Probabilistic Relational Verification
for Cryptographic Implementations

Draft, January 18, 2013.

Gilles Barthe
IMDEA

Pierre-Yves Strub
MSR-INRIA & IMDEA

Abstract

In the form of tools like EasyCrypt, relational program logics have
been used for mechanizing formal proofs of various cryptographic
constructions. With an eye towards scaling these successes towards
end-to-end security proofs for implementations of distributed sys-
tems, we present RF*, a new extension of F*, a general-purpose
higher-order stateful programming language with a verification
system based on refinement types.

The distinguishing feature of RF* is a new probabilistic, re-
lational Hoare logic, formalized in Cog—the first such logic for
a higher-order, stateful language. We prove the soundness of this
logic against a new denotational semantics for RF*, in contrast to
prior operational formalizations of F*. Through careful language
design, we adapt the F* typechecker to generate both classic and re-
lational verification conditions, and to automatically discharge their
proofs using an SMT solver. Thus, we are able to benefit from the
existing features of F*, including, for example, its abstraction fa-
cilities that support modular reasoning about program fragments.
We evaluate RF* experimentally by programming a series of cryp-
tographic constructions and protocols, and by verifying their se-
curity properties, ranging from information flow to unlinkability,
integrity, and privacy.

1. Introduction

Many fundamental notions of security go beyond what is express-
ible as a property of a single execution of a program. For example,
noninterference [17], the property underlying information-flow se-
curity, relates the observable behaviors of two program executions.
In addition to describing multiple executions of a program, secu-
rity properties must often account for probabilistic behaviors. For
instance, simulation-based properties relate a program to an imper-
fect simulation of it, characterizing the probability of failure, while
the security of many cryptographic constructions is specified as a
bound on the winning probability of an adversary in a probabilistic
experiment.

Recognizing the importance to computer security of such hy-
perproperties [13], researchers have developed a range of program
analyses and verification tools for proving relations between two or
more programs, or two or more executions of the same program.
In this context, one domain that has seen particularly striking ad-
vances is code-based provable security, an emerging approach to
cryptography. For example, EasyCrypt [5] is a tool that imple-
ments a relational Hoare logic [7] over probabilistic imperative pro-
grams. The logic is able to justify common patterns of probabilis-

Cédric Fournet

Microsoft Research

Nikhil Swamy

Microsoft Research

Benjamin Grégoire
INRIA

Santiago Zanella Beguelin

Microsoft Research

tic reasoning about hyperproperties used in cryptographic proofs,
including observational equivalence arguments, equivalence up to
failure events, and reduction steps. As such, EasyCrypt provides
a machine-checked framework for proving the security of crypto-
graphic constructions in the computational model, and, over the last
two years, has been used for verifying public-key encryption and
signature schemes, modes of operation and hash function designs.

These advances, among others, raise the prospect of a new
class of verifiably secure systems: those that are proven secure
based on standard, computational assumptions about cryptography
(such as the existence of one-way functions) and whose verifica-
tion encompasses all aspects of the system implementation. Still,
the formalisms and tools in the state of the art do not quite suf-
fice to achieve this goal. For example, EasyCrypt is not designed
for building, verifying and deploying systems. Specifically, the in-
put language of EasyCrypt is an extension of a simple, imperative
While language with random assignments and procedure calls, and
does not provide the commodities of a general-purpose program-
ming language for developing realistic implementations. More fun-
damentally, EasyCrypt does not provide modular reasoning princi-
ples that allow probabilistic guarantees to be lifted to more abstract
specifications that can be reused elsewhere in a program analysis.

On the other hand, another strand of research into code-based
security has emerged. Several research groups have put non-
relational, program verification systems for general purpose lan-
guages (ranging from C to ML) to use in proving properties of
cryptographic implementations [8, 15, 16, 29]. Based on security
assumptions on cryptographic libraries, these systems have been
used to carry out modular proofs (to varying extents) on implemen-
tations at a relatively large scale. For example, over the last two
years, F* [29], a dialect of ML, has been used for verifying over
50,000 lines of code, including implementations of multi-party ses-
sions, web-browser extensions, zero-knowledge protocols, a full-
fledged implementation of the Transport Layer Security 1.2 (TLS)
standard, and the F* typechecker itself.

RF*: end-to-end security of cryptographic implementations In
an effort to scale code-based security towards end-to-end security
proofs of system implementations, this article presents a new lan-
guage, RF*, which integrates within F* an expressive system of re-
lational refinements to support fine-grained reasoning about proba-
bilistic computations. Through careful language design, we are able
to use the relational features of RF* in smooth conjunction with
the existing features of F*, allowing the large corpus of already-
verified F* code to be reasoned about effectively when used in a
relational context. As such, our work opens the door to complet-

2013/1/18

ing the certification of security proofs of critical pieces of Internet
infrastructure, such as the implementation of TLS (of which large
parts are already verified in F*) using RF*. Technically, this paper
makes three broad contributions, discussed next.

1. A probabilistic relational logic for higher-order stateful pro-
grams: using the Coq proof assistant, we formalize A\,, a
lambda calculus with references, random sampling, and un-
bounded recursion. We give it a denotational semantics, in-
cluding both a standard set-theoretical interpretation, as well
as a probabilistic, relational interpretation over pairs of store-
passing functions. We develop a type system for A\, and prove it
sound with respect to the probabilistic, relational interpretation.
This type system forms a logic for \,, the first such logic for
higher-order, stateful programs. (§3)

2. The design and implementation of RF”: the logic of A, forms
the basis of the design of RF*, an extension of F*. We show
how to encode the relational types of A, within a new relational
state monad, RDST, encoded in F*. We provide a type infer-
ence algorithm for RDST in the form a weakest pre-condition
calculus that computes relational verification conditions. Proofs
of these verification conditions can be discharged automatically
by the RF* typechecker and the Z3 [14] SMT solver. (§4)

3. An experimental evaluation of RF*: we demonstrate the ex-
pressiveness of RF* through a representative set of examples,
starting from simple (non-probabilistic) information flow, and
gradually moving towards advanced cryptographic models and
systems. To date, we have used RF* to automatically verify a to-
tal of around 1,400 lines of code for a variety of relational prop-
erties, ranging from termination-insensitive noninterference to
various indistinguishability-based properties for encryption, be-
sides others. Several of our examples make essential use of
both higher-order and stateful features of RF*, emphasizing
the necessity of the A, logic for practical security verification.
(82 and §5)

The A, theory formalized in Coq, a compiler download for RF*,
and all the example programs mentioned in this paper are available
from http://research.microsoft.com/fstar.

2. Programming with relational refinements

We start by describing RF* informally through a series of examples,
beginning with a brief introduction to F* itself, and then focusing
on the main new feature in RF*, i.e., relational refinement types.

2.1 From classic to relational refinements

F* is a call-by-value higher-order programming language with
primitive state and exceptions, similar to ML, but with a more ex-
pressive type system based on dependent refinement types. Refine-
ment types are written x:t{¢} where ¢ is a logical formula. For
instance, the code fragment below defines a refined type for non-
negative integers, then for integers modulo a prime number p:

type nat=n:int {0 <n}
typemod p=n:nat {n<p}
let p =97

let n: mod p="73

Typechecking F* programs involves logical proof obligations,
which are delegated to the Z3 SMT solver. For instance, to check
that n has type mod p, the F* typechecker emits the proof obli-
gation p =97 = 73 < p, which is easily discharged by Z3. Type
safety means that, whenever an expression e with type x:t{¢} re-
duces to a value v, then v satisfies the formula ¢[v/x]. The type
system also provides structural subtyping. For instance, nat is a

subtype of int, and mod p is a subtype of mod q when p < q. These
subtyping relations are automatically proved and applied by F*.
Refinements can be combined with dependent function types,
x:it —t’, where the formal parameter x:t is in scope in the co-
domain t’. We also use dependent pairs (x:t * t), where the name
x of the first component is in scope in the type t’ of the second.
For instance, we may write addition modulo as follows (where the
refinement braces bind tighter than the arrow):
val add: p:nat = x:mod p = y:mod p > zmodp { z=(x+y) % p }
letadd pxy=lets=x+yinifs < pthenselses —p

F* also provides primitive support for programming with state.
For example, one may write let incri=i:=!i + 1. By combining re-
finements with references one can express invariants on the pro-
gram state, e.g., ref nat is the type of mutable location containing
a non-negative integer. To describe more precise properties of ef-
fectful programs, F* provides more advanced mechanisms, includ-
ing a monadic mode [28], where one can reason about programs
using variants of the Hoare state monad of Nanevski et al. [22]
together with McCarthy’s select/update theory for modeling the
heap [21]. For example, one can give incr a specification of the
form: i:ref nat — ST (Ah.True) unit (A h () h>.h’=Upd h i (1 + Sel h i)),
where ST pre t post can be understood as the state-passing function
type h:heap{pre h} — (x:t * h>:heap{post h x h’}) although, in real-
ity, F* provides primitive support for state. That is, the type of
incr states a trivial pre-condition on the input heap h, and a post-
condition indicating that the final heap h’> differs from h at the lo-
cation i, which is incremented. F* provides type inference in the
form of a higher-order weakest pre-condition calculus to help ease
the burden of writing such precise specifications.

RF* extends F* with relational refinements: every type can
(also) be decorated with a relational formula, placed within braces
{|...|}. that specifies a joint property on pairs of values. Relational
formulas can refer to the left and right value of every program vari-
able in scope, using the projections L and R, respectively; projec-
tions extend naturally to arbitrary formulae. Intuitively, for deter-
ministic programs, type safety means that, whenever we obtain two
results v;, and vg by evaluating an expression e: x:t{|¢|} in two
contexts that provide well-typed substitutions for e’s free variables,
then the formula ¢[vr /L x][vr/R x] is valid. More generally, in-
stead of considering two executions of the same program, RF* al-
lows proving relations between pairs of programs, i.e., we relate eg
and e; at a (relationally refined) type using eg ~ e : t. Indeed, we
write e : t as a shorthand fore ~ e : t.

We start with a few simple examples. Take the expression e to
be z — z; we can give e the type x:int{|L x = R x|}, meaning that for
any pair of substitutions o, and o g, evaluating o1 e yields the same
result as evaluating o re. Relational refinements can also be used to
describe properties beyond equivalence, as illustrated by the type
x:int = y:int {| Lx < Rx= Ly <Ry}, of monotonic functions.
To describe a k-sensitive integer function with respect to metric
dist, we write x:int — y:int {| dist (Ly) (Ry) < k = dist (L x) (Rx) |}.
RF* can automatically check (by subtyping) that a function like
fun x — k * x is both monotone and k-sensitive for k& > 0.

Relational refinements are strictly more expressive than plain
refinements: one can encode any plain refinement { ¢ } as the re-
lational refinement {| L ¢ A R ¢ |} that independently specifies left
and right properties. For instance, the type nat is automatically
desugared to n:int {| 0 <LnAO0<Rn|}. Pragmatically, this en-
ables us to mix property refinements and relational refinements
in our concrete syntax, and to import any refinement-typed F* 1i-
brary in relational mode by applying the encoding. When authoring
programs with specific non-classical relational properties in mind,
one need issue only a single compiler directive (aka a pragma) to
switch the verifier to relational mode. We contend that the result-
ing language, RF*, brings relational program verification out of the

2013/1/18

http://research.microsoft.com/fstar

domain of tools applied to small fragments of pseudocode with in-
teractive proofs, to a practical programming language suitable for
small- to medium-scale systems implementations.

2.2 Information flow

Relational refinements can be used to provide a semantic character-
ization of noninterference-based termination-insensitive informa-
tion flow controls [27]. Whereas standard type-based information
flow controls resort to ad hoc syntactic mechanisms to conserva-
tively determine when a program’s observable outputs may depend
on its secret inputs, RF* can directly verify the target equivalences.
This section provides several examples.

If an expression e that computes over some secret information
can be given the type eq a = x:a{|L x = R x|}, then its result can be
released safely to an information flow adversary, since the execu-
tions of e reveal no information about the secrets. Capturing the
intuition from label-based information flow type systems, the type
eq a (the type of values that are “equal on both sides”) is the type of
low-confidentiality values, so we also call it low a. In contrast, hi a
is just an alias for a—their values may differ on either side.

Using these types, we can write programs like fun x — x — x and
give them information flow types like hiint — low int. More inter-
estingly, we can combine such types with logical properties to cap-
ture more general policies. For example, a plausible confidentiality
policy for credit card numbers conceals all but their last four digits,
as implemented below.

val last_four : n:hi int — s:string{| (Ln =R n) % 10000 = Ls=Rs |}
let last_four n = "s**xkxxx" " int2string (n % 10000)

Tracking leaks via control dependences (aka implicit flows) is
a characteristic feature of information flow type systems. To il-
lustrate how RF* reasons about implicit flows, consider the pro-
gram fun b — if b then e else ¢’. In order to give this program the
type hi bool — low a, we need to analyze four cases that arise from
applying this function twice to arbitrary boolean arguments L b and
R b, and prove that the results in all cases are the same. The four
goals are (1) e:low a, under the assumption that L b =R b = true; (2)
e’:low a, under the assumption that L b = R b = false; (3) e ~ €’:low a,
assuming L b = true and R b = false; and (4) €’ ~ e : low a, assuming
L b =false and R b = true.

Our proof rules for relating two values vg and v; are relatively
simple. Proving vo ~ vy : x:t{| ¢ |} involves first proving vo ~
v1 @ t (which for base types involves simply showing that both
v and v’ have type t), and then proving ¢[vo/L x][v1/Rx]. So,
RF* can easily prove (funb — if b then 0 else 0) : hi bool — low int,
or (fun x — if x=0 then x else 0) : hi int — low int even though, syn-
tactically, those functions branch on confidential values.

For expressions, particularly those that have side effects, the
problem is harder. Our strategy is to adapt the Hoare monad
ST pre t post provided by F* to a relational version called RST,
where RST pre t post can be seen as the type shown below:

h:heap{| pre (L h) (R h) |}
— (x:t % h’:heap{| post (L h) (R h) (L x) (Rx) (L h*) (Rh*)|})

This is the type of pairs of functions that, when run in a pair of input
heaps L h and R h satisfying the 2-place relational pre-condition
predicate pre, may diverge, but if they both converge, yield results
L x and R x and output heaps L h> and R h’ that satisfy the 6-place
relational post-condition predicate post.

Using the RST monad (and its associated weakest pre-condition
calculus), we can write the following program:

val f: x:ref int — b:bool — RST (A_ _. True) unit post
where post hO hl __h0’ hl’ =L x=R x A hO=h1= h0’=h1’
let fx b =if b then x := 1 else x := 1

RF* infers a weakest pre-condition predicate transformer for this
program, then checks that it is consistent with any programmer
supplied annotation (the annotation is optional for loop-free pro-
grams). The pre-condition of f states that it can be run in any pair
of heaps, while its post-condition ensures that if f is applied twice
to the same references in the same heaps, then regardless of the
boolean argument, the resulting heaps are also the same, i.e., the
type reveals that f does not leak information despite the side-effect
control dependent on the secret boolean.

More complex programs, for example those that may leak infor-
mation via side-effects based on aliasing, can similarly be verified.

val g: x:ref int — y:ref int — b:bool — RST (A_ _. True) unit post
where post hO hl __h0’ h1’ =L x#Ly A Rx#Ry
= Sel h0’ (L y)=Sel h1’ (R)
letgxyb=ifbthenx:=1;y:=1lelsey:=1;x:=0

The type of g states that, if x and y are not aliased, then the final
contents of the reference y are the same.

Thus, the expressiveness of RF*, combined with its ability to
use Z3 to discharge proof obligations, enables for the first time au-
tomated reasoning in the style of a relational Hoare logic, for prov-
ing noninterference properties of higher-order stateful programs.

2.3 Sampling, chosen-plaintext security, and one-time pads

We illustrate probabilistic reasoning using symmetric encryption
schemes. Our goal is to communicate plaintexts between a sender
and a receiver without leaking any information about their content.
For simplicity, we assume messages with a fixed size n (called
blocks, or fbytes n) and do not involve active attackers. Padding
and authentication can be easily added, but would complicate our
presentation. We assume that the sender and the receiver share a
secret key k (also a block), sampled uniformly at random by calling
sample. We model this assumption by writing a single program
where both parties are within the scope of this key. The simplest
secure encryption scheme is the one-time pad, implemented for
instance using bitwise XOR: to encrypt p, compute ¢ = k & p;
to decrypt ¢, compute p = k & c.

type block = b:bytes { Lengthb=n }
let encrypt k p=xor k p
let decrypt k c =xor k ¢

In cryptography, confidentiality is usually stated as resistance
against chosen-plaintext attacks (CPA) and encoded as a decisional
game in which an adversary chooses two plaintexts, receives the
encryption of one of them under a fresh key, and must guess which
of the two plaintexts was encrypted. (Decryption plays no role in
this simple game; still, we may typecheck that it undoes encryption
using classical refinements and properties of XOR.) This game may
be coded in RF* as follows:

let cpa b p0 pl =let p = if b then pO else pl in encrypt (sample n) p

where b is private and p0, pl, and the result are public. We thus
express (perfect) CPA security relationally with the following type:

val cpa: b: bool — eq block — eq block — eq block

In fact, viewing CPA security from an information flow perspec-
tive, a simpler formulation is possible. Instead of reasoning about
two messages selected by b, we just need to show that the function
let cpa’ p = encrypt (sample n) p has the type block — eq block. This
is the best type we can hope for encryption, treating the plaintext
as private and the ciphertext as public. This more compact typing
property subsumes the first one.

To prove secrecy for the one-time-pad, some probabilistic
reasoning is called for. Indeed, operationally, calling sample n
twice does not usually return the same value. However, from
our formal development, we show that it is permissible to give

2013/1/18

Passport Tag (physically sharing k) Reader
sample nt
nt >
sample nr, kr
decrypt — {nt || nr || kr}g P
verify MAC
verify nt
sample kt {nr || nt || kt}p —> decrypt
verity MAC
verify nr
s=kt®kr 4—— exchange data ——> s=kt®kr

Figure 1. Basic Access Control protocol

sample n a more specific relational type that allows us to com-
plete the proof. In particular, we can type the call to samplen
in a way that depends on the plaintext p and give it the type
m:block {| xor (L p) (L m) =xor (R p) (R m) |}. From this type, RF*
automatically proves cpa’: block — eq block. Intuitively, this rela-
tional refinement is sound inasmuch as the distribution of the ci-
phertext is independent of the plaintext. This property is not spe-
cific to XOR; indeed, the only relational property that we require
of two calls to sample n is that it return a pair of values related
by a one-to-one function. As such, relational refinements in RF*
capture equivalences on the distribution of values computed by a
probabilistic program, rather that on the specific values themselves.

To this end, our library provides a polymorphic, typed variant
of sample, that takes as additional ghost parameter F, a binary pred-
icate on sampled values (of kind A = A = E'), whose refinement
states that it must be an injective function (or, equivalently, a bijec-
tion). Its type declaration in the RF* standard library is

type Function F =Va.3b.Fab AVablb2Fabl AFab2=bl=b2
type Injective F = Function F A

Val bl a2 b2. Fal bl AFa2b2A bl=b2 = al=a2
val sample: VF. len:nat{Injective F} — b:fbytes len{| F (L b) (R b) |}

In our example, when calling sample n in cpa’, we instantiate F to
the predicate A b0 b1. xor (L p) b0 = xor (R p) b1, which is injective.
Section 5 describes more realistic CPA schemes based on sample.

2.4 Implicit flows and passport linkability

Before justifying our typing rules, notably for sample, we present
a concrete linkability attack against RFID-equipped passports, re-
cently uncovered by Chothia and Smirnov [12]. We refer to their
work for a detailed discussion. This attack is representative of com-
mon weaknesses in cryptographic implementations due to implicit
flows in the handling of errors while processing decrypted data.

Following the ICAO specification for machine-readable travel
documents, all recent European passports embed RFID tags featur-
ing the Basic Access Control protocol, outlined in Fig. 1. The pro-
tocol has two roles, a passport tag and a reader, exchanging mes-
sages using short-distance wireless communications. The goal of
the protocol is to establish a shared session key for accessing bio-
metric data on the passport. The tag has a fixed key k; the reader
obtains k by scanning the passport—this step requires physical ac-
cess to the passport, as it is presented to the reader.

The passport first samples a 64-bit nonce nt and sends it as a
challenge to the reader. The reader samples its own nonce nr and
some keying materials kr, then encrypts the concatenation of these
three values using k. (Concretely, the protocol implements authen-
ticated encryption as triple-DES-encryption concatenated with a
plaintext MAC.) The passport decrypts, recomputes and checks the
MAC to ensure that the message has not been tampered with, then
compares the received nonce nt with the challenge, to confirm that
the reader responded correctly. If both checks succeed, it gener-

ates its own keying materials kt, appends it to the concatenation of
the two nonces (in a different order than before), and computes the
session key s = kt @ kr. The reader then similarly decrypts the
received ciphertext, checks the MAC, and computes s.

We give below the code the tag uses for handling the encrypted
message of the reader; encrypt and decrypt provide authenticated
encryption; concat and split convert between triples of 64-bit values
and their concatenation.

let tagl k nt c = match decrypt k c with
| Some p — let (nt’,nr,kr) = split p in
if nt = nt’ then encrypt k (concat nr nt (sample_kt()))
else nonceError
| None — decryptError

The code either produces an encrypted message, or it returns an
error code. As written, it enables the following linkability attack:

1. The attacker eavesdrops any run of the protocol between a
target passport and an honest reader, and records their second
message.

2. Later, to test the local presence of this passport, the attacker
runs the protocol (as the reader), replays the recorded message,
and observes the response: although the protocol always fails to
establish a key, the tag returns a nonceError if the two passports
are the same, and a decryptError otherwise.

French passports reliably return different error messages, whereas
other European passports return the same error message, but with
measurably different timings. We interpret the attack as an implicit
flow of information from the key used to decrypt to the error
message. Indeed, if we type our keys as high confidentiality and
the nonces and ciphers with eq refinements (inasmuch as they are
exchanged on a public network), relational typechecking fails on
the body of tagl. The result of the decryption is (a priori) not the
same on both sides, so the cross-cases involve proving, for instance
that when decryption returns Some p on the left and None on the
right, the two resulting expressions are equal, which fails on the
proof obligation nonceError = decryptError.

By ensuring that the same error messages are returned in both
cases (i.e., by requiring that nonceError = decryptError) this case is
prevented. However, this alone is not sufficient for verifying the
code. Naively, the cross-cases that arise when verifying the nested
conditionals require proving (under a suitable relational path condi-
tion) that the encryption on the third line is indistinguishable from
the error messages—which is patently false. However, by reflecting
several cryptographic assumptions into detailed typing invariants in
the protocol implementation, we can prove that such problematic
cross-cases never actually arise (i.e., the path conditions guarding
these cases are infeasible), and we can verify that this code pre-
serves unlinkability. Specifically, we assume that the encryption is
CPA, key-hiding, and CTXT (all specified by typing) and that there
are no nonce collisions (the probability of a collision is less than
¢*27%* where ¢ is the number of sessions observed by the adver-
sary). We show below the type we assign to tagl.

val tagl: k:key — nt:nonce — c:cipher —iRST pre block post
where pre hO hl =L nt=R nt A L c=R c A (L nt,L k) € Sel hO (L nts)
A (Rnt,R k) € Sel h1 (R nts)
and post h0 h1 b0 b1l h0’ h1’ = bO=b1

The pre-condition of tagl requires the nonces and ciphertext argu-
ments to be equal (they are sent in the clear). Conversely, the keys
may a priori differ. In addition, we maintain ghost state in a refer-
ence cell nts that holds a table modeling the association of nonces
to keys—the last two clauses of the pre-condition require the non-
ce/key pairs to be present in this table. As a post-condition, tagl
ensures that the returned blocks, b0 and b1, are equal. In the type,
iRST abbreviates the RST monad shown earlier, augmented with

2013/1/18

a heap invariant which places various constraints on the structure
of the nonce table nts and other mutable locations used in the im-
plementation of this program. Arapinis et al. [2] also analyze this
protocol, using the applied m-calculus, essentially proving unlinka-
bility in a more abstract, symbolic model of cryptography.

3. Formal development

We formalize a core of RF* in the Coq proof assistant by devel-
oping \p, a minimal higher-order language with references, prob-
abilistic assignments, and unbounded recursion. The formalization
is based on the SSREFLECT extension [18], and on the ALEA li-
brary for distributions [3]. Overall, the formalization comprises
over 5,000 lines of code excluding the aforementioned libraries.

The formalization is built in two steps. First, we consider a sim-
ply typed system GG I e : T for A,. Simple types T are extended
to relational refinement types C where one can add relational pre-
and post-conditions to function types. This allows us to define a
relational type system G F eg ~ e; : C that relates a pair of ex-
pressions eq, e; in the type C under the relational context G.

We then give a denotational semantics for the introduced type
systems. Simple types are given a set-theoretical interpretation [T
in the standard way. Judgments G . e : T are interpreted
as the elements of the form (e);, where I is any valuation for
the context G. Taking into account that A\, is a language with
references and probabilistic assignments, the denotation (e ; of e is
defined as a function from memories (equivalently, states or heaps)
to distribution over pairs composed of a memory and an element
of [T]; we denote by M([T]) this function space. Relational types
C are interpreted as a relation (C)) over M([T]), where T is the
simple type derived from C by erasing all refinements. This allows
us to interpret a valid judgment G - eg ~ e; : C by all the pairs of
the form ((e)); ., (e) 1,) € {C) for any pair of valuations (I, Ir)
for the erasure G of G.

3.1),:syntax

Ap is a simply typed A-calculus with references and probabilistic
assignments. For simplicity, we only consider two forms of prob-
abilistic assignments: assigning a uniformly sampled boolean to a
boolean variable (flip), and assigning an integer value sampled uni-
formly in a non-empty interval [z, j] to an integer variable (pick?).
Formally, the sets of types, contexts, values and expressions are
given by the following grammars:

type T = B|T—>T

ctxt. G = [|G, [z:T]

value v,u == clx]|o(vi,...,vn) |funz: T —e

expr. e v|ev| Ir|r:=uv|flip|pick! | let z =e1 in ez

letrec f o =e1 in ez | if v then ey else e

where x ranges over a set var of variables, r ranges over a set ref
of references and o ranges over a set of B-sorted operators, whose
signature is of the form B x --- x B,, — Bo. We assume that
B contains the unit type (unit) along with the types of booleans
(bool) and integers (int). Their associated constructors are e, true,
false and n for n € N. We implicitly assume that each reference
has an ambient base type, and write r : ref B to denote that r
is a reference of type B. The dynamic semantics is defined in
the standard way as the compatible closure (for a call-by-value
convention) of the Stud-contraction.

3.2 \p: typing

As usual, a typing context is a sequence of bindings x : T such
that a variable is not bound twice. The typing rules for deriving
valid judgments G -, v : T and G . e : T, in a simply typed
setting, are standard and omitted.

3.2.1 Relational refinement types

Relational assertions are formulae over tagged variables x. or
xr and tagged references r. or rg; informally, tags determine
whether the interpretation of = or r will be taken w.r.t. the left
or right projection of a relational valuation. In order to interface
with automated first-order provers, relational assertions are first-
order B-sorted formulae built from operators in O and predicates
taken from a set of B-sorted predicates which includes at least
the equality predicates for all the base types. Note that tagged
variables always occur free in assertions, and only logical variables
can be bound. The formal definition of well-formed assertion is as
expected, and omitted; we write G = ® : Prop if ® is a well-
formed assertion under (. For instance, the relational assertion
Vy :int.z; < y = zr < y + rgr is well-formed under any
context G s.t. x : int € G, assuming that 7 : ref int.

Refinement types are either relational types (denoted by T,U),
which will be used for relational typing of values, or computation
types (denoted by C), used for relational typing of expressions.
They are defined by the following grammar:

T = B|(z:T)=C C = {@}y:T{Y}

where @ and WU are relational assertions. By convention, x and
y are bound in (z : 7) — C and {®}y: T{V}, respectively.
However, the type system enforces that and y only occur in C and
W respectively, if 7 is a base type. In other cases, we write 7 — C
and {®}T{VU}.

A relational context G is a sequence of bindings = : T s.t.
a variable is not bound twice. The refinement type C is a valid
refinement of 7" under G, written G = C <« T, if T is the result
of erasing all pre- and post-conditions occurring in C and if any
assertion that appears in C is well-formed in G augmented by the
local context of ® in C. This relation is lifted to relational contexts:
G <G is the smallest relation s.t. [| <[and if GaG and G+ T < T
thenG,z: T <G,z :T.

3.2.2 Relational typing

Figure 2 gives a significant subset of the rules defining the relational
typing judgments G - v1 ~ vz : T and G F e; ~ ez : C for
respectively values and expressions. The full set of rules appear in
the accompanying Coq formalization.

A judgment of the form G - e ~ ez : {®}T{ ¥} is valid when
for any pair of initial memories m1, m2 satisfying the pre-condition
®, the pair of distributions over memories obtained by executing
e1 and ez are related by the post-condition ¥ (more exactly, by the
lifting of W to distributions, defined below). Intuitively, when W is
an equivalence relation, observing to which equivalence class the
results belong does not help in distinguishing the two expressions.

The rules come in two flavors: double- or single-sided. Double-
sided rules allow relating programs with the same head symbol. For
instance, rules [Ler] and [App-Basg] are double-sided. They work
by relating sub-expressions pairwise, composing pre- and post-
conditions using the implicit order of evaluation. Rule [Ler] em-
phasizes this, where the post-condition of the let-bound expression
is the pre-condition of the body.

It is not always possible to progress using double-sided rules.
For instance, one may want to show that the two expressions
(if b then v else v) and v are related by a suitable post-condition.
The two expressions having different head symbol, no double-sided
rule can apply. Single-sided rules allow to overcome this limitation.
The rule [1r], which permits to relate an if-expression to an arbitrary
expression, is an example of a single-sided rule.

Rules for reference assignment ([Rer] and [Rer-Lert]), which
come in two flavors too, make use of the ability to write assertions
about the resulting memory. For example, the two expressions

2013/1/18

Ghkybo:B Ghky b :B GG
[CONSTR]
GFb~b1:B
G d
[VaR] Ggd z € dom(G)

Ggraz~z:G(z)

G,x:BlFey~er:C GFB«T GG

[Fun]
Grfunz:B —seg~funz:B —e:(x:B)—=C

GFHb~b1:B
GF by ~ by : {®z = b, b1]}z : U{D}

[BASE-VALUE]

[REF] r:refBeg GFby~bs:B
EF
g Fr= b() ~T = bl : {CD[JD = bo,bl}}ul’lit{q)[x = 7‘]}
r:refBeg GaG G+b:B
[REF-LEFT] G eo~er:Clag :=bo]
GFr:=bgoieq~er:Clay :=rr]
[APP-BASE]g}_eowelz(xzp’)—}c GFby~b1:B
Gt egbg ~ e by :Clr:=bg,bi]
/g - 6/0 ~ep: {®}T{=}
(er] 2 Theo~en : {Ej{W} 2 g FVU, W)
Ghletz=epine)~letx=eyine]: {PIU{T}
g«@ GFT<T Glee:T
[LET-LEFT] G,z: Tk eo~en: {PjU{V} z ¢ FV(U, e,)

Grletz=einey~ e : {Q}{T}

g«G Gty v : bool
Ghel~e: {P1}C{V} GlFex~e: {P}C{VU}
GrLifuvthene; elseex ~e: {v= 21 A-v=D}C{VT}

[1F]

f=xz—zorf=ax—

F
(FLIP] G E flip ~ flip : {Vy : bool. @[z :=y, f(y)]}z : bool{P}
61M62 GFel~e:C
[RED]
Ghea~e:C

Figure 2. Relational typing rules

r := bo and r := by are related by a post-condition ¥ when ¥,
where all occurrences of r. (resp. rr) have been replaced by bo
(resp. b1), holds as a pre-condition.

Up to now, we only considered rules for expressions headed
by non-probabilistic constructions. Rules for random sampling are
double-sided and require the existence of a bijection f between the
support of the two distributions, ensuring a one-to-one correspon-
dence between related values. In the case of flip, we explicitly give
the only 2 existing bijections from bool to bool.

3.3)\,: denotational semantics
3.3.1 Background

The denotational semantics of well-typed expressions is based on
the probability monad [3, 25]. For the sake of clarity, we only
consider distributions over discrete sets. For every discrete set X
and z € X, let §; : X — [0,1] be the Dirac function for x:
ie, 0z(z) = 1 and d.(y) = 0 if z # y. A sub-distribution
over X is a function & : (X — [0,1]) — [0,1] such that for
every f : X — [0,1), pf = D cx (M) (f2) < 1A
distribution is a sub-distribution x such that 1 (Az. 1) = 1. The
support supp(u) of a sub-distribution p is the set of = € X such

(s =B(c)

()1 =1I(z)

(funz: T —e)r =Ad Am. (e)7[z.—q

()7 =unit ((v)1,m)

(e v)™ =bind (e)7* (Af. Am. (f (v)rm, m))

(
(let z = e1 in e2)7" =bind (e1)7" (Ad. Am. ((e2)7],.=qp m))
(letrec fz =e1 in e2)T"
=bind (lub Fforse,) (Ad. Am. (e2)7}.—q))
()7 =unit (m(r),m)

(r:=¢e)T =bind ()7 (Ad. \m. (o, m[r := d]))
(flip) 7" = bind Us (Ab. (b,m))
(pick!) 7" =bind Uj; ;) (An. (n,m))

where Fyq s is defined as

Fipsnr 0 — unit (Adz. As. Ag.0)
Froosprin+1—
bind (Fyasar(n))(Ads. Ada. As. (]Ml)?[f;:df][z::dz])

Figure 3. Interpretation of values and expressions

that p 6, > 0. Every finite set X induces a discrete distribution Ux,
that assigns probability 1/|X| to each element of X. We let D(X)
be the set of discrete sub-distributions over X . D(X) inherits from
[0, 1] the structure of an w-complete partial order. Moreover, sub-
distributions can be given the structure of a monad, by taking as
unit and composition operators:

unit : X — D(X)
Exe f. fx

bind : D(X) — (X — D(Y)) — D(Y)
EMNiM fopu(Nw. Maf)

The interpretation of relational types rests on an operator - that
lifts relations over A X B into relations over D(A) x D(B); the
operator is inspired from early works on probabilistic bisimula-
tions [19], and used in EasyCrypt to interpret relational judgments.
Formally, let y1; € D(A) and po € D(B); then P* iy oy iff:

Ju: D(A x B).mi(p) = pa Ama(p) = p2 Asupp(p) P

where 71 and 72 are the projections for distributions over pairs.

3.3.2 Set-theoretical interpretation

We assume each base type B is given a set-theoretical interpreta-
tion [B], and that each constructor ¢ belonging to the base type B
is given a denotation B(c) € [B]. We define the set of semanti-
cal values as (g [B], and then the set M of states as the set of
well-typed mappings from references to semantical values. Then
we extend the interpretation to functional types by setting

[Ty — T2] = [Th] — M([T2])

where M(X) £ M — D(M x X).

A valuation [is a function that maps every declaration x : T to
a semantical value. A valuation [is valid for G, written I F G, if I
maps every declaration : T in G to an element of [T]. Let I be a
valuation and m be a memory. The interpretations (v); of a value
v and (e)7* an expression e are defined in Figure 3. If [is a valid
valuation for G, and G -, v : T is derivable, then (v); € [T].
Likewise, if G k. e : T is derivable then Am. (v)7* € M([T]).

3.3.3 Relational interpretation

A relational valuation T for G, written Z F @G, is a pair of
valuations for G. If Z = (I, Ir), we write m1(Z) (resp. m2(Z))
for I (resp. Ir), and Z(x) for (Iz(x), Ir(x)). We assume given

2013/1/18

a relational interpretation for formulas, written (®)z, s.t. for any
formula ® well-formed under G, for any relation valuation Z F
F, (®)z is a relation on M. This relation is defined as usual,
using the left/right valuation (resp. left/right memory argument)
for interpreting variables on the left/right (resp. references on the
left/right).

Figure 4 defines the interpretation of valid relational types,
written (G F T < T)z, and valid computation types, written
(G F C<T)z, w.rt. arelational valuation Z. A relational valuation
7 is valid w.r.t G, written Z F G, if G < G, and for every variable x
declared in G, Z(z) € (G + G(z) <« G(z))z.

Finally, we define the semantic validity of judgments: we say
that two values u; and u2 are semantically related in 7 under G,
written G F v1 ~wve : T,if G<G,and G+ T < T, and

VIEG, ((]ulbm(l)v (]’LLQDWZ(I)) €e(GFT<T)z

We say that two expressions e; and ez are semantically related in
Cunder G, written G E e1 ~ e2 : C,if G<G,and G+ T < T, and

VIEG, (Am.(el7, (), Am. (e2)7, (1)) € (GFCaT|z

The following theorem states that all judgments of the logic are
sound w.r.t. their interpretation.

Theorem 1 (Soundness).

e l[fGruvi ~wve: T, thenGE v ~va: T,
e l[fGFei~ex:C, thenGFEe ~ez:C.

Technically, we prove the soundness of each rule as a lemma,
directly from the semantics. It allows one to fall back on the full
generality of the Coq system whenever reasoning outside of the
logic is required.

4. Encoding)\, in RF*

There are two key ideas behind our encoding of A\, in RF*. First,
as shown in §2.3, we introduce probabilistic computations into F*
axiomatically, by providing a sample primitive at the appropriate
type. Programmers can instantiate sample at runtime by providing a
suitable source of randomness. Next, as discussed in §2.2, we adapt
the Hoare state monad ST to a monad RST for computations with
relational pre- and post-conditions. We provide here more details
about our encodings, in particular the style we adopt to compute
relational VCs for the RST monad, and the manner in which we
reuse classical specifications.

4.1 Representing)\, types

To implement \,, we begin with a translation of its types into
F* augmented with a relational state monad. To stay close to Ap,
our translation uses a monad RSTO, which we then adapt to the
monad RST of §2. Like in Ap, post-conditions in RSTO only relate
the output values and heaps, not the initial heaps. Specifically, the
type RSTO pre a post can be interpreted in RF* as a store-passing
function (over a primitive heap) with the signature shown below:

RSTO pre a post = h:heap{|pre (L h) (R h)|}
— (x:a * h™:heap{| post (L x) (Rx) (Lh’) (R h")

o)

The type translation is homomorphic on most of \,’s typ-
ing constructs, with the interesting cases mainly on the com-
putation types. For first-order computation types [{®}B{W¥}] is
RSTO [®] [B] [¥], while, higher-order computation types in A,
[{®}U{¥}] (whose post-condition is not dependent on the result
U), are represented as RSTO [®] [L4] (A_ _[¥]).!

'In principle, in RF*, one could write types like RSTO p(x:t —
RSTO p’ t” q’) (MO f1. q) where g mentions fO, f1, which is inexpressible
in Ap. However, such a type is generally useless in RF*, since the functions
f0, f1 cannot be applied in q.

4.2 A monad of predicate transformers for VC generation.

Next, to provide type inference for RF*, rather than writing re-
lational Hoare triples in RSTO, we write specifications using
predicate transformers. This style is adapted from the Dijkstra
state monad, previously introduced for inferring classical (non-
relational) verification conditions for stateful F* programs [28]. In
particular, we introduce the relational Dijkstra state monad, RDST,
and show its signature below. (Note, we write polymorphic types
implicitly assuming their free type variables are prenex quantified.)

type RDST awp =Vp. RSTO (wp p) a p
val return : x:a — RDST a (Ap. p (L x) (R x))
val bind: RDST a wpl — (x:a — RDST b (wp2 x))
— RDST b (Ap.AhO h1. wpl (Ax0 x1 h0’ h1’.
(Vx. Lx=x0 A Rx=x1 = wp2 x p h0’ h1’) h0 h1)

The type RDST t wp is an abbreviation for the RSTO monad that
is polymorphic in its post-condition. Specifically, RDST t wp is the
type of computation which for any relational post-condition p on ts
and heaps, the pre-condition on the input heaps is given by wp p.

Unlike the Hoare-style RSTO monad, the RDST monad yields
a weakest pre-condition calculus by construction. As indicated by
the signature of bind, when composing computations in the RDST
monad, we simply compute a pre-condition for the computation by
composing the predicate transformers of each component. A slight
complication arises from the need to constrain the formal parameter
x:a of wp2 relationally. In general, wp2 will have free occurrences
of L x and R x. We relate these to the result of the first computation
using the guard L x=x0 and R x=x1, before composing wp1l and wp2.

Additionally, by exploiting the post-condition parametricity
of RDST, we can recover the expressiveness of a 6-place post-
condition relation in the RST monad that we use in our examples.
‘We show the definition of RST below.

type RST pre a post = RDST a (Ap.Ah0O h1l. pre hO h1
A Vx0 x1 h0* h1’. post hO hl x0 x1 h0” h1” = p x0 x1 h0* h1’)

4.3 Lifting classical specifications.

To promote reuse of existing verified F* code in RF*, we provide
combinators to lift specifications written with classical predicate
transformers into the RDST monad. To illustrate, we show the
RF* specifications of primitive operations on references—the same
combinators apply to arbitrary classically verified code.

type lift wpO wpl p hO hl =
wp0 (Ax0 h0’. wpl (Ax1 h1’. p x0 x1 h0’ h1’) h1) hO

type Rdxph=p(Selhx)h
val (1) : x:;ref a — RDST a (lift (Rd (L x)) (Rd (R x)))

type Wxvph=p() (Updhxv)
val (:=): xiref a— v:’a— RDST unit (lift (W (L x) (L v)) (W (R %) (R v)))

The combinator lift takes two classical predicate transformers
wp0 and wpl and composes them by, in effect, “running” them sep-
arately on the heaps h0 and h1 and relating the results and heaps
using the relational post-condition p. The types given to derefer-
ence and assignment should be evident—these are simply the rela-
tional liftings of the standard, classical weakest pre-condition rules
for these constructs (Rd and W, respectively).

4.4 Computing relational VCs.

We repurpose the bulk of typechecking of F* to RF*. Although the
relational typing rules of Fig. 2 generally analyze a pair of pro-
grams eg ~ e, for the most part, we are concerned with proving
relational properties of multiple executions of a single program.
Thus, in the special symmetric case where we are analyzing e ~ e,
the rules of Fig. 2 degenerate into the standard typing rules for

2013/1/18

fi, f2 € [T] = M — D([U] x M)

Vii,t2 € (GET <T)z.(f1t1,f2t2) € (GFC< UDI[I::(tl,tQ)]

(fi,f2) €{(GF(z:T)—=C<T = Uz

(d1,d2) € [B]?

w1, 2 € M — D([U] x M)

VYmi,ma € M. {®)z(m1,m2) = P! (1 ma) (u2 m2)

(d1,d2) € (GFB<B)z

(1, p2) € (G H{P}y : U{T} o Uz

where P = A((u1,m}), (uz,m5)). (u1,u2) € (G HUAUDz A (V) 21y (ug ,up)) (M1, M3)

Figure 4. Interpretation of relational refinement types

monadic F* (which is parametric in the choice of monad, so con-
figuring it to use RDST is easy).

The main subtlety in computing relational VCs arises when
analyzing the cross-cases of conditional expressions—for this we
implement the single-sided rules in the judgment, and attempt to
revert to the symmetric case as soon as we detect that the program
fragments are indeed the same. For example, the rule [1] allows us
to relate if b then e else ¢’ ~ e, by generating subgoals for e ~ e and
e’ ~ e, where, at least the former can be handled once again by the
symmetric rules.

The rule [Rep] of Fig. 2 is impossible to implement in full
generality—it permits reasoning about stateful programs after arbi-
trary reductions of open terms. However, the rule is approximated
by the RF* typechecker for terms that can be given classical pred-
icate transformer specifications. In particular, when trying to re-
late eg ~ e1, if we can use the symmetric judgments and type
eo ~ eo : RDST t(liftwp0_), and e1 ~ e; : RDST t (lift - wpl),
then we type eg ~ e; at type RDST t (lift wp0 wpl). In effect, by
making use of classical predicate transformers on either side, we
approximate the reduction relation for stateful terms used by [REp]
(and its symmetric counterpart).

All these measures for handling the asymmetric cases are still
incomplete. When trying to prove a relation between f vo ~ g v1 in
a context G with relational types for f and g that cannot be decom-
posed into a pair of classical specifications, it becomes impossible
to complete the derivation. In such cases, RF* emits False as the
VC (guarded by a relational path condition). Nevertheless, it may
still be possible to discharge the VC, if the path condition is infea-
sible. This is the case, for example, when trying to relate the result
of encrypt with errorNonce in the passport example of §2.4.

4.5 Provings VCs using Z3.

Once a VC has been computed, we ride on an existing encoding of
VCs computed for the classic Dijsktra monad within Z3. We rely
on a theorem from Schlesinger and Swamy [28] which guarantees
that despite the use of higher-order logic when computing VCs,
once a predicate transformer is applied to a specific first-order
post-condition, so long as there is no inherent use of higher-order
axioms in the context, a first-order normal form for the VC can be
computed.

5. Applications

Table 5 summarizes our experimental evaluation of RF*. For each
program, we give the number of lines of code and type annotations
(excluding comments), and the typechecking time, which is mostly
dominated by the time spent solving VCs in Z3. For lack of space,
most of these examples are only briefly described, with a more de-
tailed discussion of the last two programs, counter (a cryptographic
construction) and meter (a privacy protocol).

Information flow and passport The first five programs provide
many information flow examples and test cases for single-sided
rules using several variations of the RDST monad construction

of §4. The sixth program, passport, was discussed in §2; its veri-
fication involves modelling key-hiding symmetric encryption.

Up to bad The program uptobad illustrates a common crypto-
graphic proof pattern to prove refinement formulas of the form ¢ v
Bad where ¢ is the property we are interested in and Bad captures
conditions that may cause the program to ‘fail’, usually with a small
probability. To avoid polluting all our specifications with this dis-
junction, we define an up-to-bad variant of the RDST monad, where
all pre- and post-conditions, and heap invariants are only enforced
as long as a distinguished location, bad: ref bool, is false. Intuitively,
this adds an implicit v Bad to every refinement. Independently, we
can compute (or bound) the probability of bad being set to true;
for passports for instance, we set bad to true when we detect a col-
lision between two sampled nonces nt, and bound its probability
with g% /25* where q is the number of sessions.

Random Oracle The program ro provides an idealized implemen-
tation of a cryptographic hash function in the random oracle model.
The implementation uses a mutable reference holding a table map-
ping hash queries made by both honest participants H and adver-
saries A. To verify the program, we carry several invariants on this
table, including proving that the tables grow monotonically; that in
every pair of executions, the tables agree on the fragments corre-
sponding to queries made by A; and that on the fragments corre-
sponding to queries by H, the entries are related by an injective
function that ensures they have indistinguishable distributions. The
interface of ro is designed to allow the full use of relational sample
on the H fragment, and to account for failure events (e.g., return-
ing a value to A that collides with one that was already provided
to H), allowing for its modular use in a context that must bound
their probability.

CCA2 We program an ideal, stateful functionality for CCA2 public-
key encryption that maintains a log of prior oracle encryptions,
similar to those of Fournet et al. [16]. They require that all code
that operates on secrets be placed in a separate module that exports
plaintexts as an abstract type. Using relational types, we lift this
restriction, enabling us to verify code that use encryption without
restructuring. The code is essentially higher-order, simulating ML
functors using a dependently typed record of functions.

Nonces and Private Authentication Exploiting the modularity of
our CCA2 implementation, we verify simplenonce, a protocol that
implements a common authenticated pattern based on fresh nonces,
formalizing the intuition “if a encrypts a fresh random nonce us-
ing the public key of b, and later decrypts a response containing
that nonce, then the whole response must have been sent by b”. We
further extend simplenonce to privateauth, a private authentication
protocol that allows two parties to communicate securely, protect-
ing both their messages and identities from third parties.

El Gamal encryption The chosen-plaintext security of ElGamal en-
cryption is a classic example of a code-based cryptographic proof.
We verify it in RF*, building on an axiomatic theory of cyclic
groups.

2013/1/18

NAME LOC TC(S) DESCRIPTION
arith 43 4.5 Information flow with arithmetic
purel 35 1.7 Information flow with inference
pure2 33 1.7 Variation of purel
st 52 3.6 Information flow with state
singlesided 111 14.2 Inf. flow with state and single-sided rules
passport 97 44.2 | Defense against attack on French passports
uptobad 15 1.4 | Up-to-failure reasoning
ro 73 21.2 Random oracle
cca2 88 6.5 Idealized CCA2 encryption
simplenonce 108 42.5 Authentication with nonces
privateauth 175 81.4 | Nonces with private authentication
elg 217 124.5 ElGamal encryption
counter 106 24.1 Counter mode for AES
meter 182 79.8 Pedersen commitments for smart meters
Total 1,378 451.3

Table 1. Summary of experiments

5.1 Pseudo-random functions and counter-mode

Resuming from the one-time-pad (§2), we implement a more use-
ful symmetric encryption scheme based on a block cipher, such
as 3DES and AES. Blocks are just fixed-sized byte arrays, e.g.
16 bytes for AES. Block ciphers take a key and a plaintext block,
and produce a ciphertext block. A common cryptographic security
assumption is that the block cipher is a pseudo-random function
(PRF): for a fixed key, generated uniformly at random, and used
only as input to the cipher, the cipher is computationally indistin-
guishable from a uniformly random function from blocks to blocks.
We first present our sample scheme, then formalize the pseudo-
random assumption, and finally explain how we verify it by rela-
tional typing.
Encrypting in counter mode The purpose of symmetric encryption
modes is to apply the block cipher keyed with a single, short secret
in order to encrypt many blocks of plaintexts. In counter mode, to
encrypt a sequence of plaintext blocks p;, we use a sequence of in-
dex blocks i;, obtained for instance by incrementing a counter. We
independently apply the block cipher to each i; to obtain a mask m;;
and compute the ciphertext block c; as p; ® m;, effectively using
the masks as one-time pads. A practical advantage of this construc-
tion is that both encryption and decryption are fully parallelizable,
and that the sequence of masks can be pre-computed. The blocks i
need not be secret, but they must be pairwise-distinct. Otherwise,
from the two ciphertexts p & m; and p’ ® m;, one trivially obtains
p @ p’, which leaks a full block of information.

For simplicity, we keep the block cipher key implicit, writing
f for the resulting pseudo-random function, we focus on the func-
tions for processing individual plaintext blocks, rather than lists of
blocks, and we attach the (public) index to every ciphertext block.
First, assume there is a single encryptor, that counts using an inte-
ger reference and uses toBytes to format the integer as a block.

let n =ref O;
let encrypt (p:block) =let i = toBytes !nin n :=!n + 1; (i, xor (f i) p)
let decryptic=xor (fi)c

Random Initialization Vectors To enable independent encryptions
of plaintext blocks, we can remove the global counter and instead
sample a block i for each encryption, as follows. This random block
i is called the initialization vector (IV) for the encryption.

let encrypt’(p:block) = let i = sample 16 in (i, xor (f i) p)

Much as for the one-time-pad, we show that encrypt and encrypt’
can be typed as block — eq (block * block) under suitable crypto-
graphic assumptions. More general combinations of sampling and
incrementing can also be used for independent multi-block encryp-
tions; for instance, the usual counter mode is programmed as fol-
lows:

let encrypt_counter_mode (ps:list block) =
let iv =sample 16 in let i = ref iv in
ivi:List.map (fun p — incrBytes i; xor (f li)) ps

Pseudo-random functions To study the security of protocols using
a block cipher, we program and type it as a random function
from blocks to blocks. To test our encryption, we implement it
concretely by just calling AES. If we can prove the security of a
protocol using this ideal random-function implementation, then the
same protocol using the block cipher is secure with overwhelming
probability. We implement the function f using lazy sampling: when
called, f first looks up for a previously-sampled mask in its log;
otherwise, f samples a fresh mask. As for the one-time-pad, we
pass the plaintext block p as a ghost parameter, and take advantage
of sampling to generate a mask with a relational refinement to
specifically hide that block. Of course, this fails if the mask has
already been sampled, so we type f for encryption with a pre-
condition that depends on the current log and requires that i does
not occur in the log yet. (We use a different type for decryption,
requesting that ¢ occurs in the log.)

val f: i:index — p:block — iRST pre block post
where pre hO h1 = (x Requires: i not in the log yet %)
not (In (L i) (Domain (Sel hO (L log))))
A(Li=Ri)A (Segn (Li) < Sel hO (L n))
and post h0 h1 m0 m1 h0’ h1’ = (x Ensures: log extended with (i,p,m) x)
Mask (L p) (R p) mO m1 (x and sampled m’s related by injectivity *)
A h0” = Upd hO (L log) ((Entry (L i) (L p) m0)::Sel hO (L log))
A hl’ =Upd hl (R log) ((Entry (R i) (R p) m1)::Sel h1 (R log))
let f p i = match assoc i !log with
| Some(_,m) — m (* unreachable *)
| None — sample p

When using a counter (function encrypt), typechecking relies
on a joint invariant on the counter n and the content of the log,
that states that all entries in the log have an index block i formatted
from some n’ < m. It also involves excluding counter overflows,
and assuming that toBytes is injective. This enables us to prove that
our encryption is secure with no loss in the reduction: the advantage
of a CPA adversary against our code is the same as the advantage
of some adversary against the PRF assumption.

When using instead fresh random blocks (function encrypt’), the
situation is more complex, as there is a non-null probability that
two different encryptions pick the same index i. Our construction is
secure as long as no such collisions happen. We capture this event
using the ‘up to bad’ approach presented above, for a Fresh module
that silently detects collisions and sets the bad flag accordingly.
Concretely, the probability of having a collision when sampling ¢
blocks of 16 bytes each is bounded by ¢* /228,

By typing, we prove that encryption, and any program that may
use it, leaks information only once bad is true. Thus, we prove
the concrete security of our scheme with a loss of ¢°/2'2® in the
reduction to PRF.

5.2 Privacy-preserving smart metering & billing

We have implemented and verified the “fast billing” protocol of
Rial and Danezis [26], which involves recursive data structures and
homomorphic commitments. The protocol has three roles: a certi-
fied meter that issues signed, fine-grained electricity readings (say
one reading every 10 minutes); a utility company that issues signed
rates (for the same time intervals, depending on some public pol-
icy); and a user, who receives both inputs at the end of the month to
compute his electricity bill. The goal of the protocol is to guaran-
tee the integrity of the monthly fee paid to the utility company and
the privacy of the detailed readings. The protocol relies on Ped-
ersen commitments [24] and public-key signatures. We prove per-
fect, information-theoretic privacy (entirely by relational typing)

2013/1/18

and computational integrity by reduction to the discrete log prob-
lem (using ‘up-to-bad’).

Homomorphic Pedersen commitments We implement (and type)
commitments, parameterized by some multiplicative group of
prime order p. We outline their interface and review their main
security properties.

type opening (pp:pp) (x:text) =
o:opng {| Eq ((trap (L pp) * L) + L 0) ((trap (R pp) * Rx) + R 0) |}

val sample: pp:pp — x:text — opening pp x

val commit: pp:pp — x:text — r:opening pp x —
ceqelt { c = Commit ppxr}

let commit ppxr=pp.g "~ x x pp.h " r

let verify ppxrc=(c=pp.g " x*pp.h"r)

Public parameters pp consist of the prime p and two different
group generators g and h (possibly chosen by the utility). A com-
mitment to x with opening o is a group element ¢ = g“h°. Al-
though assumed hard to compute, there exists a (known as the
trapdoor for these parameters) such that g = h®. Accordingly,
we use « = trap pp for specification purposes, in refinement for-
mulas but not in the protocol code. We use « in particular to
provide an injective function for randomly sampling the open-
ing o (modulo p) so that it perfectly hides x: the relational re-
finement type opening in the postcondition of sample records that
a*(L 2) + (L 0) = ax(R z) + (R 0), which implies g7*h=° = gFepfe
and enables us to type the result of commit as public (eq elt). Intu-
itively, every commitment can be opened to any x, for some hard-
to-compute o, so the commitment itself does not leak any informa-
tion about x as long as o is randomly sampled and kept secret.

Commitments can be multiplied: g”h° * g* h° = g%t hote
and exponentiated: (¢°h°)® = g*®h®° to compute linear combina-
tions of their exponents without necessarily knowing them. These
operations preserve eq and opening relational refinements.

Smart Meter We show some typed code for each role of the proto-
col. We have abstract predicates Readings and Rates to specify au-
thentic lists of readings and rates. We rely on a signature scheme,
assumed resistant against existential forgery attacks. As explained
in [16], we express this property using (non-relational) refinements.

type Signed (pp:pp) (cs:list elt) =
Ixrs. Readings (fsts xrs) A cs = Commits pp xrs
val sign: pp:pp — cs:eq (list elt){Signed pp cs} — eq dsig
val verify_meter_signature: pp:pp
— csieq (list elt) — eq dsig — b:eq bool{ b=true = Signed pp cs }

The Signed predicate above states that the commitments have been
computed from authentic readings; it is a precondition for signing
(at the meter) and a postcondition of signature verification.

Given authentic readings xs, the meter calls commits, a recursive
function that maps commit to every element of xs and returns
both a private list of pairs x+, o; for the user and a public list of
commitments c; for the utility. These commitments are then signed,
yielding a public signature. From their eq types, we can already
conclude that the data passed from the meter to the utility does not
convey information about the readings.

val meter: pp:pp — xs:list int{ Readings xs } —
xrs:(list (x:int * opening pp X)) { xs = fsts xrs } %
csieq list elt * eq dsig{ Commits pp xrs = cs }
let meter pp xs = let xrs,cs = commits pp xs in (xrs, cs, sign pp cs)

User From the list of pairs x¢, o; and the list of rates p; from the
utility, the user computes two scalar products Zt x¢p: and Zt 01Dt

val make_payment: pp:pp
— xrs: (list (x:text * opening pp x)) { Readings (fsts xrs) }
— ps:eq (list text){ Rates ps A
(| SP (fsts (L xrs)) (L ps) = SP (fsts (R xrs)) (R ps) |) }

— (eq text * eq opng)
let make_payment pp xrs ps = let x,r = sums xrs ps in (x,r)

The relational part of the pre-condition (enclosed with (]...))) is a
declassification condition, capturing the user’s intent to leak the
total payment, computed as the scalar product (SP) of the detailed
readings and rates. By typing the code of the double scalar product
sums, we get the same equation for the openings. The result type
of make_payment tells us that those two scalars reveal no further
information on any readings leading to the same fee.

Utility The utility verifies the signature on the commitments c;, and
uses the rates p; to computes the product of exponentials

Ht ot = Ht (g®thot)Pt = Ht gutPtpOtPt = gzt Tepe 24 oLt

and compares it to the commitment g“h° computed from the values
x and o presented by the user. Unless the user can open a commit-
ment to several values x (which can be further reduced to the dis-
crete log problem), this confirms that z is the correct payment. To
type the verifier code, we write classic, but non-trivial refinements,
using ghost scalar products to keep track of its computation.

6. Related work and conclusions

Our work spans protocol and relational program verification.

Protocol verification Blanchet’s recent account of the field of pro-
tocol verification provides a panorama of existing tools and of ma-
jor achievements [9]. Most of the literature focuses on verifying
protocol specifications, or protocol implementations through model
extractors; however, our work is most closely related to approaches
that reason directly about implementations in the symbolic [8, 15]
or computational models [16, 20]. Alternatives include generating
implementations from verified models [10], and extracting models
from implementations [1].

Relational program verification Relational Hoare Logic was first
introduced to reason about program optimizations and information
flow of core imperative programs [7]. It was later extended to prob-
abilistic programs, and used to reason about cryptography and dif-
ferential privacy [4, 6]; and to higher-order programs with store
(but not probabilities) and used to reason about advanced informa-
tion flow policies using interactive proofs in Coq [23]. Relational
logics can also be used to reason about continuity [11]. Naturally,
numerous program analyses and specialized relational logics en-
force 2-properties of programs.

Conclusions RF* is a full-fledged programming language that
supports fine-grained relational reasoning about probabilistic pro-
grams, and mechanisms to exploit localized guarantees obtained
by such means in global program analyses. We aim in the future
to apply RF* to certify the end-to-end security of large protocol
implementations, such as ongoing efforts with F* to verify TLS
1.2. Along another axis, we aim to use RF* to verify cryptographic
implementations and advanced cryptographic constructions that
are inherently higher-order and hence out of reach for existing
relational tools, like EasyCrypt. Examples of such “higher-order
cryptography” include leakage-resilience, which accounts for side
channel attacks, and key-dependent message security.

References
[1] M. Aizatulin, A. D. Gordon, and J. Jiirjens. Computational verification
of ¢ protocol implementations by symbolic execution. In CCS, 2012.

[2] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinka-
bility and anonymity using the applied pi calculus. In CSF, 2010.

[3] P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms
in Coq. Sci. Comput. Program., 74(8):568-589, 2009.

[4] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification
of code-based cryptographic proofs. In POPL, 2009.

2013/1/18

[5] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin.
Computer-aided security proofs for the working cryptographer. In
CRYPTO, 2011.

[6] G. Barthe, B. Kopf, F. Olmedo, and S. Zanella Béguelin. Probabilistic
reasoning for differential privacy. In POPL, 2012.

[7]1 N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In POPL, 2004.
[8] K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of
security protocol code by typing. In POPL, 2010.
[9] B. Blanchet. Security protocol verification: Symbolic and computa-
tional models. In POST, 2012.
[10] D. Cadé and B. Blanchet. From computationally-proved protocol
specifications to implementations. In AReS, 2012.
[11] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis
of programs. In POPL, 2010.
[12] T. Chothia and V. Smirnov. A traceability attack against e-passports.
In FCDS, 2010.

[13] M. Clarkson and F. Schneider. Hyperproperties. JCS, 18(6), 2010.

[14] L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS,
2008.

[15] F. Dupressoir, A. Gordon, J. Jiirjens, and D. Naumann. Guiding a
general-purpose C verifier to prove cryptographic protocols. In CSF,
2011.

[16] C. Fournet, M. Kohlweiss, and P.-Y. Strub. Modular code-based
cryptographic verification. In CCS, 2011.

[17] J. A. Goguen and J. Meseguer. Security policies and security models.
In IEEE S&P, 1982.

[18] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection
Extension for the Coq system. Rapport de recherche RR-6455, INRIA,
2008.

[19] B. Jonsson, W. Yi, and K. G. Larsen. Probabilistic extensions of
process algebras. In Handbook of Process Algebra, pages 685-710.
Elsevier, 2001.

[20] R. Kiisters, T. Truderung, and J. Graf. A Framework for the Crypto-
graphic Verification of Java-like Programs. In CSF, 2012.

[21] J. McCarthy. Towards a mathematical science of computation. In /FIP
Congress, 1962.

[22] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: dependent types for imperative programs. In /CFP, 2008.

[23] A. Nanevski, A. Banerjee, and D. Garg. Verification of information
flow and access control policies with dependent types. In [EEE S&P,
2011.

[24] T. P. Pedersen. Non-interactive and information-theoretic secure veri-
fiable secret sharing. In CRYPTO, 1992.

[25] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, 2002.

[26] A.Rial and G. Danezis. Privacy-preserving smart metering. In WPES,
2011.

[27] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. JSAC, 21(1):5-19, Jan. 2003.

[28] C. Schlesinger and N. Swamy. Verification condition generation using
the Dijkstra state monad. Technical report, Microsoft Research, 2011.

[29] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.

Secure distributed programming with value-dependent types. In ICFP,
2011.

2013/1/18

	Introduction
	Programming with relational refinements
	From classic to relational refinements
	Information flow
	Sampling, chosen-plaintext security, and one-time pads
	Implicit flows and passport linkability

	Formal development
	Lambda-p: syntax
	Lambda-p: typing
	Relational refinement types
	Relational typing

	Lambda-p: denotational semantics
	Background
	Set-theoretical interpretation
	Relational interpretation

	Encoding p in rF
	Representing p types
	A monad of predicate transformers for VC generation.
	Lifting classical specifications.
	Computing relational VCs.
	Provings VCs using Z3.

	Applications
	Pseudo-random functions and counter-mode
	Privacy-preserving smart metering & billing

	Related work and conclusions

