0.022 0.039 0.040 0.055 0.064
PR 13.12 13.05 24.78 25.19 49.87 61.24

AR-DCC FR 0.008 0.007 0.044 0.047 0.081 0.086
Dq 0.99 0.99 0.26 0.36 0.78 0.31
R 0.028 0.020 0.041 0.044 0.060 0.068
PR 15.01 10.87 30.15 30.87 62.02 74.56

Emp-BEKK FR 0.017 0.008 0.033 0.043 0.091 0.094
Dq 0.99 0.99 0.73 0.67 0.25 0.09
R 0.027 0.017 0.042 0.041 0.051 0.057
PR 13.25 11.09 30.57 36.12 58.33 70.41

AR-BEKK FR 0.008 0.008 0.035 0.034 0.091 0.099
Dq 0.95 0.94 0.72 0.65 0.12 0.09
R 0.032 0.027 0.044 0.045 0.059 0.062
PR 1.49 1.17 3.12 3.01 5.34 6.03

Emp-COV FR 0.018 0.019 0.077 0.082 0.112 0.130
Dq 0.12 0.45 0.23 0.16 0.30 0.52

This table presents the statistic and economic criteria for evaluating the models over the out-of-sample 30-day forecast period from 11/17/2003 until
12/31/2003. The optimization procedure is carried out each 30 min, i.e. 16 re-balances per day. R denotes the total return of the investment over the 30-
day period. PR is the performance ratio computed according to Eq. (2.14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the F-statistic for the dynamic quantile test (see Section 3). For
a definition of the models, see Table 1.
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Fig. 6. Wealth evolution of EUR portfolios for two different samples.
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Table 6
Evaluation criteria of models for three currencies (Sample 1, 4 h).

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.035 0.032 0.046 0.045 0.051 0.054
PR 2.14 2.01 3.16 3.78 4.72 5.25

Emp-Emp FR 0.032 0.032 0.087 0.0728 0.146 0.123
Dq 0.15 0.21 0.16 0.23 0.24 0.32
R 0.031 0.027 0.039 0.041 0.049 0.055
PR 2.00 1.97 2.97 3.45 4.89 5.32

Emp-GARCH FR 0.015 0.019 0.041 0.045 0.096 0.099
Dq 0.19 0.27 0.34 0.29 0.42 0.38
R 0.028 0.027 0.036 0.039 0.048 0.051
PR 1.89 1.86 2.78 3.28 4.74 5.04

AR-GARCH FR 0.013 0.011 0.045 0.048 0.091 0.093
Dq 0.16 0.21 0.14 0.23 0.45 0.57
R 0.029 0.029 0.039 0.041 0.050 0.052
PR 22.35 21.34 28.75 33.57 55.90 63.2

Emp-CCC FR 0.018 0.021 0.057 0.059 0.098 0.102
Dq 0.07 0.05 0.06 0.08 0.13 0.15
R 0.028 0.027 0.035 0.039 0.049 0.053
PR 19.99 18.93 25.44 30.01 50.03 57.89

AR-CCC FR 0.012 0.018 0.057 0.065 0.110 0.102
Dq 0.02 0.00 0.09 0.16 0.43 0.36
R 0.029 0.024 0.044 0.046 0.054 0.057
PR 21.23 24.19 29.98 37.53 54.48 65.93

Emp-DCC FR 0.011 0.009 0.046 0.048 0.099 0.101
Dq 0.45 0.56 0.87 0.78 0.82 0.91
R 0.027 0.025 0.039 0.045 0.049 0.052
PR 19.42 24.87 28.76 36.04 49.06 56.85

AR-DCC FR 0.012 0.010 0.048 0.051 0.089 0.091
Dq 0.23 0.12 0.27 0.34 0.38 0.45
R 0.030 0.028 0.043 0.049 0.057 0.069
PR 24.20 20.14 31.40 39.82 54.98 69.91

Emp-BEKK FR 0.010 0.009 0.047 0.050 0.096 0.097
Dq 0.99 0.99 0.85 0.82 0.87 0.75
R 0.028 0.027 0.041 0.040 0.055 0.064
PR 22.37 20.01 29.48 29.96 53.10 63.37

AR-BEKK FR 0.008 0.009 0.049 0.049 0.098 0.101
Dq 0.94 0.95 0.76 0.78 0.22 0.17
R 0.036 0.029 0.048 0.045 0.053 0.057
PR 2.17 1.97 3.25 3.95 4.88 5.33

Emp-COV FR 0.029 0.031 0.082 0.071 0.111 0.129
Dq 0.14 0.15 0.32 0.19 0.09 0.23

This table presents the statistic and economic criteria for evaluating the models over the out-of-sample 30-day forecast period from 11/17/2003 to
12/31/2003. The optimization procedure is carried out each 4 h, i.e. 2 re-balances per day. R denotes the total return of the investment over the 30-
day period. PR is the performance ratio computed according to Eq. (2.14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the F-statistic for the dynamic quantile test (see Section 3). For
a definition of the models, see Table 1.

Table 7
Descriptive statistics of the forecast period returns (second sample).

EUR/USD GBP/USD JPY/USD

Mean 0.002 0.005 0.004
SD 0.103 0.090 0.084
Max 0.391 0.314 0.316
Min −0.497 −0.441 −0.589
Skew 0.056 −0.171 −0.434
Kurt 5.654 5.076 8.916
ρ1 0.115 −0.010 −0.067
ρ2 −0.075 −0.003 −0.030
Q (1) 6.35 0.043 2.16

(0.012) (0.84) (0.142)
Q (2) 8.14 0.046 2.47

(0.017) (0.97) (0.291)

SD is the standard deviation, Skew and Kurt are the skewness and kurtosis coefficients, ρ1 and ρ2 the autocorrelation coefficients of order 1 and 2, Q (1)
and Q (2) the corresponding Ljung–Box statistics, with their p-values below them (between brackets). The number of observations is 480, corresponding
to the forecast period from 06/18/2003 until 07/31/2003. The data frequency is 30 min.
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Table 8
Evaluation of models for two currencies (Sample 2, 30 min, EUR and GBP).

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.013 0.012 0.018 0.018 0.024 0.025
PR 5.14 4.57 11.85 12.99 21.12 26.10

Emp-Emp FR 0.021 0.019 0.068 0.075 0.133 0.131
Dq 0.49 0.53 0.66 0.32 0.12 0.10
R 0.011 0.009 0.016 0.014 0.019 0.022
PR 31.14 29.75 9.05 9.98 15.47 22.01

Emp-Garch FR 0.003 0.006 0.071 0.052 0.101 0.100
Dq 0.20 0.05 0.06 0.56 0.21 0.05
R 0.010 0.008 0.012 0.015 0.015 0.019
PR 23.10 19.99 9.87 10.11 15.01 21.45

AR-Garch FR 0.004 0.007 0.053 0.055 0.089 0.094
Dq 0.08 0.09 0.12 0.41 0.38 0.29
R 0.010 0.010 0.011 0.012 0.017 0.020
PR 8.45 9.05 11.25 11.04 13.12 14.48

Emp-CCC FR 0.040 0.025 0.077 0.089 0.106 0.133
Dq 0.03 0.01 0.06 0.04 0.12 0.10
R 0.010 0.009 0.012 0.011 0.016 0.019
PR 9.01 8.29 10.82 11.21 12.53 12.67

AR-CCC FR 0.037 0.025 0.075 0.084 0.112 0.132
Dq 0.03 0.00 0.07 0.04 0.09 0.07
R 0.010 0.009 0.014 0.015 0.020 0.021
PR 11.03 10.95 12.58 12.86 14.52 15.69

Emp-DCC FR 0.010 0.011 0.052 0.049 0.089 0.101
Dq 0.15 0.41 0.26 0.28 0.29 0.41
R 0.009 0.008 0.012 0.014 0.017 0.019
PR 9.42 8.12 10.49 11.58 13.00 15.93

AR-DCC FR 0.005 0.007 0.054 0.051 0.085 0.095
Dq 0.05 0.38 0.56 0.36 0.19 0.35
R 0.010 0.010 0.014 0.015 0.022 0.023
PR 11.12 11.04 12.97 13.06 15.18 16.07

Emp-BEKK FR 0.009 0.008 0.050 0.051 0.090 0.097
Dq 0.05 0.07 0.51 0.48 0.35 0.09
R 0.009 0.008 0.013 0.013 0.019 0.019
PR 10.89 11.06 13.18 13.76 14.27 15.91

AR-BEKK FR 0.008 0.007 0.046 0.045 0.087 0.090
Dq 0.12 0.09 0.46 0.35 0.26 0.12
R 0.014 0.012 0.020 0.021 0.025 0.026
PR 5.21 4.67 12.03 13.20 21.83 26.91

Emp-COV FR 0.021 0.018 0.061 0.075 0.128 0.131
Dq 0.12 0.26 0.32 0.19 0.44 0.17

This table presents the statistic and economic criteria for evaluating the models over the out-of-sample 30-day forecast period from 06/18/2003 to
07/31/2003. The optimization procedure is carried out each 30 min, i.e. 16 re-balances per day. R denotes the total return of the investment over the
30-day period. PR is the performance ratio computed according to Eq. (2.14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the F-statistic for the dynamic quantile test (see Section 3). For
a definition of the models, see Table 1.

Comparing the statistics in Tables 7 and 3, we see that the returns for the second 30-day forecast sample are smaller than
for the first one, especially for the EUR/USD, while the standard deviations are about the same. Moreover, during the second
period, the currency that has the largestmean return is the GBP, and not the EUR. If we look at Tables 8 and 9, we see that the
forecasted returns (R) are considerably smaller than those obtained for the first out-of-sample period (see Tables 4 and 5).
These differences are consistent with the smaller returns observed during the second period. However, we draw the same
conclusions as from the first forecasting experience: the multivariate GARCH models perform better than the univariate
GARCH model; the Student distribution gives better results than the normal when α increases; the ‘Emp-Emp’ and ‘Emp-
COV’ models yield returns that are about the same as those provided by the multivariate GARCH models, but it has higher
failure rates, and so on.
We construct a benchmark built on a ‘naive strategy’ that consists in making an equally weighted portfolio that we keep

unchanged during the thirty-days out-of-sample period. The total return triggered by the latter strategy is shown in Table 11.
The ‘naive’ returns are, in general, higher than the ones obtained using univariate and multivariate GARCH models in the
case where the traders are highly risk averse (α = 1%). However, the ‘naive’ returns are almost below the returns obtained
by mid-level risk averse traders (α = 5%), and they are always below the returns generated by low risk averse traders
(α = 10%).
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Table 9
Evaluation criteria of models for three currencies (Sample 2, 30 min).

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.014 0.013 0.020 0.020 0.019 0.020
PR 9.48 7.25 19.59 20.97 23.14 28.00

Emp-Emp FR 0.038 0.029 0.075 0.079 0.126 0.133
Dq 0.07 0.04 0.25 0.29 0.09 0.12
R 0.009 0.008 0.011 0.012 0.014 0.015
PR 54.65 42.85 14.18 19.42 20.02 26.87

Emp-GARCH FR 0.006 0.003 0.049 0.050 0.095 0.096
Dq 0.44 0.23 0.71 0.72 0.27 0.48
R 0.008 0.005 0.010 0.010 0.013 0.015
PR 45.48 40.54 18.29 18.84 22.12 30.43

AR-GARCH FR 0.007 0.001 0.046 0.052 0.094 0.095
Dq 0.26 0.38 0.75 0.79 0.31 0.45
R 0.011 0.010 0.017 0.020 0.021 0.024
PR 7.18 6.57 14.19 17.16 26.51 31.05

Emp-CCC FR 0.018 0.02 0.057 0.063 0.120 0.124
Dq 0.07 0.06 0.09 0.07 0.15 0.13
R 0.009 0.008 0.014 0.016 0.017 0.020
PR 6.42 6.12 13.58 12.45 23.13 26.73

AR-CCC FR 0.019 0.021 0.067 0.063 0.14 0.12
Dq 0.04 0.03 0.07 0.06 0.09 0.06
R 0.015 0.014 0.020 0.023 0.021 0.023
PR 8.17 6.26 16.29 17.69 27.47 34.53

Emp-DCC FR 0.016 0.010 0.048 0.054 0.094 0.094
Dq 0.22 0.05 0.05 0.09 0.15 0.27
R 0.014 0.013 0.018 0.017 0.018 0.020
PR 7.08 5.78 17.69 17.93 30.18 37.17

AR-DCC FR 0.005 0.007 0.045 0.049 0.092 0.096
Dq 0.32 0.09 0.16 0.21 0.24 0.38
R 0.016 0.014 0.021 0.024 0.018 0.023
PR 6.51 7.10 14.21 17.58 23.71 31.39

Emp-BEKK FR 0.013 0.016 0.038 0.052 0.091 0.093
Dq 0.09 0.35 0.23 0.10 0.58 0.37
R 0.015 0.013 0.018 0.018 0.017 0.019
PR 8.75 6.14 15.02 18.19 27.07 35.77

AR-BEKK FR 0.014 0.016 0.035 0.041 0.087 0.090
Dq 0.10 0.29 0.25 0.18 0.45 0.29
R 0.015 0.013 0.021 0.021 0.021 0.021
PR 10.07 7.49 20.30 20.98 24.11 31.02

Emp-COV FR 0.028 0.025 0.072 0.074 0.116 0.130
Dq 0.23 0.52 0.38 0.71 0.43 0.81

This table presents the statistic and economic criteria for evaluating the models over the out-of-sample 30-day forecast period from 06/18/2003 to
07/31/2003. The optimization procedure is carried out each 30 min, i.e. 16 re-balances per day. R denotes the total return of the investment over the
30-day period. PR is the performance ratio computed according to Eq. (2.14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the F-statistic for the dynamic quantile test (see Section 3). For
a definition of the models, see Table 1.

Finally, we compare our econometric models in a mean–variance setting. The performance measure used for the
issue is the Sharpe ratio displayed in Table 12. We notice that ‘Emp-Emp’ and ‘Emp-COV’ models almost outperform
the conditional variance models, and the multivariate model surpass the univariate one. This result is not surprising and
confirms the findings of Giannopoulos et al. (2005) and Zhang and Huang (2006) according to which the empirical variance
underestimates the risk. By considering conditional variance models, the multivariate GARCH models yield higher Sharpe
ratio than univariate ones, and the highest performance ratio is triggered by the ‘Emp-BEKK’model.

5. Conclusion

We design and implement a portfolio selection model which allocates a portfolio of currencies by maximizing the
expected return subject to VaR constraint. Based on an econometric implementation using intradaily data, we compute the
optimal portfolio at regular time intervals during a sequence of trading days. For the estimation of the conditional variance
fromwhich the VaR is computed, we use the standard univariate GARCHmodel of Bollerslev (1986), and three multivariate
GARCH models, the CCC model of Bollerslev (1990), the BEKK model of Engle and Kroner (1995), and the DCC model of Tse
and Tsui (2002). We evaluate the models using two economic criteria and two statistical tests. The procedure we have



2416 L. Bauwens et al. / Computational Statistics and Data Analysis 54 (2010) 2400–2418

Table 10
Evaluation criteria of models for three currencies (Sample 2, 4 h).

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.018 0.014 0.017 0.019 0.020 0.022
PR 11.43 9.45 21.38 24.78 26.71 29.40

Emp-Emp FR 0.026 0.025 0.073 0.073 0.131 0.135
Dq 0.03 0.01 0.14 0.19 0.12 0.15
R 0.011 0.011 0.013 0.012 0.016 0.017
PR 44.01 42.15 25.16 19.08 26.14 31.01

Emp-GARCH FR 0.012 0.001 0.051 0.051 0.011 0.099
Dq 0.54 0.46 0.62 0.63 0.37 0.27
R 0.010 0.008 0.010 0.012 0.014 0.016
PR 22.14 19.08 21.19 20.05 23.94 28.14

AR-GARCH FR 0.009 0.002 0.042 0.048 0.096 0.098
Dq 0.42 0.41 0.56 0.63 0.22 0.31
R 0.013 0.011 0.021 0.023 0.025 0.027
PR 7.18 6.97 17.25 19.27 28.19 33.12

Emp-CCC FR 0.011 0.005 0.059 0.054 0.131 0.128
Dq 0.04 0.03 0.08 0.06 0.12 0.16
R 0.011 0.009 0.017 0.018 0.018 0.021
PR 6.57 6.00 14.12 13.37 22.18 27.14

AR-CCC FR 0.017 0.019 0.072 0.061 0.139 0.123
Dq 0.04 0.00 0.14 0.14 0.08 0.12
R 0.016 0.014 0.024 0.025 0.021 0.023
PR 7.96 7.01 17.85 18.57 26.32 31.49

Emp-DCC FR 0.012 0.011 0.049 0.052 0.097 0.098
Dq 0.26 0.14 0.17 0.19 0.55 0.42
R 0.014 0.013 0.017 0.016 0.019 0.021
PR 7.15 6.92 17.36 18.03 28.07 34.19

AR-DCC FR 0.012 0.001 0.046 0.047 0.094 0.098
Dq 0.34 0.43 0.18 0.25 0.42 0.33
R 0.016 0.014 0.022 0.023 0.021 0.022
PR 7.57 7.12 14.42 19.95 25.34 32.38

Emp-BEKK FR 0.011 0.013 0.042 0.047 0.093 0.093
Dq 0.12 0.23 0.21 0.22 0.48 0.35
R 0.014 0.013 0.019 0.018 0.018 0.019
PR 6.25 6.21 15.36 17.71 24.48 31.94

AR-BEKK FR 0.016 0.014 0.041 0.044 0.092 0.091
Dq 0.14 0.36 0.42 0.36 0.46 0.35
R 0.020 0.017 0.019 0.021 0.021 0.024
PR 12.03 9.78 22.04 23.49 27.14 30.22

Emp-COV FR 0.023 0.022 0.070 0.071 0.129 0.134
Dq 0.12 0.06 0.27 0.08 0.19 0.07

This table presents the statistic and economic criteria for evaluating the models over the out-of-sample 30-day forecast period from 06/18/2003 to
07/31/2003. The optimization procedure is carried out each 4 h, i.e. 2 re-balances per day. R denotes the total return of the investment over the 30-
day period. PR is the performance ratio computed according to Eq. (2.14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the F-statistic for the dynamic quantile test (see Section 3). For
a definition of the models, see Table 1.

Table 11
Naive strategy returns.

Portfolio Sample 1 Sample 2

EUR and GBP 0.055 0.015
EUR, GBP and JPY 0.045 0.016

This table presents the total return of the investment (over 30 day-period) from implementing a naive strategy for a portfolio made of 2 and 3 currencies,
respectively. Sample 1 goes from 11/17/2003 to 12/31/2003 and Sample 2 from 06/18/2003 to 07/31/2003.

developed could be a useful tool to help foreign exchange dealers to control the accomplishment of a daily VaR level while
maximizing their profits.
Our results show that estimating the VaR using the conditional variance and frommultivariate GARCHmodels improves

the results of the optimal portfolio allocation, respectively, compared to using the unconditional variance or a univariate
model. There is no substantial difference between the results obtained by using the BEKK and the DCC models, but the
latter is preferable since it takes much less computing time. However, both outperform the CCC model. Thus, the time-
varying correlations seem to matter in our portfolio optimization setting. The Student-t distribution performs better than
the normal when the risk level used to define the VaR is large (5% or 10%), while the reverse holds at 1%.
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Table 12
Sharpe ratio (Sample 1).

Evaluation freq. 30 min 4 h
Normal Student Normal Student

Emp-Emp 0.94 0.91 0.91 1.02
Emp-GARCH 0.56 0.42 0.58 0.65
AR-GARCH 0.41 0.34 0.54 0.57
Emp-CCC 0.84 0.81 0.94 0.96
AR-CCC 0.78 0.74 0.89 0.90
Emp-DCC 0.88 0.84 0.94 1.01
AR-DCC 0.75 0.71 0.83 0.87
Emp-BEKK 0.92 0.88 0.95 1.04
AR-BEKK 0.86 0.83 0.88 0.89
Emp-COV 0.98 0.92 0.94 1.18

This table presents the Sharpe ratio for evaluating themean–variancemodel over the out-of-sample 30-day forecast period from11/17/2003 to 12/31/2003.
The currency portfolio involves EUR, GBP and JPY. The optimization procedure is carried out each 30 min and each 4 h, i.e. 16 and 2 re-balances per day,
respectively.

Future research would include, among others, the study and implementation of time varying re-balancing periods
and the analysis of its implications in portfolio allocations. In terms of econometric techniques, future research can be
conducted to test othermultivariate GARCHmodels and potential competitors to these kinds of models, such as theWishart
Autoregressive Process (WAR) model proposed by Gourieroux et al. (2004). The latter is a dynamic model for stochastic
volatility matrices. An interesting property of this model is that it is invariant with respect to the choice of the numeraire.
In the GARCH framework, the extension to high dimensions is known to increase the number of parameters heavily, so
that applying our methodology to more than a handful of currencies may seem a priori difficult. However, the recent
work by Engle et al. (2008) about the estimation of large dimensional GARCH models indicates that the extension to high
dimensions is feasible.
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